1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Target/TargetLoweringObjectFile.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetRegisterInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 using namespace llvm;
41 
42 static cl::opt<bool> JumpIsExpensiveOverride(
43     "jump-is-expensive", cl::init(false),
44     cl::desc("Do not create extra branches to split comparison logic."),
45     cl::Hidden);
46 
47 // Although this default value is arbitrary, it is not random. It is assumed
48 // that a condition that evaluates the same way by a higher percentage than this
49 // is best represented as control flow. Therefore, the default value N should be
50 // set such that the win from N% correct executions is greater than the loss
51 // from (100 - N)% mispredicted executions for the majority of intended targets.
52 static cl::opt<int> MinPercentageForPredictableBranch(
53     "min-predictable-branch", cl::init(99),
54     cl::desc("Minimum percentage (0-100) that a condition must be either true "
55              "or false to assume that the condition is predictable"),
56     cl::Hidden);
57 
58 /// InitLibcallNames - Set default libcall names.
59 ///
60 static void InitLibcallNames(const char **Names, const Triple &TT) {
61   Names[RTLIB::SHL_I16] = "__ashlhi3";
62   Names[RTLIB::SHL_I32] = "__ashlsi3";
63   Names[RTLIB::SHL_I64] = "__ashldi3";
64   Names[RTLIB::SHL_I128] = "__ashlti3";
65   Names[RTLIB::SRL_I16] = "__lshrhi3";
66   Names[RTLIB::SRL_I32] = "__lshrsi3";
67   Names[RTLIB::SRL_I64] = "__lshrdi3";
68   Names[RTLIB::SRL_I128] = "__lshrti3";
69   Names[RTLIB::SRA_I16] = "__ashrhi3";
70   Names[RTLIB::SRA_I32] = "__ashrsi3";
71   Names[RTLIB::SRA_I64] = "__ashrdi3";
72   Names[RTLIB::SRA_I128] = "__ashrti3";
73   Names[RTLIB::MUL_I8] = "__mulqi3";
74   Names[RTLIB::MUL_I16] = "__mulhi3";
75   Names[RTLIB::MUL_I32] = "__mulsi3";
76   Names[RTLIB::MUL_I64] = "__muldi3";
77   Names[RTLIB::MUL_I128] = "__multi3";
78   Names[RTLIB::MULO_I32] = "__mulosi4";
79   Names[RTLIB::MULO_I64] = "__mulodi4";
80   Names[RTLIB::MULO_I128] = "__muloti4";
81   Names[RTLIB::SDIV_I8] = "__divqi3";
82   Names[RTLIB::SDIV_I16] = "__divhi3";
83   Names[RTLIB::SDIV_I32] = "__divsi3";
84   Names[RTLIB::SDIV_I64] = "__divdi3";
85   Names[RTLIB::SDIV_I128] = "__divti3";
86   Names[RTLIB::UDIV_I8] = "__udivqi3";
87   Names[RTLIB::UDIV_I16] = "__udivhi3";
88   Names[RTLIB::UDIV_I32] = "__udivsi3";
89   Names[RTLIB::UDIV_I64] = "__udivdi3";
90   Names[RTLIB::UDIV_I128] = "__udivti3";
91   Names[RTLIB::SREM_I8] = "__modqi3";
92   Names[RTLIB::SREM_I16] = "__modhi3";
93   Names[RTLIB::SREM_I32] = "__modsi3";
94   Names[RTLIB::SREM_I64] = "__moddi3";
95   Names[RTLIB::SREM_I128] = "__modti3";
96   Names[RTLIB::UREM_I8] = "__umodqi3";
97   Names[RTLIB::UREM_I16] = "__umodhi3";
98   Names[RTLIB::UREM_I32] = "__umodsi3";
99   Names[RTLIB::UREM_I64] = "__umoddi3";
100   Names[RTLIB::UREM_I128] = "__umodti3";
101 
102   Names[RTLIB::NEG_I32] = "__negsi2";
103   Names[RTLIB::NEG_I64] = "__negdi2";
