1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/MachineValueType.h"
21 #include "llvm/CodeGen/VirtRegMap.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCRegisterInfo.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Printable.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetFrameLowering.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetSubtargetInfo.h"
33 #include <cassert>
34 #include <utility>
35 
36 #define DEBUG_TYPE "target-reg-info"
37 
38 using namespace llvm;
39 
40 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
41                              regclass_iterator RCB, regclass_iterator RCE,
42                              const char *const *SRINames,
43                              const LaneBitmask *SRILaneMasks,
44                              LaneBitmask SRICoveringLanes,
45                              const RegClassInfo *const RCIs,
46                              unsigned Mode)
47   : InfoDesc(ID), SubRegIndexNames(SRINames),
48     SubRegIndexLaneMasks(SRILaneMasks),
49     RegClassBegin(RCB), RegClassEnd(RCE),
50     CoveringLanes(SRICoveringLanes),
51     RCInfos(RCIs), HwMode(Mode) {
52 }
53 
54 TargetRegisterInfo::~TargetRegisterInfo() = default;
55 
56 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
57     const {
58   for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
59     RegisterSet.set(*AI);
60 }
61 
62 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
63     ArrayRef<MCPhysReg> Exceptions) const {
64   // Check that all super registers of reserved regs are reserved as well.
65   BitVector Checked(getNumRegs());
66   for (unsigned Reg : RegisterSet.set_bits()) {
67     if (Checked[Reg])
68       continue;
69     for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
70       if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
71         dbgs() << "Error: Super register " << PrintReg(*SR, this)
72                << " of reserved register " << PrintReg(Reg, this)
73                << " is not reserved.\n";
74         return false;
75       }
76 
77       // We transitively check superregs. So we can remember this for later
78       // to avoid compiletime explosion in deep register hierarchies.
79       Checked.set(*SR);
80     }
81   }
82   return true;
83 }
84 
85 namespace llvm {
86 
87 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
88                    unsigned SubIdx) {
89   return Printable([Reg, TRI, SubIdx](raw_ostream &OS) {
90     if (!Reg)
91       OS << "%noreg";
92     else if (TargetRegisterInfo::isStackSlot(Reg))
93       OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
94     else if (TargetRegisterInfo::isVirtualRegister(Reg))
95       OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
96     else if (TRI && Reg < TRI->getNumRegs())
97       OS << '%' << TRI->getName(Reg);
98     else
99       OS << "%physreg" << Reg;
100     if (SubIdx) {
101       if (TRI)
102         OS << ':' << TRI->getSubRegIndexName(SubIdx);
103       else
104         OS << ":sub(" << SubIdx << ')';
105     }
106   });
107 }
108 
109 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
110   return Printable([Unit, TRI](raw_ostream &OS) {
111     // Generic printout when TRI is missing.
112     if (!TRI) {
113       OS << "Unit~" << Unit;
114       return;
115     }
116 
117     // Check for invalid register units.
118     if (Unit >= TRI->getNumRegUnits()) {
119       OS << "BadUnit~" << Unit;
120       return;
121     }
122 
123     // Normal units have at least one root.
124     MCRegUnitRootIterator Roots(Unit, TRI);
125     assert(Roots.isValid() && "Unit has no roots.");
126     OS << TRI->getName(*Roots);
127     for (++Roots; Roots.isValid(); ++Roots)
128       OS << '~' << TRI->getName(*Roots);
129   });
130 }
131 
132 Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
133   return Printable([Unit, TRI](raw_ostream &OS) {
134     if (TRI && TRI->isVirtualRegister(Unit)) {
135       OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
136     } else {
137       OS << PrintRegUnit(Unit, TRI);
138     }
139   });
140 }
141 
142 } // end namespace llvm
143 
144 /// getAllocatableClass - Return the maximal subclass of the given register
145 /// class that is alloctable, or NULL.
146 const TargetRegisterClass *
147 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
148   if (!RC || RC->isAllocatable())
149     return RC;
150 
151   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
152        ++It) {
153     const TargetRegisterClass *SubRC = getRegClass(It.getID());
154     if (SubRC->isAllocatable())
155       return SubRC;
156   }
157   return nullptr;
158 }
159 
160 /// getMinimalPhysRegClass - Returns the Register Class of a physical
161 /// register of the given type, picking the most sub register class of
162 /// the right type that contains this physreg.
