1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCSectionCOFF.h"
49 #include "llvm/MC/MCSectionELF.h"
50 #include "llvm/MC/MCSectionMachO.h"
51 #include "llvm/MC/MCSectionWasm.h"
52 #include "llvm/MC/MCSectionXCOFF.h"
53 #include "llvm/MC/MCStreamer.h"
54 #include "llvm/MC/MCSymbol.h"
55 #include "llvm/MC/MCSymbolELF.h"
56 #include "llvm/MC/MCValue.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/ProfileData/InstrProf.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include <cassert>
66 #include <string>
67 
68 using namespace llvm;
69 using namespace dwarf;
70 
71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
72                              StringRef &Section) {
73   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
74   M.getModuleFlagsMetadata(ModuleFlags);
75 
76   for (const auto &MFE: ModuleFlags) {
77     // Ignore flags with 'Require' behaviour.
78     if (MFE.Behavior == Module::Require)
79       continue;
80 
81     StringRef Key = MFE.Key->getString();
82     if (Key == "Objective-C Image Info Version") {
83       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Garbage Collection" ||
85                Key == "Objective-C GC Only" ||
86                Key == "Objective-C Is Simulated" ||
87                Key == "Objective-C Class Properties" ||
88                Key == "Objective-C Image Swift Version") {
89       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
90     } else if (Key == "Objective-C Image Info Section") {
91       Section = cast<MDString>(MFE.Val)->getString();
92     }
93     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
94     // "Objective-C Garbage Collection".
95     else if (Key == "Swift ABI Version") {
96       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
97     } else if (Key == "Swift Major Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
99     } else if (Key == "Swift Minor Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
101     }
102   }
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                                  ELF
107 //===----------------------------------------------------------------------===//
108 
109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
110     : TargetLoweringObjectFile() {
111   SupportDSOLocalEquivalentLowering = true;
112 }
113 
114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
115                                              const TargetMachine &TgtM) {
116   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
117 
118   CodeModel::Model CM = TgtM.getCodeModel();
119   InitializeELF(TgtM.Options.UseInitArray);
120 
121   switch (TgtM.getTargetTriple().getArch()) {
122   case Triple::arm:
123   case Triple::armeb:
124   case Triple::thumb:
125   case Triple::thumbeb:
126     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
127       break;
128     // Fallthrough if not using EHABI
129     LLVM_FALLTHROUGH;
130   case Triple::ppc:
131   case Triple::ppcle:
132   case Triple::x86:
133     PersonalityEncoding = isPositionIndependent()
134                               ? dwarf::DW_EH_PE_indirect |
135                                     dwarf::DW_EH_PE_pcrel |
136                                     dwarf::DW_EH_PE_sdata4
137                               : dwarf::DW_EH_PE_absptr;
138     LSDAEncoding = isPositionIndependent()
139                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
140                        : dwarf::DW_EH_PE_absptr;
141     TTypeEncoding = isPositionIndependent()
142                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
143                               dwarf::DW_EH_PE_sdata4
144                         : dwarf::DW_EH_PE_absptr;
145     break;
146   case Triple::x86_64:
147     if (isPositionIndependent()) {
148       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
149         ((CM == CodeModel::Small || CM == CodeModel::Medium)
150          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
151       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
152         (CM == CodeModel::Small
153          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
154       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
155         ((CM == CodeModel::Small || CM == CodeModel::Medium)
156          ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
157     } else {
158       PersonalityEncoding =
159         (CM == CodeModel::Small || CM == CodeModel::Medium)
160         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
161       LSDAEncoding = (CM == CodeModel::Small)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       TTypeEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165     }
166     break;
167   case Triple::hexagon:
168     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
169     LSDAEncoding = dwarf::DW_EH_PE_absptr;
170     TTypeEncoding = dwarf::DW_EH_PE_absptr;
171     if (isPositionIndependent()) {
172       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
173       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
174       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175     }
176     break;
177   case Triple::aarch64:
178   case Triple::aarch64_be:
179   case Triple::aarch64_32:
180     // The small model guarantees static code/data size < 4GB, but not where it
181     // will be in memory. Most of these could end up >2GB away so even a signed
182     // pc-relative 32-bit address is insufficient, theoretically.
183     if (isPositionIndependent()) {
184       // ILP32 uses sdata4 instead of sdata8
185       if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) {
186         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
187                               dwarf::DW_EH_PE_sdata4;
188         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
189         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
190                         dwarf::DW_EH_PE_sdata4;
191       } else {
192         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
193                               dwarf::DW_EH_PE_sdata8;
194         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
195         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
196                         dwarf::DW_EH_PE_sdata8;
197       }
198     } else {
199       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
200       LSDAEncoding = dwarf::DW_EH_PE_absptr;
201       TTypeEncoding = dwarf::DW_EH_PE_absptr;
202     }
203     break;
204   case Triple::lanai:
205     LSDAEncoding = dwarf::DW_EH_PE_absptr;
206     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
207     TTypeEncoding = dwarf::DW_EH_PE_absptr;
208     break;
209   case Triple::mips:
210   case Triple::mipsel:
211   case Triple::mips64:
212   case Triple::mips64el:
213     // MIPS uses indirect pointer to refer personality functions and types, so
214     // that the eh_frame section can be read-only. DW.ref.personality will be
215     // generated for relocation.
216     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
217     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
218     //        identify N64 from just a triple.
219     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
220                     dwarf::DW_EH_PE_sdata4;
221     // We don't support PC-relative LSDA references in GAS so we use the default
222     // DW_EH_PE_absptr for those.
223 
224     // FreeBSD must be explicit about the data size and using pcrel since it's
225     // assembler/linker won't do the automatic conversion that the Linux tools
226     // do.
227     if (TgtM.getTargetTriple().isOSFreeBSD()) {
228       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
229       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
230     }
231     break;
232   case Triple::ppc64:
233   case Triple::ppc64le:
234     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
235       dwarf::DW_EH_PE_udata8;
236     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
237     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238       dwarf::DW_EH_PE_udata8;
239     break;
240   case Triple::sparcel:
241   case Triple::sparc:
242     if (isPositionIndependent()) {
243       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
244       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
245         dwarf::DW_EH_PE_sdata4;
246       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
247         dwarf::DW_EH_PE_sdata4;
248     } else {
249       LSDAEncoding = dwarf::DW_EH_PE_absptr;
250       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
251       TTypeEncoding = dwarf::DW_EH_PE_absptr;
252     }
253     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
254     break;
255   case Triple::riscv32:
256   case Triple::riscv64:
257     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
258     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
259                           dwarf::DW_EH_PE_sdata4;
260     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261                     dwarf::DW_EH_PE_sdata4;
262     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
263     break;
264   case Triple::sparcv9:
265     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
266     if (isPositionIndependent()) {
267       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
268         dwarf::DW_EH_PE_sdata4;
269       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
270         dwarf::DW_EH_PE_sdata4;
271     } else {
272       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
273       TTypeEncoding = dwarf::DW_EH_PE_absptr;
274     }
275     break;
276   case Triple::systemz:
277     // All currently-defined code models guarantee that 4-byte PC-relative
278     // values will be in range.
279     if (isPositionIndependent()) {
280       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
281         dwarf::DW_EH_PE_sdata4;
282       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
283       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
284         dwarf::DW_EH_PE_sdata4;
285     } else {
286       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
287       LSDAEncoding = dwarf::DW_EH_PE_absptr;
288       TTypeEncoding = dwarf::DW_EH_PE_absptr;
289     }
290     break;
291   default:
292     break;
293   }
294 }
295 
296 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
297                                                      Module &M) const {
298   auto &C = getContext();
299 
300   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
301     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
302                               ELF::SHF_EXCLUDE);
303 
304     Streamer.SwitchSection(S);
305 
306     for (const auto *Operand : LinkerOptions->operands()) {
307       if (cast<MDNode>(Operand)->getNumOperands() != 2)
308         report_fatal_error("invalid llvm.linker.options");
309       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
310         Streamer.emitBytes(cast<MDString>(Option)->getString());
311         Streamer.emitInt8(0);
312       }
313     }
314   }
315 
316   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
317     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
318                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
319 
320     Streamer.SwitchSection(S);
321 
322     for (const auto *Operand : DependentLibraries->operands()) {
323       Streamer.emitBytes(
324           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
325       Streamer.emitInt8(0);
326     }
327   }
328 
329   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
330     // Emit a descriptor for every function including functions that have an
331     // available external linkage. We may not want this for imported functions
332     // that has code in another thinLTO module but we don't have a good way to
333     // tell them apart from inline functions defined in header files. Therefore
334     // we put each descriptor in a separate comdat section and rely on the
335     // linker to deduplicate.
