1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements classes used to handle lowerings specific to common 10 // object file formats. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/BinaryFormat/COFF.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/BinaryFormat/ELF.h" 23 #include "llvm/BinaryFormat/MachO.h" 24 #include "llvm/CodeGen/BasicBlockSectionUtils.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Comdat.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/DiagnosticPrinter.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Mangler.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/PseudoProbe.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/MC/MCAsmInfo.h" 46 #include "llvm/MC/MCContext.h" 47 #include "llvm/MC/MCExpr.h" 48 #include "llvm/MC/MCSectionCOFF.h" 49 #include "llvm/MC/MCSectionELF.h" 50 #include "llvm/MC/MCSectionMachO.h" 51 #include "llvm/MC/MCSectionWasm.h" 52 #include "llvm/MC/MCSectionXCOFF.h" 53 #include "llvm/MC/MCStreamer.h" 54 #include "llvm/MC/MCSymbol.h" 55 #include "llvm/MC/MCSymbolELF.h" 56 #include "llvm/MC/MCValue.h" 57 #include "llvm/MC/SectionKind.h" 58 #include "llvm/ProfileData/InstrProf.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/Format.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include <cassert> 66 #include <string> 67 68 using namespace llvm; 69 using namespace dwarf; 70 71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags, 72 StringRef &Section) { 73 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 74 M.getModuleFlagsMetadata(ModuleFlags); 75 76 for (const auto &MFE: ModuleFlags) { 77 // Ignore flags with 'Require' behaviour. 78 if (MFE.Behavior == Module::Require) 79 continue; 80 81 StringRef Key = MFE.Key->getString(); 82 if (Key == "Objective-C Image Info Version") { 83 Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue(); 84 } else if (Key == "Objective-C Garbage Collection" || 85 Key == "Objective-C GC Only" || 86 Key == "Objective-C Is Simulated" || 87 Key == "Objective-C Class Properties" || 88 Key == "Objective-C Image Swift Version") { 89 Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue(); 90 } else if (Key == "Objective-C Image Info Section") { 91 Section = cast<MDString>(MFE.Val)->getString(); 92 } 93 // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor + 94 // "Objective-C Garbage Collection". 95 else if (Key == "Swift ABI Version") { 96 Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8; 97 } else if (Key == "Swift Major Version") { 98 Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24; 99 } else if (Key == "Swift Minor Version") { 100 Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16; 101 } 102 } 103 } 104 105 //===----------------------------------------------------------------------===// 106 // ELF 107 //===----------------------------------------------------------------------===// 108 109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF() 110 : TargetLoweringObjectFile() { 111 SupportDSOLocalEquivalentLowering = true; 112 } 113 114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx, 115 const TargetMachine &TgtM) { 116 TargetLoweringObjectFile::Initialize(Ctx, TgtM); 117 118 CodeModel::Model CM = TgtM.getCodeModel(); 119 InitializeELF(TgtM.Options.UseInitArray); 120 121 switch (TgtM.getTargetTriple().getArch()) { 122 case Triple::arm: 123 case Triple::armeb: 124 case Triple::thumb: 125 case Triple::thumbeb: 126 if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM) 127 break; 128 // Fallthrough if not using EHABI 129 LLVM_FALLTHROUGH; 130 case Triple::ppc: 131 case Triple::ppcle: 132 case Triple::x86: 133 PersonalityEncoding = isPositionIndependent() 134 ? dwarf::DW_EH_PE_indirect | 135 dwarf::DW_EH_PE_pcrel | 136 dwarf::DW_EH_PE_sdata4 137 : dwarf::DW_EH_PE_absptr; 138 LSDAEncoding = isPositionIndependent() 139 ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 140 : dwarf::DW_EH_PE_absptr; 141 TTypeEncoding = isPositionIndependent() 142 ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 143 dwarf::DW_EH_PE_sdata4 144 : dwarf::DW_EH_PE_absptr; 145 break; 146 case Triple::x86_64: 147 if (isPositionIndependent()) { 148 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 149 ((CM == CodeModel::Small || CM == CodeModel::Medium) 150 ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); 151 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 152 (CM == CodeModel::Small 153 ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); 154 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 155 ((CM == CodeModel::Small || CM == CodeModel::Medium) 156 ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 157 } else { 158 PersonalityEncoding = 159 (CM == CodeModel::Small || CM == CodeModel::Medium) 160 ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; 161 LSDAEncoding = (CM == CodeModel::Small) 162 ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; 163 TTypeEncoding = (CM == CodeModel::Small) 164 ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; 165 } 166 break; 167 case Triple::hexagon: 168 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 169 LSDAEncoding = dwarf::DW_EH_PE_absptr; 170 TTypeEncoding = dwarf::DW_EH_PE_absptr; 171 if (isPositionIndependent()) { 172 PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel; 173 LSDAEncoding |= dwarf::DW_EH_PE_pcrel; 174 TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel; 175 } 176 break; 177 case Triple::aarch64: 178 case Triple::aarch64_be: 179 case Triple::aarch64_32: 180 // The small model guarantees static code/data size < 4GB, but not where it 181 // will be in memory. Most of these could end up >2GB away so even a signed 182 // pc-relative 32-bit address is insufficient, theoretically. 183 if (isPositionIndependent()) { 184 // ILP32 uses sdata4 instead of sdata8 185 if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) { 186 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 187 dwarf::DW_EH_PE_sdata4; 188 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 189 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 190 dwarf::DW_EH_PE_sdata4; 191 } else { 192 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 193 dwarf::DW_EH_PE_sdata8; 194 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8; 195 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 196 dwarf::DW_EH_PE_sdata8; 197 } 198 } else { 199 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 200 LSDAEncoding = dwarf::DW_EH_PE_absptr; 201 TTypeEncoding = dwarf::DW_EH_PE_absptr; 202 } 203 break; 204 case Triple::lanai: 205 LSDAEncoding = dwarf::DW_EH_PE_absptr; 206 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 207 TTypeEncoding = dwarf::DW_EH_PE_absptr; 208 break; 209 case Triple::mips: 210 case Triple::mipsel: 211 case Triple::mips64: 212 case Triple::mips64el: 213 // MIPS uses indirect pointer to refer personality functions and types, so 214 // that the eh_frame section can be read-only. DW.ref.personality will be 215 // generated for relocation. 216 PersonalityEncoding = dwarf::DW_EH_PE_indirect; 217 // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't 218 // identify N64 from just a triple. 219 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 220 dwarf::DW_EH_PE_sdata4; 221 // We don't support PC-relative LSDA references in GAS so we use the default 222 // DW_EH_PE_absptr for those. 223 224 // FreeBSD must be explicit about the data size and using pcrel since it's 225 // assembler/linker won't do the automatic conversion that the Linux tools 226 // do. 227 if (TgtM.getTargetTriple().isOSFreeBSD()) { 228 PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 229 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 230 } 231 break; 232 case Triple::ppc64: 233 case Triple::ppc64le: 234 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 235 dwarf::DW_EH_PE_udata8; 236 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8; 237 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 238 dwarf::DW_EH_PE_udata8; 239 break; 240 case Triple::sparcel: 241 case Triple::sparc: 242 if (isPositionIndependent()) { 243 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 244 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 245 dwarf::DW_EH_PE_sdata4; 246 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 247 dwarf::DW_EH_PE_sdata4; 248 } else { 249 LSDAEncoding = dwarf::DW_EH_PE_absptr; 250 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 251 TTypeEncoding = dwarf::DW_EH_PE_absptr; 252 } 253 CallSiteEncoding = dwarf::DW_EH_PE_udata4; 254 break; 255 case Triple::riscv32: 256 case Triple::riscv64: 257 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 258 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 259 dwarf::DW_EH_PE_sdata4; 260 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 261 dwarf::DW_EH_PE_sdata4; 262 CallSiteEncoding = dwarf::DW_EH_PE_udata4; 263 break; 264 case Triple::sparcv9: 265 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 266 if (isPositionIndependent()) { 267 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 268 dwarf::DW_EH_PE_sdata4; 269 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 270 dwarf::DW_EH_PE_sdata4; 271 } else { 272 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 273 TTypeEncoding = dwarf::DW_EH_PE_absptr; 274 } 275 break; 276 case Triple::systemz: 277 // All currently-defined code models guarantee that 4-byte PC-relative 278 // values will be in range. 279 if (isPositionIndependent()) { 280 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 281 dwarf::DW_EH_PE_sdata4; 282 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 283 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 284 dwarf::DW_EH_PE_sdata4; 285 } else { 286 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 287 LSDAEncoding = dwarf::DW_EH_PE_absptr; 288 TTypeEncoding = dwarf::DW_EH_PE_absptr; 289 } 290 break; 291 default: 292 break; 293 } 294 } 295 296 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer, 297 Module &M) const { 298 auto &C = getContext(); 299 300 if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { 301 auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS, 302 ELF::SHF_EXCLUDE); 303 304 Streamer.SwitchSection(S); 305 306 for (const auto *Operand : LinkerOptions->operands()) { 307 if (cast<MDNode>(Operand)->getNumOperands() != 2) 308 report_fatal_error("invalid llvm.linker.options"); 309 for (const auto &Option : cast<MDNode>(Operand)->operands()) { 310 Streamer.emitBytes(cast<MDString>(Option)->getString()); 311 Streamer.emitInt8(0); 312 } 313 } 314 } 315 316 if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) { 317 auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES, 318 ELF::SHF_MERGE | ELF::SHF_STRINGS, 1); 319 320 Streamer.SwitchSection(S); 321 322 for (const auto *Operand : DependentLibraries->operands()) { 323 Streamer.emitBytes( 324 cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString()); 325 Streamer.emitInt8(0); 326 } 327 } 328 329 if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) { 330 // Emit a descriptor for every function including functions that have an 331 // available external linkage. We may not want this for imported functions 332 // that has code in another thinLTO module but we don't have a good way to 333 // tell them apart from inline functions defined in header files. Therefore 334 // we put each descriptor in a separate comdat section and rely on the 335 // linker to deduplicate. 