1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetRegisterInfo interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetRegisterInfo.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/VirtRegMap.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/MachineValueType.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Printable.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <utility>
41 
42 #define DEBUG_TYPE "target-reg-info"
43 
44 using namespace llvm;
45 
46 static cl::opt<unsigned>
47     HugeSizeForSplit("huge-size-for-split", cl::Hidden,
48                      cl::desc("A threshold of live range size which may cause "
49                               "high compile time cost in global splitting."),
50                      cl::init(5000));
51 
52 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
53                              regclass_iterator RCB, regclass_iterator RCE,
54                              const char *const *SRINames,
55                              const LaneBitmask *SRILaneMasks,
56                              LaneBitmask SRICoveringLanes,
57                              const RegClassInfo *const RCIs,
58                              unsigned Mode)
59   : InfoDesc(ID), SubRegIndexNames(SRINames),
60     SubRegIndexLaneMasks(SRILaneMasks),
61     RegClassBegin(RCB), RegClassEnd(RCE),
62     CoveringLanes(SRICoveringLanes),
63     RCInfos(RCIs), HwMode(Mode) {
64 }
65 
66 TargetRegisterInfo::~TargetRegisterInfo() = default;
67 
68 bool TargetRegisterInfo::shouldRegionSplitForVirtReg(
69     const MachineFunction &MF, const LiveInterval &VirtReg) const {
70   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
71   const MachineRegisterInfo &MRI = MF.getRegInfo();
72   MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg());
73   if (MI && TII->isTriviallyReMaterializable(*MI) &&
74       VirtReg.size() > HugeSizeForSplit)
75     return false;
76   return true;
77 }
78 
79 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet,
80                                        MCRegister Reg) const {
81   for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
82     RegisterSet.set(*AI);
83 }
84 
85 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
86     ArrayRef<MCPhysReg> Exceptions) const {
87   // Check that all super registers of reserved regs are reserved as well.
88   BitVector Checked(getNumRegs());
89   for (unsigned Reg : RegisterSet.set_bits()) {
90     if (Checked[Reg])
91       continue;
92     for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
93       if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
94         dbgs() << "Error: Super register " << printReg(*SR, this)
95                << " of reserved register " << printReg(Reg, this)
96                << " is not reserved.\n";
97         return false;
98       }
99 
100       // We transitively check superregs. So we can remember this for later
101       // to avoid compiletime explosion in deep register hierarchies.
102       Checked.set(*SR);
103     }
104   }
105   return true;
106 }
107 
108 namespace llvm {
109 
110 Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
111                    unsigned SubIdx, const MachineRegisterInfo *MRI) {
112   return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
113     if (!Reg)
114       OS << "$noreg";
115     else if (Register::isStackSlot(Reg))
116       OS << "SS#" << Register::stackSlot2Index(Reg);
117     else if (Register::isVirtualRegister(Reg)) {
118       StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
119       if (Name != "") {
120         OS << '%' << Name;
121       } else {
122         OS << '%' << Register::virtReg2Index(Reg);
123       }
124     } else if (!TRI)
125       OS << '$' << "physreg" << Reg;
126     else if (Reg < TRI->getNumRegs()) {
127       OS << '$';
128       printLowerCase(TRI->getName(Reg), OS);
129     } else
130       llvm_unreachable("Register kind is unsupported.");
131 
132     if (SubIdx) {
133       if (TRI)
134         OS << ':' << TRI->getSubRegIndexName(SubIdx);
135       else
136         OS << ":sub(" << SubIdx << ')';
137     }
138   });
139 }
140 
141 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
142   return Printable([Unit, TRI](raw_ostream &OS) {
143     // Generic printout when TRI is missing.
144     if (!TRI) {
145       OS << "Unit~" << Unit;
146       return;
147     }
148 
149     // Check for invalid register units.
150     if (Unit >= TRI->getNumRegUnits()) {
151       OS << "BadUnit~" << Unit;
152       return;
153     }
154 
155     // Normal units have at least one root.