336     for (const auto *Operand : FuncInfo->operands()) {
337       const auto *MD = cast<MDNode>(Operand);
338       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
339       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
340       auto *Name = cast<MDString>(MD->getOperand(2));
341       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
342           TM->getFunctionSections() ? Name->getString() : StringRef());
343 
344       Streamer.SwitchSection(S);
345       Streamer.emitInt64(GUID->getZExtValue());
346       Streamer.emitInt64(Hash->getZExtValue());
347       Streamer.emitULEB128IntValue(Name->getString().size());
348       Streamer.emitBytes(Name->getString());
349     }
350   }
351 
352   unsigned Version = 0;
353   unsigned Flags = 0;
354   StringRef Section;
355 
356   GetObjCImageInfo(M, Version, Flags, Section);
357   if (!Section.empty()) {
358     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
359     Streamer.SwitchSection(S);
360     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
361     Streamer.emitInt32(Version);
362     Streamer.emitInt32(Flags);
363     Streamer.AddBlankLine();
364   }
365 
366   emitCGProfileMetadata(Streamer, M);
367 }
368 
369 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
370     const GlobalValue *GV, const TargetMachine &TM,
371     MachineModuleInfo *MMI) const {
372   unsigned Encoding = getPersonalityEncoding();
373   if ((Encoding & 0x80) == DW_EH_PE_indirect)
374     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
375                                           TM.getSymbol(GV)->getName());
376   if ((Encoding & 0x70) == DW_EH_PE_absptr)
377     return TM.getSymbol(GV);
378   report_fatal_error("We do not support this DWARF encoding yet!");
379 }
380 
381 void TargetLoweringObjectFileELF::emitPersonalityValue(
382     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
383   SmallString<64> NameData("DW.ref.");
384   NameData += Sym->getName();
385   MCSymbolELF *Label =
386       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
387   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
388   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
389   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
390   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
391                                                    ELF::SHT_PROGBITS, Flags, 0);
392   unsigned Size = DL.getPointerSize();
393   Streamer.SwitchSection(Sec);
394   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
395   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
396   const MCExpr *E = MCConstantExpr::create(Size, getContext());
397   Streamer.emitELFSize(Label, E);
398   Streamer.emitLabel(Label);
399 
400   Streamer.emitSymbolValue(Sym, Size);
401 }
402 
403 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
404     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
405     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
406   if (Encoding & DW_EH_PE_indirect) {
407     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
408 
409     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
410 
411     // Add information about the stub reference to ELFMMI so that the stub
412     // gets emitted by the asmprinter.
413     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
414     if (!StubSym.getPointer()) {
415       MCSymbol *Sym = TM.getSymbol(GV);
416       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
417     }
418 
419     return TargetLoweringObjectFile::
420       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
421                         Encoding & ~DW_EH_PE_indirect, Streamer);
422   }
423 
424   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
425                                                            MMI, Streamer);
426 }
427 
428 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
429   // N.B.: The defaults used in here are not the same ones used in MC.
430   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
431   // both gas and MC will produce a section with no flags. Given
432   // section(".eh_frame") gcc will produce:
433   //
434   //   .section   .eh_frame,"a",@progbits
435 
436   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
437                                       /*AddSegmentInfo=*/false) ||
438       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
439                                       /*AddSegmentInfo=*/false) ||
440       Name == ".llvmbc" || Name == ".llvmcmd")
441     return SectionKind::getMetadata();
442 
443   if (Name.empty() || Name[0] != '.') return K;
444 
445   // Default implementation based on some magic section names.
446   if (Name == ".bss" ||
447       Name.startswith(".bss.") ||
448       Name.startswith(".gnu.linkonce.b.") ||
449       Name.startswith(".llvm.linkonce.b.") ||
450       Name == ".sbss" ||
451       Name.startswith(".sbss.") ||
452       Name.startswith(".gnu.linkonce.sb.") ||
453       Name.startswith(".llvm.linkonce.sb."))
454     return SectionKind::getBSS();
455 
456   if (Name == ".tdata" ||
457       Name.startswith(".tdata.") ||
458       Name.startswith(".gnu.linkonce.td.") ||
459       Name.startswith(".llvm.linkonce.td."))
460     return SectionKind::getThreadData();
461 
462   if (Name == ".tbss" ||
463       Name.startswith(".tbss.") ||
464       Name.startswith(".gnu.linkonce.tb.") ||
465       Name.startswith(".llvm.linkonce.tb."))
466     return SectionKind::getThreadBSS();
467 
468   return K;
469 }
470 
471 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
472   // Use SHT_NOTE for section whose name starts with ".note" to allow
473   // emitting ELF notes from C variable declaration.
474   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
475   if (Name.startswith(".note"))
476     return ELF::SHT_NOTE;
477 
478   if (Name == ".init_array")
479     return ELF::SHT_INIT_ARRAY;
480 
481   if (Name == ".fini_array")
482     return ELF::SHT_FINI_ARRAY;
483 
484   if (Name == ".preinit_array")
485     return ELF::SHT_PREINIT_ARRAY;
486 
487   if (K.isBSS() || K.isThreadBSS())
488     return ELF::SHT_NOBITS;
489 
490   return ELF::SHT_PROGBITS;
491 }
492 
493 static unsigned getELFSectionFlags(SectionKind K) {
494   unsigned Flags = 0;
495 
496   if (!K.isMetadata())
497     Flags |= ELF::SHF_ALLOC;
498 
499   if (K.isText())
500     Flags |= ELF::SHF_EXECINSTR;
501 
502   if (K.isExecuteOnly())
503     Flags |= ELF::SHF_ARM_PURECODE;
504 
505   if (K.isWriteable())
506     Flags |= ELF::SHF_WRITE;
507 
508   if (K.isThreadLocal())
509     Flags |= ELF::SHF_TLS;
510 
511   if (K.isMergeableCString() || K.isMergeableConst())
512     Flags |= ELF::SHF_MERGE;
513 
514   if (K.isMergeableCString())
515     Flags |= ELF::SHF_STRINGS;
516 
517   return Flags;
518 }
519 
520 static const Comdat *getELFComdat(const GlobalValue *GV) {
521   const Comdat *C = GV->getComdat();
522   if (!C)
523     return nullptr;
524 
525   if (C->getSelectionKind() != Comdat::Any)
526     report_fatal_error("ELF COMDATs only support SelectionKind::Any, '" +
527                        C->getName() + "' cannot be lowered.");
528 
529   return C;
530 }
531 
532 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
533                                             const TargetMachine &TM) {
534   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
535   if (!MD)
536     return nullptr;
537 
538   const MDOperand &Op = MD->getOperand(0);
539   if (!Op.get())
540     return nullptr;
541 
542   auto *VM = dyn_cast<ValueAsMetadata>(Op);
543   if (!VM)
544     report_fatal_error("MD_associated operand is not ValueAsMetadata");
545 
546   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
547   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
548 }
549 
550 static unsigned getEntrySizeForKind(SectionKind Kind) {
551   if (Kind.isMergeable1ByteCString())
552     return 1;
553   else if (Kind.isMergeable2ByteCString())
554     return 2;
555   else if (Kind.isMergeable4ByteCString())
556     return 4;
557   else if (Kind.isMergeableConst4())
558     return 4;
559   else if (Kind.isMergeableConst8())
560     return 8;
561   else if (Kind.isMergeableConst16())
562     return 16;
563   else if (Kind.isMergeableConst32())
564     return 32;
565   else {
566     // We shouldn't have mergeable C strings or mergeable constants that we
567     // didn't handle above.
568     assert(!Kind.isMergeableCString() && "unknown string width");
569     assert(!Kind.isMergeableConst() && "unknown data width");
570     return 0;
571   }
572 }
573 
574 /// Return the section prefix name used by options FunctionsSections and
575 /// DataSections.
576 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
577   if (Kind.isText())
578     return ".text";
579   if (Kind.isReadOnly())
580     return ".rodata";
581   if (Kind.isBSS())
582     return ".bss";
583   if (Kind.isThreadData())
584     return ".tdata";
585   if (Kind.isThreadBSS())
586     return ".tbss";
587   if (Kind.isData())
588     return ".data";
589   if (Kind.isReadOnlyWithRel())
590     return ".data.rel.ro";
591   llvm_unreachable("Unknown section kind");
592 }
593 
594 static SmallString<128>
595 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
596                            Mangler &Mang, const TargetMachine &TM,
597                            unsigned EntrySize, bool UniqueSectionName) {
598   SmallString<128> Name;
599   if (Kind.isMergeableCString()) {
600     // We also need alignment here.
601     // FIXME: this is getting the alignment of the character, not the
602     // alignment of the global!
603     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
604         cast<GlobalVariable>(GO));
605 
606     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
607     Name = SizeSpec + utostr(Alignment.value());
608   } else if (Kind.isMergeableConst()) {
609     Name = ".rodata.cst";
610     Name += utostr(EntrySize);
611   } else {
612     Name = getSectionPrefixForGlobal(Kind);
613   }
614 
615   bool HasPrefix = false;
616   if (const auto *F = dyn_cast<Function>(GO)) {
617     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
618       raw_svector_ostream(Name) << '.' << *Prefix;
619       HasPrefix = true;
620     }
621   }
622 
623   if (UniqueSectionName) {
624     Name.push_back('.');
625     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
626   } else if (HasPrefix)
627     Name.push_back('.');
628   return Name;
629 }
630 
631 namespace {
632 class LoweringDiagnosticInfo : public DiagnosticInfo {
633   const Twine &Msg;
634 
635 public:
636   LoweringDiagnosticInfo(const Twine &DiagMsg,
637                          DiagnosticSeverity Severity = DS_Error)
638       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
639   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
640 };
641 }
642 
643 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
644     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
645   StringRef SectionName = GO->getSection();
646 
647   // Check if '#pragma clang section' name is applicable.