336 for (const auto *Operand : FuncInfo->operands()) { 337 const auto *MD = cast<MDNode>(Operand); 338 auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 339 auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 340 auto *Name = cast<MDString>(MD->getOperand(2)); 341 auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection( 342 TM->getFunctionSections() ? Name->getString() : StringRef()); 343 344 Streamer.SwitchSection(S); 345 Streamer.emitInt64(GUID->getZExtValue()); 346 Streamer.emitInt64(Hash->getZExtValue()); 347 Streamer.emitULEB128IntValue(Name->getString().size()); 348 Streamer.emitBytes(Name->getString()); 349 } 350 } 351 352 unsigned Version = 0; 353 unsigned Flags = 0; 354 StringRef Section; 355 356 GetObjCImageInfo(M, Version, Flags, Section); 357 if (!Section.empty()) { 358 auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 359 Streamer.SwitchSection(S); 360 Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO"))); 361 Streamer.emitInt32(Version); 362 Streamer.emitInt32(Flags); 363 Streamer.AddBlankLine(); 364 } 365 366 emitCGProfileMetadata(Streamer, M); 367 } 368 369 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol( 370 const GlobalValue *GV, const TargetMachine &TM, 371 MachineModuleInfo *MMI) const { 372 unsigned Encoding = getPersonalityEncoding(); 373 if ((Encoding & 0x80) == DW_EH_PE_indirect) 374 return getContext().getOrCreateSymbol(StringRef("DW.ref.") + 375 TM.getSymbol(GV)->getName()); 376 if ((Encoding & 0x70) == DW_EH_PE_absptr) 377 return TM.getSymbol(GV); 378 report_fatal_error("We do not support this DWARF encoding yet!"); 379 } 380 381 void TargetLoweringObjectFileELF::emitPersonalityValue( 382 MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const { 383 SmallString<64> NameData("DW.ref."); 384 NameData += Sym->getName(); 385 MCSymbolELF *Label = 386 cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData)); 387 Streamer.emitSymbolAttribute(Label, MCSA_Hidden); 388 Streamer.emitSymbolAttribute(Label, MCSA_Weak); 389 unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP; 390 MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(), 391 ELF::SHT_PROGBITS, Flags, 0); 392 unsigned Size = DL.getPointerSize(); 393 Streamer.SwitchSection(Sec); 394 Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value()); 395 Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject); 396 const MCExpr *E = MCConstantExpr::create(Size, getContext()); 397 Streamer.emitELFSize(Label, E); 398 Streamer.emitLabel(Label); 399 400 Streamer.emitSymbolValue(Sym, Size); 401 } 402 403 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference( 404 const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM, 405 MachineModuleInfo *MMI, MCStreamer &Streamer) const { 406 if (Encoding & DW_EH_PE_indirect) { 407 MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>(); 408 409 MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM); 410 411 // Add information about the stub reference to ELFMMI so that the stub 412 // gets emitted by the asmprinter. 413 MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym); 414 if (!StubSym.getPointer()) { 415 MCSymbol *Sym = TM.getSymbol(GV); 416 StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); 417 } 418 419 return TargetLoweringObjectFile:: 420 getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()), 421 Encoding & ~DW_EH_PE_indirect, Streamer); 422 } 423 424 return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM, 425 MMI, Streamer); 426 } 427 428 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) { 429 // N.B.: The defaults used in here are not the same ones used in MC. 430 // We follow gcc, MC follows gas. For example, given ".section .eh_frame", 431 // both gas and MC will produce a section with no flags. Given 432 // section(".eh_frame") gcc will produce: 433 // 434 // .section .eh_frame,"a",@progbits 435 436 if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF, 437 /*AddSegmentInfo=*/false) || 438 Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF, 439 /*AddSegmentInfo=*/false) || 440 Name == ".llvmbc" || Name == ".llvmcmd") 441 return SectionKind::getMetadata(); 442 443 if (Name.empty() || Name[0] != '.') return K; 444 445 // Default implementation based on some magic section names. 446 if (Name == ".bss" || 447 Name.startswith(".bss.") || 448 Name.startswith(".gnu.linkonce.b.") || 449 Name.startswith(".llvm.linkonce.b.") || 450 Name == ".sbss" || 451 Name.startswith(".sbss.") || 452 Name.startswith(".gnu.linkonce.sb.") || 453 Name.startswith(".llvm.linkonce.sb.")) 454 return SectionKind::getBSS(); 455 456 if (Name == ".tdata" || 457 Name.startswith(".tdata.") || 458 Name.startswith(".gnu.linkonce.td.") || 459 Name.startswith(".llvm.linkonce.td.")) 460 return SectionKind::getThreadData(); 461 462 if (Name == ".tbss" || 463 Name.startswith(".tbss.") || 464 Name.startswith(".gnu.linkonce.tb.") || 465 Name.startswith(".llvm.linkonce.tb.")) 466 return SectionKind::getThreadBSS(); 467 468 return K; 469 } 470 471 static unsigned getELFSectionType(StringRef Name, SectionKind K) { 472 // Use SHT_NOTE for section whose name starts with ".note" to allow 473 // emitting ELF notes from C variable declaration. 474 // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609 475 if (Name.startswith(".note")) 476 return ELF::SHT_NOTE; 477 478 if (Name == ".init_array") 479 return ELF::SHT_INIT_ARRAY; 480 481 if (Name == ".fini_array") 482 return ELF::SHT_FINI_ARRAY; 483 484 if (Name == ".preinit_array") 485 return ELF::SHT_PREINIT_ARRAY; 486 487 if (K.isBSS() || K.isThreadBSS()) 488 return ELF::SHT_NOBITS; 489 490 return ELF::SHT_PROGBITS; 491 } 492 493 static unsigned getELFSectionFlags(SectionKind K) { 494 unsigned Flags = 0; 495 496 if (!K.isMetadata()) 497 Flags |= ELF::SHF_ALLOC; 498 499 if (K.isText()) 500 Flags |= ELF::SHF_EXECINSTR; 501 502 if (K.isExecuteOnly()) 503 Flags |= ELF::SHF_ARM_PURECODE; 504 505 if (K.isWriteable()) 506 Flags |= ELF::SHF_WRITE; 507 508 if (K.isThreadLocal()) 509 Flags |= ELF::SHF_TLS; 510 511 if (K.isMergeableCString() || K.isMergeableConst()) 512 Flags |= ELF::SHF_MERGE; 513 514 if (K.isMergeableCString()) 515 Flags |= ELF::SHF_STRINGS; 516 517 return Flags; 518 } 519 520 static const Comdat *getELFComdat(const GlobalValue *GV) { 521 const Comdat *C = GV->getComdat(); 522 if (!C) 523 return nullptr; 524 525 if (C->getSelectionKind() != Comdat::Any && 526 C->getSelectionKind() != Comdat::NoDuplicates) 527 report_fatal_error("ELF COMDATs only support SelectionKind::Any and " 528 "SelectionKind::NoDuplicates, '" + C->getName() + 529 "' cannot be lowered."); 530 531 return C; 532 } 533 534 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO, 535 const TargetMachine &TM) { 536 MDNode *MD = GO->getMetadata(LLVMContext::MD_associated); 537 if (!MD) 538 return nullptr; 539 540 const MDOperand &Op = MD->getOperand(0); 541 if (!Op.get()) 542 return nullptr; 543 544 auto *VM = dyn_cast<ValueAsMetadata>(Op); 545 if (!VM) 546 report_fatal_error("MD_associated operand is not ValueAsMetadata"); 547 548 auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue()); 549 return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr; 550 } 551 552 static unsigned getEntrySizeForKind(SectionKind Kind) { 553 if (Kind.isMergeable1ByteCString()) 554 return 1; 555 else if (Kind.isMergeable2ByteCString()) 556 return 2; 557 else if (Kind.isMergeable4ByteCString()) 558 return 4; 559 else if (Kind.isMergeableConst4()) 560 return 4; 561 else if (Kind.isMergeableConst8()) 562 return 8; 563 else if (Kind.isMergeableConst16()) 564 return 16; 565 else if (Kind.isMergeableConst32()) 566 return 32; 567 else { 568 // We shouldn't have mergeable C strings or mergeable constants that we 569 // didn't handle above. 570 assert(!Kind.isMergeableCString() && "unknown string width"); 571 assert(!Kind.isMergeableConst() && "unknown data width"); 572 return 0; 573 } 574 } 575 576 /// Return the section prefix name used by options FunctionsSections and 577 /// DataSections. 578 static StringRef getSectionPrefixForGlobal(SectionKind Kind) { 579 if (Kind.isText()) 580 return ".text"; 581 if (Kind.isReadOnly()) 582 return ".rodata"; 583 if (Kind.isBSS()) 584 return ".bss"; 585 if (Kind.isThreadData()) 586 return ".tdata"; 587 if (Kind.isThreadBSS()) 588 return ".tbss"; 589 if (Kind.isData()) 590 return ".data"; 591 if (Kind.isReadOnlyWithRel()) 592 return ".data.rel.ro"; 593 llvm_unreachable("Unknown section kind"); 594 } 595 596 static SmallString<128> 597 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind, 598 Mangler &Mang, const TargetMachine &TM, 599 unsigned EntrySize, bool UniqueSectionName) { 600 SmallString<128> Name; 601 if (Kind.isMergeableCString()) { 602 // We also need alignment here. 603 // FIXME: this is getting the alignment of the character, not the 604 // alignment of the global! 605 Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign( 606 cast<GlobalVariable>(GO)); 607 608 std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + "."; 609 Name = SizeSpec + utostr(Alignment.value()); 610 } else if (Kind.isMergeableConst()) { 611 Name = ".rodata.cst"; 612 Name += utostr(EntrySize); 613 } else { 614 Name = getSectionPrefixForGlobal(Kind); 615 } 616 617 bool HasPrefix = false; 618 if (const auto *F = dyn_cast<Function>(GO)) { 619 if (Optional<StringRef> Prefix = F->getSectionPrefix()) { 620 raw_svector_ostream(Name) << '.' << *Prefix; 621 HasPrefix = true; 622 } 623 } 624 625 if (UniqueSectionName) { 626 Name.push_back('.'); 627 TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true); 628 } else if (HasPrefix) 629 Name.push_back('.'); 630 return Name; 631 } 632 633 namespace { 634 class LoweringDiagnosticInfo : public DiagnosticInfo { 635 const Twine &Msg; 636 637 public: 638 LoweringDiagnosticInfo(const Twine &DiagMsg, 639 DiagnosticSeverity Severity = DS_Error) 640 : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {} 641 void print(DiagnosticPrinter &DP) const override { DP << Msg; } 642 }; 643 } 644 645 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal( 646 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 647 StringRef SectionName = GO->getSection(); 648 649 // Check if '#pragma clang section' name is applicable. 