104   Names[RTLIB::ADD_F32] = "__addsf3";
105   Names[RTLIB::ADD_F64] = "__adddf3";
106   Names[RTLIB::ADD_F80] = "__addxf3";
107   Names[RTLIB::ADD_F128] = "__addtf3";
108   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
109   Names[RTLIB::SUB_F32] = "__subsf3";
110   Names[RTLIB::SUB_F64] = "__subdf3";
111   Names[RTLIB::SUB_F80] = "__subxf3";
112   Names[RTLIB::SUB_F128] = "__subtf3";
113   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
114   Names[RTLIB::MUL_F32] = "__mulsf3";
115   Names[RTLIB::MUL_F64] = "__muldf3";
116   Names[RTLIB::MUL_F80] = "__mulxf3";
117   Names[RTLIB::MUL_F128] = "__multf3";
118   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
119   Names[RTLIB::DIV_F32] = "__divsf3";
120   Names[RTLIB::DIV_F64] = "__divdf3";
121   Names[RTLIB::DIV_F80] = "__divxf3";
122   Names[RTLIB::DIV_F128] = "__divtf3";
123   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
124   Names[RTLIB::REM_F32] = "fmodf";
125   Names[RTLIB::REM_F64] = "fmod";
126   Names[RTLIB::REM_F80] = "fmodl";
127   Names[RTLIB::REM_F128] = "fmodl";
128   Names[RTLIB::REM_PPCF128] = "fmodl";
129   Names[RTLIB::FMA_F32] = "fmaf";
130   Names[RTLIB::FMA_F64] = "fma";
131   Names[RTLIB::FMA_F80] = "fmal";
132   Names[RTLIB::FMA_F128] = "fmal";
133   Names[RTLIB::FMA_PPCF128] = "fmal";
134   Names[RTLIB::POWI_F32] = "__powisf2";
135   Names[RTLIB::POWI_F64] = "__powidf2";
136   Names[RTLIB::POWI_F80] = "__powixf2";
137   Names[RTLIB::POWI_F128] = "__powitf2";
138   Names[RTLIB::POWI_PPCF128] = "__powitf2";
139   Names[RTLIB::SQRT_F32] = "sqrtf";
140   Names[RTLIB::SQRT_F64] = "sqrt";
141   Names[RTLIB::SQRT_F80] = "sqrtl";
142   Names[RTLIB::SQRT_F128] = "sqrtl";
143   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
144   Names[RTLIB::LOG_F32] = "logf";
145   Names[RTLIB::LOG_F64] = "log";
146   Names[RTLIB::LOG_F80] = "logl";
147   Names[RTLIB::LOG_F128] = "logl";
148   Names[RTLIB::LOG_PPCF128] = "logl";
149   Names[RTLIB::LOG2_F32] = "log2f";
150   Names[RTLIB::LOG2_F64] = "log2";
151   Names[RTLIB::LOG2_F80] = "log2l";
152   Names[RTLIB::LOG2_F128] = "log2l";
153   Names[RTLIB::LOG2_PPCF128] = "log2l";
154   Names[RTLIB::LOG10_F32] = "log10f";
155   Names[RTLIB::LOG10_F64] = "log10";
156   Names[RTLIB::LOG10_F80] = "log10l";
157   Names[RTLIB::LOG10_F128] = "log10l";
158   Names[RTLIB::LOG10_PPCF128] = "log10l";
159   Names[RTLIB::EXP_F32] = "expf";
160   Names[RTLIB::EXP_F64] = "exp";
161   Names[RTLIB::EXP_F80] = "expl";
162   Names[RTLIB::EXP_F128] = "expl";
163   Names[RTLIB::EXP_PPCF128] = "expl";
164   Names[RTLIB::EXP2_F32] = "exp2f";
165   Names[RTLIB::EXP2_F64] = "exp2";
166   Names[RTLIB::EXP2_F80] = "exp2l";
167   Names[RTLIB::EXP2_F128] = "exp2l";
168   Names[RTLIB::EXP2_PPCF128] = "exp2l";
169   Names[RTLIB::SIN_F32] = "sinf";
170   Names[RTLIB::SIN_F64] = "sin";
171   Names[RTLIB::SIN_F80] = "sinl";
172   Names[RTLIB::SIN_F128] = "sinl";
173   Names[RTLIB::SIN_PPCF128] = "sinl";
174   Names[RTLIB::COS_F32] = "cosf";