648   // Note that pragma directive overrides -ffunction-section, -fdata-section
649   // and so section name is exactly as user specified and not uniqued.
650   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
651   if (GV && GV->hasImplicitSection()) {
652     auto Attrs = GV->getAttributes();
653     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
654       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
655     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
656       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
657     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
658       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
659     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
660       SectionName = Attrs.getAttribute("data-section").getValueAsString();
661     }
662   }
663   const Function *F = dyn_cast<Function>(GO);
664   if (F && F->hasFnAttribute("implicit-section-name")) {
665     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
666   }
667 
668   // Infer section flags from the section name if we can.
669   Kind = getELFKindForNamedSection(SectionName, Kind);
670 
671   StringRef Group = "";
672   unsigned Flags = getELFSectionFlags(Kind);
673   if (const Comdat *C = getELFComdat(GO)) {
674     Group = C->getName();
675     Flags |= ELF::SHF_GROUP;
676   }
677 
678   unsigned EntrySize = getEntrySizeForKind(Kind);
679 
680   // A section can have at most one associated section. Put each global with
681   // MD_associated in a unique section.
682   unsigned UniqueID = MCContext::GenericSectionID;
683   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
684   if (GO->getMetadata(LLVMContext::MD_associated)) {
685     UniqueID = NextUniqueID++;
686     Flags |= ELF::SHF_LINK_ORDER;
687   } else {
688     if (getContext().getAsmInfo()->useIntegratedAssembler() ||
689         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35)) {
690       // Symbols must be placed into sections with compatible entry
691       // sizes. Generate unique sections for symbols that have not
692       // been assigned to compatible sections.
693       if (Flags & ELF::SHF_MERGE) {
694         auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags,
695                                                              EntrySize);
696         if (maybeID)
697           UniqueID = *maybeID;
698         else {
699           // If the user has specified the same section name as would be created
700           // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
701           // to unique the section as the entry size for this symbol will be
702           // compatible with implicitly created sections.
703           SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal(
704               GO, Kind, getMangler(), TM, EntrySize, false);
705           if (!(getContext().isELFImplicitMergeableSectionNamePrefix(
706                     SectionName) &&
707                 SectionName.startswith(ImplicitSectionNameStem)))
708             UniqueID = NextUniqueID++;
709         }
710       } else {
711         // We need to unique the section if the user has explicity
712         // assigned a non-mergeable symbol to a section name for
713         // a generic mergeable section.
714         if (getContext().isELFGenericMergeableSection(SectionName)) {
715           auto maybeID = getContext().getELFUniqueIDForEntsize(
716               SectionName, Flags, EntrySize);
717           UniqueID = maybeID ? *maybeID : NextUniqueID++;
718         }
719       }
720     } else {
721       // If two symbols with differing sizes end up in the same mergeable
722       // section that section can be assigned an incorrect entry size. To avoid
723       // this we usually put symbols of the same size into distinct mergeable
724       // sections with the same name. Doing so relies on the ",unique ,"
725       // assembly feature. This feature is not avalible until bintuils
726       // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
727       Flags &= ~ELF::SHF_MERGE;
728       EntrySize = 0;
729     }
730   }
731 
732   MCSectionELF *Section = getContext().getELFSection(
733       SectionName, getELFSectionType(SectionName, Kind), Flags,
734       EntrySize, Group, UniqueID, LinkedToSym);
735   // Make sure that we did not get some other section with incompatible sh_link.
736   // This should not be possible due to UniqueID code above.
737   assert(Section->getLinkedToSymbol() == LinkedToSym &&
738          "Associated symbol mismatch between sections");
739 
740   if (!(getContext().getAsmInfo()->useIntegratedAssembler() ||
741         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35))) {
742     // If we are using GNU as before 2.35, then this symbol might have
743     // been placed in an incompatible mergeable section. Emit an error if this
744     // is the case to avoid creating broken output.
745     if ((Section->getFlags() & ELF::SHF_MERGE) &&
746         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
747       GO->getContext().diagnose(LoweringDiagnosticInfo(
748           "Symbol '" + GO->getName() + "' from module '" +
749           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
750           "' required a section with entry-size=" +
751           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
752           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
753           ": Explicit assignment by pragma or attribute of an incompatible "
754           "symbol to this section?"));
755   }
756 
757   return Section;
758 }
759 
760 static MCSectionELF *selectELFSectionForGlobal(
761     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
762     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
763     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
764 
765   StringRef Group = "";
766   if (const Comdat *C = getELFComdat(GO)) {
767     Flags |= ELF::SHF_GROUP;
768     Group = C->getName();
769   }
770 
771   // Get the section entry size based on the kind.
772   unsigned EntrySize = getEntrySizeForKind(Kind);
773 
774   bool UniqueSectionName = false;
775   unsigned UniqueID = MCContext::GenericSectionID;
776   if (EmitUniqueSection) {
777     if (TM.getUniqueSectionNames()) {
778       UniqueSectionName = true;
779     } else {
780       UniqueID = *NextUniqueID;
781       (*NextUniqueID)++;
782     }
783   }
784   SmallString<128> Name = getELFSectionNameForGlobal(
785       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
786 
787   // Use 0 as the unique ID for execute-only text.
788   if (Kind.isExecuteOnly())
789     UniqueID = 0;
790   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
791                            EntrySize, Group, UniqueID, AssociatedSymbol);
792 }
793 
794 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
795     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
796   unsigned Flags = getELFSectionFlags(Kind);
797 
798   // If we have -ffunction-section or -fdata-section then we should emit the
799   // global value to a uniqued section specifically for it.
800   bool EmitUniqueSection = false;
801   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
802     if (Kind.isText())
803       EmitUniqueSection = TM.getFunctionSections();
804     else
805       EmitUniqueSection = TM.getDataSections();
806   }
807   EmitUniqueSection |= GO->hasComdat();
808 
809   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
810   if (LinkedToSym) {
811     EmitUniqueSection = true;
812     Flags |= ELF::SHF_LINK_ORDER;
813   }
814 
815   MCSectionELF *Section = selectELFSectionForGlobal(
816       getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags,
817       &NextUniqueID, LinkedToSym);
818   assert(Section->getLinkedToSymbol() == LinkedToSym);
819   return Section;
820 }
821 
822 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
823     const Function &F, const TargetMachine &TM) const {
824   // If the function can be removed, produce a unique section so that
825   // the table doesn't prevent the removal.
826   const Comdat *C = F.getComdat();
827   bool EmitUniqueSection = TM.getFunctionSections() || C;
828   if (!EmitUniqueSection)
829     return ReadOnlySection;
830 
831   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
832                                    getMangler(), TM, EmitUniqueSection,
833                                    ELF::SHF_ALLOC, &NextUniqueID,
834                                    /* AssociatedSymbol */ nullptr);
835 }
836 
837 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
838     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
839   // If neither COMDAT nor function sections, use the monolithic LSDA section.
840   // Re-use this path if LSDASection is null as in the Arm EHABI.
841   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
842     return LSDASection;
843 
844   const auto *LSDA = cast<MCSectionELF>(LSDASection);
845   unsigned Flags = LSDA->getFlags();
846   StringRef Group;
847   const MCSymbolELF *LinkedToSym = nullptr;
848   if (F.hasComdat()) {
849     Group = F.getComdat()->getName();
850     Flags |= ELF::SHF_GROUP;
851   }
852   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
853   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
854   if (TM.getFunctionSections() &&
855       (getContext().getAsmInfo()->useIntegratedAssembler() &&
856        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
857     Flags |= ELF::SHF_LINK_ORDER;
858     LinkedToSym = cast<MCSymbolELF>(&FnSym);
859   }
860 
861   // Append the function name as the suffix like GCC, assuming
862   // -funique-section-names applies to .gcc_except_table sections.
863   return getContext().getELFSection(
864       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
865                                   : LSDA->getName()),
866       LSDA->getType(), Flags, 0, Group, MCSection::NonUniqueID, LinkedToSym);
867 }
868 
869 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
870     bool UsesLabelDifference, const Function &F) const {
871   // We can always create relative relocations, so use another section
872   // that can be marked non-executable.
873   return false;
874 }
875 
876 /// Given a mergeable constant with the specified size and relocation
877 /// information, return a section that it should be placed in.
878 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
879     const DataLayout &DL, SectionKind Kind, const Constant *C,
880     Align &Alignment) const {
881   if (Kind.isMergeableConst4() && MergeableConst4Section)
882     return MergeableConst4Section;
883   if (Kind.isMergeableConst8() && MergeableConst8Section)
884     return MergeableConst8Section;
885   if (Kind.isMergeableConst16() && MergeableConst16Section)
886     return MergeableConst16Section;
887   if (Kind.isMergeableConst32() && MergeableConst32Section)
888     return MergeableConst32Section;
889   if (Kind.isReadOnly())
890     return ReadOnlySection;
891 
892   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
893   return DataRelROSection;
894 }
895 
896 /// Returns a unique section for the given machine basic block.