156     MCRegUnitRootIterator Roots(Unit, TRI);
157     assert(Roots.isValid() && "Unit has no roots.");
158     OS << TRI->getName(*Roots);
159     for (++Roots; Roots.isValid(); ++Roots)
160       OS << '~' << TRI->getName(*Roots);
161   });
162 }
163 
164 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
165   return Printable([Unit, TRI](raw_ostream &OS) {
166     if (Register::isVirtualRegister(Unit)) {
167       OS << '%' << Register::virtReg2Index(Unit);
168     } else {
169       OS << printRegUnit(Unit, TRI);
170     }
171   });
172 }
173 
174 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
175                               const TargetRegisterInfo *TRI) {
176   return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
177     if (RegInfo.getRegClassOrNull(Reg))
178       OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
179     else if (RegInfo.getRegBankOrNull(Reg))
180       OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
181     else {
182       OS << "_";
183       assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
184              "Generic registers must have a valid type");
185     }
186   });
187 }
188 
189 } // end namespace llvm
190 
191 /// getAllocatableClass - Return the maximal subclass of the given register
192 /// class that is alloctable, or NULL.
193 const TargetRegisterClass *
194 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
195   if (!RC || RC->isAllocatable())
196     return RC;
197 
198   for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
199        ++It) {
200     const TargetRegisterClass *SubRC = getRegClass(It.getID());
201     if (SubRC->isAllocatable())
202       return SubRC;
203   }
204   return nullptr;
205 }
206 
207 /// getMinimalPhysRegClass - Returns the Register Class of a physical
208 /// register of the given type, picking the most sub register class of
209 /// the right type that contains this physreg.
210 const TargetRegisterClass *
211 TargetRegisterInfo::getMinimalPhysRegClass(MCRegister reg, MVT VT) const {
212   assert(Register::isPhysicalRegister(reg) &&
213          "reg must be a physical register");
214 
215   // Pick the most sub register class of the right type that contains
216   // this physreg.
217   const TargetRegisterClass* BestRC = nullptr;
218   for (const TargetRegisterClass* RC : regclasses()) {
219     if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
220         RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
221       BestRC = RC;
222   }
223 
224   assert(BestRC && "Couldn't find the register class");
225   return BestRC;
226 }
227 
228 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
229 /// registers for the specific register class.
230 static void getAllocatableSetForRC(const MachineFunction &MF,
231                                    const TargetRegisterClass *RC, BitVector &R){
232   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
233   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
234   for (unsigned i = 0; i != Order.size(); ++i)
235     R.set(Order[i]);
236 }
237 
238 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
239                                           const TargetRegisterClass *RC) const {
240   BitVector Allocatable(getNumRegs());
241   if (RC) {
242     // A register class with no allocatable subclass returns an empty set.
243     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
244     if (SubClass)
245       getAllocatableSetForRC(MF, SubClass, Allocatable);
246   } else {
247     for (const TargetRegisterClass *C : regclasses())
248       if (C->isAllocatable())
249         getAllocatableSetForRC(MF, C, Allocatable);
250   }
251 
252   // Mask out the reserved registers
253   BitVector Reserved = getReservedRegs(MF);
254   Allocatable &= Reserved.flip();
255 
256   return Allocatable;
257 }
258 
259 static inline
260 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
261                                             const uint32_t *B,
262                                             const TargetRegisterInfo *TRI) {
263   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
264     if (unsigned Common = *A++ & *B++)
265       return TRI->getRegClass(I + countTrailingZeros(Common));
266   return nullptr;
267 }
268 
269 const TargetRegisterClass *
270 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
271                                       const TargetRegisterClass *B) const {
272   // First take care of the trivial cases.
273   if (A == B)
274     return A;
275   if (!A || !B)
276     return nullptr;
277 
278   // Register classes are ordered topologically, so the largest common
279   // sub-class it the common sub-class with the smallest ID.
280   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
281 }
282 
283 const TargetRegisterClass *
284 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
285                                              const TargetRegisterClass *B,
286                                              unsigned Idx) const {
287   assert(A && B && "Missing register class");
288   assert(Idx && "Bad sub-register index");
289 
290   // Find Idx in the list of super-register indices.
291   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
292     if (RCI.getSubReg() == Idx)
293       // The bit mask contains all register classes that are projected into B
294       // by Idx. Find a class that is also a sub-class of A.