650 // Note that pragma directive overrides -ffunction-section, -fdata-section 651 // and so section name is exactly as user specified and not uniqued. 652 const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO); 653 if (GV && GV->hasImplicitSection()) { 654 auto Attrs = GV->getAttributes(); 655 if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) { 656 SectionName = Attrs.getAttribute("bss-section").getValueAsString(); 657 } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) { 658 SectionName = Attrs.getAttribute("rodata-section").getValueAsString(); 659 } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) { 660 SectionName = Attrs.getAttribute("relro-section").getValueAsString(); 661 } else if (Attrs.hasAttribute("data-section") && Kind.isData()) { 662 SectionName = Attrs.getAttribute("data-section").getValueAsString(); 663 } 664 } 665 const Function *F = dyn_cast<Function>(GO); 666 if (F && F->hasFnAttribute("implicit-section-name")) { 667 SectionName = F->getFnAttribute("implicit-section-name").getValueAsString(); 668 } 669 670 // Infer section flags from the section name if we can. 671 Kind = getELFKindForNamedSection(SectionName, Kind); 672 673 StringRef Group = ""; 674 bool IsComdat = false; 675 unsigned Flags = getELFSectionFlags(Kind); 676 if (const Comdat *C = getELFComdat(GO)) { 677 Group = C->getName(); 678 IsComdat = C->getSelectionKind() == Comdat::Any; 679 Flags |= ELF::SHF_GROUP; 680 } 681 682 unsigned EntrySize = getEntrySizeForKind(Kind); 683 684 // A section can have at most one associated section. Put each global with 685 // MD_associated in a unique section. 686 unsigned UniqueID = MCContext::GenericSectionID; 687 const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM); 688 if (GO->getMetadata(LLVMContext::MD_associated)) { 689 UniqueID = NextUniqueID++; 690 Flags |= ELF::SHF_LINK_ORDER; 691 } else { 692 if (getContext().getAsmInfo()->useIntegratedAssembler() || 693 getContext().getAsmInfo()->binutilsIsAtLeast(2, 35)) { 694 // Symbols must be placed into sections with compatible entry 695 // sizes. Generate unique sections for symbols that have not 696 // been assigned to compatible sections. 697 if (Flags & ELF::SHF_MERGE) { 698 auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags, 699 EntrySize); 700 if (maybeID) 701 UniqueID = *maybeID; 702 else { 703 // If the user has specified the same section name as would be created 704 // implicitly for this symbol e.g. .rodata.str1.1, then we don't need 705 // to unique the section as the entry size for this symbol will be 706 // compatible with implicitly created sections. 707 SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal( 708 GO, Kind, getMangler(), TM, EntrySize, false); 709 if (!(getContext().isELFImplicitMergeableSectionNamePrefix( 710 SectionName) && 711 SectionName.startswith(ImplicitSectionNameStem))) 712 UniqueID = NextUniqueID++; 713 } 714 } else { 715 // We need to unique the section if the user has explicity 716 // assigned a non-mergeable symbol to a section name for 717 // a generic mergeable section. 718 if (getContext().isELFGenericMergeableSection(SectionName)) { 719 auto maybeID = getContext().getELFUniqueIDForEntsize( 720 SectionName, Flags, EntrySize); 721 UniqueID = maybeID ? *maybeID : NextUniqueID++; 722 } 723 } 724 } else { 725 // If two symbols with differing sizes end up in the same mergeable 726 // section that section can be assigned an incorrect entry size. To avoid 727 // this we usually put symbols of the same size into distinct mergeable 728 // sections with the same name. Doing so relies on the ",unique ," 729 // assembly feature. This feature is not avalible until bintuils 730 // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380). 731 Flags &= ~ELF::SHF_MERGE; 732 EntrySize = 0; 733 } 734 } 735 736 MCSectionELF *Section = getContext().getELFSection( 737 SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize, 738 Group, IsComdat, UniqueID, LinkedToSym); 739 // Make sure that we did not get some other section with incompatible sh_link. 740 // This should not be possible due to UniqueID code above. 741 assert(Section->getLinkedToSymbol() == LinkedToSym && 742 "Associated symbol mismatch between sections"); 743 744 if (!(getContext().getAsmInfo()->useIntegratedAssembler() || 745 getContext().getAsmInfo()->binutilsIsAtLeast(2, 35))) { 746 // If we are using GNU as before 2.35, then this symbol might have 747 // been placed in an incompatible mergeable section. Emit an error if this 748 // is the case to avoid creating broken output. 749 if ((Section->getFlags() & ELF::SHF_MERGE) && 750 (Section->getEntrySize() != getEntrySizeForKind(Kind))) 751 GO->getContext().diagnose(LoweringDiagnosticInfo( 752 "Symbol '" + GO->getName() + "' from module '" + 753 (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") + 754 "' required a section with entry-size=" + 755 Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" + 756 SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) + 757 ": Explicit assignment by pragma or attribute of an incompatible " 758 "symbol to this section?")); 759 } 760 761 return Section; 762 } 763 764 static MCSectionELF *selectELFSectionForGlobal( 765 MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, 766 const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags, 767 unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) { 768 769 StringRef Group = ""; 770 bool IsComdat = false; 771 if (const Comdat *C = getELFComdat(GO)) { 772 Flags |= ELF::SHF_GROUP; 773 Group = C->getName(); 774 IsComdat = C->getSelectionKind() == Comdat::Any; 775 } 776 777 // Get the section entry size based on the kind. 778 unsigned EntrySize = getEntrySizeForKind(Kind); 779 780 bool UniqueSectionName = false; 781 unsigned UniqueID = MCContext::GenericSectionID; 782 if (EmitUniqueSection) { 783 if (TM.getUniqueSectionNames()) { 784 UniqueSectionName = true; 785 } else { 786 UniqueID = *NextUniqueID; 787 (*NextUniqueID)++; 788 } 789 } 790 SmallString<128> Name = getELFSectionNameForGlobal( 791 GO, Kind, Mang, TM, EntrySize, UniqueSectionName); 792 793 // Use 0 as the unique ID for execute-only text. 794 if (Kind.isExecuteOnly()) 795 UniqueID = 0; 796 return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags, 797 EntrySize, Group, IsComdat, UniqueID, 798 AssociatedSymbol); 799 } 800 801 static MCSection *selectELFSectionForGlobal( 802 MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, 803 const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags, 804 unsigned *NextUniqueID) { 805 const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM); 806 if (LinkedToSym) { 807 EmitUniqueSection = true; 808 Flags |= ELF::SHF_LINK_ORDER; 809 } 810 811 MCSectionELF *Section = selectELFSectionForGlobal( 812 Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags, 813 NextUniqueID, LinkedToSym); 814 assert(Section->getLinkedToSymbol() == LinkedToSym); 815 return Section; 816 } 817 818 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal( 819 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 820 unsigned Flags = getELFSectionFlags(Kind); 821 822 // If we have -ffunction-section or -fdata-section then we should emit the 823 // global value to a uniqued section specifically for it. 824 bool EmitUniqueSection = false; 825 if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) { 826 if (Kind.isText()) 827 EmitUniqueSection = TM.getFunctionSections(); 828 else 829 EmitUniqueSection = TM.getDataSections(); 830 } 831 EmitUniqueSection |= GO->hasComdat(); 832 return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM, 833 EmitUniqueSection, Flags, &NextUniqueID); 834 } 835 836 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction( 837 const Function &F, const TargetMachine &TM) const { 838 SectionKind Kind = SectionKind::getText(); 839 unsigned Flags = getELFSectionFlags(Kind); 840 return selectELFSectionForGlobal(getContext(), &F, Kind, getMangler(), TM, 841 /* EmitUniqueSection = */ true, Flags, 842 &NextUniqueID); 843 } 844 845 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable( 846 const Function &F, const TargetMachine &TM) const { 847 // If the function can be removed, produce a unique section so that 848 // the table doesn't prevent the removal. 849 const Comdat *C = F.getComdat(); 850 bool EmitUniqueSection = TM.getFunctionSections() || C; 851 if (!EmitUniqueSection) 852 return ReadOnlySection; 853 854 return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(), 855 getMangler(), TM, EmitUniqueSection, 856 ELF::SHF_ALLOC, &NextUniqueID, 857 /* AssociatedSymbol */ nullptr); 858 } 859 860 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA( 861 const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const { 862 // If neither COMDAT nor function sections, use the monolithic LSDA section. 863 // Re-use this path if LSDASection is null as in the Arm EHABI. 864 if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections())) 865 return LSDASection; 866 867 const auto *LSDA = cast<MCSectionELF>(LSDASection); 868 unsigned Flags = LSDA->getFlags(); 869 const MCSymbolELF *LinkedToSym = nullptr; 870 StringRef Group; 871 bool IsComdat = false; 872 if (const Comdat *C = getELFComdat(&F)) { 873 Flags |= ELF::SHF_GROUP; 874 Group = C->getName(); 875 IsComdat = C->getSelectionKind() == Comdat::Any; 876 } 877 // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36 878 // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER. 879 if (TM.getFunctionSections() && 880 (getContext().getAsmInfo()->useIntegratedAssembler() && 881 getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) { 882 Flags |= ELF::SHF_LINK_ORDER; 883 LinkedToSym = cast<MCSymbolELF>(&FnSym); 884 } 885 886 // Append the function name as the suffix like GCC, assuming 887 // -funique-section-names applies to .gcc_except_table sections. 888 return getContext().getELFSection( 889 (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName() 890 : LSDA->getName()), 891 LSDA->getType(), Flags, 0, Group, F.hasComdat(), MCSection::NonUniqueID, 892 LinkedToSym); 893 } 894 895 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection( 896 bool UsesLabelDifference, const Function &F) const { 897 // We can always create relative relocations, so use another section 898 // that can be marked non-executable. 899 return false; 900 } 901 902 /// Given a mergeable constant with the specified size and relocation 903 /// information, return a section that it should be placed in. 904 MCSection *TargetLoweringObjectFileELF::getSectionForConstant( 905 const DataLayout &DL, SectionKind Kind, const Constant *C, 906 Align &Alignment) const { 907 if (Kind.isMergeableConst4() && MergeableConst4Section) 908 return MergeableConst4Section; 909 if (Kind.isMergeableConst8() && MergeableConst8Section) 910 return MergeableConst8Section; 911 if (Kind.isMergeableConst16() && MergeableConst16Section) 912 return MergeableConst16Section; 913 if (Kind.isMergeableConst32() && MergeableConst32Section) 914 return MergeableConst32Section; 915 if (Kind.isReadOnly()) 916 return ReadOnlySection; 917 918 assert(Kind.isReadOnlyWithRel() && "Unknown section kind"); 919 return DataRelROSection; 920 } 921 922 /// Returns a unique section for the given machine basic block. 