897 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
898     const Function &F, const MachineBasicBlock &MBB,
899     const TargetMachine &TM) const {
900   assert(MBB.isBeginSection() && "Basic block does not start a section!");
901   unsigned UniqueID = MCContext::GenericSectionID;
902 
903   // For cold sections use the .text.split. prefix along with the parent
904   // function name. All cold blocks for the same function go to the same
905   // section. Similarly all exception blocks are grouped by symbol name
906   // under the .text.eh prefix. For regular sections, we either use a unique
907   // name, or a unique ID for the section.
908   SmallString<128> Name;
909   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
910     Name += BBSectionsColdTextPrefix;
911     Name += MBB.getParent()->getName();
912   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
913     Name += ".text.eh.";
914     Name += MBB.getParent()->getName();
915   } else {
916     Name += MBB.getParent()->getSection()->getName();
917     if (TM.getUniqueBasicBlockSectionNames()) {
918       Name += ".";
919       Name += MBB.getSymbol()->getName();
920     } else {
921       UniqueID = NextUniqueID++;
922     }
923   }
924 
925   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
926   std::string GroupName;
927   if (F.hasComdat()) {
928     Flags |= ELF::SHF_GROUP;
929     GroupName = F.getComdat()->getName().str();
930   }
931   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
932                                     0 /* Entry Size */, GroupName, UniqueID,
933                                     nullptr);
934 }
935 
936 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
937                                               bool IsCtor, unsigned Priority,
938                                               const MCSymbol *KeySym) {
939   std::string Name;
940   unsigned Type;
941   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
942   StringRef COMDAT = KeySym ? KeySym->getName() : "";
943 
944   if (KeySym)
945     Flags |= ELF::SHF_GROUP;
946 
947   if (UseInitArray) {
948     if (IsCtor) {
949       Type = ELF::SHT_INIT_ARRAY;
950       Name = ".init_array";
951     } else {
952       Type = ELF::SHT_FINI_ARRAY;
953       Name = ".fini_array";
954     }
955     if (Priority != 65535) {
956       Name += '.';
957       Name += utostr(Priority);
958     }
959   } else {
960     // The default scheme is .ctor / .dtor, so we have to invert the priority
961     // numbering.
962     if (IsCtor)
963       Name = ".ctors";
964     else
965       Name = ".dtors";
966     if (Priority != 65535)
967       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
968     Type = ELF::SHT_PROGBITS;
969   }
970 
971   return Ctx.getELFSection(Name, Type, Flags, 0, COMDAT);
972 }
973 
974 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
975     unsigned Priority, const MCSymbol *KeySym) const {
976   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
977                                   KeySym);
978 }
979 
980 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
981     unsigned Priority, const MCSymbol *KeySym) const {
982   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
983                                   KeySym);
984 }
985 
986 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
987     const GlobalValue *LHS, const GlobalValue *RHS,
988     const TargetMachine &TM) const {
989   // We may only use a PLT-relative relocation to refer to unnamed_addr
990   // functions.
991   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
992     return nullptr;
993 
994   // Basic sanity checks.
995   if (LHS->getType()->getPointerAddressSpace() != 0 ||
996       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
997       RHS->isThreadLocal())
998     return nullptr;
999 
1000   return MCBinaryExpr::createSub(
1001       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1002                               getContext()),
1003       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1004 }
1005 
1006 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1007     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1008   assert(supportDSOLocalEquivalentLowering());
1009 
1010   const auto *GV = Equiv->getGlobalValue();
1011 
1012   // A PLT entry is not needed for dso_local globals.
1013   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1014     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1015 
1016   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1017                                  getContext());
1018 }
1019 
1020 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1021   // Use ".GCC.command.line" since this feature is to support clang's
1022   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1023   // same name.
1024   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1025                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
1026 }
1027 
1028 void
1029 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1030   UseInitArray = UseInitArray_;
1031   MCContext &Ctx = getContext();
1032   if (!UseInitArray) {
1033     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1034                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1035 
1036     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1037                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1038     return;
1039   }
1040 
1041   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1042                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1043   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1044                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1045 }
1046 
1047 //===----------------------------------------------------------------------===//
1048 //                                 MachO
1049 //===----------------------------------------------------------------------===//
1050 
1051 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1052   : TargetLoweringObjectFile() {
1053   SupportIndirectSymViaGOTPCRel = true;
1054 }
1055 
1056 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1057                                                const TargetMachine &TM) {
1058   TargetLoweringObjectFile::Initialize(Ctx, TM);
1059   if (TM.getRelocationModel() == Reloc::Static) {
1060     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1061                                             SectionKind::getData());
1062     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1063                                             SectionKind::getData());
1064   } else {
1065     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1066                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1067                                             SectionKind::getData());
1068     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1069                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1070                                             SectionKind::getData());
1071   }
1072 
1073   PersonalityEncoding =
1074       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1075   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1076   TTypeEncoding =
1077       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1078 }
1079 
1080 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1081                                                        Module &M) const {
1082   // Emit the linker options if present.
1083   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1084     for (const auto *Option : LinkerOptions->operands()) {
1085       SmallVector<std::string, 4> StrOptions;
1086       for (const auto &Piece : cast<MDNode>(Option)->operands())
1087         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1088       Streamer.emitLinkerOptions(StrOptions);
1089     }
1090   }
1091 
1092   unsigned VersionVal = 0;
1093   unsigned ImageInfoFlags = 0;
1094   StringRef SectionVal;
1095 
1096   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1097 
1098   // The section is mandatory. If we don't have it, then we don't have GC info.
1099   if (SectionVal.empty())
1100     return;
1101 
1102   StringRef Segment, Section;
1103   unsigned TAA = 0, StubSize = 0;
1104   bool TAAParsed;
1105   std::string ErrorCode =
1106     MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section,
1107                                           TAA, TAAParsed, StubSize);
1108   if (!ErrorCode.empty())
1109     // If invalid, report the error with report_fatal_error.
1110     report_fatal_error("Invalid section specifier '" + Section + "': " +
1111                        ErrorCode + ".");
1112 
1113   // Get the section.
1114   MCSectionMachO *S = getContext().getMachOSection(
1115       Segment, Section, TAA, StubSize, SectionKind::getData());
1116   Streamer.SwitchSection(S);
1117   Streamer.emitLabel(getContext().
1118                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1119   Streamer.emitInt32(VersionVal);
1120   Streamer.emitInt32(ImageInfoFlags);
1121   Streamer.AddBlankLine();
1122 }
1123 
1124 static void checkMachOComdat(const GlobalValue *GV) {
1125   const Comdat *C = GV->getComdat();
1126   if (!C)
1127     return;
1128 
1129   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1130                      "' cannot be lowered.");
1131 }
1132 
1133 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1134     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1135   // Parse the section specifier and create it if valid.
1136   StringRef Segment, Section;
1137   unsigned TAA = 0, StubSize = 0;
1138   bool TAAParsed;
1139 
1140   checkMachOComdat(GO);
1141 
1142   std::string ErrorCode =
1143     MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section,
1144                                           TAA, TAAParsed, StubSize);
1145   if (!ErrorCode.empty()) {
1146     // If invalid, report the error with report_fatal_error.
1147     report_fatal_error("Global variable '" + GO->getName() +
1148                        "' has an invalid section specifier '" +
1149                        GO->getSection() + "': " + ErrorCode + ".");
1150   }
1151 
1152   // Get the section.
1153   MCSectionMachO *S =
1154       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1155 
1156   // If TAA wasn't set by ParseSectionSpecifier() above,
1157   // use the value returned by getMachOSection() as a default.
1158   if (!TAAParsed)
1159     TAA = S->getTypeAndAttributes();
1160 
1161   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1162   // If the user declared multiple globals with different section flags, we need
1163   // to reject it here.
1164   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1165     // If invalid, report the error with report_fatal_error.
1166     report_fatal_error("Global variable '" + GO->getName() +
1167                        "' section type or attributes does not match previous"
1168                        " section specifier");
1169   }
1170 
1171   return S;
1172 }
1173 
1174 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1175     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1176   checkMachOComdat(GO);
1177 
1178   // Handle thread local data.
1179   if (Kind.isThreadBSS()) return TLSBSSSection;
1180   if (Kind.isThreadData()) return TLSDataSection;
1181 
1182   if (Kind.isText())
1183     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1184 
1185   // If this is weak/linkonce, put this in a coalescable section, either in text
1186   // or data depending on if it is writable.
1187   if (GO->isWeakForLinker()) {
1188     if (Kind.isReadOnly())
1189       return ConstTextCoalSection;
1190     if (Kind.isReadOnlyWithRel())
1191       return ConstDataCoalSection;
1192     return DataCoalSection;
1193   }
1194 
1195   // FIXME: Alignment check should be handled by section classifier.