163 const TargetRegisterClass *
164 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
165   assert(isPhysicalRegister(reg) && "reg must be a physical register");
166 
167   // Pick the most sub register class of the right type that contains
168   // this physreg.
169   const TargetRegisterClass* BestRC = nullptr;
170   for (const TargetRegisterClass* RC : regclasses()) {
171     if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
172         RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
173       BestRC = RC;
174   }
175 
176   assert(BestRC && "Couldn't find the register class");
177   return BestRC;
178 }
179 
180 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
181 /// registers for the specific register class.
182 static void getAllocatableSetForRC(const MachineFunction &MF,
183                                    const TargetRegisterClass *RC, BitVector &R){
184   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
185   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
186   for (unsigned i = 0; i != Order.size(); ++i)
187     R.set(Order[i]);
188 }
189 
190 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
191                                           const TargetRegisterClass *RC) const {
192   BitVector Allocatable(getNumRegs());
193   if (RC) {
194     // A register class with no allocatable subclass returns an empty set.
195     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
196     if (SubClass)
197       getAllocatableSetForRC(MF, SubClass, Allocatable);
198   } else {
199     for (const TargetRegisterClass *C : regclasses())
200       if (C->isAllocatable())
201         getAllocatableSetForRC(MF, C, Allocatable);
202   }
203 
204   // Mask out the reserved registers
205   BitVector Reserved = getReservedRegs(MF);
206   Allocatable &= Reserved.flip();
207 
208   return Allocatable;
209 }
210 
211 static inline
212 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
213                                             const uint32_t *B,
214                                             const TargetRegisterInfo *TRI,
215                                             const MVT::SimpleValueType SVT =
216                                             MVT::SimpleValueType::Any) {
217   const MVT VT(SVT);
218   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
219     if (unsigned Common = *A++ & *B++) {
220       const TargetRegisterClass *RC =
221           TRI->getRegClass(I + countTrailingZeros(Common));
222       if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT))
223         return RC;
224     }
225   return nullptr;
226 }
227 
228 const TargetRegisterClass *
229 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
230                                       const TargetRegisterClass *B,
231                                       const MVT::SimpleValueType SVT) const {
232   // First take care of the trivial cases.
233   if (A == B)
234     return A;
235   if (!A || !B)
236     return nullptr;
237 
238   // Register classes are ordered topologically, so the largest common
239   // sub-class it the common sub-class with the smallest ID.
240   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
241 }
242 
243 const TargetRegisterClass *
244 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
245                                              const TargetRegisterClass *B,
246                                              unsigned Idx) const {
247   assert(A && B && "Missing register class");
248   assert(Idx && "Bad sub-register index");
249 
250   // Find Idx in the list of super-register indices.
251   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
252     if (RCI.getSubReg() == Idx)
253       // The bit mask contains all register classes that are projected into B
254       // by Idx. Find a class that is also a sub-class of A.
255       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
256   return nullptr;
257 }
258 
259 const TargetRegisterClass *TargetRegisterInfo::
260 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
261                        const TargetRegisterClass *RCB, unsigned SubB,
262                        unsigned &PreA, unsigned &PreB) const {
263   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
264 
265   // Search all pairs of sub-register indices that project into RCA and RCB
266   // respectively. This is quadratic, but usually the sets are very small. On
267   // most targets like X86, there will only be a single sub-register index
268   // (e.g., sub_16bit projecting into GR16).
269   //
270   // The worst case is a register class like DPR on ARM.
271   // We have indices dsub_0..dsub_7 projecting into that class.
272   //
273   // It is very common that one register class is a sub-register of the other.
274   // Arrange for RCA to be the larger register so the answer will be found in
275   // the first iteration. This makes the search linear for the most common
276   // case.
277   const TargetRegisterClass *BestRC = nullptr;
278   unsigned *BestPreA = &PreA;
279   unsigned *BestPreB = &PreB;
280   if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
281     std::swap(RCA, RCB);
282     std::swap(SubA, SubB);
283     std::swap(BestPreA, BestPreB);
284   }
285 
286   // Also terminate the search one we have found a register class as small as
287   // RCA.
288   unsigned MinSize = getRegSizeInBits(*RCA);
289 
290   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
291     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
292     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
293       // Check if a common super-register class exists for this index pair.