923 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock( 924 const Function &F, const MachineBasicBlock &MBB, 925 const TargetMachine &TM) const { 926 assert(MBB.isBeginSection() && "Basic block does not start a section!"); 927 unsigned UniqueID = MCContext::GenericSectionID; 928 929 // For cold sections use the .text.split. prefix along with the parent 930 // function name. All cold blocks for the same function go to the same 931 // section. Similarly all exception blocks are grouped by symbol name 932 // under the .text.eh prefix. For regular sections, we either use a unique 933 // name, or a unique ID for the section. 934 SmallString<128> Name; 935 if (MBB.getSectionID() == MBBSectionID::ColdSectionID) { 936 Name += BBSectionsColdTextPrefix; 937 Name += MBB.getParent()->getName(); 938 } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) { 939 Name += ".text.eh."; 940 Name += MBB.getParent()->getName(); 941 } else { 942 Name += MBB.getParent()->getSection()->getName(); 943 if (TM.getUniqueBasicBlockSectionNames()) { 944 Name += "."; 945 Name += MBB.getSymbol()->getName(); 946 } else { 947 UniqueID = NextUniqueID++; 948 } 949 } 950 951 unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR; 952 std::string GroupName; 953 if (F.hasComdat()) { 954 Flags |= ELF::SHF_GROUP; 955 GroupName = F.getComdat()->getName().str(); 956 } 957 return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags, 958 0 /* Entry Size */, GroupName, 959 F.hasComdat(), UniqueID, nullptr); 960 } 961 962 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray, 963 bool IsCtor, unsigned Priority, 964 const MCSymbol *KeySym) { 965 std::string Name; 966 unsigned Type; 967 unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; 968 StringRef Comdat = KeySym ? KeySym->getName() : ""; 969 970 if (KeySym) 971 Flags |= ELF::SHF_GROUP; 972 973 if (UseInitArray) { 974 if (IsCtor) { 975 Type = ELF::SHT_INIT_ARRAY; 976 Name = ".init_array"; 977 } else { 978 Type = ELF::SHT_FINI_ARRAY; 979 Name = ".fini_array"; 980 } 981 if (Priority != 65535) { 982 Name += '.'; 983 Name += utostr(Priority); 984 } 985 } else { 986 // The default scheme is .ctor / .dtor, so we have to invert the priority 987 // numbering. 988 if (IsCtor) 989 Name = ".ctors"; 990 else 991 Name = ".dtors"; 992 if (Priority != 65535) 993 raw_string_ostream(Name) << format(".%05u", 65535 - Priority); 994 Type = ELF::SHT_PROGBITS; 995 } 996 997 return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true); 998 } 999 1000 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection( 1001 unsigned Priority, const MCSymbol *KeySym) const { 1002 return getStaticStructorSection(getContext(), UseInitArray, true, Priority, 1003 KeySym); 1004 } 1005 1006 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection( 1007 unsigned Priority, const MCSymbol *KeySym) const { 1008 return getStaticStructorSection(getContext(), UseInitArray, false, Priority, 1009 KeySym); 1010 } 1011 1012 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference( 1013 const GlobalValue *LHS, const GlobalValue *RHS, 1014 const TargetMachine &TM) const { 1015 // We may only use a PLT-relative relocation to refer to unnamed_addr 1016 // functions. 1017 if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy()) 1018 return nullptr; 1019 1020 // Basic sanity checks. 1021 if (LHS->getType()->getPointerAddressSpace() != 0 || 1022 RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() || 1023 RHS->isThreadLocal()) 1024 return nullptr; 1025 1026 return MCBinaryExpr::createSub( 1027 MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind, 1028 getContext()), 1029 MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext()); 1030 } 1031 1032 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent( 1033 const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const { 1034 assert(supportDSOLocalEquivalentLowering()); 1035 1036 const auto *GV = Equiv->getGlobalValue(); 1037 1038 // A PLT entry is not needed for dso_local globals. 1039 if (GV->isDSOLocal() || GV->isImplicitDSOLocal()) 1040 return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext()); 1041 1042 return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind, 1043 getContext()); 1044 } 1045 1046 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const { 1047 // Use ".GCC.command.line" since this feature is to support clang's 1048 // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the 1049 // same name. 1050 return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS, 1051 ELF::SHF_MERGE | ELF::SHF_STRINGS, 1); 1052 } 1053 1054 void 1055 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) { 1056 UseInitArray = UseInitArray_; 1057 MCContext &Ctx = getContext(); 1058 if (!UseInitArray) { 1059 StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS, 1060 ELF::SHF_ALLOC | ELF::SHF_WRITE); 1061 1062 StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS, 1063 ELF::SHF_ALLOC | ELF::SHF_WRITE); 1064 return; 1065 } 1066 1067 StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY, 1068 ELF::SHF_WRITE | ELF::SHF_ALLOC); 1069 StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY, 1070 ELF::SHF_WRITE | ELF::SHF_ALLOC); 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // MachO 1075 //===----------------------------------------------------------------------===// 1076 1077 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO() 1078 : TargetLoweringObjectFile() { 1079 SupportIndirectSymViaGOTPCRel = true; 1080 } 1081 1082 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx, 1083 const TargetMachine &TM) { 1084 TargetLoweringObjectFile::Initialize(Ctx, TM); 1085 if (TM.getRelocationModel() == Reloc::Static) { 1086 StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0, 1087 SectionKind::getData()); 1088 StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0, 1089 SectionKind::getData()); 1090 } else { 1091 StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func", 1092 MachO::S_MOD_INIT_FUNC_POINTERS, 1093 SectionKind::getData()); 1094 StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func", 1095 MachO::S_MOD_TERM_FUNC_POINTERS, 1096 SectionKind::getData()); 1097 } 1098 1099 PersonalityEncoding = 1100 dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 1101 LSDAEncoding = dwarf::DW_EH_PE_pcrel; 1102 TTypeEncoding = 1103 dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 1104 } 1105 1106 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer, 1107 Module &M) const { 1108 // Emit the linker options if present. 1109 if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { 1110 for (const auto *Option : LinkerOptions->operands()) { 1111 SmallVector<std::string, 4> StrOptions; 1112 for (const auto &Piece : cast<MDNode>(Option)->operands()) 1113 StrOptions.push_back(std::string(cast<MDString>(Piece)->getString())); 1114 Streamer.emitLinkerOptions(StrOptions); 1115 } 1116 } 1117 1118 unsigned VersionVal = 0; 1119 unsigned ImageInfoFlags = 0; 1120 StringRef SectionVal; 1121 1122 GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal); 1123 1124 // The section is mandatory. If we don't have it, then we don't have GC info. 1125 if (SectionVal.empty()) 1126 return; 1127 1128 StringRef Segment, Section; 1129 unsigned TAA = 0, StubSize = 0; 1130 bool TAAParsed; 1131 std::string ErrorCode = 1132 MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section, 1133 TAA, TAAParsed, StubSize); 1134 if (!ErrorCode.empty()) 1135 // If invalid, report the error with report_fatal_error. 1136 report_fatal_error("Invalid section specifier '" + Section + "': " + 1137 ErrorCode + "."); 1138 1139 // Get the section. 1140 MCSectionMachO *S = getContext().getMachOSection( 1141 Segment, Section, TAA, StubSize, SectionKind::getData()); 1142 Streamer.SwitchSection(S); 1143 Streamer.emitLabel(getContext(). 1144 getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO"))); 1145 Streamer.emitInt32(VersionVal); 1146 Streamer.emitInt32(ImageInfoFlags); 1147 Streamer.AddBlankLine(); 1148 } 1149 1150 static void checkMachOComdat(const GlobalValue *GV) { 1151 const Comdat *C = GV->getComdat(); 1152 if (!C) 1153 return; 1154 1155 report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() + 1156 "' cannot be lowered."); 1157 } 1158 1159 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal( 1160 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1161 // Parse the section specifier and create it if valid. 1162 StringRef Segment, Section; 1163 unsigned TAA = 0, StubSize = 0; 1164 bool TAAParsed; 1165 1166 checkMachOComdat(GO); 1167 1168 std::string ErrorCode = 1169 MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section, 1170 TAA, TAAParsed, StubSize); 1171 if (!ErrorCode.empty()) { 1172 // If invalid, report the error with report_fatal_error. 1173 report_fatal_error("Global variable '" + GO->getName() + 1174 "' has an invalid section specifier '" + 1175 GO->getSection() + "': " + ErrorCode + "."); 1176 } 1177 1178 // Get the section. 1179 MCSectionMachO *S = 1180 getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind); 1181 1182 // If TAA wasn't set by ParseSectionSpecifier() above, 1183 // use the value returned by getMachOSection() as a default. 1184 if (!TAAParsed) 1185 TAA = S->getTypeAndAttributes(); 1186 1187 // Okay, now that we got the section, verify that the TAA & StubSize agree. 1188 // If the user declared multiple globals with different section flags, we need 1189 // to reject it here. 1190 if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) { 1191 // If invalid, report the error with report_fatal_error. 1192 report_fatal_error("Global variable '" + GO->getName() + 1193 "' section type or attributes does not match previous" 1194 " section specifier"); 1195 } 1196 1197 return S; 1198 } 1199 1200 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal( 1201 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1202 checkMachOComdat(GO); 1203 1204 // Handle thread local data. 1205 if (Kind.isThreadBSS()) return TLSBSSSection; 1206 if (Kind.isThreadData()) return TLSDataSection; 1207 1208 if (Kind.isText()) 1209 return GO->isWeakForLinker() ? TextCoalSection : TextSection; 1210 1211 // If this is weak/linkonce, put this in a coalescable section, either in text 1212 // or data depending on if it is writable. 1213 if (GO->isWeakForLinker()) { 1214 if (Kind.isReadOnly()) 1215 return ConstTextCoalSection; 1216 if (Kind.isReadOnlyWithRel()) 1217 return ConstDataCoalSection; 1218 return DataCoalSection; 1219 } 1220 1221 // FIXME: Alignment check should be handled by section classifier. 