1196   if (Kind.isMergeable1ByteCString() &&
1197       GO->getParent()->getDataLayout().getPreferredAlign(
1198           cast<GlobalVariable>(GO)) < Align(32))
1199     return CStringSection;
1200 
1201   // Do not put 16-bit arrays in the UString section if they have an
1202   // externally visible label, this runs into issues with certain linker
1203   // versions.
1204   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1205       GO->getParent()->getDataLayout().getPreferredAlign(
1206           cast<GlobalVariable>(GO)) < Align(32))
1207     return UStringSection;
1208 
1209   // With MachO only variables whose corresponding symbol starts with 'l' or
1210   // 'L' can be merged, so we only try merging GVs with private linkage.
1211   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1212     if (Kind.isMergeableConst4())
1213       return FourByteConstantSection;
1214     if (Kind.isMergeableConst8())
1215       return EightByteConstantSection;
1216     if (Kind.isMergeableConst16())
1217       return SixteenByteConstantSection;
1218   }
1219 
1220   // Otherwise, if it is readonly, but not something we can specially optimize,
1221   // just drop it in .const.
1222   if (Kind.isReadOnly())
1223     return ReadOnlySection;
1224 
1225   // If this is marked const, put it into a const section.  But if the dynamic
1226   // linker needs to write to it, put it in the data segment.
1227   if (Kind.isReadOnlyWithRel())
1228     return ConstDataSection;
1229 
1230   // Put zero initialized globals with strong external linkage in the
1231   // DATA, __common section with the .zerofill directive.
1232   if (Kind.isBSSExtern())
1233     return DataCommonSection;
1234 
1235   // Put zero initialized globals with local linkage in __DATA,__bss directive
1236   // with the .zerofill directive (aka .lcomm).
1237   if (Kind.isBSSLocal())
1238     return DataBSSSection;
1239 
1240   // Otherwise, just drop the variable in the normal data section.
1241   return DataSection;
1242 }
1243 
1244 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1245     const DataLayout &DL, SectionKind Kind, const Constant *C,
1246     Align &Alignment) const {
1247   // If this constant requires a relocation, we have to put it in the data
1248   // segment, not in the text segment.
1249   if (Kind.isData() || Kind.isReadOnlyWithRel())
1250     return ConstDataSection;
1251 
1252   if (Kind.isMergeableConst4())
1253     return FourByteConstantSection;
1254   if (Kind.isMergeableConst8())
1255     return EightByteConstantSection;
1256   if (Kind.isMergeableConst16())
1257     return SixteenByteConstantSection;
1258   return ReadOnlySection;  // .const
1259 }
1260 
1261 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1262     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1263     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1264   // The mach-o version of this method defaults to returning a stub reference.
1265 
1266   if (Encoding & DW_EH_PE_indirect) {
1267     MachineModuleInfoMachO &MachOMMI =
1268       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1269 
1270     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1271 
1272     // Add information about the stub reference to MachOMMI so that the stub
1273     // gets emitted by the asmprinter.
1274     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1275     if (!StubSym.getPointer()) {
1276       MCSymbol *Sym = TM.getSymbol(GV);
1277       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1278     }
1279 
1280     return TargetLoweringObjectFile::
1281       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1282                         Encoding & ~DW_EH_PE_indirect, Streamer);
1283   }
1284 
1285   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1286                                                            MMI, Streamer);
1287 }
1288 
1289 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1290     const GlobalValue *GV, const TargetMachine &TM,
1291     MachineModuleInfo *MMI) const {
1292   // The mach-o version of this method defaults to returning a stub reference.
1293   MachineModuleInfoMachO &MachOMMI =
1294     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1295 
1296   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1297 
1298   // Add information about the stub reference to MachOMMI so that the stub
1299   // gets emitted by the asmprinter.
1300   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1301   if (!StubSym.getPointer()) {
1302     MCSymbol *Sym = TM.getSymbol(GV);
1303     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1304   }
1305 
1306   return SSym;
1307 }
1308 
1309 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1310     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1311     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1312   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1313   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1314   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1315   // computation of deltas to final external symbols. Example:
1316   //
1317   //    _extgotequiv:
1318   //       .long   _extfoo
1319   //
1320   //    _delta:
1321   //       .long   _extgotequiv-_delta
1322   //
1323   // is transformed to:
1324   //
1325   //    _delta:
1326   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1327   //
1328   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1329   //    L_extfoo$non_lazy_ptr:
1330   //       .indirect_symbol        _extfoo
1331   //       .long   0
1332   //
1333   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1334   // may point to both local (same translation unit) and global (other
1335   // translation units) symbols. Example:
1336   //
1337   // .section __DATA,__pointers,non_lazy_symbol_pointers
1338   // L1:
1339   //    .indirect_symbol _myGlobal
1340   //    .long 0
1341   // L2:
1342   //    .indirect_symbol _myLocal
1343   //    .long _myLocal
1344   //
1345   // If the symbol is local, instead of the symbol's index, the assembler
1346   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1347   // Then the linker will notice the constant in the table and will look at the
1348   // content of the symbol.
1349   MachineModuleInfoMachO &MachOMMI =
1350     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1351   MCContext &Ctx = getContext();
1352 
1353   // The offset must consider the original displacement from the base symbol
1354   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1355   Offset = -MV.getConstant();
1356   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1357 
1358   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1359   // non_lazy_ptr stubs.
1360   SmallString<128> Name;
1361   StringRef Suffix = "$non_lazy_ptr";
1362   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1363   Name += Sym->getName();
1364   Name += Suffix;
1365   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1366 
1367   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1368 
1369   if (!StubSym.getPointer())
1370     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1371                                                  !GV->hasLocalLinkage());
1372 
1373   const MCExpr *BSymExpr =
1374     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1375   const MCExpr *LHS =
1376     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1377 
1378   if (!Offset)
1379     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1380 
1381   const MCExpr *RHS =
1382     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1383   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1384 }
1385 
1386 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1387                                const MCSection &Section) {
1388   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1389     return true;
1390 
1391   // If it is not dead stripped, it is safe to use private labels.
1392   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1393   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1394     return true;
1395 
1396   return false;
1397 }
1398 
1399 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1400     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1401     const TargetMachine &TM) const {
1402   bool CannotUsePrivateLabel = true;
1403   if (auto *GO = GV->getBaseObject()) {
1404     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1405     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1406     CannotUsePrivateLabel =
1407         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1408   }
1409   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1410 }
1411 
1412 //===----------------------------------------------------------------------===//
1413 //                                  COFF
1414 //===----------------------------------------------------------------------===//
1415 
1416 static unsigned
1417 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1418   unsigned Flags = 0;
1419   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1420 
1421   if (K.isMetadata())
1422     Flags |=
1423       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1424   else if (K.isText())
1425     Flags |=
1426       COFF::IMAGE_SCN_MEM_EXECUTE |
1427       COFF::IMAGE_SCN_MEM_READ |
1428       COFF::IMAGE_SCN_CNT_CODE |
1429       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1430   else if (K.isBSS())
1431     Flags |=
1432       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1433       COFF::IMAGE_SCN_MEM_READ |
1434       COFF::IMAGE_SCN_MEM_WRITE;
1435   else if (K.isThreadLocal())
1436     Flags |=
1437       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1438       COFF::IMAGE_SCN_MEM_READ |
1439       COFF::IMAGE_SCN_MEM_WRITE;
1440   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1441     Flags |=
1442       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1443       COFF::IMAGE_SCN_MEM_READ;
1444   else if (K.isWriteable())
1445     Flags |=
1446       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1447       COFF::IMAGE_SCN_MEM_READ |
1448       COFF::IMAGE_SCN_MEM_WRITE;
1449 
1450   return Flags;
1451 }
1452 
1453 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1454   const Comdat *C = GV->getComdat();
1455   assert(C && "expected GV to have a Comdat!");
1456 
1457   StringRef ComdatGVName = C->getName();
1458   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1459   if (!ComdatGV)
1460     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1461                        "' does not exist.");
1462 
1463   if (ComdatGV->getComdat() != C)
1464     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1465                        "' is not a key for its COMDAT.");
1466 
1467   return ComdatGV;
1468 }
1469 
1470 static int getSelectionForCOFF(const GlobalValue *GV) {
1471   if (const Comdat *C = GV->getComdat()) {
1472     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1473     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1474       ComdatKey = GA->getBaseObject();
1475     if (ComdatKey == GV) {
1476       switch (C->getSelectionKind()) {
1477       case Comdat::Any:
1478         return COFF::IMAGE_COMDAT_SELECT_ANY;
1479       case Comdat::ExactMatch:
1480         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1481       case Comdat::Largest:
1482         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1483       case Comdat::NoDuplicates:
1484         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1485       case Comdat::SameSize:
1486         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1487       }
1488     } else {
1489       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1490     }
1491   }
1492   return 0;
1493 }
1494 
1495 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1496     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1497   int Selection = 0;
1498   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1499   StringRef Name = GO->getSection();
1500   StringRef COMDATSymName = "";
1501   if (GO->hasComdat()) {
1502     Selection = getSelectionForCOFF(GO);
1503     const GlobalValue *ComdatGV;
1504     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1505       ComdatGV = getComdatGVForCOFF(GO);
1506     else
1507       ComdatGV = GO;
1508 
1509     if (!ComdatGV->hasPrivateLinkage()) {
1510       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1511       COMDATSymName = Sym->getName();
1512       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1513     } else {
1514       Selection = 0;
1515     }
1516   }
1517 
1518   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1519                                      Selection);
1520 }
1521 
1522 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1523   if (Kind.isText())
1524     return ".text";
1525   if (Kind.isBSS())
1526     return ".bss";
1527   if (Kind.isThreadLocal())
1528     return ".tls$";
1529   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1530     return ".rdata";
1531   return ".data";
1532 }
1533 
1534 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1535     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1536   // If we have -ffunction-sections then we should emit the global value to a
1537   // uniqued section specifically for it.