175   Names[RTLIB::COS_F64] = "cos";
176   Names[RTLIB::COS_F80] = "cosl";
177   Names[RTLIB::COS_F128] = "cosl";
178   Names[RTLIB::COS_PPCF128] = "cosl";
179   Names[RTLIB::POW_F32] = "powf";
180   Names[RTLIB::POW_F64] = "pow";
181   Names[RTLIB::POW_F80] = "powl";
182   Names[RTLIB::POW_F128] = "powl";
183   Names[RTLIB::POW_PPCF128] = "powl";
184   Names[RTLIB::CEIL_F32] = "ceilf";
185   Names[RTLIB::CEIL_F64] = "ceil";
186   Names[RTLIB::CEIL_F80] = "ceill";
187   Names[RTLIB::CEIL_F128] = "ceill";
188   Names[RTLIB::CEIL_PPCF128] = "ceill";
189   Names[RTLIB::TRUNC_F32] = "truncf";
190   Names[RTLIB::TRUNC_F64] = "trunc";
191   Names[RTLIB::TRUNC_F80] = "truncl";
192   Names[RTLIB::TRUNC_F128] = "truncl";
193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
194   Names[RTLIB::RINT_F32] = "rintf";
195   Names[RTLIB::RINT_F64] = "rint";
196   Names[RTLIB::RINT_F80] = "rintl";
197   Names[RTLIB::RINT_F128] = "rintl";
198   Names[RTLIB::RINT_PPCF128] = "rintl";
199   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
200   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
201   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
202   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
203   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
204   Names[RTLIB::ROUND_F32] = "roundf";
205   Names[RTLIB::ROUND_F64] = "round";
206   Names[RTLIB::ROUND_F80] = "roundl";
207   Names[RTLIB::ROUND_F128] = "roundl";
208   Names[RTLIB::ROUND_PPCF128] = "roundl";
209   Names[RTLIB::FLOOR_F32] = "floorf";
210   Names[RTLIB::FLOOR_F64] = "floor";
211   Names[RTLIB::FLOOR_F80] = "floorl";
212   Names[RTLIB::FLOOR_F128] = "floorl";
213   Names[RTLIB::FLOOR_PPCF128] = "floorl";
214   Names[RTLIB::FMIN_F32] = "fminf";
215   Names[RTLIB::FMIN_F64] = "fmin";
216   Names[RTLIB::FMIN_F80] = "fminl";
217   Names[RTLIB::FMIN_F128] = "fminl";
218   Names[RTLIB::FMIN_PPCF128] = "fminl";
219   Names[RTLIB::FMAX_F32] = "fmaxf";
220   Names[RTLIB::FMAX_F64] = "fmax";
221   Names[RTLIB::FMAX_F80] = "fmaxl";
222   Names[RTLIB::FMAX_F128] = "fmaxl";
223   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
224   Names[RTLIB::ROUND_F32] = "roundf";
225   Names[RTLIB::ROUND_F64] = "round";
226   Names[RTLIB::ROUND_F80] = "roundl";
227   Names[RTLIB::ROUND_F128] = "roundl";
228   Names[RTLIB::ROUND_PPCF128] = "roundl";
229   Names[RTLIB::COPYSIGN_F32] = "copysignf";
230   Names[RTLIB::COPYSIGN_F64] = "copysign";
231   Names[RTLIB::COPYSIGN_F80] = "copysignl";
232   Names[RTLIB::COPYSIGN_F128] = "copysignl";
233   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
234   Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
235   Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
236   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
237   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
238   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
239   if (TT.isOSDarwin()) {
240     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
241     // of the gnueabi-style __gnu_*_ieee.