295       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
296   return nullptr;
297 }
298 
299 const TargetRegisterClass *TargetRegisterInfo::
300 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
301                        const TargetRegisterClass *RCB, unsigned SubB,
302                        unsigned &PreA, unsigned &PreB) const {
303   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
304 
305   // Search all pairs of sub-register indices that project into RCA and RCB
306   // respectively. This is quadratic, but usually the sets are very small. On
307   // most targets like X86, there will only be a single sub-register index
308   // (e.g., sub_16bit projecting into GR16).
309   //
310   // The worst case is a register class like DPR on ARM.
311   // We have indices dsub_0..dsub_7 projecting into that class.
312   //
313   // It is very common that one register class is a sub-register of the other.
314   // Arrange for RCA to be the larger register so the answer will be found in
315   // the first iteration. This makes the search linear for the most common
316   // case.
317   const TargetRegisterClass *BestRC = nullptr;
318   unsigned *BestPreA = &PreA;
319   unsigned *BestPreB = &PreB;
320   if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
321     std::swap(RCA, RCB);
322     std::swap(SubA, SubB);
323     std::swap(BestPreA, BestPreB);
324   }
325 
326   // Also terminate the search one we have found a register class as small as
327   // RCA.
328   unsigned MinSize = getRegSizeInBits(*RCA);
329 
330   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
331     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
332     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
333       // Check if a common super-register class exists for this index pair.
334       const TargetRegisterClass *RC =
335         firstCommonClass(IA.getMask(), IB.getMask(), this);
336       if (!RC || getRegSizeInBits(*RC) < MinSize)
337         continue;
338 
339       // The indexes must compose identically: PreA+SubA == PreB+SubB.
340       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
341       if (FinalA != FinalB)
342         continue;
343 
344       // Is RC a better candidate than BestRC?
345       if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
346         continue;
347 
348       // Yes, RC is the smallest super-register seen so far.
349       BestRC = RC;
350       *BestPreA = IA.getSubReg();
351       *BestPreB = IB.getSubReg();
352 
353       // Bail early if we reached MinSize. We won't find a better candidate.
354       if (getRegSizeInBits(*BestRC) == MinSize)
355         return BestRC;
356     }
357   }
358   return BestRC;
359 }
360 
361 /// Check if the registers defined by the pair (RegisterClass, SubReg)
362 /// share the same register file.
363 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
364                                   const TargetRegisterClass *DefRC,
365                                   unsigned DefSubReg,
366                                   const TargetRegisterClass *SrcRC,
367                                   unsigned SrcSubReg) {
368   // Same register class.
369   if (DefRC == SrcRC)
370     return true;
371 
372   // Both operands are sub registers. Check if they share a register class.
373   unsigned SrcIdx, DefIdx;
374   if (SrcSubReg && DefSubReg) {
375     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
376                                       SrcIdx, DefIdx) != nullptr;
377   }
378 
379   // At most one of the register is a sub register, make it Src to avoid
380   // duplicating the test.
381   if (!SrcSubReg) {
382     std::swap(DefSubReg, SrcSubReg);
383     std::swap(DefRC, SrcRC);
384   }
385 
386   // One of the register is a sub register, check if we can get a superclass.
387   if (SrcSubReg)
388     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
389 
390   // Plain copy.
391   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
392 }
393 
394 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
395                                               unsigned DefSubReg,
396                                               const TargetRegisterClass *SrcRC,
397                                               unsigned SrcSubReg) const {
398   // If this source does not incur a cross register bank copy, use it.
399   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
400 }
401 
402 // Compute target-independent register allocator hints to help eliminate copies.
403 bool TargetRegisterInfo::getRegAllocationHints(
404     Register VirtReg, ArrayRef<MCPhysReg> Order,
405     SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
406     const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
407   const MachineRegisterInfo &MRI = MF.getRegInfo();
408   const std::pair<Register, SmallVector<Register, 4>> &Hints_MRI =
409     MRI.getRegAllocationHints(VirtReg);
410 
411   SmallSet<Register, 32> HintedRegs;
412   // First hint may be a target hint.
413   bool Skip = (Hints_MRI.first != 0);
414   for (auto Reg : Hints_MRI.second) {
415     if (Skip) {
416       Skip = false;
417       continue;
418     }
419 
420     // Target-independent hints are either a physical or a virtual register.
