1 //===-- TargetPassConfig.cpp - Target independent code generation passes --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines interfaces to access the target independent code
11 // generation passes provided by the LLVM backend.
12 //
13 //===---------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/TargetPassConfig.h"
16 
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
19 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
20 #include "llvm/Analysis/CallGraphSCCPass.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/Analysis/ScopedNoAliasAA.h"
23 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/RegAllocRegistry.h"
26 #include "llvm/CodeGen/RegisterUsageInfo.h"
27 #include "llvm/IR/IRPrintingPasses.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Transforms/Instrumentation.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Utils/SymbolRewriter.h"
38 
39 using namespace llvm;
40 
41 static cl::opt<bool> DisablePostRA("disable-post-ra", cl::Hidden,
42     cl::desc("Disable Post Regalloc"));
43 static cl::opt<bool> DisableBranchFold("disable-branch-fold", cl::Hidden,
44     cl::desc("Disable branch folding"));
45 static cl::opt<bool> DisableTailDuplicate("disable-tail-duplicate", cl::Hidden,
46     cl::desc("Disable tail duplication"));
47 static cl::opt<bool> DisableEarlyTailDup("disable-early-taildup", cl::Hidden,
48     cl::desc("Disable pre-register allocation tail duplication"));
49 static cl::opt<bool> DisableBlockPlacement("disable-block-placement",
50     cl::Hidden, cl::desc("Disable probability-driven block placement"));
51 static cl::opt<bool> EnableBlockPlacementStats("enable-block-placement-stats",
52     cl::Hidden, cl::desc("Collect probability-driven block placement stats"));
53 static cl::opt<bool> DisableSSC("disable-ssc", cl::Hidden,
54     cl::desc("Disable Stack Slot Coloring"));
55 static cl::opt<bool> DisableMachineDCE("disable-machine-dce", cl::Hidden,
56     cl::desc("Disable Machine Dead Code Elimination"));
57 static cl::opt<bool> DisableEarlyIfConversion("disable-early-ifcvt", cl::Hidden,
58     cl::desc("Disable Early If-conversion"));
59 static cl::opt<bool> DisableMachineLICM("disable-machine-licm", cl::Hidden,
60     cl::desc("Disable Machine LICM"));
61 static cl::opt<bool> DisableMachineCSE("disable-machine-cse", cl::Hidden,
62     cl::desc("Disable Machine Common Subexpression Elimination"));
63 static cl::opt<cl::boolOrDefault> OptimizeRegAlloc(
64     "optimize-regalloc", cl::Hidden,
65     cl::desc("Enable optimized register allocation compilation path."));
66 static cl::opt<bool> DisablePostRAMachineLICM("disable-postra-machine-licm",
67     cl::Hidden,
68     cl::desc("Disable Machine LICM"));
69 static cl::opt<bool> DisableMachineSink("disable-machine-sink", cl::Hidden,
70     cl::desc("Disable Machine Sinking"));
71 static cl::opt<bool> DisableLSR("disable-lsr", cl::Hidden,
72     cl::desc("Disable Loop Strength Reduction Pass"));
73 static cl::opt<bool> DisableConstantHoisting("disable-constant-hoisting",
74     cl::Hidden, cl::desc("Disable ConstantHoisting"));
75 static cl::opt<bool> DisableCGP("disable-cgp", cl::Hidden,
76     cl::desc("Disable Codegen Prepare"));
77 static cl::opt<bool> DisableCopyProp("disable-copyprop", cl::Hidden,
78     cl::desc("Disable Copy Propagation pass"));
79 static cl::opt<bool> DisablePartialLibcallInlining("disable-partial-libcall-inlining",
80     cl::Hidden, cl::desc("Disable Partial Libcall Inlining"));
81 static cl::opt<bool> EnableImplicitNullChecks(
82     "enable-implicit-null-checks",
83     cl::desc("Fold null checks into faulting memory operations"),
84     cl::init(false));
85 static cl::opt<bool> PrintLSR("print-lsr-output", cl::Hidden,
86     cl::desc("Print LLVM IR produced by the loop-reduce pass"));
87 static cl::opt<bool> PrintISelInput("print-isel-input", cl::Hidden,
88     cl::desc("Print LLVM IR input to isel pass"));
89 static cl::opt<bool> PrintGCInfo("print-gc", cl::Hidden,
90     cl::desc("Dump garbage collector data"));
91 static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
92     cl::desc("Verify generated machine code"),
93     cl::init(false),
94     cl::ZeroOrMore);
95 
96 static cl::opt<std::string>
97 PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
98                    cl::desc("Print machine instrs"),
99                    cl::value_desc("pass-name"), cl::init("option-unspecified"));
100 
101 // Temporary option to allow experimenting with MachineScheduler as a post-RA
102 // scheduler. Targets can "properly" enable this with
103 // substitutePass(&PostRASchedulerID, &PostMachineSchedulerID).