242     // FIXME: What about other targets?
243     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
244     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
245   } else {
246     Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
247     Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
248   }
249   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
250   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
251   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
252   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
253   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
254   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
255   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
256   Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
257   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
258   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
259   Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
260   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
261   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
262   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
263   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
264   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
265   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
266   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
267   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
268   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
269   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
270   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
271   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
272   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
273   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
274   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
275   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
276   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
277   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
278   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
279   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
280   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
281   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
282   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
283   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
284   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
285   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
286   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
287   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
288   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
289   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
290   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
291   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
292   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
293   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
294   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
295   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
296   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
297   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
298   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
299   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
300   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
301   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
302   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
303   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
304   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
305   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
306   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
307   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
308   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
309   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
310   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
311   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
312   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
313   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
314   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
315   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
316   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
317   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
318   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
319   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
320   Names[RTLIB::OEQ_F32] = "__eqsf2";
321   Names[RTLIB::OEQ_F64] = "__eqdf2";
322   Names[RTLIB::OEQ_F128] = "__eqtf2";
323   Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
324   Names[RTLIB::UNE_F32] = "__nesf2";
325   Names[RTLIB::UNE_F64] = "__nedf2";
326   Names[RTLIB::UNE_F128] = "__netf2";
327   Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
328   Names[RTLIB::OGE_F32] = "__gesf2";
329   Names[RTLIB::OGE_F64] = "__gedf2";
330   Names[RTLIB::OGE_F128] = "__getf2";
331   Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
332   Names[RTLIB::OLT_F32] = "__ltsf2";
333   Names[RTLIB::OLT_F64] = "__ltdf2";
334   Names[RTLIB::OLT_F128] = "__lttf2";
335   Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
336   Names[RTLIB::OLE_F32] = "__lesf2";
337   Names[RTLIB::OLE_F64] = "__ledf2";
338   Names[RTLIB::OLE_F128] = "__letf2";
339   Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
340   Names[RTLIB::OGT_F32] = "__gtsf2";
341   Names[RTLIB::OGT_F64] = "__gtdf2";
342   Names[RTLIB::OGT_F128] = "__gttf2";
343   Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
344   Names[RTLIB::UO_F32] = "__unordsf2";
345   Names[RTLIB::UO_F64] = "__unorddf2";
346   Names[RTLIB::UO_F128] = "__unordtf2";
347   Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
348   Names[RTLIB::O_F32] = "__unordsf2";
349   Names[RTLIB::O_F64] = "__unorddf2";
350   Names[RTLIB::O_F128] = "__unordtf2";
351   Names[RTLIB::O_PPCF128] = "__gcc_qunord";
352   Names[RTLIB::MEMCPY] = "memcpy";
353   Names[RTLIB::MEMMOVE] = "memmove";
354   Names[RTLIB::MEMSET] = "memset";
355   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
356   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
357   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
358   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
359   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
360   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
361   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
362   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
363   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
364   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
365   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
366   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
367   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
368   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
369   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
370   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
371   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
372   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
373   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
374   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
375   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
376   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
377   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
378   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
379   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
380   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
381   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
382   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
383   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
384   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
385   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
386   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
387   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
388   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
389   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
390   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
391   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
392   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
393   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
394   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
395   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
396   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
397   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
398   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
399   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
400   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
401   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
402   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
403   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
404   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
405   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
406   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
407   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
408   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
409   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
410   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
411   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
412   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
413   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
414   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
415   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
416 
417   Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
418   Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
419   Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
420   Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
421   Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
422   Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";
423 
424   Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
425   Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
426   Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
427   Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
428   Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
429   Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";
430 
431   Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
432   Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
433   Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
434   Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
435   Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
436   Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";
437 
438   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
439   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
440   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
441   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
442   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
443   Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";
444 
445   Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
446   Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
447   Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
448   Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
449   Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
450   Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
451   Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
452   Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
453   Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
454   Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
455   Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
456   Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
457   Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
458   Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
459   Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
460   Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
461   Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
462   Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
463   Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
464   Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
465   Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
466   Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
467   Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
468   Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
469   Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
470   Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
471   Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
472   Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
473   Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
474   Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";
475 
476   if (TT.isGNUEnvironment()) {
477     Names[RTLIB::SINCOS_F32] = "sincosf";
478     Names[RTLIB::SINCOS_F64] = "sincos";
479     Names[RTLIB::SINCOS_F80] = "sincosl";
480     Names[RTLIB::SINCOS_F128] = "sincosl";
481     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
482   }
483 
484   if (!TT.isOSOpenBSD()) {
485     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
486   }
487 
488   Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
489 }
490 
491 /// Set default libcall CallingConvs.