294       const TargetRegisterClass *RC =
295         firstCommonClass(IA.getMask(), IB.getMask(), this);
296       if (!RC || getRegSizeInBits(*RC) < MinSize)
297         continue;
298 
299       // The indexes must compose identically: PreA+SubA == PreB+SubB.
300       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
301       if (FinalA != FinalB)
302         continue;
303 
304       // Is RC a better candidate than BestRC?
305       if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
306         continue;
307 
308       // Yes, RC is the smallest super-register seen so far.
309       BestRC = RC;
310       *BestPreA = IA.getSubReg();
311       *BestPreB = IB.getSubReg();
312 
313       // Bail early if we reached MinSize. We won't find a better candidate.
314       if (getRegSizeInBits(*BestRC) == MinSize)
315         return BestRC;
316     }
317   }
318   return BestRC;
319 }
320 
321 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
322 /// share the same register file.
323 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
324                                   const TargetRegisterClass *DefRC,
325                                   unsigned DefSubReg,
326                                   const TargetRegisterClass *SrcRC,
327                                   unsigned SrcSubReg) {
328   // Same register class.
329   if (DefRC == SrcRC)
330     return true;
331 
332   // Both operands are sub registers. Check if they share a register class.
333   unsigned SrcIdx, DefIdx;
334   if (SrcSubReg && DefSubReg) {
335     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
336                                       SrcIdx, DefIdx) != nullptr;
337   }
338 
339   // At most one of the register is a sub register, make it Src to avoid
340   // duplicating the test.
341   if (!SrcSubReg) {
342     std::swap(DefSubReg, SrcSubReg);
343     std::swap(DefRC, SrcRC);
344   }
345 
346   // One of the register is a sub register, check if we can get a superclass.
347   if (SrcSubReg)
348     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
349 
350   // Plain copy.
351   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
352 }
353 
354 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
355                                               unsigned DefSubReg,
356                                               const TargetRegisterClass *SrcRC,
357                                               unsigned SrcSubReg) const {
358   // If this source does not incur a cross register bank copy, use it.
359   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
360 }
361 
362 // Compute target-independent register allocator hints to help eliminate copies.
363 void
364 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
365                                           ArrayRef<MCPhysReg> Order,
366                                           SmallVectorImpl<MCPhysReg> &Hints,
367                                           const MachineFunction &MF,
368                                           const VirtRegMap *VRM,
369                                           const LiveRegMatrix *Matrix) const {
370   const MachineRegisterInfo &MRI = MF.getRegInfo();
371   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
372 
373   // Hints with HintType != 0 were set by target-dependent code.
374   // Such targets must provide their own implementation of
375   // TRI::getRegAllocationHints to interpret those hint types.
376   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
377 
378   // Target-independent hints are either a physical or a virtual register.
379   unsigned Phys = Hint.second;
380   if (VRM && isVirtualRegister(Phys))
381     Phys = VRM->getPhys(Phys);
382 
383   // Check that Phys is a valid hint in VirtReg's register class.
384   if (!isPhysicalRegister(Phys))
385     return;
386   if (MRI.isReserved(Phys))
387     return;
388   // Check that Phys is in the allocation order. We shouldn't heed hints
389   // from VirtReg's register class if they aren't in the allocation order. The
390   // target probably has a reason for removing the register.
391   if (!is_contained(Order, Phys))
392     return;
393 
394   // All clear, tell the register allocator to prefer this register.
395   Hints.push_back(Phys);
396 }
397 
398 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
399   return !MF.getFunction()->hasFnAttribute("no-realign-stack");
400 }
401 
402 bool TargetRegisterInfo::needsStackRealignment(
403     const MachineFunction &MF) const {
404   const MachineFrameInfo &MFI = MF.getFrameInfo();
405   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
406   const Function *F = MF.getFunction();
407   unsigned StackAlign = TFI->getStackAlignment();
408   bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
409                               F->hasFnAttribute(Attribute::StackAlignment));
410   if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
411     if (canRealignStack(MF))
412       return true;
413     DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n");
414   }
415   return false;
416 }
417 
418 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
419                                             const uint32_t *mask1) const {
420   unsigned N = (getNumRegs()+31) / 32;
421   for (unsigned I = 0; I < N; ++I)
422     if ((mask0[I] & mask1[I]) != mask0[I])
423       return false;
424   return true;
425 }
426 
427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
428 LLVM_DUMP_METHOD
429 void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
430                                  const TargetRegisterInfo *TRI) {
431   dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
432 }
433 #endif
434