421     Register Phys = Reg;
422     if (VRM && Phys.isVirtual())
423       Phys = VRM->getPhys(Phys);
424 
425     // Don't add the same reg twice (Hints_MRI may contain multiple virtual
426     // registers allocated to the same physreg).
427     if (!HintedRegs.insert(Phys).second)
428       continue;
429     // Check that Phys is a valid hint in VirtReg's register class.
430     if (!Phys.isPhysical())
431       continue;
432     if (MRI.isReserved(Phys))
433       continue;
434     // Check that Phys is in the allocation order. We shouldn't heed hints
435     // from VirtReg's register class if they aren't in the allocation order. The
436     // target probably has a reason for removing the register.
437     if (!is_contained(Order, Phys))
438       continue;
439 
440     // All clear, tell the register allocator to prefer this register.
441     Hints.push_back(Phys);
442   }
443   return false;
444 }
445 
446 bool TargetRegisterInfo::isCalleeSavedPhysReg(
447     MCRegister PhysReg, const MachineFunction &MF) const {
448   if (PhysReg == 0)
449     return false;
450   const uint32_t *callerPreservedRegs =
451       getCallPreservedMask(MF, MF.getFunction().getCallingConv());
452   if (callerPreservedRegs) {
453     assert(Register::isPhysicalRegister(PhysReg) &&
454            "Expected physical register");
455     return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
456   }
457   return false;
458 }
459 
460 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
461   return !MF.getFunction().hasFnAttribute("no-realign-stack");
462 }
463 
464 bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const {
465   const MachineFrameInfo &MFI = MF.getFrameInfo();
466   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
467   const Function &F = MF.getFunction();
468   return F.hasFnAttribute("stackrealign") ||
469          (MFI.getMaxAlign() > TFI->getStackAlign()) ||
470          F.hasFnAttribute(Attribute::StackAlignment);
471 }
472 
473 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
474                                             const uint32_t *mask1) const {
475   unsigned N = (getNumRegs()+31) / 32;
476   for (unsigned I = 0; I < N; ++I)
477     if ((mask0[I] & mask1[I]) != mask0[I])
478       return false;
479   return true;
480 }
481 
482 unsigned
483 TargetRegisterInfo::getRegSizeInBits(Register Reg,
484                                      const MachineRegisterInfo &MRI) const {
485   const TargetRegisterClass *RC{};
486   if (Reg.isPhysical()) {
487     // The size is not directly available for physical registers.
488     // Instead, we need to access a register class that contains Reg and
489     // get the size of that register class.
490     RC = getMinimalPhysRegClass(Reg);
491   } else {
492     LLT Ty = MRI.getType(Reg);
493     unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
494     // If Reg is not a generic register, query the register class to
495     // get its size.
496     if (RegSize)
497       return RegSize;
498     // Since Reg is not a generic register, it must have a register class.
499     RC = MRI.getRegClass(Reg);
500   }
501   assert(RC && "Unable to deduce the register class");
502   return getRegSizeInBits(*RC);
503 }
504 
505 bool TargetRegisterInfo::getCoveringSubRegIndexes(
506     const MachineRegisterInfo &MRI, const TargetRegisterClass *RC,
507     LaneBitmask LaneMask, SmallVectorImpl<unsigned> &NeededIndexes) const {
508   SmallVector<unsigned, 8> PossibleIndexes;
509   unsigned BestIdx = 0;
510   unsigned BestCover = 0;
511 
512   for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) {
513     // Is this index even compatible with the given class?
514     if (getSubClassWithSubReg(RC, Idx) != RC)
515       continue;
516     LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
517     // Early exit if we found a perfect match.
518     if (SubRegMask == LaneMask) {
519       BestIdx = Idx;
520       break;
521     }
522 
523     // The index must not cover any lanes outside \p LaneMask.
524     if ((SubRegMask & ~LaneMask).any())
525       continue;
526 
527     unsigned PopCount = SubRegMask.getNumLanes();
528     PossibleIndexes.push_back(Idx);
529     if (PopCount > BestCover) {
530       BestCover = PopCount;
531       BestIdx = Idx;
532     }
533   }
534 
535   // Abort if we cannot possibly implement the COPY with the given indexes.
