1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetRegisterInfo interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/VirtRegMap.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetFrameLowering.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 25 #define DEBUG_TYPE "target-reg-info" 26 27 using namespace llvm; 28 29 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 30 regclass_iterator RCB, regclass_iterator RCE, 31 const char *const *SRINames, 32 const unsigned *SRILaneMasks, 33 unsigned SRICoveringLanes) 34 : InfoDesc(ID), SubRegIndexNames(SRINames), 35 SubRegIndexLaneMasks(SRILaneMasks), 36 RegClassBegin(RCB), RegClassEnd(RCE), 37 CoveringLanes(SRICoveringLanes) { 38 } 39 40 TargetRegisterInfo::~TargetRegisterInfo() {} 41 42 void PrintReg::print(raw_ostream &OS) const { 43 if (!Reg) 44 OS << "%noreg"; 45 else if (TargetRegisterInfo::isStackSlot(Reg)) 46 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg); 47 else if (TargetRegisterInfo::isVirtualRegister(Reg)) 48 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg); 49 else if (TRI && Reg < TRI->getNumRegs()) 50 OS << '%' << TRI->getName(Reg); 51 else 52 OS << "%physreg" << Reg; 53 if (SubIdx) { 54 if (TRI) 55 OS << ':' << TRI->getSubRegIndexName(SubIdx); 56 else 57 OS << ":sub(" << SubIdx << ')'; 58 } 59 } 60 61 void PrintRegUnit::print(raw_ostream &OS) const { 62 // Generic printout when TRI is missing. 63 if (!TRI) { 64 OS << "Unit~" << Unit; 65 return; 66 } 67 68 // Check for invalid register units. 69 if (Unit >= TRI->getNumRegUnits()) { 70 OS << "BadUnit~" << Unit; 71 return; 72 } 73 74 // Normal units have at least one root. 75 MCRegUnitRootIterator Roots(Unit, TRI); 76 assert(Roots.isValid() && "Unit has no roots."); 77 OS << TRI->getName(*Roots); 78 for (++Roots; Roots.isValid(); ++Roots) 79 OS << '~' << TRI->getName(*Roots); 80 } 81 82 void PrintVRegOrUnit::print(raw_ostream &OS) const { 83 if (TRI && TRI->isVirtualRegister(Unit)) { 84 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit); 85 return; 86 } 87 PrintRegUnit::print(OS); 88 } 89 90 /// getAllocatableClass - Return the maximal subclass of the given register 91 /// class that is alloctable, or NULL. 92 const TargetRegisterClass * 93 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { 94 if (!RC || RC->isAllocatable()) 95 return RC; 96 97 const unsigned *SubClass = RC->getSubClassMask(); 98 for (unsigned Base = 0, BaseE = getNumRegClasses(); 99 Base < BaseE; Base += 32) { 100 unsigned Idx = Base; 101 for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) { 102 unsigned Offset = countTrailingZeros(Mask); 103 const TargetRegisterClass *SubRC = getRegClass(Idx + Offset); 104 if (SubRC->isAllocatable()) 105 return SubRC; 106 Mask >>= Offset; 107 Idx += Offset + 1; 108 } 109 } 110 return nullptr; 111 } 112 113 /// getMinimalPhysRegClass - Returns the Register Class of a physical 114 /// register of the given type, picking the most sub register class of 115 /// the right type that contains this physreg. 116 const TargetRegisterClass * 117 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const { 118 assert(isPhysicalRegister(reg) && "reg must be a physical register"); 119 120 // Pick the most sub register class of the right type that contains 121 // this physreg. 122 const TargetRegisterClass* BestRC = nullptr; 123 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){ 124 const TargetRegisterClass* RC = *I; 125 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) && 126 (!BestRC || BestRC->hasSubClass(RC))) 127 BestRC = RC; 128 } 129 130 assert(BestRC && "Couldn't find the register class"); 131 return BestRC; 132 } 133 134 /// getAllocatableSetForRC - Toggle the bits that represent allocatable 135 /// registers for the specific register class. 136 static void getAllocatableSetForRC(const MachineFunction &MF, 137 const TargetRegisterClass *RC, BitVector &R){ 138 assert(RC->isAllocatable() && "invalid for nonallocatable sets"); 139 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF); 140 for (unsigned i = 0; i != Order.size(); ++i) 141 R.set(Order[i]); 142 } 143 144 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, 145 const TargetRegisterClass *RC) const { 146 BitVector Allocatable(getNumRegs()); 147 if (RC) { 148 // A register class with no allocatable subclass returns an empty set. 149 const TargetRegisterClass *SubClass = getAllocatableClass(RC); 150 if (SubClass) 151 getAllocatableSetForRC(MF, SubClass, Allocatable); 152 } else { 153 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(), 154 E = regclass_end(); I != E; ++I) 155 if ((*I)->isAllocatable()) 156 getAllocatableSetForRC(MF, *I, Allocatable); 157 } 158 159 // Mask out the reserved registers 160 BitVector Reserved = getReservedRegs(MF); 161 Allocatable &= Reserved.flip(); 162 163 return Allocatable; 164 } 165 166 static inline 167 const TargetRegisterClass *firstCommonClass(const uint32_t *A, 168 const uint32_t *B, 169 const TargetRegisterInfo *TRI) { 170 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) 171 if (unsigned Common = *A++ & *B++) 172 return TRI->getRegClass(I + countTrailingZeros(Common)); 173 return nullptr; 174 } 175 176 const TargetRegisterClass * 177 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, 178 const TargetRegisterClass *B) const { 179 // First take care of the trivial cases. 