1222 if (Kind.isMergeable1ByteCString() && 1223 GO->getParent()->getDataLayout().getPreferredAlign( 1224 cast<GlobalVariable>(GO)) < Align(32)) 1225 return CStringSection; 1226 1227 // Do not put 16-bit arrays in the UString section if they have an 1228 // externally visible label, this runs into issues with certain linker 1229 // versions. 1230 if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() && 1231 GO->getParent()->getDataLayout().getPreferredAlign( 1232 cast<GlobalVariable>(GO)) < Align(32)) 1233 return UStringSection; 1234 1235 // With MachO only variables whose corresponding symbol starts with 'l' or 1236 // 'L' can be merged, so we only try merging GVs with private linkage. 1237 if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) { 1238 if (Kind.isMergeableConst4()) 1239 return FourByteConstantSection; 1240 if (Kind.isMergeableConst8()) 1241 return EightByteConstantSection; 1242 if (Kind.isMergeableConst16()) 1243 return SixteenByteConstantSection; 1244 } 1245 1246 // Otherwise, if it is readonly, but not something we can specially optimize, 1247 // just drop it in .const. 1248 if (Kind.isReadOnly()) 1249 return ReadOnlySection; 1250 1251 // If this is marked const, put it into a const section. But if the dynamic 1252 // linker needs to write to it, put it in the data segment. 1253 if (Kind.isReadOnlyWithRel()) 1254 return ConstDataSection; 1255 1256 // Put zero initialized globals with strong external linkage in the 1257 // DATA, __common section with the .zerofill directive. 1258 if (Kind.isBSSExtern()) 1259 return DataCommonSection; 1260 1261 // Put zero initialized globals with local linkage in __DATA,__bss directive 1262 // with the .zerofill directive (aka .lcomm). 1263 if (Kind.isBSSLocal()) 1264 return DataBSSSection; 1265 1266 // Otherwise, just drop the variable in the normal data section. 1267 return DataSection; 1268 } 1269 1270 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant( 1271 const DataLayout &DL, SectionKind Kind, const Constant *C, 1272 Align &Alignment) const { 1273 // If this constant requires a relocation, we have to put it in the data 1274 // segment, not in the text segment. 1275 if (Kind.isData() || Kind.isReadOnlyWithRel()) 1276 return ConstDataSection; 1277 1278 if (Kind.isMergeableConst4()) 1279 return FourByteConstantSection; 1280 if (Kind.isMergeableConst8()) 1281 return EightByteConstantSection; 1282 if (Kind.isMergeableConst16()) 1283 return SixteenByteConstantSection; 1284 return ReadOnlySection; // .const 1285 } 1286 1287 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference( 1288 const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM, 1289 MachineModuleInfo *MMI, MCStreamer &Streamer) const { 1290 // The mach-o version of this method defaults to returning a stub reference. 1291 1292 if (Encoding & DW_EH_PE_indirect) { 1293 MachineModuleInfoMachO &MachOMMI = 1294 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 1295 1296 MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM); 1297 1298 // Add information about the stub reference to MachOMMI so that the stub 1299 // gets emitted by the asmprinter. 1300 MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym); 1301 if (!StubSym.getPointer()) { 1302 MCSymbol *Sym = TM.getSymbol(GV); 1303 StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); 1304 } 1305 1306 return TargetLoweringObjectFile:: 1307 getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()), 1308 Encoding & ~DW_EH_PE_indirect, Streamer); 1309 } 1310 1311 return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM, 1312 MMI, Streamer); 1313 } 1314 1315 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol( 1316 const GlobalValue *GV, const TargetMachine &TM, 1317 MachineModuleInfo *MMI) const { 1318 // The mach-o version of this method defaults to returning a stub reference. 1319 MachineModuleInfoMachO &MachOMMI = 1320 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 1321 1322 MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM); 1323 1324 // Add information about the stub reference to MachOMMI so that the stub 1325 // gets emitted by the asmprinter. 1326 MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym); 1327 if (!StubSym.getPointer()) { 1328 MCSymbol *Sym = TM.getSymbol(GV); 1329 StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); 1330 } 1331 1332 return SSym; 1333 } 1334 1335 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel( 1336 const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV, 1337 int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const { 1338 // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation 1339 // as 64-bit do, we replace the GOT equivalent by accessing the final symbol 1340 // through a non_lazy_ptr stub instead. One advantage is that it allows the 1341 // computation of deltas to final external symbols. Example: 1342 // 1343 // _extgotequiv: 1344 // .long _extfoo 1345 // 1346 // _delta: 1347 // .long _extgotequiv-_delta 1348 // 1349 // is transformed to: 1350 // 1351 // _delta: 1352 // .long L_extfoo$non_lazy_ptr-(_delta+0) 1353 // 1354 // .section __IMPORT,__pointers,non_lazy_symbol_pointers 1355 // L_extfoo$non_lazy_ptr: 1356 // .indirect_symbol _extfoo 1357 // .long 0 1358 // 1359 // The indirect symbol table (and sections of non_lazy_symbol_pointers type) 1360 // may point to both local (same translation unit) and global (other 1361 // translation units) symbols. Example: 1362 // 1363 // .section __DATA,__pointers,non_lazy_symbol_pointers 1364 // L1: 1365 // .indirect_symbol _myGlobal 1366 // .long 0 1367 // L2: 1368 // .indirect_symbol _myLocal 1369 // .long _myLocal 1370 // 1371 // If the symbol is local, instead of the symbol's index, the assembler 1372 // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table. 1373 // Then the linker will notice the constant in the table and will look at the 1374 // content of the symbol. 1375 MachineModuleInfoMachO &MachOMMI = 1376 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 1377 MCContext &Ctx = getContext(); 1378 1379 // The offset must consider the original displacement from the base symbol 1380 // since 32-bit targets don't have a GOTPCREL to fold the PC displacement. 1381 Offset = -MV.getConstant(); 1382 const MCSymbol *BaseSym = &MV.getSymB()->getSymbol(); 1383 1384 // Access the final symbol via sym$non_lazy_ptr and generate the appropriated 1385 // non_lazy_ptr stubs. 1386 SmallString<128> Name; 1387 StringRef Suffix = "$non_lazy_ptr"; 1388 Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix(); 1389 Name += Sym->getName(); 1390 Name += Suffix; 1391 MCSymbol *Stub = Ctx.getOrCreateSymbol(Name); 1392 1393 MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub); 1394 1395 if (!StubSym.getPointer()) 1396 StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym), 1397 !GV->hasLocalLinkage()); 1398 1399 const MCExpr *BSymExpr = 1400 MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx); 1401 const MCExpr *LHS = 1402 MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx); 1403 1404 if (!Offset) 1405 return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx); 1406 1407 const MCExpr *RHS = 1408 MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx); 1409 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1410 } 1411 1412 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo, 1413 const MCSection &Section) { 1414 if (!AsmInfo.isSectionAtomizableBySymbols(Section)) 1415 return true; 1416 1417 // If it is not dead stripped, it is safe to use private labels. 1418 const MCSectionMachO &SMO = cast<MCSectionMachO>(Section); 1419 if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP)) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 void TargetLoweringObjectFileMachO::getNameWithPrefix( 1426 SmallVectorImpl<char> &OutName, const GlobalValue *GV, 1427 const TargetMachine &TM) const { 1428 bool CannotUsePrivateLabel = true; 1429 if (auto *GO = GV->getBaseObject()) { 1430 SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM); 1431 const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM); 1432 CannotUsePrivateLabel = 1433 !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection); 1434 } 1435 getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel); 1436 } 1437 1438 //===----------------------------------------------------------------------===// 1439 // COFF 1440 //===----------------------------------------------------------------------===// 1441 1442 static unsigned 1443 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) { 1444 unsigned Flags = 0; 1445 bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb; 1446 1447 if (K.isMetadata()) 1448 Flags |= 1449 COFF::IMAGE_SCN_MEM_DISCARDABLE; 1450 else if (K.isText()) 1451 Flags |= 1452 COFF::IMAGE_SCN_MEM_EXECUTE | 1453 COFF::IMAGE_SCN_MEM_READ | 1454 COFF::IMAGE_SCN_CNT_CODE | 1455 (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0); 1456 else if (K.isBSS()) 1457 Flags |= 1458 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 1459 COFF::IMAGE_SCN_MEM_READ | 1460 COFF::IMAGE_SCN_MEM_WRITE; 1461 else if (K.isThreadLocal()) 1462 Flags |= 1463 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1464 COFF::IMAGE_SCN_MEM_READ | 1465 COFF::IMAGE_SCN_MEM_WRITE; 1466 else if (K.isReadOnly() || K.isReadOnlyWithRel()) 1467 Flags |= 1468 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1469 COFF::IMAGE_SCN_MEM_READ; 1470 else if (K.isWriteable()) 1471 Flags |= 1472 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1473 COFF::IMAGE_SCN_MEM_READ | 1474 COFF::IMAGE_SCN_MEM_WRITE; 1475 1476 return Flags; 1477 } 1478 1479 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) { 1480 const Comdat *C = GV->getComdat(); 1481 assert(C && "expected GV to have a Comdat!"); 1482 1483 StringRef ComdatGVName = C->getName(); 1484 const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName); 1485 if (!ComdatGV) 1486 report_fatal_error("Associative COMDAT symbol '" + ComdatGVName + 1487 "' does not exist."); 1488 1489 if (ComdatGV->getComdat() != C) 1490 report_fatal_error("Associative COMDAT symbol '" + ComdatGVName + 1491 "' is not a key for its COMDAT."); 1492 1493 return ComdatGV; 1494 } 1495 1496 static int getSelectionForCOFF(const GlobalValue *GV) { 1497 if (const Comdat *C = GV->getComdat()) { 1498 const GlobalValue *ComdatKey = getComdatGVForCOFF(GV); 1499 if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey)) 1500 ComdatKey = GA->getBaseObject(); 1501 if (ComdatKey == GV) { 1502 switch (C->getSelectionKind()) { 1503 case Comdat::Any: 1504 return COFF::IMAGE_COMDAT_SELECT_ANY; 1505 case Comdat::ExactMatch: 1506 return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH; 1507 case Comdat::Largest: 1508 return COFF::IMAGE_COMDAT_SELECT_LARGEST; 