104 // Targets can return true in targetSchedulesPostRAScheduling() and
105 // insert a PostRA scheduling pass wherever it wants.
106 cl::opt<bool> MISchedPostRA("misched-postra", cl::Hidden,
107   cl::desc("Run MachineScheduler post regalloc (independent of preRA sched)"));
108 
109 // Experimental option to run live interval analysis early.
110 static cl::opt<bool> EarlyLiveIntervals("early-live-intervals", cl::Hidden,
111     cl::desc("Run live interval analysis earlier in the pipeline"));
112 
113 // Experimental option to use CFL-AA in codegen
114 enum class CFLAAType { None, Steensgaard, Andersen, Both };
115 static cl::opt<CFLAAType> UseCFLAA(
116     "use-cfl-aa-in-codegen", cl::init(CFLAAType::None), cl::Hidden,
117     cl::desc("Enable the new, experimental CFL alias analysis in CodeGen"),
118     cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
119                clEnumValN(CFLAAType::Steensgaard, "steens",
120                           "Enable unification-based CFL-AA"),
121                clEnumValN(CFLAAType::Andersen, "anders",
122                           "Enable inclusion-based CFL-AA"),
123                clEnumValN(CFLAAType::Both, "both",
124                           "Enable both variants of CFL-AA"),
125                clEnumValEnd));
126 
127 /// Allow standard passes to be disabled by command line options. This supports
128 /// simple binary flags that either suppress the pass or do nothing.
129 /// i.e. -disable-mypass=false has no effect.
130 /// These should be converted to boolOrDefault in order to use applyOverride.
131 static IdentifyingPassPtr applyDisable(IdentifyingPassPtr PassID,
132                                        bool Override) {
133   if (Override)
134     return IdentifyingPassPtr();
135   return PassID;
136 }
137 
138 /// Allow standard passes to be disabled by the command line, regardless of who
139 /// is adding the pass.
140 ///
141 /// StandardID is the pass identified in the standard pass pipeline and provided
142 /// to addPass(). It may be a target-specific ID in the case that the target
143 /// directly adds its own pass, but in that case we harmlessly fall through.
144 ///
145 /// TargetID is the pass that the target has configured to override StandardID.
146 ///
147 /// StandardID may be a pseudo ID. In that case TargetID is the name of the real
148 /// pass to run. This allows multiple options to control a single pass depending
149 /// on where in the pipeline that pass is added.
150 static IdentifyingPassPtr overridePass(AnalysisID StandardID,
151                                        IdentifyingPassPtr TargetID) {
152   if (StandardID == &PostRASchedulerID)
153     return applyDisable(TargetID, DisablePostRA);
154 
155   if (StandardID == &BranchFolderPassID)
156     return applyDisable(TargetID, DisableBranchFold);
157 
158   if (StandardID == &TailDuplicateID)
159     return applyDisable(TargetID, DisableTailDuplicate);
160 
161   if (StandardID == &TargetPassConfig::EarlyTailDuplicateID)
162     return applyDisable(TargetID, DisableEarlyTailDup);
163 
164   if (StandardID == &MachineBlockPlacementID)
165     return applyDisable(TargetID, DisableBlockPlacement);
166 
167   if (StandardID == &StackSlotColoringID)
168     return applyDisable(TargetID, DisableSSC);
169 
170   if (StandardID == &DeadMachineInstructionElimID)
171     return applyDisable(TargetID, DisableMachineDCE);
172 
173   if (StandardID == &EarlyIfConverterID)
174     return applyDisable(TargetID, DisableEarlyIfConversion);
175 
176   if (StandardID == &MachineLICMID)
177     return applyDisable(TargetID, DisableMachineLICM);
178 
179   if (StandardID == &MachineCSEID)
180     return applyDisable(TargetID, DisableMachineCSE);
181 
182   if (StandardID == &TargetPassConfig::PostRAMachineLICMID)
183     return applyDisable(TargetID, DisablePostRAMachineLICM);
184 
185   if (StandardID == &MachineSinkingID)
186     return applyDisable(TargetID, DisableMachineSink);
187 
188   if (StandardID == &MachineCopyPropagationID)
189     return applyDisable(TargetID, DisableCopyProp);
190 
191   return TargetID;
192 }
193 
194 //===---------------------------------------------------------------------===//
195 /// TargetPassConfig
196 //===---------------------------------------------------------------------===//
197 
198 INITIALIZE_PASS(TargetPassConfig, "targetpassconfig",
199                 "Target Pass Configuration", false, false)
200 char TargetPassConfig::ID = 0;
201 
202 // Pseudo Pass IDs.