1538   bool EmitUniquedSection;
1539   if (Kind.isText())
1540     EmitUniquedSection = TM.getFunctionSections();
1541   else
1542     EmitUniquedSection = TM.getDataSections();
1543 
1544   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1545     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1546 
1547     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1548 
1549     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1550     int Selection = getSelectionForCOFF(GO);
1551     if (!Selection)
1552       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1553     const GlobalValue *ComdatGV;
1554     if (GO->hasComdat())
1555       ComdatGV = getComdatGVForCOFF(GO);
1556     else
1557       ComdatGV = GO;
1558 
1559     unsigned UniqueID = MCContext::GenericSectionID;
1560     if (EmitUniquedSection)
1561       UniqueID = NextUniqueID++;
1562 
1563     if (!ComdatGV->hasPrivateLinkage()) {
1564       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1565       StringRef COMDATSymName = Sym->getName();
1566 
1567       if (const auto *F = dyn_cast<Function>(GO))
1568         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1569           raw_svector_ostream(Name) << '$' << *Prefix;
1570 
1571       // Append "$symbol" to the section name *before* IR-level mangling is
1572       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1573       // COFF linker will not properly handle comdats otherwise.
1574       if (getTargetTriple().isWindowsGNUEnvironment())
1575         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1576 
1577       return getContext().getCOFFSection(Name, Characteristics, Kind,
1578                                          COMDATSymName, Selection, UniqueID);
1579     } else {
1580       SmallString<256> TmpData;
1581       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1582       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1583                                          Selection, UniqueID);
1584     }
1585   }
1586 
1587   if (Kind.isText())
1588     return TextSection;
1589 
1590   if (Kind.isThreadLocal())
1591     return TLSDataSection;
1592 
1593   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1594     return ReadOnlySection;
1595 
1596   // Note: we claim that common symbols are put in BSSSection, but they are
1597   // really emitted with the magic .comm directive, which creates a symbol table
1598   // entry but not a section.
1599   if (Kind.isBSS() || Kind.isCommon())
1600     return BSSSection;
1601 
1602   return DataSection;
1603 }
1604 
1605 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1606     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1607     const TargetMachine &TM) const {
1608   bool CannotUsePrivateLabel = false;
1609   if (GV->hasPrivateLinkage() &&
1610       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1611        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1612     CannotUsePrivateLabel = true;
1613 
1614   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1615 }
1616 
1617 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1618     const Function &F, const TargetMachine &TM) const {
1619   // If the function can be removed, produce a unique section so that
1620   // the table doesn't prevent the removal.
1621   const Comdat *C = F.getComdat();
1622   bool EmitUniqueSection = TM.getFunctionSections() || C;
1623   if (!EmitUniqueSection)
1624     return ReadOnlySection;
1625 
1626   // FIXME: we should produce a symbol for F instead.
1627   if (F.hasPrivateLinkage())
1628     return ReadOnlySection;
1629 
1630   MCSymbol *Sym = TM.getSymbol(&F);
1631   StringRef COMDATSymName = Sym->getName();
1632 
1633   SectionKind Kind = SectionKind::getReadOnly();
1634   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1635   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1636   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1637   unsigned UniqueID = NextUniqueID++;
1638 
1639   return getContext().getCOFFSection(
1640       SecName, Characteristics, Kind, COMDATSymName,
1641       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1642 }
1643 
1644 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1645                                                       Module &M) const {
1646   emitLinkerDirectives(Streamer, M);
1647 
1648   unsigned Version = 0;
1649   unsigned Flags = 0;
1650   StringRef Section;
1651 
1652   GetObjCImageInfo(M, Version, Flags, Section);
1653   if (!Section.empty()) {
1654     auto &C = getContext();
1655     auto *S = C.getCOFFSection(Section,
1656                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1657                                    COFF::IMAGE_SCN_MEM_READ,
1658                                SectionKind::getReadOnly());
1659     Streamer.SwitchSection(S);
1660     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1661     Streamer.emitInt32(Version);
1662     Streamer.emitInt32(Flags);
1663     Streamer.AddBlankLine();
1664   }
1665 
1666   emitCGProfileMetadata(Streamer, M);
1667 }
1668 
1669 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1670     MCStreamer &Streamer, Module &M) const {
1671   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1672     // Emit the linker options to the linker .drectve section.  According to the
1673     // spec, this section is a space-separated string containing flags for
1674     // linker.
1675     MCSection *Sec = getDrectveSection();
1676     Streamer.SwitchSection(Sec);
1677     for (const auto *Option : LinkerOptions->operands()) {
1678       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1679         // Lead with a space for consistency with our dllexport implementation.
1680         std::string Directive(" ");
1681         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1682         Streamer.emitBytes(Directive);
1683       }
1684     }
1685   }
1686 
1687   // Emit /EXPORT: flags for each exported global as necessary.
1688   std::string Flags;
1689   for (const GlobalValue &GV : M.global_values()) {
1690     raw_string_ostream OS(Flags);
1691     emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler());
1692     OS.flush();
1693     if (!Flags.empty()) {
1694       Streamer.SwitchSection(getDrectveSection());
1695       Streamer.emitBytes(Flags);
1696     }
1697     Flags.clear();
1698   }
1699 
1700   // Emit /INCLUDE: flags for each used global as necessary.
1701   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1702     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1703     assert(isa<ArrayType>(LU->getValueType()) &&
1704            "expected llvm.used to be an array type");
1705     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1706       for (const Value *Op : A->operands()) {
1707         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1708         // Global symbols with internal or private linkage are not visible to
1709         // the linker, and thus would cause an error when the linker tried to
1710         // preserve the symbol due to the `/include:` directive.
1711         if (GV->hasLocalLinkage())
1712           continue;
1713 
1714         raw_string_ostream OS(Flags);
1715         emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
1716         OS.flush();
1717 
1718         if (!Flags.empty()) {
1719           Streamer.SwitchSection(getDrectveSection());
1720           Streamer.emitBytes(Flags);
1721         }
1722         Flags.clear();
1723       }
1724     }
1725   }
1726 }
1727 
1728 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1729                                               const TargetMachine &TM) {
1730   TargetLoweringObjectFile::Initialize(Ctx, TM);
1731   this->TM = &TM;
1732   const Triple &T = TM.getTargetTriple();
1733   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1734     StaticCtorSection =
1735         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1736                                            COFF::IMAGE_SCN_MEM_READ,
1737                            SectionKind::getReadOnly());
1738     StaticDtorSection =
1739         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1740                                            COFF::IMAGE_SCN_MEM_READ,
1741                            SectionKind::getReadOnly());
1742   } else {
1743     StaticCtorSection = Ctx.getCOFFSection(
1744         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1745                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1746         SectionKind::getData());
1747     StaticDtorSection = Ctx.getCOFFSection(
1748         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1749                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1750         SectionKind::getData());
1751   }
1752 }
1753 
1754 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1755                                                    const Triple &T, bool IsCtor,
1756                                                    unsigned Priority,
1757                                                    const MCSymbol *KeySym,
1758                                                    MCSectionCOFF *Default) {
1759   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1760     // If the priority is the default, use .CRT$XCU, possibly associative.
1761     if (Priority == 65535)
1762       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1763 
1764     // Otherwise, we need to compute a new section name. Low priorities should
1765     // run earlier. The linker will sort sections ASCII-betically, and we need a
1766     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1767     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1768     // low priorities need to sort before 'L', since the CRT uses that
1769     // internally, so we use ".CRT$XCA00001" for them.
1770     SmallString<24> Name;
1771     raw_svector_ostream OS(Name);
1772     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1773         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1774     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1775         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1776         SectionKind::getReadOnly());
1777     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1778   }
1779 
1780   std::string Name = IsCtor ? ".ctors" : ".dtors";
1781   if (Priority != 65535)
1782     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1783 
1784   return Ctx.getAssociativeCOFFSection(
1785       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1786                                    COFF::IMAGE_SCN_MEM_READ |
1787                                    COFF::IMAGE_SCN_MEM_WRITE,
1788                          SectionKind::getData()),
1789       KeySym, 0);
1790 }
1791 
1792 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1793     unsigned Priority, const MCSymbol *KeySym) const {
1794   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
1795                                       Priority, KeySym,
1796                                       cast<MCSectionCOFF>(StaticCtorSection));
1797 }
1798 
1799 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1800     unsigned Priority, const MCSymbol *KeySym) const {
1801   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
1802                                       Priority, KeySym,
1803                                       cast<MCSectionCOFF>(StaticDtorSection));
1804 }
1805 
1806 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1807     const GlobalValue *LHS, const GlobalValue *RHS,
1808     const TargetMachine &TM) const {
1809   const Triple &T = TM.getTargetTriple();
1810   if (T.isOSCygMing())
1811     return nullptr;
1812 
1813   // Our symbols should exist in address space zero, cowardly no-op if
1814   // otherwise.