1509 case Comdat::NoDuplicates: 1510 return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES; 1511 case Comdat::SameSize: 1512 return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE; 1513 } 1514 } else { 1515 return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE; 1516 } 1517 } 1518 return 0; 1519 } 1520 1521 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal( 1522 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1523 int Selection = 0; 1524 unsigned Characteristics = getCOFFSectionFlags(Kind, TM); 1525 StringRef Name = GO->getSection(); 1526 StringRef COMDATSymName = ""; 1527 if (GO->hasComdat()) { 1528 Selection = getSelectionForCOFF(GO); 1529 const GlobalValue *ComdatGV; 1530 if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) 1531 ComdatGV = getComdatGVForCOFF(GO); 1532 else 1533 ComdatGV = GO; 1534 1535 if (!ComdatGV->hasPrivateLinkage()) { 1536 MCSymbol *Sym = TM.getSymbol(ComdatGV); 1537 COMDATSymName = Sym->getName(); 1538 Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; 1539 } else { 1540 Selection = 0; 1541 } 1542 } 1543 1544 return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName, 1545 Selection); 1546 } 1547 1548 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) { 1549 if (Kind.isText()) 1550 return ".text"; 1551 if (Kind.isBSS()) 1552 return ".bss"; 1553 if (Kind.isThreadLocal()) 1554 return ".tls$"; 1555 if (Kind.isReadOnly() || Kind.isReadOnlyWithRel()) 1556 return ".rdata"; 1557 return ".data"; 1558 } 1559 1560 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal( 1561 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1562 // If we have -ffunction-sections then we should emit the global value to a 1563 // uniqued section specifically for it. 1564 bool EmitUniquedSection; 1565 if (Kind.isText()) 1566 EmitUniquedSection = TM.getFunctionSections(); 1567 else 1568 EmitUniquedSection = TM.getDataSections(); 1569 1570 if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) { 1571 SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind); 1572 1573 unsigned Characteristics = getCOFFSectionFlags(Kind, TM); 1574 1575 Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; 1576 int Selection = getSelectionForCOFF(GO); 1577 if (!Selection) 1578 Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES; 1579 const GlobalValue *ComdatGV; 1580 if (GO->hasComdat()) 1581 ComdatGV = getComdatGVForCOFF(GO); 1582 else 1583 ComdatGV = GO; 1584 1585 unsigned UniqueID = MCContext::GenericSectionID; 1586 if (EmitUniquedSection) 1587 UniqueID = NextUniqueID++; 1588 1589 if (!ComdatGV->hasPrivateLinkage()) { 1590 MCSymbol *Sym = TM.getSymbol(ComdatGV); 1591 StringRef COMDATSymName = Sym->getName(); 1592 1593 if (const auto *F = dyn_cast<Function>(GO)) 1594 if (Optional<StringRef> Prefix = F->getSectionPrefix()) 1595 raw_svector_ostream(Name) << '$' << *Prefix; 1596 1597 // Append "$symbol" to the section name *before* IR-level mangling is 1598 // applied when targetting mingw. This is what GCC does, and the ld.bfd 1599 // COFF linker will not properly handle comdats otherwise. 1600 if (getTargetTriple().isWindowsGNUEnvironment()) 1601 raw_svector_ostream(Name) << '$' << ComdatGV->getName(); 1602 1603 return getContext().getCOFFSection(Name, Characteristics, Kind, 1604 COMDATSymName, Selection, UniqueID); 1605 } else { 1606 SmallString<256> TmpData; 1607 getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true); 1608 return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData, 1609 Selection, UniqueID); 1610 } 1611 } 1612 1613 if (Kind.isText()) 1614 return TextSection; 1615 1616 if (Kind.isThreadLocal()) 1617 return TLSDataSection; 1618 1619 if (Kind.isReadOnly() || Kind.isReadOnlyWithRel()) 1620 return ReadOnlySection; 1621 1622 // Note: we claim that common symbols are put in BSSSection, but they are 1623 // really emitted with the magic .comm directive, which creates a symbol table 1624 // entry but not a section. 1625 if (Kind.isBSS() || Kind.isCommon()) 1626 return BSSSection; 1627 1628 return DataSection; 1629 } 1630 1631 void TargetLoweringObjectFileCOFF::getNameWithPrefix( 1632 SmallVectorImpl<char> &OutName, const GlobalValue *GV, 1633 const TargetMachine &TM) const { 1634 bool CannotUsePrivateLabel = false; 1635 if (GV->hasPrivateLinkage() && 1636 ((isa<Function>(GV) && TM.getFunctionSections()) || 1637 (isa<GlobalVariable>(GV) && TM.getDataSections()))) 1638 CannotUsePrivateLabel = true; 1639 1640 getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel); 1641 } 1642 1643 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable( 1644 const Function &F, const TargetMachine &TM) const { 1645 // If the function can be removed, produce a unique section so that 1646 // the table doesn't prevent the removal. 1647 const Comdat *C = F.getComdat(); 1648 bool EmitUniqueSection = TM.getFunctionSections() || C; 1649 if (!EmitUniqueSection) 1650 return ReadOnlySection; 1651 1652 // FIXME: we should produce a symbol for F instead. 1653 if (F.hasPrivateLinkage()) 1654 return ReadOnlySection; 1655 1656 MCSymbol *Sym = TM.getSymbol(&F); 1657 StringRef COMDATSymName = Sym->getName(); 1658 1659 SectionKind Kind = SectionKind::getReadOnly(); 1660 StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind); 1661 unsigned Characteristics = getCOFFSectionFlags(Kind, TM); 1662 Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; 1663 unsigned UniqueID = NextUniqueID++; 1664 1665 return getContext().getCOFFSection( 1666 SecName, Characteristics, Kind, COMDATSymName, 1667 COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID); 1668 } 1669 1670 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer, 1671 Module &M) const { 1672 emitLinkerDirectives(Streamer, M); 1673 1674 unsigned Version = 0; 1675 unsigned Flags = 0; 1676 StringRef Section; 1677 1678 GetObjCImageInfo(M, Version, Flags, Section); 1679 if (!Section.empty()) { 1680 auto &C = getContext(); 1681 auto *S = C.getCOFFSection(Section, 1682 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1683 COFF::IMAGE_SCN_MEM_READ, 1684 SectionKind::getReadOnly()); 1685 Streamer.SwitchSection(S); 1686 Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO"))); 1687 Streamer.emitInt32(Version); 1688 Streamer.emitInt32(Flags); 1689 Streamer.AddBlankLine(); 1690 } 1691 1692 emitCGProfileMetadata(Streamer, M); 1693 } 1694 1695 void TargetLoweringObjectFileCOFF::emitLinkerDirectives( 1696 MCStreamer &Streamer, Module &M) const { 1697 if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { 1698 // Emit the linker options to the linker .drectve section. According to the 1699 // spec, this section is a space-separated string containing flags for 1700 // linker. 1701 MCSection *Sec = getDrectveSection(); 1702 Streamer.SwitchSection(Sec); 1703 for (const auto *Option : LinkerOptions->operands()) { 1704 for (const auto &Piece : cast<MDNode>(Option)->operands()) { 1705 // Lead with a space for consistency with our dllexport implementation. 1706 std::string Directive(" "); 1707 Directive.append(std::string(cast<MDString>(Piece)->getString())); 1708 Streamer.emitBytes(Directive); 1709 } 1710 } 1711 } 1712 1713 // Emit /EXPORT: flags for each exported global as necessary. 1714 std::string Flags; 1715 for (const GlobalValue &GV : M.global_values()) { 1716 raw_string_ostream OS(Flags); 1717 emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler()); 1718 OS.flush(); 1719 if (!Flags.empty()) { 1720 Streamer.SwitchSection(getDrectveSection()); 1721 Streamer.emitBytes(Flags); 1722 } 1723 Flags.clear(); 1724 } 1725 1726 // Emit /INCLUDE: flags for each used global as necessary. 1727 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1728 assert(LU->hasInitializer() && "expected llvm.used to have an initializer"); 1729 assert(isa<ArrayType>(LU->getValueType()) && 1730 "expected llvm.used to be an array type"); 1731 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1732 for (const Value *Op : A->operands()) { 1733 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1734 // Global symbols with internal or private linkage are not visible to 1735 // the linker, and thus would cause an error when the linker tried to 1736 // preserve the symbol due to the `/include:` directive. 1737 if (GV->hasLocalLinkage()) 1738 continue; 1739 1740 raw_string_ostream OS(Flags); 1741 emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler()); 1742 OS.flush(); 1743 1744 if (!Flags.empty()) { 1745 Streamer.SwitchSection(getDrectveSection()); 1746 Streamer.emitBytes(Flags); 1747 } 1748 Flags.clear(); 1749 } 1750 } 1751 } 1752 } 1753 1754 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx, 1755 const TargetMachine &TM) { 1756 TargetLoweringObjectFile::Initialize(Ctx, TM); 1757 this->TM = &TM; 1758 const Triple &T = TM.getTargetTriple(); 1759 if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) { 1760 StaticCtorSection = 1761 Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1762 COFF::IMAGE_SCN_MEM_READ, 1763 SectionKind::getReadOnly()); 1764 StaticDtorSection = 1765 Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1766 COFF::IMAGE_SCN_MEM_READ, 1767 SectionKind::getReadOnly()); 1768 } else { 1769 StaticCtorSection = Ctx.getCOFFSection( 1770 ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1771 COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, 1772 SectionKind::getData()); 1773 StaticDtorSection = Ctx.getCOFFSection( 1774 ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1775 COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, 1776 SectionKind::getData()); 1777 } 1778 } 1779 1780 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx, 1781 const Triple &T, bool IsCtor, 1782 unsigned Priority, 1783 const MCSymbol *KeySym, 1784 MCSectionCOFF *Default) { 1785 if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) { 1786 // If the priority is the default, use .CRT$XCU, possibly associative. 1787 if (Priority == 65535) 1788 return Ctx.getAssociativeCOFFSection(Default, KeySym, 0); 1789 1790 // Otherwise, we need to compute a new section name. Low priorities should 1791 // run earlier. The linker will sort sections ASCII-betically, and we need a 1792 // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we 1793 // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really 1794 // low priorities need to sort before 'L', since the CRT uses that 1795 // internally, so we use ".CRT$XCA00001" for them. 1796 SmallString<24> Name; 1797 raw_svector_ostream OS(Name); 1798 OS << ".CRT$X" << (IsCtor ? "C" : "T") << 1799 (Priority < 200 ? 'A' : 'T') << format("%05u", Priority); 1800 MCSectionCOFF *Sec = Ctx.getCOFFSection( 1801 Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ, 1802 SectionKind::getReadOnly()); 1803 return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0); 1804 } 1805 1806 std::string Name = IsCtor ? ".ctors" : ".dtors"; 1807 if (Priority != 65535) 1808 raw_string_ostream(Name) << format(".