203 char TargetPassConfig::EarlyTailDuplicateID = 0;
204 char TargetPassConfig::PostRAMachineLICMID = 0;
205 
206 namespace {
207 struct InsertedPass {
208   AnalysisID TargetPassID;
209   IdentifyingPassPtr InsertedPassID;
210   bool VerifyAfter;
211   bool PrintAfter;
212 
213   InsertedPass(AnalysisID TargetPassID, IdentifyingPassPtr InsertedPassID,
214                bool VerifyAfter, bool PrintAfter)
215       : TargetPassID(TargetPassID), InsertedPassID(InsertedPassID),
216         VerifyAfter(VerifyAfter), PrintAfter(PrintAfter) {}
217 
218   Pass *getInsertedPass() const {
219     assert(InsertedPassID.isValid() && "Illegal Pass ID!");
220     if (InsertedPassID.isInstance())
221       return InsertedPassID.getInstance();
222     Pass *NP = Pass::createPass(InsertedPassID.getID());
223     assert(NP && "Pass ID not registered");
224     return NP;
225   }
226 };
227 }
228 
229 namespace llvm {
230 class PassConfigImpl {
231 public:
232   // List of passes explicitly substituted by this target. Normally this is
233   // empty, but it is a convenient way to suppress or replace specific passes
234   // that are part of a standard pass pipeline without overridding the entire
235   // pipeline. This mechanism allows target options to inherit a standard pass's
236   // user interface. For example, a target may disable a standard pass by
237   // default by substituting a pass ID of zero, and the user may still enable
238   // that standard pass with an explicit command line option.
239   DenseMap<AnalysisID,IdentifyingPassPtr> TargetPasses;
240 
241   /// Store the pairs of <AnalysisID, AnalysisID> of which the second pass
242   /// is inserted after each instance of the first one.
243   SmallVector<InsertedPass, 4> InsertedPasses;
244 };
245 } // namespace llvm
246 
247 // Out of line virtual method.
248 TargetPassConfig::~TargetPassConfig() {
249   delete Impl;
250 }
251 
252 // Out of line constructor provides default values for pass options and
253 // registers all common codegen passes.
254 TargetPassConfig::TargetPassConfig(TargetMachine *tm, PassManagerBase &pm)
255     : ImmutablePass(ID), PM(&pm), StartBefore(nullptr), StartAfter(nullptr),
256       StopAfter(nullptr), Started(true), Stopped(false),
257       AddingMachinePasses(false), TM(tm), Impl(nullptr), Initialized(false),
258       DisableVerify(false), EnableTailMerge(true) {
259 
260   Impl = new PassConfigImpl();
261 
262   // Register all target independent codegen passes to activate their PassIDs,
263   // including this pass itself.
264   initializeCodeGen(*PassRegistry::getPassRegistry());
265 
266   // Also register alias analysis passes required by codegen passes.
267   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
268   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
269 
270   // Substitute Pseudo Pass IDs for real ones.
271   substitutePass(&EarlyTailDuplicateID, &TailDuplicateID);
272   substitutePass(&PostRAMachineLICMID, &MachineLICMID);
273 
274   if (StringRef(PrintMachineInstrs.getValue()).equals(""))
275     TM->Options.PrintMachineCode = true;
276 }
277 
278 CodeGenOpt::Level TargetPassConfig::getOptLevel() const {
279   return TM->getOptLevel();
280 }
281 
282 /// Insert InsertedPassID pass after TargetPassID.
283 void TargetPassConfig::insertPass(AnalysisID TargetPassID,
284                                   IdentifyingPassPtr InsertedPassID,
285                                   bool VerifyAfter, bool PrintAfter) {
286   assert(((!InsertedPassID.isInstance() &&
287            TargetPassID != InsertedPassID.getID()) ||
288           (InsertedPassID.isInstance() &&
289            TargetPassID != InsertedPassID.getInstance()->getPassID())) &&
290          "Insert a pass after itself!");
291   Impl->InsertedPasses.emplace_back(TargetPassID, InsertedPassID, VerifyAfter,
292                                     PrintAfter);
293 }
294 
295 /// createPassConfig - Create a pass configuration object to be used by
296 /// addPassToEmitX methods for generating a pipeline of CodeGen passes.
297 ///
298 /// Targets may override this to extend TargetPassConfig.
299 TargetPassConfig *LLVMTargetMachine::createPassConfig(PassManagerBase &PM) {
300   return new TargetPassConfig(this, PM);
301 }
302 
303 TargetPassConfig::TargetPassConfig()
304   : ImmutablePass(ID), PM(nullptr) {
305   llvm_unreachable("TargetPassConfig should not be constructed on-the-fly");
306 }
307 
308 // Helper to verify the analysis is really immutable.