1815   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1816       RHS->getType()->getPointerAddressSpace() != 0)
1817     return nullptr;
1818 
1819   // Both ptrtoint instructions must wrap global objects:
1820   // - Only global variables are eligible for image relative relocations.
1821   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1822   // We expect __ImageBase to be a global variable without a section, externally
1823   // defined.
1824   //
1825   // It should look something like this: @__ImageBase = external constant i8
1826   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1827       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1828       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1829       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1830     return nullptr;
1831 
1832   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1833                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1834                                  getContext());
1835 }
1836 
1837 static std::string APIntToHexString(const APInt &AI) {
1838   unsigned Width = (AI.getBitWidth() / 8) * 2;
1839   std::string HexString = AI.toString(16, /*Signed=*/false);
1840   llvm::transform(HexString, HexString.begin(), tolower);
1841   unsigned Size = HexString.size();
1842   assert(Width >= Size && "hex string is too large!");
1843   HexString.insert(HexString.begin(), Width - Size, '0');
1844 
1845   return HexString;
1846 }
1847 
1848 static std::string scalarConstantToHexString(const Constant *C) {
1849   Type *Ty = C->getType();
1850   if (isa<UndefValue>(C)) {
1851     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1852   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1853     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1854   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1855     return APIntToHexString(CI->getValue());
1856   } else {
1857     unsigned NumElements;
1858     if (auto *VTy = dyn_cast<VectorType>(Ty))
1859       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1860     else
1861       NumElements = Ty->getArrayNumElements();
1862     std::string HexString;
1863     for (int I = NumElements - 1, E = -1; I != E; --I)
1864       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1865     return HexString;
1866   }
1867 }
1868 
1869 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1870     const DataLayout &DL, SectionKind Kind, const Constant *C,
1871     Align &Alignment) const {
1872   if (Kind.isMergeableConst() && C &&
1873       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1874     // This creates comdat sections with the given symbol name, but unless
1875     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1876     // will be created with a null storage class, which makes GNU binutils
1877     // error out.
1878     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1879                                      COFF::IMAGE_SCN_MEM_READ |
1880                                      COFF::IMAGE_SCN_LNK_COMDAT;
1881     std::string COMDATSymName;
1882     if (Kind.isMergeableConst4()) {
1883       if (Alignment <= 4) {
1884         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1885         Alignment = Align(4);
1886       }
1887     } else if (Kind.isMergeableConst8()) {
1888       if (Alignment <= 8) {
1889         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1890         Alignment = Align(8);
1891       }
1892     } else if (Kind.isMergeableConst16()) {
1893       // FIXME: These may not be appropriate for non-x86 architectures.
1894       if (Alignment <= 16) {
1895         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1896         Alignment = Align(16);
1897       }
1898     } else if (Kind.isMergeableConst32()) {
1899       if (Alignment <= 32) {
1900         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1901         Alignment = Align(32);
1902       }
1903     }
1904 
1905     if (!COMDATSymName.empty())
1906       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1907                                          COMDATSymName,
1908                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1909   }
1910 
1911   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
1912                                                          Alignment);
1913 }
1914 
1915 //===----------------------------------------------------------------------===//
1916 //                                  Wasm
1917 //===----------------------------------------------------------------------===//
1918 
1919 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1920   const Comdat *C = GV->getComdat();
1921   if (!C)
1922     return nullptr;
1923 
1924   if (C->getSelectionKind() != Comdat::Any)
1925     report_fatal_error("WebAssembly COMDATs only support "
1926                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
1927                        "lowered.");
1928 
1929   return C;
1930 }
1931 
1932 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
1933     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1934   // We don't support explict section names for functions in the wasm object
1935   // format.  Each function has to be in its own unique section.
1936   if (isa<Function>(GO)) {
1937     return SelectSectionForGlobal(GO, Kind, TM);
1938   }
1939 
1940   StringRef Name = GO->getSection();
1941 
1942   // Certain data sections we treat as named custom sections rather than
1943   // segments within the data section.
1944   // This could be avoided if all data segements (the wasm sense) were
1945   // represented as their own sections (in the llvm sense).
1946   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
1947   if (Name == ".llvmcmd" || Name == ".llvmbc")
1948     Kind = SectionKind::getMetadata();
1949 
1950   StringRef Group = "";
1951   if (const Comdat *C = getWasmComdat(GO)) {
1952     Group = C->getName();
1953   }
1954 
1955   MCSectionWasm* Section =
1956       getContext().getWasmSection(Name, Kind, Group,
1957                                   MCContext::GenericSectionID);
1958 
1959   return Section;
1960 }
1961 
1962 static MCSectionWasm *selectWasmSectionForGlobal(
1963     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
1964     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
1965   StringRef Group = "";
1966   if (const Comdat *C = getWasmComdat(GO)) {
1967     Group = C->getName();
1968   }
1969 
1970   bool UniqueSectionNames = TM.getUniqueSectionNames();
1971   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
1972 
1973   if (const auto *F = dyn_cast<Function>(GO)) {
1974     const auto &OptionalPrefix = F->getSectionPrefix();
1975     if (OptionalPrefix)
1976       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
1977   }
1978 
1979   if (EmitUniqueSection && UniqueSectionNames) {
1980     Name.push_back('.');
1981     TM.getNameWithPrefix(Name, GO, Mang, true);
1982   }
1983   unsigned UniqueID = MCContext::GenericSectionID;
1984   if (EmitUniqueSection && !UniqueSectionNames) {
1985     UniqueID = *NextUniqueID;
1986     (*NextUniqueID)++;
1987   }
1988 
1989   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
1990 }
1991 
1992 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
1993     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1994 
1995   if (Kind.isCommon())
1996     report_fatal_error("mergable sections not supported yet on wasm");
1997 
1998   // If we have -ffunction-section or -fdata-section then we should emit the
1999   // global value to a uniqued section specifically for it.
2000   bool EmitUniqueSection = false;
2001   if (Kind.isText())
2002     EmitUniqueSection = TM.getFunctionSections();
2003   else
2004     EmitUniqueSection = TM.getDataSections();
2005   EmitUniqueSection |= GO->hasComdat();
2006 
2007   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2008                                     EmitUniqueSection, &NextUniqueID);
2009 }
2010 
2011 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2012     bool UsesLabelDifference, const Function &F) const {
2013   // We can always create relative relocations, so use another section
2014   // that can be marked non-executable.
2015   return false;
2016 }
2017 
2018 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2019     const GlobalValue *LHS, const GlobalValue *RHS,
2020     const TargetMachine &TM) const {
2021   // We may only use a PLT-relative relocation to refer to unnamed_addr
2022   // functions.
2023   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2024     return nullptr;
2025 
2026   // Basic sanity checks.
2027   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2028       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2029       RHS->isThreadLocal())
2030     return nullptr;
2031 
2032   return MCBinaryExpr::createSub(
2033       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2034                               getContext()),
2035       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2036 }
2037 
2038 void TargetLoweringObjectFileWasm::InitializeWasm() {
2039   StaticCtorSection =
2040       getContext().getWasmSection(".init_array", SectionKind::getData());
2041 
2042   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2043   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2044   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2045 }
2046 
2047 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2048     unsigned Priority, const MCSymbol *KeySym) const {
2049   return Priority == UINT16_MAX ?
2050          StaticCtorSection :
2051          getContext().getWasmSection(".init_array." + utostr(Priority),
2052                                      SectionKind::getData());
2053 }
2054 
2055 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2056     unsigned Priority, const MCSymbol *KeySym) const {
2057   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2058   return nullptr;
2059 }
2060 
2061 //===----------------------------------------------------------------------===//
2062 //                                  XCOFF
2063 //===----------------------------------------------------------------------===//
2064 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2065     const MachineFunction *MF) {
2066   if (!MF->getLandingPads().empty())
2067     return true;
2068 
2069   const Function &F = MF->getFunction();
2070   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2071     return false;
2072 
2073   const Function *Per =
2074       dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2075   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2076     return false;
2077 
2078   return true;
2079 }
2080 
2081 MCSymbol *
2082 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2083   return MF->getMMI().getContext().getOrCreateSymbol(
2084       "__ehinfo." + Twine(MF->getFunctionNumber()));
2085 }
2086 
2087 MCSymbol *
2088 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2089                                                const TargetMachine &TM) const {
2090   // We always use a qualname symbol for a GV that represents
2091   // a declaration, a function descriptor, or a common symbol.
2092   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2093   // also return a qualname so that a label symbol could be avoided.
2094   // It is inherently ambiguous when the GO represents the address of a
2095   // function, as the GO could either represent a function descriptor or a
2096   // function entry point. We choose to always return a function descriptor
2097   // here.