180 if (A == B) 181 return A; 182 if (!A || !B) 183 return nullptr; 184 185 // Register classes are ordered topologically, so the largest common 186 // sub-class it the common sub-class with the smallest ID. 187 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this); 188 } 189 190 const TargetRegisterClass * 191 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, 192 const TargetRegisterClass *B, 193 unsigned Idx) const { 194 assert(A && B && "Missing register class"); 195 assert(Idx && "Bad sub-register index"); 196 197 // Find Idx in the list of super-register indices. 198 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) 199 if (RCI.getSubReg() == Idx) 200 // The bit mask contains all register classes that are projected into B 201 // by Idx. Find a class that is also a sub-class of A. 202 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); 203 return nullptr; 204 } 205 206 const TargetRegisterClass *TargetRegisterInfo:: 207 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 208 const TargetRegisterClass *RCB, unsigned SubB, 209 unsigned &PreA, unsigned &PreB) const { 210 assert(RCA && SubA && RCB && SubB && "Invalid arguments"); 211 212 // Search all pairs of sub-register indices that project into RCA and RCB 213 // respectively. This is quadratic, but usually the sets are very small. On 214 // most targets like X86, there will only be a single sub-register index 215 // (e.g., sub_16bit projecting into GR16). 216 // 217 // The worst case is a register class like DPR on ARM. 218 // We have indices dsub_0..dsub_7 projecting into that class. 219 // 220 // It is very common that one register class is a sub-register of the other. 221 // Arrange for RCA to be the larger register so the answer will be found in 222 // the first iteration. This makes the search linear for the most common 223 // case. 224 const TargetRegisterClass *BestRC = nullptr; 225 unsigned *BestPreA = &PreA; 226 unsigned *BestPreB = &PreB; 227 if (RCA->getSize() < RCB->getSize()) { 228 std::swap(RCA, RCB); 229 std::swap(SubA, SubB); 230 std::swap(BestPreA, BestPreB); 231 } 232 233 // Also terminate the search one we have found a register class as small as 234 // RCA. 235 unsigned MinSize = RCA->getSize(); 236 237 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { 238 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); 239 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { 240 // Check if a common super-register class exists for this index pair. 241 const TargetRegisterClass *RC = 242 firstCommonClass(IA.getMask(), IB.getMask(), this); 243 if (!RC || RC->getSize() < MinSize) 244 continue; 245 246 // The indexes must compose identically: PreA+SubA == PreB+SubB. 247 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); 248 if (FinalA != FinalB) 249 continue; 250 251 // Is RC a better candidate than BestRC? 252 if (BestRC && RC->getSize() >= BestRC->getSize()) 253 continue; 254 255 // Yes, RC is the smallest super-register seen so far. 256 BestRC = RC; 257 *BestPreA = IA.getSubReg(); 258 *BestPreB = IB.getSubReg(); 259 260 // Bail early if we reached MinSize. We won't find a better candidate. 261 if (BestRC->getSize() == MinSize) 262 return BestRC; 263 } 264 } 265 return BestRC; 266 } 267 268 // Compute target-independent register allocator hints to help eliminate copies. 269 void 270 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg, 271 ArrayRef<MCPhysReg> Order, 272 SmallVectorImpl<MCPhysReg> &Hints, 273 const MachineFunction &MF, 274 const VirtRegMap *VRM, 275 const LiveRegMatrix *Matrix) const { 276 const MachineRegisterInfo &MRI = MF.getRegInfo(); 277 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg); 278 279 // Hints with HintType != 0 were set by target-dependent code. 280 // Such targets must provide their own implementation of 281 // TRI::getRegAllocationHints to interpret those hint types. 282 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints"); 283 284 // Target-independent hints are either a physical or a virtual register. 285 unsigned Phys = Hint.second; 286 if (VRM && isVirtualRegister(Phys)) 287 Phys = VRM->getPhys(Phys); 288 289 // Check that Phys is a valid hint in VirtReg's register class. 290 if (!isPhysicalRegister(Phys)) 291 return; 292 if (MRI.isReserved(Phys)) 293 return; 294 // Check that Phys is in the allocation order. We shouldn't heed hints 295 // from VirtReg's register class if they aren't in the allocation order. The 296 // target probably has a reason for removing the register. 297 if (std::find(Order.begin(), Order.end(), Phys) == Order.end()) 298 return; 299 300 // All clear, tell the register allocator to prefer this register. 301 Hints.push_back(Phys); 302 } 303 304 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const { 305 return !MF.getFunction()->hasFnAttribute("no-realign-stack"); 306 } 307 308 bool TargetRegisterInfo::needsStackRealignment( 309 const MachineFunction &MF) const { 310 const MachineFrameInfo *MFI = MF.getFrameInfo(); 311 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 312 const Function *F = MF.getFunction(); 313 unsigned StackAlign = TFI->getStackAlignment(); 314 bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) || 315 F->hasFnAttribute(Attribute::StackAlignment)); 316 if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) { 317 if (canRealignStack(MF)) 318 return true; 319 DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n"); 320 } 321 return false; 322 } 323 324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 325 void 326 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex, 327 const TargetRegisterInfo *TRI) { 328 dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n"; 329 } 330 #endif 331