309 void TargetPassConfig::setOpt(bool &Opt, bool Val) {
310   assert(!Initialized && "PassConfig is immutable");
311   Opt = Val;
312 }
313 
314 void TargetPassConfig::substitutePass(AnalysisID StandardID,
315                                       IdentifyingPassPtr TargetID) {
316   Impl->TargetPasses[StandardID] = TargetID;
317 }
318 
319 IdentifyingPassPtr TargetPassConfig::getPassSubstitution(AnalysisID ID) const {
320   DenseMap<AnalysisID, IdentifyingPassPtr>::const_iterator
321     I = Impl->TargetPasses.find(ID);
322   if (I == Impl->TargetPasses.end())
323     return ID;
324   return I->second;
325 }
326 
327 bool TargetPassConfig::isPassSubstitutedOrOverridden(AnalysisID ID) const {
328   IdentifyingPassPtr TargetID = getPassSubstitution(ID);
329   IdentifyingPassPtr FinalPtr = overridePass(ID, TargetID);
330   return !FinalPtr.isValid() || FinalPtr.isInstance() ||
331       FinalPtr.getID() != ID;
332 }
333 
334 /// Add a pass to the PassManager if that pass is supposed to be run.  If the
335 /// Started/Stopped flags indicate either that the compilation should start at
336 /// a later pass or that it should stop after an earlier pass, then do not add
337 /// the pass.  Finally, compare the current pass against the StartAfter
338 /// and StopAfter options and change the Started/Stopped flags accordingly.
339 void TargetPassConfig::addPass(Pass *P, bool verifyAfter, bool printAfter) {
340   assert(!Initialized && "PassConfig is immutable");
341 
342   // Cache the Pass ID here in case the pass manager finds this pass is
343   // redundant with ones already scheduled / available, and deletes it.
344   // Fundamentally, once we add the pass to the manager, we no longer own it
345   // and shouldn't reference it.
346   AnalysisID PassID = P->getPassID();
347 
348   if (StartBefore == PassID)
349     Started = true;
350   if (Started && !Stopped) {
351     std::string Banner;
352     // Construct banner message before PM->add() as that may delete the pass.
353     if (AddingMachinePasses && (printAfter || verifyAfter))
354       Banner = std::string("After ") + std::string(P->getPassName());
355     PM->add(P);
356     if (AddingMachinePasses) {
357       if (printAfter)
358         addPrintPass(Banner);
359       if (verifyAfter)
360         addVerifyPass(Banner);
361     }
362 
363     // Add the passes after the pass P if there is any.
364     for (auto IP : Impl->InsertedPasses) {
365       if (IP.TargetPassID == PassID)
366         addPass(IP.getInsertedPass(), IP.VerifyAfter, IP.PrintAfter);
367     }
368   } else {
369     delete P;
370   }
371   if (StopAfter == PassID)
372     Stopped = true;
373   if (StartAfter == PassID)
374     Started = true;
375   if (Stopped && !Started)
376     report_fatal_error("Cannot stop compilation after pass that is not run");
377 }
378 
379 /// Add a CodeGen pass at this point in the pipeline after checking for target
380 /// and command line overrides.
381 ///
382 /// addPass cannot return a pointer to the pass instance because is internal the
383 /// PassManager and the instance we create here may already be freed.
384 AnalysisID TargetPassConfig::addPass(AnalysisID PassID, bool verifyAfter,
385                                      bool printAfter) {
386   IdentifyingPassPtr TargetID = getPassSubstitution(PassID);
387   IdentifyingPassPtr FinalPtr = overridePass(PassID, TargetID);
388   if (!FinalPtr.isValid())
389     return nullptr;
390 
391   Pass *P;
392   if (FinalPtr.isInstance())
393     P = FinalPtr.getInstance();
394   else {
395     P = Pass::createPass(FinalPtr.getID());
396     if (!P)
397       llvm_unreachable("Pass ID not registered");
398   }
399   AnalysisID FinalID = P->getPassID();
400   addPass(P, verifyAfter, printAfter); // Ends the lifetime of P.
401 
402   return FinalID;
403 }
404 
405 void TargetPassConfig::printAndVerify(const std::string &Banner) {
406   addPrintPass(Banner);
407   addVerifyPass(Banner);
408 }
409 
410 void TargetPassConfig::addPrintPass(const std::string &Banner) {
411   if (TM->shouldPrintMachineCode())
412     PM->add(createMachineFunctionPrinterPass(dbgs(), Banner));
413 }
414 
415 void TargetPassConfig::addVerifyPass(const std::string &Banner) {
416   if (VerifyMachineCode)
417     PM->add(createMachineVerifierPass(Banner));
418 }
419 
420 /// Add common target configurable passes that perform LLVM IR to IR transforms
421 /// following machine independent optimization.