492 static void InitLibcallCallingConvs(CallingConv::ID *CCs, const Triple &T) {
493   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
494     CCs[LC] = CallingConv::C;
495 
496   // The builtins on ARM always use AAPCS, irrespective of wheter C is AAPCS or
497   // AAPCS_VFP.
498   if (T.getArch() == Triple::arm || T.getArch() == Triple::thumb)
499     for (const auto LC : {
500              RTLIB::SHL_I16,
501              RTLIB::SHL_I32,
502              RTLIB::SHL_I64,
503              RTLIB::SHL_I128,
504              RTLIB::SRL_I16,
505              RTLIB::SRL_I32,
506              RTLIB::SRL_I64,
507              RTLIB::SRL_I128,
508              RTLIB::SRA_I16,
509              RTLIB::SRA_I32,
510              RTLIB::SRA_I64,
511              RTLIB::SRA_I128,
512              RTLIB::MUL_I8,
513              RTLIB::MUL_I16,
514              RTLIB::MUL_I32,
515              RTLIB::MUL_I64,
516              RTLIB::MUL_I128,
517              RTLIB::MULO_I32,
518              RTLIB::MULO_I64,
519              RTLIB::MULO_I128,
520              RTLIB::SDIV_I8,
521              RTLIB::SDIV_I16,
522              RTLIB::SDIV_I32,
523              RTLIB::SDIV_I64,
524              RTLIB::SDIV_I128,
525              RTLIB::UDIV_I8,
526              RTLIB::UDIV_I16,
527              RTLIB::UDIV_I32,
528              RTLIB::UDIV_I64,
529              RTLIB::UDIV_I128,
530              RTLIB::SREM_I8,
531              RTLIB::SREM_I16,
532              RTLIB::SREM_I32,
533              RTLIB::SREM_I64,
534              RTLIB::SREM_I128,
535              RTLIB::UREM_I8,
536              RTLIB::UREM_I16,
537              RTLIB::UREM_I32,
538              RTLIB::UREM_I64,
539              RTLIB::UREM_I128,
540              RTLIB::SDIVREM_I8,
541              RTLIB::SDIVREM_I16,
542              RTLIB::SDIVREM_I32,
543              RTLIB::SDIVREM_I64,
544              RTLIB::SDIVREM_I128,
545              RTLIB::UDIVREM_I8,
546              RTLIB::UDIVREM_I16,
547              RTLIB::UDIVREM_I32,
548              RTLIB::UDIVREM_I64,
549              RTLIB::UDIVREM_I128,
550              RTLIB::NEG_I32,
551              RTLIB::NEG_I64,
552              RTLIB::ADD_F32,
553              RTLIB::ADD_F64,
554              RTLIB::ADD_F80,
555              RTLIB::ADD_F128,
556              RTLIB::SUB_F32,
557              RTLIB::SUB_F64,
558              RTLIB::SUB_F80,
559              RTLIB::SUB_F128,
560              RTLIB::MUL_F32,
561              RTLIB::MUL_F64,
562              RTLIB::MUL_F80,
563              RTLIB::MUL_F128,
564              RTLIB::DIV_F32,
565              RTLIB::DIV_F64,
566              RTLIB::DIV_F80,
567              RTLIB::DIV_F128,
568              RTLIB::POWI_F32,
569              RTLIB::POWI_F64,
570              RTLIB::POWI_F80,
571              RTLIB::POWI_F128,
572              RTLIB::FPEXT_F64_F128,
573              RTLIB::FPEXT_F32_F128,
574              RTLIB::FPEXT_F32_F64,
575              RTLIB::FPEXT_F16_F32,
576              RTLIB::FPROUND_F32_F16,
577              RTLIB::FPROUND_F64_F16,
578              RTLIB::FPROUND_F80_F16,
579              RTLIB::FPROUND_F128_F16,
580              RTLIB::FPROUND_F64_F32,