%05u", 65535 - Priority); 1809 1810 return Ctx.getAssociativeCOFFSection( 1811 Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1812 COFF::IMAGE_SCN_MEM_READ | 1813 COFF::IMAGE_SCN_MEM_WRITE, 1814 SectionKind::getData()), 1815 KeySym, 0); 1816 } 1817 1818 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection( 1819 unsigned Priority, const MCSymbol *KeySym) const { 1820 return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true, 1821 Priority, KeySym, 1822 cast<MCSectionCOFF>(StaticCtorSection)); 1823 } 1824 1825 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection( 1826 unsigned Priority, const MCSymbol *KeySym) const { 1827 return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false, 1828 Priority, KeySym, 1829 cast<MCSectionCOFF>(StaticDtorSection)); 1830 } 1831 1832 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference( 1833 const GlobalValue *LHS, const GlobalValue *RHS, 1834 const TargetMachine &TM) const { 1835 const Triple &T = TM.getTargetTriple(); 1836 if (T.isOSCygMing()) 1837 return nullptr; 1838 1839 // Our symbols should exist in address space zero, cowardly no-op if 1840 // otherwise. 1841 if (LHS->getType()->getPointerAddressSpace() != 0 || 1842 RHS->getType()->getPointerAddressSpace() != 0) 1843 return nullptr; 1844 1845 // Both ptrtoint instructions must wrap global objects: 1846 // - Only global variables are eligible for image relative relocations. 1847 // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable. 1848 // We expect __ImageBase to be a global variable without a section, externally 1849 // defined. 1850 // 1851 // It should look something like this: @__ImageBase = external constant i8 1852 if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) || 1853 LHS->isThreadLocal() || RHS->isThreadLocal() || 1854 RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() || 1855 cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection()) 1856 return nullptr; 1857 1858 return MCSymbolRefExpr::create(TM.getSymbol(LHS), 1859 MCSymbolRefExpr::VK_COFF_IMGREL32, 1860 getContext()); 1861 } 1862 1863 static std::string APIntToHexString(const APInt &AI) { 1864 unsigned Width = (AI.getBitWidth() / 8) * 2; 1865 std::string HexString = AI.toString(16, /*Signed=*/false); 1866 llvm::transform(HexString, HexString.begin(), tolower); 1867 unsigned Size = HexString.size(); 1868 assert(Width >= Size && "hex string is too large!"); 1869 HexString.insert(HexString.begin(), Width - Size, '0'); 1870 1871 return HexString; 1872 } 1873 1874 static std::string scalarConstantToHexString(const Constant *C) { 1875 Type *Ty = C->getType(); 1876 if (isa<UndefValue>(C)) { 1877 return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits())); 1878 } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) { 1879 return APIntToHexString(CFP->getValueAPF().bitcastToAPInt()); 1880 } else if (const auto *CI = dyn_cast<ConstantInt>(C)) { 1881 return APIntToHexString(CI->getValue()); 1882 } else { 1883 unsigned NumElements; 1884 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1885 NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 1886 else 1887 NumElements = Ty->getArrayNumElements(); 1888 std::string HexString; 1889 for (int I = NumElements - 1, E = -1; I != E; --I) 1890 HexString += scalarConstantToHexString(C->getAggregateElement(I)); 1891 return HexString; 1892 } 1893 } 1894 1895 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant( 1896 const DataLayout &DL, SectionKind Kind, const Constant *C, 1897 Align &Alignment) const { 1898 if (Kind.isMergeableConst() && C && 1899 getContext().getAsmInfo()->hasCOFFComdatConstants()) { 1900 // This creates comdat sections with the given symbol name, but unless 1901 // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol 1902 // will be created with a null storage class, which makes GNU binutils 1903 // error out. 1904 const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1905 COFF::IMAGE_SCN_MEM_READ | 1906 COFF::IMAGE_SCN_LNK_COMDAT; 1907 std::string COMDATSymName; 1908 if (Kind.isMergeableConst4()) { 1909 if (Alignment <= 4) { 1910 COMDATSymName = "__real@" + scalarConstantToHexString(C); 1911 Alignment = Align(4); 1912 } 1913 } else if (Kind.isMergeableConst8()) { 1914 if (Alignment <= 8) { 1915 COMDATSymName = "__real@" + scalarConstantToHexString(C); 1916 Alignment = Align(8); 1917 } 1918 } else if (Kind.isMergeableConst16()) { 1919 // FIXME: These may not be appropriate for non-x86 architectures. 1920 if (Alignment <= 16) { 1921 COMDATSymName = "__xmm@" + scalarConstantToHexString(C); 1922 Alignment = Align(16); 1923 } 1924 } else if (Kind.isMergeableConst32()) { 1925 if (Alignment <= 32) { 1926 COMDATSymName = "__ymm@" + scalarConstantToHexString(C); 1927 Alignment = Align(32); 1928 } 1929 } 1930 1931 if (!COMDATSymName.empty()) 1932 return getContext().getCOFFSection(".rdata", Characteristics, Kind, 1933 COMDATSymName, 1934 COFF::IMAGE_COMDAT_SELECT_ANY); 1935 } 1936 1937 return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C, 1938 Alignment); 1939 } 1940 1941 //===----------------------------------------------------------------------===// 1942 // Wasm 1943 //===----------------------------------------------------------------------===// 1944 1945 static const Comdat *getWasmComdat(const GlobalValue *GV) { 1946 const Comdat *C = GV->getComdat(); 1947 if (!C) 1948 return nullptr; 1949 1950 if (C->getSelectionKind() != Comdat::Any) 1951 report_fatal_error("WebAssembly COMDATs only support " 1952 "SelectionKind::Any, '" + C->getName() + "' cannot be " 1953 "lowered."); 1954 1955 return C; 1956 } 1957 1958 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal( 1959 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1960 // We don't support explict section names for functions in the wasm object 1961 // format. Each function has to be in its own unique section. 1962 if (isa<Function>(GO)) { 1963 return SelectSectionForGlobal(GO, Kind, TM); 1964 } 1965 1966 StringRef Name = GO->getSection(); 1967 1968 // Certain data sections we treat as named custom sections rather than 1969 // segments within the data section. 1970 // This could be avoided if all data segements (the wasm sense) were 1971 // represented as their own sections (in the llvm sense). 1972 // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138 1973 if (Name == ".llvmcmd" || Name == ".llvmbc") 1974 Kind = SectionKind::getMetadata(); 1975 1976 StringRef Group = ""; 1977 if (const Comdat *C = getWasmComdat(GO)) { 1978 Group = C->getName(); 1979 } 1980 1981 MCSectionWasm* Section = 1982 getContext().getWasmSection(Name, Kind, Group, 1983 MCContext::GenericSectionID); 1984 1985 return Section; 1986 } 1987 1988 static MCSectionWasm *selectWasmSectionForGlobal( 1989 MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, 1990 const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) { 1991 StringRef Group = ""; 1992 if (const Comdat *C = getWasmComdat(GO)) { 1993 Group = C->getName(); 1994 } 1995 1996 bool UniqueSectionNames = TM.getUniqueSectionNames(); 1997 SmallString<128> Name = getSectionPrefixForGlobal(Kind); 1998 1999 if (const auto *F = dyn_cast<Function>(GO)) { 2000 const auto &OptionalPrefix = F->getSectionPrefix(); 2001 if (OptionalPrefix) 2002 raw_svector_ostream(Name) << '.' << *OptionalPrefix; 2003 } 2004 2005 if (EmitUniqueSection && UniqueSectionNames) { 2006 Name.push_back('.'); 2007 TM.getNameWithPrefix(Name, GO, Mang, true); 2008 } 2009 unsigned UniqueID = MCContext::GenericSectionID; 2010 if (EmitUniqueSection && !UniqueSectionNames) { 2011 UniqueID = *NextUniqueID; 2012 (*NextUniqueID)++; 2013 } 2014 2015 return Ctx.getWasmSection(Name, Kind, Group, UniqueID); 2016 } 2017 2018 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal( 2019 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2020 2021 if (Kind.isCommon()) 2022 report_fatal_error("mergable sections not supported yet on wasm"); 2023 2024 // If we have -ffunction-section or -fdata-section then we should emit the 2025 // global value to a uniqued section specifically for it. 2026 bool EmitUniqueSection = false; 2027 if (Kind.isText()) 2028 EmitUniqueSection = TM.getFunctionSections(); 2029 else 2030 EmitUniqueSection = TM.getDataSections(); 2031 EmitUniqueSection |= GO->hasComdat(); 2032 2033 return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM, 2034 EmitUniqueSection, &NextUniqueID); 2035 } 2036 2037 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection( 2038 bool UsesLabelDifference, const Function &F) const { 2039 // We can always create relative relocations, so use another section 2040 // that can be marked non-executable. 2041 return false; 2042 } 2043 2044 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference( 2045 const GlobalValue *LHS, const GlobalValue *RHS, 2046 const TargetMachine &TM) const { 2047 // We may only use a PLT-relative relocation to refer to unnamed_addr 2048 // functions. 2049 if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy()) 2050 return nullptr; 2051 2052 // Basic sanity checks. 2053 if (LHS->getType()->getPointerAddressSpace() != 0 || 2054 RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() || 2055 RHS->isThreadLocal()) 2056 return nullptr; 2057 2058 return MCBinaryExpr::createSub( 2059 MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None, 2060 getContext()), 2061 MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext()); 2062 } 2063 2064 void TargetLoweringObjectFileWasm::InitializeWasm() { 2065 StaticCtorSection = 2066 getContext().getWasmSection(".init_array", SectionKind::getData()); 2067 2068 // We don't use PersonalityEncoding and LSDAEncoding because we don't emit 2069 // .cfi directives. We use TTypeEncoding to encode typeinfo global variables. 2070 TTypeEncoding = dwarf::DW_EH_PE_absptr; 2071 } 2072 2073 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection( 2074 unsigned Priority, const MCSymbol *KeySym) const { 2075 return Priority == UINT16_MAX ? 2076 StaticCtorSection : 2077 getContext().getWasmSection(".init_array." + utostr(Priority), 2078 SectionKind::getData()); 2079 } 2080 2081 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection( 2082 unsigned Priority, const MCSymbol *KeySym) const { 2083 llvm_unreachable("@llvm.global_dtors should have been lowered already"); 2084 return nullptr; 2085 } 2086 2087 //===----------------------------------------------------------------------===// 2088 // XCOFF 2089 //===----------------------------------------------------------------------===// 2090 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock( 2091 const MachineFunction *MF) { 2092 if (!MF->getLandingPads().empty()) 2093 return true; 2094 2095 const Function &F = MF->getFunction(); 2096 if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry()) 2097 return false; 2098 2099 const Function *Per = 2100 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2101 if (isNoOpWithoutInvoke(classifyEHPersonality(Per))) 2102 return false; 2103 2104 return true; 2105 } 2106 2107 MCSymbol * 2108 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) { 2109 return MF->getMMI().getContext().getOrCreateSymbol( 2110 "__ehinfo." + Twine(MF->getFunctionNumber())); 2111 } 2112 2113 MCSymbol * 2114 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV, 2115 const TargetMachine &TM) const { 2116 // We always use a qualname symbol for a GV that represents 2117 // a declaration, a function descriptor, or a common symbol. 