422 void TargetPassConfig::addIRPasses() {
423   switch (UseCFLAA) {
424   case CFLAAType::Steensgaard:
425     addPass(createCFLSteensAAWrapperPass());
426     break;
427   case CFLAAType::Andersen:
428     addPass(createCFLAndersAAWrapperPass());
429     break;
430   case CFLAAType::Both:
431     addPass(createCFLAndersAAWrapperPass());
432     addPass(createCFLSteensAAWrapperPass());
433     break;
434   default:
435     break;
436   }
437 
438   // Basic AliasAnalysis support.
439   // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
440   // BasicAliasAnalysis wins if they disagree. This is intended to help
441   // support "obvious" type-punning idioms.
442   addPass(createTypeBasedAAWrapperPass());
443   addPass(createScopedNoAliasAAWrapperPass());
444   addPass(createBasicAAWrapperPass());
445 
446   // Before running any passes, run the verifier to determine if the input
447   // coming from the front-end and/or optimizer is valid.
448   if (!DisableVerify)
449     addPass(createVerifierPass());
450 
451   // Run loop strength reduction before anything else.
452   if (getOptLevel() != CodeGenOpt::None && !DisableLSR) {
453     addPass(createLoopStrengthReducePass());
454     if (PrintLSR)
455       addPass(createPrintFunctionPass(dbgs(), "\n\n*** Code after LSR ***\n"));
456   }
457 
458   // Run GC lowering passes for builtin collectors
459   // TODO: add a pass insertion point here
460   addPass(createGCLoweringPass());
461   addPass(createShadowStackGCLoweringPass());
462 
463   // Make sure that no unreachable blocks are instruction selected.
464   addPass(createUnreachableBlockEliminationPass());
465 
466   // Prepare expensive constants for SelectionDAG.
467   if (getOptLevel() != CodeGenOpt::None && !DisableConstantHoisting)
468     addPass(createConstantHoistingPass());
469 
470   if (getOptLevel() != CodeGenOpt::None && !DisablePartialLibcallInlining)
471     addPass(createPartiallyInlineLibCallsPass());
472 }
473 
474 /// Turn exception handling constructs into something the code generators can
475 /// handle.
476 void TargetPassConfig::addPassesToHandleExceptions() {
477   const MCAsmInfo *MCAI = TM->getMCAsmInfo();
478   assert(MCAI && "No MCAsmInfo");
479   switch (MCAI->getExceptionHandlingType()) {
480   case ExceptionHandling::SjLj:
481     // SjLj piggy-backs on dwarf for this bit. The cleanups done apply to both
482     // Dwarf EH prepare needs to be run after SjLj prepare. Otherwise,
483     // catch info can get misplaced when a selector ends up more than one block
484     // removed from the parent invoke(s). This could happen when a landing
485     // pad is shared by multiple invokes and is also a target of a normal
486     // edge from elsewhere.
487     addPass(createSjLjEHPreparePass());
488     LLVM_FALLTHROUGH;
489   case ExceptionHandling::DwarfCFI:
490   case ExceptionHandling::ARM:
491     addPass(createDwarfEHPass(TM));
492     break;
493   case ExceptionHandling::WinEH:
494     // We support using both GCC-style and MSVC-style exceptions on Windows, so
495     // add both preparation passes. Each pass will only actually run if it
496     // recognizes the personality function.
497     addPass(createWinEHPass(TM));
498     addPass(createDwarfEHPass(TM));
499     break;
500   case ExceptionHandling::None:
501     addPass(createLowerInvokePass());
502 
503     // The lower invoke pass may create unreachable code. Remove it.
504     addPass(createUnreachableBlockEliminationPass());
505     break;
506   }
507 }
508 
509 /// Add pass to prepare the LLVM IR for code generation. This should be done
510 /// before exception handling preparation passes.
511 void TargetPassConfig::addCodeGenPrepare() {
512   if (getOptLevel() != CodeGenOpt::None && !DisableCGP)
513     addPass(createCodeGenPreparePass(TM));
514   addPass(createRewriteSymbolsPass());
515 }
516 
517 /// Add common passes that perform LLVM IR to IR transforms in preparation for
518 /// instruction selection.
519 void TargetPassConfig::addISelPrepare() {
520   addPreISel();
521 
522   // Force codegen to run according to the callgraph.
523   if (TM->Options.EnableIPRA)
524     addPass(new DummyCGSCCPass);
525 
526   // Add both the safe stack and the stack protection passes: each of them will
527   // only protect functions that have corresponding attributes.
528   addPass(createSafeStackPass(TM));
529   addPass(createStackProtectorPass(TM));
530 
531   if (PrintISelInput)
532     addPass(createPrintFunctionPass(
533         dbgs(), "\n\n*** Final LLVM Code input to ISel ***\n"));
534 
535   // All passes which modify the LLVM IR are now complete; run the verifier
536   // to ensure that the IR is valid.