581              RTLIB::FPROUND_F80_F32,
582              RTLIB::FPROUND_F128_F32,
583              RTLIB::FPROUND_F80_F64,
584              RTLIB::FPROUND_F128_F64,
585              RTLIB::FPTOSINT_F32_I32,
586              RTLIB::FPTOSINT_F32_I64,
587              RTLIB::FPTOSINT_F32_I128,
588              RTLIB::FPTOSINT_F64_I32,
589              RTLIB::FPTOSINT_F64_I64,
590              RTLIB::FPTOSINT_F64_I128,
591              RTLIB::FPTOSINT_F80_I32,
592              RTLIB::FPTOSINT_F80_I64,
593              RTLIB::FPTOSINT_F80_I128,
594              RTLIB::FPTOSINT_F128_I32,
595              RTLIB::FPTOSINT_F128_I64,
596              RTLIB::FPTOSINT_F128_I128,
597              RTLIB::FPTOUINT_F32_I32,
598              RTLIB::FPTOUINT_F32_I64,
599              RTLIB::FPTOUINT_F32_I128,
600              RTLIB::FPTOUINT_F64_I32,
601              RTLIB::FPTOUINT_F64_I64,
602              RTLIB::FPTOUINT_F64_I128,
603              RTLIB::FPTOUINT_F80_I32,
604              RTLIB::FPTOUINT_F80_I64,
605              RTLIB::FPTOUINT_F80_I128,
606              RTLIB::FPTOUINT_F128_I32,
607              RTLIB::FPTOUINT_F128_I64,
608              RTLIB::FPTOUINT_F128_I128,
609              RTLIB::SINTTOFP_I32_F32,
610              RTLIB::SINTTOFP_I32_F64,
611              RTLIB::SINTTOFP_I32_F80,
612              RTLIB::SINTTOFP_I32_F128,
613              RTLIB::SINTTOFP_I64_F32,
614              RTLIB::SINTTOFP_I64_F64,
615              RTLIB::SINTTOFP_I64_F80,
616              RTLIB::SINTTOFP_I64_F128,
617              RTLIB::SINTTOFP_I128_F32,
618              RTLIB::SINTTOFP_I128_F64,
619              RTLIB::SINTTOFP_I128_F80,
620              RTLIB::SINTTOFP_I128_F128,
621              RTLIB::UINTTOFP_I32_F32,
622              RTLIB::UINTTOFP_I32_F64,
623              RTLIB::UINTTOFP_I32_F80,
624              RTLIB::UINTTOFP_I32_F128,
625              RTLIB::UINTTOFP_I64_F32,
626              RTLIB::UINTTOFP_I64_F64,
627              RTLIB::UINTTOFP_I64_F80,
628              RTLIB::UINTTOFP_I64_F128,
629              RTLIB::UINTTOFP_I128_F32,
630              RTLIB::UINTTOFP_I128_F64,
631              RTLIB::UINTTOFP_I128_F80,
632              RTLIB::UINTTOFP_I128_F128,
633              RTLIB::OEQ_F32,
634              RTLIB::OEQ_F64,
635              RTLIB::OEQ_F128,
636              RTLIB::UNE_F32,
637              RTLIB::UNE_F64,
638              RTLIB::UNE_F128,
639              RTLIB::OGE_F32,
640              RTLIB::OGE_F64,
641              RTLIB::OGE_F128,
642              RTLIB::OLT_F32,
643              RTLIB::OLT_F64,
644              RTLIB::OLT_F128,
645              RTLIB::OLE_F32,
646              RTLIB::OLE_F64,
647              RTLIB::OLE_F128,
648              RTLIB::OGT_F32,
649              RTLIB::OGT_F64,
650              RTLIB::OGT_F128,
651              RTLIB::UO_F32,
652              RTLIB::UO_F64,
653              RTLIB::UO_F128,
654              RTLIB::O_F32,
655              RTLIB::O_F64,
656              RTLIB::O_F128,
657          })
658       CCs[LC] = CallingConv::ARM_AAPCS;
659 }
660 
661 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
662 /// UNKNOWN_LIBCALL if there is none.