2098   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2099     if (GO->isDeclarationForLinker())
2100       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2101           ->getQualNameSymbol();
2102 
2103     SectionKind GOKind = getKindForGlobal(GO, TM);
2104     if (GOKind.isText())
2105       return cast<MCSectionXCOFF>(
2106                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2107           ->getQualNameSymbol();
2108     if ((TM.getDataSections() && !GO->hasSection()) || GOKind.isCommon() ||
2109         GOKind.isBSSLocal())
2110       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2111           ->getQualNameSymbol();
2112   }
2113 
2114   // For all other cases, fall back to getSymbol to return the unqualified name.
2115   return nullptr;
2116 }
2117 
2118 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2119     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2120   if (!GO->hasSection())
2121     report_fatal_error("#pragma clang section is not yet supported");
2122 
2123   StringRef SectionName = GO->getSection();
2124   XCOFF::StorageMappingClass MappingClass;
2125   if (Kind.isText())
2126     MappingClass = XCOFF::XMC_PR;
2127   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2128     MappingClass = XCOFF::XMC_RW;
2129   else if (Kind.isReadOnly())
2130     MappingClass = XCOFF::XMC_RO;
2131   else
2132     report_fatal_error("XCOFF other section types not yet implemented.");
2133 
2134   return getContext().getXCOFFSection(SectionName, MappingClass, XCOFF::XTY_SD,
2135                                       Kind, /* MultiSymbolsAllowed*/ true);
2136 }
2137 
2138 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2139     const GlobalObject *GO, const TargetMachine &TM) const {
2140   assert(GO->isDeclarationForLinker() &&
2141          "Tried to get ER section for a defined global.");
2142 
2143   SmallString<128> Name;
2144   getNameWithPrefix(Name, GO, TM);
2145 
2146   // Externals go into a csect of type ER.
2147   return getContext().getXCOFFSection(
2148       Name, isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA, XCOFF::XTY_ER,
2149       SectionKind::getMetadata());
2150 }
2151 
2152 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2153     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2154   // Common symbols go into a csect with matching name which will get mapped
2155   // into the .bss section.
2156   if (Kind.isBSSLocal() || Kind.isCommon()) {
2157     SmallString<128> Name;
2158     getNameWithPrefix(Name, GO, TM);
2159     return getContext().getXCOFFSection(
2160         Name, Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM,
2161         Kind);
2162   }
2163 
2164   if (Kind.isMergeableCString()) {
2165     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2166         cast<GlobalVariable>(GO));
2167 
2168     unsigned EntrySize = getEntrySizeForKind(Kind);
2169     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2170     SmallString<128> Name;
2171     Name = SizeSpec + utostr(Alignment.value());
2172 
2173     if (TM.getDataSections())
2174       getNameWithPrefix(Name, GO, TM);
2175 
2176     return getContext().getXCOFFSection(
2177         Name, XCOFF::XMC_RO, XCOFF::XTY_SD, Kind,
2178         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2179   }
2180 
2181   if (Kind.isText()) {
2182     if (TM.getFunctionSections()) {
2183       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2184           ->getRepresentedCsect();
2185     }
2186     return TextSection;
2187   }
2188 
2189   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2190   // user may want to have read-only data with relocations placed into a
2191   // read-only section by the compiler.
2192   // For BSS kind, zero initialized data must be emitted to the .data section
2193   // because external linkage control sections that get mapped to the .bss
2194   // section will be linked as tentative defintions, which is only appropriate
2195   // for SectionKind::Common.
2196   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2197     if (TM.getDataSections()) {
2198       SmallString<128> Name;
2199       getNameWithPrefix(Name, GO, TM);
2200       return getContext().getXCOFFSection(Name, XCOFF::XMC_RW, XCOFF::XTY_SD,
2201                                           SectionKind::getData());
2202     }
2203     return DataSection;
2204   }
2205 
2206   if (Kind.isReadOnly()) {
2207     if (TM.getDataSections()) {
2208       SmallString<128> Name;
2209       getNameWithPrefix(Name, GO, TM);
2210       return getContext().getXCOFFSection(Name, XCOFF::XMC_RO, XCOFF::XTY_SD,
2211                                           SectionKind::getReadOnly());
2212     }
2213     return ReadOnlySection;
2214   }
2215 
2216   report_fatal_error("XCOFF other section types not yet implemented.");
2217 }
2218 
2219 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2220     const Function &F, const TargetMachine &TM) const {
2221   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2222 
2223   if (!TM.getFunctionSections())
2224     return ReadOnlySection;
2225 
2226   // If the function can be removed, produce a unique section so that
2227   // the table doesn't prevent the removal.
2228   SmallString<128> NameStr(".rodata.jmp..");
2229   getNameWithPrefix(NameStr, &F, TM);
2230   return getContext().getXCOFFSection(NameStr, XCOFF::XMC_RO, XCOFF::XTY_SD,
2231                                       SectionKind::getReadOnly());
2232 }
2233 
2234 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2235     bool UsesLabelDifference, const Function &F) const {
2236   return false;
2237 }
2238 
2239 /// Given a mergeable constant with the specified size and relocation
2240 /// information, return a section that it should be placed in.
2241 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2242     const DataLayout &DL, SectionKind Kind, const Constant *C,
2243     Align &Alignment) const {
2244   //TODO: Enable emiting constant pool to unique sections when we support it.
2245   return ReadOnlySection;
2246 }
2247 
2248 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2249                                                const TargetMachine &TgtM) {
2250   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2251   TTypeEncoding =
2252       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2253       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2254                                             : dwarf::DW_EH_PE_sdata8);
2255   PersonalityEncoding = 0;
2256   LSDAEncoding = 0;
2257   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2258 }
2259 
2260 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2261 	unsigned Priority, const MCSymbol *KeySym) const {
2262   report_fatal_error("no static constructor section on AIX");
2263 }
2264 
2265 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2266 	unsigned Priority, const MCSymbol *KeySym) const {
2267   report_fatal_error("no static destructor section on AIX");
2268 }
2269 
2270 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2271     const GlobalValue *LHS, const GlobalValue *RHS,
2272     const TargetMachine &TM) const {
2273   report_fatal_error("XCOFF not yet implemented.");
2274 }
2275 
2276 XCOFF::StorageClass
2277 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2278   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2279 
2280   switch (GV->getLinkage()) {
2281   case GlobalValue::InternalLinkage:
2282   case GlobalValue::PrivateLinkage:
2283     return XCOFF::C_HIDEXT;
2284   case GlobalValue::ExternalLinkage:
2285   case GlobalValue::CommonLinkage:
2286   case GlobalValue::AvailableExternallyLinkage:
2287     return XCOFF::C_EXT;
2288   case GlobalValue::ExternalWeakLinkage:
2289   case GlobalValue::LinkOnceAnyLinkage:
2290   case GlobalValue::LinkOnceODRLinkage:
2291   case GlobalValue::WeakAnyLinkage:
2292   case GlobalValue::WeakODRLinkage:
2293     return XCOFF::C_WEAKEXT;
2294   case GlobalValue::AppendingLinkage:
2295     report_fatal_error(
2296         "There is no mapping that implements AppendingLinkage for XCOFF.");
2297   }
2298   llvm_unreachable("Unknown linkage type!");
2299 }
2300 
2301 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2302     const GlobalValue *Func, const TargetMachine &TM) const {
2303   assert(
2304       (isa<Function>(Func) ||
2305        (isa<GlobalAlias>(Func) &&
2306         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2307       "Func must be a function or an alias which has a function as base "
2308       "object.");
2309 
2310   SmallString<128> NameStr;
2311   NameStr.push_back('.');
2312   getNameWithPrefix(NameStr, Func, TM);
2313 
2314   // When -function-sections is enabled and explicit section is not specified,
2315   // it's not necessary to emit function entry point label any more. We will use
2316   // function entry point csect instead. And for function delcarations, the
2317   // undefined symbols gets treated as csect with XTY_ER property.
2318   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2319        Func->isDeclaration()) &&
2320       isa<Function>(Func)) {
2321     return getContext()
2322         .getXCOFFSection(NameStr, XCOFF::XMC_PR,
2323                          Func->isDeclaration() ? XCOFF::XTY_ER : XCOFF::XTY_SD,
2324                          SectionKind::getText())
2325         ->getQualNameSymbol();
2326   }
2327 
2328   return getContext().getOrCreateSymbol(NameStr);
2329 }
2330 
2331 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2332     const Function *F, const TargetMachine &TM) const {
2333   SmallString<128> NameStr;
2334   getNameWithPrefix(NameStr, F, TM);
2335   return getContext().getXCOFFSection(NameStr, XCOFF::XMC_DS, XCOFF::XTY_SD,
2336                                       SectionKind::getData());
2337 }
2338 
2339 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2340     const MCSymbol *Sym, const TargetMachine &TM) const {
2341   // Use TE storage-mapping class when large code model is enabled so that
2342   // the chance of needing -bbigtoc is decreased.
2343   return getContext().getXCOFFSection(
2344       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(),
2345       TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2346       XCOFF::XTY_SD, SectionKind::getData());
2347 }
2348