537   if (!DisableVerify)
538     addPass(createVerifierPass());
539 }
540 
541 /// Add the complete set of target-independent postISel code generator passes.
542 ///
543 /// This can be read as the standard order of major LLVM CodeGen stages. Stages
544 /// with nontrivial configuration or multiple passes are broken out below in
545 /// add%Stage routines.
546 ///
547 /// Any TargetPassConfig::addXX routine may be overriden by the Target. The
548 /// addPre/Post methods with empty header implementations allow injecting
549 /// target-specific fixups just before or after major stages. Additionally,
550 /// targets have the flexibility to change pass order within a stage by
551 /// overriding default implementation of add%Stage routines below. Each
552 /// technique has maintainability tradeoffs because alternate pass orders are
553 /// not well supported. addPre/Post works better if the target pass is easily
554 /// tied to a common pass. But if it has subtle dependencies on multiple passes,
555 /// the target should override the stage instead.
556 ///
557 /// TODO: We could use a single addPre/Post(ID) hook to allow pass injection
558 /// before/after any target-independent pass. But it's currently overkill.
559 void TargetPassConfig::addMachinePasses() {
560   AddingMachinePasses = true;
561 
562   if (TM->Options.EnableIPRA)
563     addPass(createRegUsageInfoPropPass());
564 
565   // Insert a machine instr printer pass after the specified pass.
566   if (!StringRef(PrintMachineInstrs.getValue()).equals("") &&
567       !StringRef(PrintMachineInstrs.getValue()).equals("option-unspecified")) {
568     const PassRegistry *PR = PassRegistry::getPassRegistry();
569     const PassInfo *TPI = PR->getPassInfo(PrintMachineInstrs.getValue());
570     const PassInfo *IPI = PR->getPassInfo(StringRef("machineinstr-printer"));
571     assert (TPI && IPI && "Pass ID not registered!");
572     const char *TID = (const char *)(TPI->getTypeInfo());
573     const char *IID = (const char *)(IPI->getTypeInfo());
574     insertPass(TID, IID);
575   }
576 
577   // Print the instruction selected machine code...
578   printAndVerify("After Instruction Selection");
579 
580   // Expand pseudo-instructions emitted by ISel.
581   addPass(&ExpandISelPseudosID);
582 
583   // Add passes that optimize machine instructions in SSA form.
584   if (getOptLevel() != CodeGenOpt::None) {
585     addMachineSSAOptimization();
586   } else {
587     // If the target requests it, assign local variables to stack slots relative
588     // to one another and simplify frame index references where possible.
589     addPass(&LocalStackSlotAllocationID, false);
590   }
591 
592   // Run pre-ra passes.
593   addPreRegAlloc();
594 
595   // Run register allocation and passes that are tightly coupled with it,
596   // including phi elimination and scheduling.
597   if (getOptimizeRegAlloc())
598     addOptimizedRegAlloc(createRegAllocPass(true));
599   else
600     addFastRegAlloc(createRegAllocPass(false));
601 
602   // Run post-ra passes.
603   addPostRegAlloc();
604 
605   // Insert prolog/epilog code.  Eliminate abstract frame index references...
606   if (getOptLevel() != CodeGenOpt::None)
607     addPass(&ShrinkWrapID);
608 
609   // Prolog/Epilog inserter needs a TargetMachine to instantiate. But only
610   // do so if it hasn't been disabled, substituted, or overridden.
611   if (!isPassSubstitutedOrOverridden(&PrologEpilogCodeInserterID))
612       addPass(createPrologEpilogInserterPass(TM));
613 
614   /// Add passes that optimize machine instructions after register allocation.
615   if (getOptLevel() != CodeGenOpt::None)
616     addMachineLateOptimization();
617 
618   // Expand pseudo instructions before second scheduling pass.
619   addPass(&ExpandPostRAPseudosID);
620 
621   // Run pre-sched2 passes.
622   addPreSched2();
623 
624   if (EnableImplicitNullChecks)
625     addPass(&ImplicitNullChecksID);
626 
627   // Second pass scheduler.
628   // Let Target optionally insert this pass by itself at some other
629   // point.
630   if (getOptLevel() != CodeGenOpt::None &&
631       !TM->targetSchedulesPostRAScheduling()) {
632     if (MISchedPostRA)
633       addPass(&PostMachineSchedulerID);
634     else
635       addPass(&PostRASchedulerID);
636   }
637 
638   // GC
639   if (addGCPasses()) {
640     if (PrintGCInfo)
641       addPass(createGCInfoPrinter(dbgs()), false, false);
642   }
643 
644   // Basic block placement.
645   if (getOptLevel() != CodeGenOpt::None)
646     addBlockPlacement();
647 
648   addPreEmitPass();
649 
650   if (TM->Options.EnableIPRA)
651     // Collect register usage information and produce a register mask of
652     // clobbered registers, to be used to optimize call sites.