663 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
664   if (OpVT == MVT::f16) {
665     if (RetVT == MVT::f32)
666       return FPEXT_F16_F32;
667   } else if (OpVT == MVT::f32) {
668     if (RetVT == MVT::f64)
669       return FPEXT_F32_F64;
670     if (RetVT == MVT::f128)
671       return FPEXT_F32_F128;
672     if (RetVT == MVT::ppcf128)
673       return FPEXT_F32_PPCF128;
674   } else if (OpVT == MVT::f64) {
675     if (RetVT == MVT::f128)
676       return FPEXT_F64_F128;
677     else if (RetVT == MVT::ppcf128)
678       return FPEXT_F64_PPCF128;
679   }
680 
681   return UNKNOWN_LIBCALL;
682 }
683 
684 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
685 /// UNKNOWN_LIBCALL if there is none.
686 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
687   if (RetVT == MVT::f16) {
688     if (OpVT == MVT::f32)
689       return FPROUND_F32_F16;
690     if (OpVT == MVT::f64)
691       return FPROUND_F64_F16;
692     if (OpVT == MVT::f80)
693       return FPROUND_F80_F16;
694     if (OpVT == MVT::f128)
695       return FPROUND_F128_F16;
696     if (OpVT == MVT::ppcf128)
697       return FPROUND_PPCF128_F16;
698   } else if (RetVT == MVT::f32) {
699     if (OpVT == MVT::f64)
700       return FPROUND_F64_F32;
701     if (OpVT == MVT::f80)
702       return FPROUND_F80_F32;
703     if (OpVT == MVT::f128)
704       return FPROUND_F128_F32;
705     if (OpVT == MVT::ppcf128)
706       return FPROUND_PPCF128_F32;
707   } else if (RetVT == MVT::f64) {
708     if (OpVT == MVT::f80)
709       return FPROUND_F80_F64;
710     if (OpVT == MVT::f128)
711       return FPROUND_F128_F64;
712     if (OpVT == MVT::ppcf128)
713       return FPROUND_PPCF128_F64;
714   }
715 
716   return UNKNOWN_LIBCALL;
717 }
718 
719 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
720 /// UNKNOWN_LIBCALL if there is none.
721 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
722   if (OpVT == MVT::f32) {
723     if (RetVT == MVT::i32)
724       return FPTOSINT_F32_I32;
725     if (RetVT == MVT::i64)
726       return FPTOSINT_F32_I64;
727     if (RetVT == MVT::i128)
728       return FPTOSINT_F32_I128;
729   } else if (OpVT == MVT::f64) {
730     if (RetVT == MVT::i32)
731       return FPTOSINT_F64_I32;
732     if (RetVT == MVT::i64)
733       return FPTOSINT_F64_I64;
734     if (RetVT == MVT::i128)
735       return FPTOSINT_F64_I128;
736   } else if (OpVT == MVT::f80) {
737     if (RetVT == MVT::i32)
738       return FPTOSINT_F80_I32;
739     if (RetVT == MVT::i64)
740       return FPTOSINT_F80_I64;
741     if (RetVT == MVT::i128)
742       return FPTOSINT_F80_I128;
743   } else if (OpVT == MVT::f128) {
744     if (RetVT == MVT::i32)
745       return FPTOSINT_F128_I32;
746     if (RetVT == MVT::i64)
747       return FPTOSINT_F128_I64;
748     if (RetVT == MVT::i128)
749       return FPTOSINT_F128_I128;
750   } else if (OpVT == MVT::ppcf128) {
751     if (RetVT == MVT::i32)
752       return FPTOSINT_PPCF128_I32;
753     if (RetVT == MVT::i64)
754       return FPTOSINT_PPCF128_I64;
755     if (RetVT == MVT::i128)
756       return FPTOSINT_PPCF128_I128;
757   }
758   return UNKNOWN_LIBCALL;
759 }
760 
761 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
762 /// UNKNOWN_LIBCALL if there is none.