2118 // If a GV represents a GlobalVariable and -fdata-sections is enabled, we 2119 // also return a qualname so that a label symbol could be avoided. 2120 // It is inherently ambiguous when the GO represents the address of a 2121 // function, as the GO could either represent a function descriptor or a 2122 // function entry point. We choose to always return a function descriptor 2123 // here. 2124 if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) { 2125 if (GO->isDeclarationForLinker()) 2126 return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM)) 2127 ->getQualNameSymbol(); 2128 2129 SectionKind GOKind = getKindForGlobal(GO, TM); 2130 if (GOKind.isText()) 2131 return cast<MCSectionXCOFF>( 2132 getSectionForFunctionDescriptor(cast<Function>(GO), TM)) 2133 ->getQualNameSymbol(); 2134 if ((TM.getDataSections() && !GO->hasSection()) || GOKind.isCommon() || 2135 GOKind.isBSSLocal()) 2136 return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM)) 2137 ->getQualNameSymbol(); 2138 } 2139 2140 // For all other cases, fall back to getSymbol to return the unqualified name. 2141 return nullptr; 2142 } 2143 2144 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal( 2145 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2146 if (!GO->hasSection()) 2147 report_fatal_error("#pragma clang section is not yet supported"); 2148 2149 StringRef SectionName = GO->getSection(); 2150 XCOFF::StorageMappingClass MappingClass; 2151 if (Kind.isText()) 2152 MappingClass = XCOFF::XMC_PR; 2153 else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) 2154 MappingClass = XCOFF::XMC_RW; 2155 else if (Kind.isReadOnly()) 2156 MappingClass = XCOFF::XMC_RO; 2157 else 2158 report_fatal_error("XCOFF other section types not yet implemented."); 2159 2160 return getContext().getXCOFFSection( 2161 SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD), 2162 /* MultiSymbolsAllowed*/ true); 2163 } 2164 2165 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference( 2166 const GlobalObject *GO, const TargetMachine &TM) const { 2167 assert(GO->isDeclarationForLinker() && 2168 "Tried to get ER section for a defined global."); 2169 2170 SmallString<128> Name; 2171 getNameWithPrefix(Name, GO, TM); 2172 2173 // Externals go into a csect of type ER. 2174 return getContext().getXCOFFSection( 2175 Name, SectionKind::getMetadata(), 2176 XCOFF::CsectProperties(isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA, 2177 XCOFF::XTY_ER)); 2178 } 2179 2180 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal( 2181 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2182 // Common symbols go into a csect with matching name which will get mapped 2183 // into the .bss section. 2184 if (Kind.isBSSLocal() || Kind.isCommon()) { 2185 SmallString<128> Name; 2186 getNameWithPrefix(Name, GO, TM); 2187 return getContext().getXCOFFSection( 2188 Name, Kind, 2189 XCOFF::CsectProperties( 2190 Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM)); 2191 } 2192 2193 if (Kind.isMergeableCString()) { 2194 Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign( 2195 cast<GlobalVariable>(GO)); 2196 2197 unsigned EntrySize = getEntrySizeForKind(Kind); 2198 std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + "."; 2199 SmallString<128> Name; 2200 Name = SizeSpec + utostr(Alignment.value()); 2201 2202 if (TM.getDataSections()) 2203 getNameWithPrefix(Name, GO, TM); 2204 2205 return getContext().getXCOFFSection( 2206 Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD), 2207 /* MultiSymbolsAllowed*/ !TM.getDataSections()); 2208 } 2209 2210 if (Kind.isText()) { 2211 if (TM.getFunctionSections()) { 2212 return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM)) 2213 ->getRepresentedCsect(); 2214 } 2215 return TextSection; 2216 } 2217 2218 // TODO: We may put Kind.isReadOnlyWithRel() under option control, because 2219 // user may want to have read-only data with relocations placed into a 2220 // read-only section by the compiler. 2221 // For BSS kind, zero initialized data must be emitted to the .data section 2222 // because external linkage control sections that get mapped to the .bss 2223 // section will be linked as tentative defintions, which is only appropriate 2224 // for SectionKind::Common. 2225 if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) { 2226 if (TM.getDataSections()) { 2227 SmallString<128> Name; 2228 getNameWithPrefix(Name, GO, TM); 2229 return getContext().getXCOFFSection( 2230 Name, SectionKind::getData(), 2231 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)); 2232 } 2233 return DataSection; 2234 } 2235 2236 if (Kind.isReadOnly()) { 2237 if (TM.getDataSections()) { 2238 SmallString<128> Name; 2239 getNameWithPrefix(Name, GO, TM); 2240 return getContext().getXCOFFSection( 2241 Name, SectionKind::getReadOnly(), 2242 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)); 2243 } 2244 return ReadOnlySection; 2245 } 2246 2247 report_fatal_error("XCOFF other section types not yet implemented."); 2248 } 2249 2250 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable( 2251 const Function &F, const TargetMachine &TM) const { 2252 assert (!F.getComdat() && "Comdat not supported on XCOFF."); 2253 2254 if (!TM.getFunctionSections()) 2255 return ReadOnlySection; 2256 2257 // If the function can be removed, produce a unique section so that 2258 // the table doesn't prevent the removal. 2259 SmallString<128> NameStr(".rodata.jmp.."); 2260 getNameWithPrefix(NameStr, &F, TM); 2261 return getContext().getXCOFFSection( 2262 NameStr, SectionKind::getReadOnly(), 2263 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)); 2264 } 2265 2266 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection( 2267 bool UsesLabelDifference, const Function &F) const { 2268 return false; 2269 } 2270 2271 /// Given a mergeable constant with the specified size and relocation 2272 /// information, return a section that it should be placed in. 2273 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant( 2274 const DataLayout &DL, SectionKind Kind, const Constant *C, 2275 Align &Alignment) const { 2276 //TODO: Enable emiting constant pool to unique sections when we support it. 2277 return ReadOnlySection; 2278 } 2279 2280 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx, 2281 const TargetMachine &TgtM) { 2282 TargetLoweringObjectFile::Initialize(Ctx, TgtM); 2283 TTypeEncoding = 2284 dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel | 2285 (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4 2286 : dwarf::DW_EH_PE_sdata8); 2287 PersonalityEncoding = 0; 2288 LSDAEncoding = 0; 2289 CallSiteEncoding = dwarf::DW_EH_PE_udata4; 2290 } 2291 2292 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection( 2293 unsigned Priority, const MCSymbol *KeySym) const { 2294 report_fatal_error("no static constructor section on AIX"); 2295 } 2296 2297 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection( 2298 unsigned Priority, const MCSymbol *KeySym) const { 2299 report_fatal_error("no static destructor section on AIX"); 2300 } 2301 2302 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference( 2303 const GlobalValue *LHS, const GlobalValue *RHS, 2304 const TargetMachine &TM) const { 2305 report_fatal_error("XCOFF not yet implemented."); 2306 } 2307 2308 XCOFF::StorageClass 2309 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) { 2310 assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX."); 2311 2312 switch (GV->getLinkage()) { 2313 case GlobalValue::InternalLinkage: 2314 case GlobalValue::PrivateLinkage: 2315 return XCOFF::C_HIDEXT; 2316 case GlobalValue::ExternalLinkage: 2317 case GlobalValue::CommonLinkage: 2318 case GlobalValue::AvailableExternallyLinkage: 2319 return XCOFF::C_EXT; 2320 case GlobalValue::ExternalWeakLinkage: 2321 case GlobalValue::LinkOnceAnyLinkage: 2322 case GlobalValue::LinkOnceODRLinkage: 2323 case GlobalValue::WeakAnyLinkage: 2324 case GlobalValue::WeakODRLinkage: 2325 return XCOFF::C_WEAKEXT; 2326 case GlobalValue::AppendingLinkage: 2327 report_fatal_error( 2328 "There is no mapping that implements AppendingLinkage for XCOFF."); 2329 } 2330 llvm_unreachable("Unknown linkage type!"); 2331 } 2332 2333 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol( 2334 const GlobalValue *Func, const TargetMachine &TM) const { 2335 assert( 2336 (isa<Function>(Func) || 2337 (isa<GlobalAlias>(Func) && 2338 isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) && 2339 "Func must be a function or an alias which has a function as base " 2340 "object."); 2341 2342 SmallString<128> NameStr; 2343 NameStr.push_back('.'); 2344 getNameWithPrefix(NameStr, Func, TM); 2345 2346 // When -function-sections is enabled and explicit section is not specified, 2347 // it's not necessary to emit function entry point label any more. We will use 2348 // function entry point csect instead. And for function delcarations, the 2349 // undefined symbols gets treated as csect with XTY_ER property. 2350 if (((TM.getFunctionSections() && !Func->hasSection()) || 2351 Func->isDeclaration()) && 2352 isa<Function>(Func)) { 2353 return getContext() 2354 .getXCOFFSection( 2355 NameStr, SectionKind::getText(), 2356 XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclaration() 2357 ? XCOFF::XTY_ER 2358 : XCOFF::XTY_SD)) 2359 ->getQualNameSymbol(); 2360 } 2361 2362 return getContext().getOrCreateSymbol(NameStr); 2363 } 2364 2365 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor( 2366 const Function *F, const TargetMachine &TM) const { 2367 SmallString<128> NameStr; 2368 getNameWithPrefix(NameStr, F, TM); 2369 return getContext().getXCOFFSection( 2370 NameStr, SectionKind::getData(), 2371 XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD)); 2372 } 2373 2374 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry( 2375 const MCSymbol *Sym, const TargetMachine &TM) const { 2376 // Use TE storage-mapping class when large code model is enabled so that 2377 // the chance of needing -bbigtoc is decreased. 2378 return getContext().getXCOFFSection( 2379 cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(), 2380 XCOFF::CsectProperties( 2381 TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC, 2382 XCOFF::XTY_SD)); 2383 } 2384