653     addPass(createRegUsageInfoCollector());
654 
655   addPass(&FuncletLayoutID, false);
656 
657   addPass(&StackMapLivenessID, false);
658   addPass(&LiveDebugValuesID, false);
659 
660   addPass(&XRayInstrumentationID, false);
661   addPass(&PatchableFunctionID, false);
662 
663   AddingMachinePasses = false;
664 }
665 
666 /// Add passes that optimize machine instructions in SSA form.
667 void TargetPassConfig::addMachineSSAOptimization() {
668   // Pre-ra tail duplication.
669   addPass(&EarlyTailDuplicateID);
670 
671   // Optimize PHIs before DCE: removing dead PHI cycles may make more
672   // instructions dead.
673   addPass(&OptimizePHIsID, false);
674 
675   // This pass merges large allocas. StackSlotColoring is a different pass
676   // which merges spill slots.
677   addPass(&StackColoringID, false);
678 
679   // If the target requests it, assign local variables to stack slots relative
680   // to one another and simplify frame index references where possible.
681   addPass(&LocalStackSlotAllocationID, false);
682 
683   // With optimization, dead code should already be eliminated. However
684   // there is one known exception: lowered code for arguments that are only
685   // used by tail calls, where the tail calls reuse the incoming stack
686   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
687   addPass(&DeadMachineInstructionElimID);
688 
689   // Allow targets to insert passes that improve instruction level parallelism,
690   // like if-conversion. Such passes will typically need dominator trees and
691   // loop info, just like LICM and CSE below.
692   addILPOpts();
693 
694   addPass(&MachineLICMID, false);
695   addPass(&MachineCSEID, false);
696   addPass(&MachineSinkingID);
697 
698   addPass(&PeepholeOptimizerID);
699   // Clean-up the dead code that may have been generated by peephole
700   // rewriting.
701   addPass(&DeadMachineInstructionElimID);
702 }
703 
704 //===---------------------------------------------------------------------===//
705 /// Register Allocation Pass Configuration
706 //===---------------------------------------------------------------------===//
707 
708 bool TargetPassConfig::getOptimizeRegAlloc() const {
709   switch (OptimizeRegAlloc) {
710   case cl::BOU_UNSET: return getOptLevel() != CodeGenOpt::None;
711   case cl::BOU_TRUE:  return true;
712   case cl::BOU_FALSE: return false;
713   }
714   llvm_unreachable("Invalid optimize-regalloc state");
715 }
716 
717 /// RegisterRegAlloc's global Registry tracks allocator registration.
718 MachinePassRegistry RegisterRegAlloc::Registry;
719 
720 /// A dummy default pass factory indicates whether the register allocator is
721 /// overridden on the command line.
722 LLVM_DEFINE_ONCE_FLAG(InitializeDefaultRegisterAllocatorFlag);
723 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
724 static RegisterRegAlloc
725 defaultRegAlloc("default",
726                 "pick register allocator based on -O option",
727                 useDefaultRegisterAllocator);
728 
729 /// -regalloc=... command line option.
730 static cl::opt<RegisterRegAlloc::FunctionPassCtor, false,
731                RegisterPassParser<RegisterRegAlloc> >
732 RegAlloc("regalloc",
733          cl::init(&useDefaultRegisterAllocator),
734          cl::desc("Register allocator to use"));
735 
736 static void initializeDefaultRegisterAllocatorOnce() {
737   RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault();
738 
739   if (!Ctor) {
740     Ctor = RegAlloc;
741     RegisterRegAlloc::setDefault(RegAlloc);
742   }
743 }
744 
745 
746 /// Instantiate the default register allocator pass for this target for either
747 /// the optimized or unoptimized allocation path. This will be added to the pass
748 /// manager by addFastRegAlloc in the unoptimized case or addOptimizedRegAlloc
749 /// in the optimized case.
750 ///
751 /// A target that uses the standard regalloc pass order for fast or optimized
752 /// allocation may still override this for per-target regalloc
753 /// selection. But -regalloc=... always takes precedence.
754 FunctionPass *TargetPassConfig::createTargetRegisterAllocator(bool Optimized) {
755   if (Optimized)
756     return createGreedyRegisterAllocator();
757   else
758     return createFastRegisterAllocator();
759 }
760 
761 /// Find and instantiate the register allocation pass requested by this target
762 /// at the current optimization level.  Different register allocators are
763 /// defined as separate passes because they may require different analysis.
764 ///
765 /// This helper ensures that the regalloc= option is always available,
766 /// even for targets that override the default allocator.
767 ///
768 /// FIXME: When MachinePassRegistry register pass IDs instead of function ptrs,
769 /// this can be folded into addPass.