536   if (BestIdx == 0)
537     return 0;
538 
539   NeededIndexes.push_back(BestIdx);
540 
541   // Greedy heuristic: Keep iterating keeping the best covering subreg index
542   // each time.
543   LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(BestIdx);
544   while (LanesLeft.any()) {
545     unsigned BestIdx = 0;
546     int BestCover = std::numeric_limits<int>::min();
547     for (unsigned Idx : PossibleIndexes) {
548       LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx);
549       // Early exit if we found a perfect match.
550       if (SubRegMask == LanesLeft) {
551         BestIdx = Idx;
552         break;
553       }
554 
555       // Try to cover as much of the remaining lanes as possible but
556       // as few of the already covered lanes as possible.
557       int Cover = (SubRegMask & LanesLeft).getNumLanes() -
558                   (SubRegMask & ~LanesLeft).getNumLanes();
559       if (Cover > BestCover) {
560         BestCover = Cover;
561         BestIdx = Idx;
562       }
563     }
564 
565     if (BestIdx == 0)
566       return 0; // Impossible to handle
567 
568     NeededIndexes.push_back(BestIdx);
569 
570     LanesLeft &= ~getSubRegIndexLaneMask(BestIdx);
571   }
572 
573   return BestIdx;
574 }
575 
576 Register
577 TargetRegisterInfo::lookThruCopyLike(Register SrcReg,
578                                      const MachineRegisterInfo *MRI) const {
579   while (true) {
580     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
581     if (!MI->isCopyLike())
582       return SrcReg;
583 
584     Register CopySrcReg;
585     if (MI->isCopy())
586       CopySrcReg = MI->getOperand(1).getReg();
587     else {
588       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
589       CopySrcReg = MI->getOperand(2).getReg();
590     }
591 
592     if (!CopySrcReg.isVirtual())
593       return CopySrcReg;
594 
595     SrcReg = CopySrcReg;
596   }
597 }
598 
599 Register TargetRegisterInfo::lookThruSingleUseCopyChain(
600     Register SrcReg, const MachineRegisterInfo *MRI) const {
601   while (true) {
602     const MachineInstr *MI = MRI->getVRegDef(SrcReg);
603     // Found the real definition, return it if it has a single use.
604     if (!MI->isCopyLike())
605       return MRI->hasOneNonDBGUse(SrcReg) ? SrcReg : Register();
606 
607     Register CopySrcReg;
608     if (MI->isCopy())
609       CopySrcReg = MI->getOperand(1).getReg();
610     else {
611       assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
612       CopySrcReg = MI->getOperand(2).getReg();
613     }
614 
615     // Continue only if the next definition in the chain is for a virtual
616     // register that has a single use.
617     if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(CopySrcReg))
618       return Register();
619 
620     SrcReg = CopySrcReg;
621   }
622 }
623 
624 void TargetRegisterInfo::getOffsetOpcodes(
625     const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
626   assert(!Offset.getScalable() && "Scalable offsets are not handled");
627   DIExpression::appendOffset(Ops, Offset.getFixed());
628 }
629 
630 DIExpression *
631 TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr,
632                                             unsigned PrependFlags,
633                                             const StackOffset &Offset) const {
634   assert((PrependFlags &
635           ~(DIExpression::DerefBefore | DIExpression::DerefAfter |
636             DIExpression::StackValue | DIExpression::EntryValue)) == 0 &&
637          "Unsupported prepend flag");
638   SmallVector<uint64_t, 16> OffsetExpr;
639   if (PrependFlags & DIExpression::DerefBefore)
640     OffsetExpr.push_back(dwarf::DW_OP_deref);
641   getOffsetOpcodes(Offset, OffsetExpr);
642   if (PrependFlags & DIExpression::DerefAfter)
643     OffsetExpr.push_back(dwarf::DW_OP_deref);
644   return DIExpression::prependOpcodes(Expr, OffsetExpr,
645                                       PrependFlags & DIExpression::StackValue,
646                                       PrependFlags & DIExpression::EntryValue);
647 }
648 
649 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
650 LLVM_DUMP_METHOD
651 void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex,
652                                  const TargetRegisterInfo *TRI) {
653   dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
654 }
655 #endif
656