770 FunctionPass *TargetPassConfig::createRegAllocPass(bool Optimized) {
771   // Initialize the global default.
772   llvm::call_once(InitializeDefaultRegisterAllocatorFlag,
773                   initializeDefaultRegisterAllocatorOnce);
774 
775   RegisterRegAlloc::FunctionPassCtor Ctor = RegisterRegAlloc::getDefault();
776   if (Ctor != useDefaultRegisterAllocator)
777     return Ctor();
778 
779   // With no -regalloc= override, ask the target for a regalloc pass.
780   return createTargetRegisterAllocator(Optimized);
781 }
782 
783 /// Return true if the default global register allocator is in use and
784 /// has not be overriden on the command line with '-regalloc=...'
785 bool TargetPassConfig::usingDefaultRegAlloc() const {
786   return RegAlloc.getNumOccurrences() == 0;
787 }
788 
789 /// Add the minimum set of target-independent passes that are required for
790 /// register allocation. No coalescing or scheduling.
791 void TargetPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
792   addPass(&PHIEliminationID, false);
793   addPass(&TwoAddressInstructionPassID, false);
794 
795   if (RegAllocPass)
796     addPass(RegAllocPass);
797 }
798 
799 /// Add standard target-independent passes that are tightly coupled with
800 /// optimized register allocation, including coalescing, machine instruction
801 /// scheduling, and register allocation itself.
802 void TargetPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
803   addPass(&DetectDeadLanesID, false);
804 
805   addPass(&ProcessImplicitDefsID, false);
806 
807   // LiveVariables currently requires pure SSA form.
808   //
809   // FIXME: Once TwoAddressInstruction pass no longer uses kill flags,
810   // LiveVariables can be removed completely, and LiveIntervals can be directly
811   // computed. (We still either need to regenerate kill flags after regalloc, or
812   // preferably fix the scavenger to not depend on them).
813   addPass(&LiveVariablesID, false);
814 
815   // Edge splitting is smarter with machine loop info.
816   addPass(&MachineLoopInfoID, false);
817   addPass(&PHIEliminationID, false);
818 
819   // Eventually, we want to run LiveIntervals before PHI elimination.
820   if (EarlyLiveIntervals)
821     addPass(&LiveIntervalsID, false);
822 
823   addPass(&TwoAddressInstructionPassID, false);
824   addPass(&RegisterCoalescerID);
825 
826   // The machine scheduler may accidentally create disconnected components
827   // when moving subregister definitions around, avoid this by splitting them to
828   // separate vregs before. Splitting can also improve reg. allocation quality.
829   addPass(&RenameIndependentSubregsID);
830 
831   // PreRA instruction scheduling.
832   addPass(&MachineSchedulerID);
833 
834   if (RegAllocPass) {
835     // Add the selected register allocation pass.
836     addPass(RegAllocPass);
837 
838     // Allow targets to change the register assignments before rewriting.
839     addPreRewrite();
840 
841     // Finally rewrite virtual registers.
842     addPass(&VirtRegRewriterID);
843 
844     // Perform stack slot coloring and post-ra machine LICM.
845     //
846     // FIXME: Re-enable coloring with register when it's capable of adding
847     // kill markers.
848     addPass(&StackSlotColoringID);
849 
850     // Run post-ra machine LICM to hoist reloads / remats.
851     //
852     // FIXME: can this move into MachineLateOptimization?
853     addPass(&PostRAMachineLICMID);
854   }
855 }
856 
857 //===---------------------------------------------------------------------===//
858 /// Post RegAlloc Pass Configuration
859 //===---------------------------------------------------------------------===//
860 
861 /// Add passes that optimize machine instructions after register allocation.
862 void TargetPassConfig::addMachineLateOptimization() {
863   // Branch folding must be run after regalloc and prolog/epilog insertion.
864   addPass(&BranchFolderPassID);
865 
866   // Tail duplication.
867   // Note that duplicating tail just increases code size and degrades
868   // performance for targets that require Structured Control Flow.
869   // In addition it can also make CFG irreducible. Thus we disable it.
870   if (!TM->requiresStructuredCFG())
871     addPass(&TailDuplicateID);
872 
873   // Copy propagation.
874   addPass(&MachineCopyPropagationID);
875 }
876 
877 /// Add standard GC passes.
878 bool TargetPassConfig::addGCPasses() {
879   addPass(&GCMachineCodeAnalysisID, false);
880   return true;
881 }
882 
883 /// Add standard basic block placement passes.
884 void TargetPassConfig::addBlockPlacement() {
885   if (addPass(&MachineBlockPlacementID)) {
886     // Run a separate pass to collect block placement statistics.
887     if (EnableBlockPlacementStats)
888       addPass(&MachineBlockPlacementStatsID);
889   }
890 }
891