763 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
764   if (OpVT == MVT::f32) {
765     if (RetVT == MVT::i32)
766       return FPTOUINT_F32_I32;
767     if (RetVT == MVT::i64)
768       return FPTOUINT_F32_I64;
769     if (RetVT == MVT::i128)
770       return FPTOUINT_F32_I128;
771   } else if (OpVT == MVT::f64) {
772     if (RetVT == MVT::i32)
773       return FPTOUINT_F64_I32;
774     if (RetVT == MVT::i64)
775       return FPTOUINT_F64_I64;
776     if (RetVT == MVT::i128)
777       return FPTOUINT_F64_I128;
778   } else if (OpVT == MVT::f80) {
779     if (RetVT == MVT::i32)
780       return FPTOUINT_F80_I32;
781     if (RetVT == MVT::i64)
782       return FPTOUINT_F80_I64;
783     if (RetVT == MVT::i128)
784       return FPTOUINT_F80_I128;
785   } else if (OpVT == MVT::f128) {
786     if (RetVT == MVT::i32)
787       return FPTOUINT_F128_I32;
788     if (RetVT == MVT::i64)
789       return FPTOUINT_F128_I64;
790     if (RetVT == MVT::i128)
791       return FPTOUINT_F128_I128;
792   } else if (OpVT == MVT::ppcf128) {
793     if (RetVT == MVT::i32)
794       return FPTOUINT_PPCF128_I32;
795     if (RetVT == MVT::i64)
796       return FPTOUINT_PPCF128_I64;
797     if (RetVT == MVT::i128)
798       return FPTOUINT_PPCF128_I128;
799   }
800   return UNKNOWN_LIBCALL;
801 }
802 
803 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
804 /// UNKNOWN_LIBCALL if there is none.
805 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
806   if (OpVT == MVT::i32) {
807     if (RetVT == MVT::f32)
808       return SINTTOFP_I32_F32;
809     if (RetVT == MVT::f64)
810       return SINTTOFP_I32_F64;
811     if (RetVT == MVT::f80)
812       return SINTTOFP_I32_F80;
813     if (RetVT == MVT::f128)
814       return SINTTOFP_I32_F128;
815     if (RetVT == MVT::ppcf128)
816       return SINTTOFP_I32_PPCF128;
817   } else if (OpVT == MVT::i64) {
818     if (RetVT == MVT::f32)
819       return SINTTOFP_I64_F32;
820     if (RetVT == MVT::f64)
821       return SINTTOFP_I64_F64;
822     if (RetVT == MVT::f80)
823       return SINTTOFP_I64_F80;
824     if (RetVT == MVT::f128)
825       return SINTTOFP_I64_F128;
826     if (RetVT == MVT::ppcf128)
827       return SINTTOFP_I64_PPCF128;
828   } else if (OpVT == MVT::i128) {
829     if (RetVT == MVT::f32)
830       return SINTTOFP_I128_F32;
831     if (RetVT == MVT::f64)
832       return SINTTOFP_I128_F64;
833     if (RetVT == MVT::f80)
834       return SINTTOFP_I128_F80;
835     if (RetVT == MVT::f128)
836       return SINTTOFP_I128_F128;
837     if (RetVT == MVT::ppcf128)
838       return SINTTOFP_I128_PPCF128;
839   }
840   return UNKNOWN_LIBCALL;
841 }
842 
843 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
844 /// UNKNOWN_LIBCALL if there is none.
845 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
846   if (OpVT == MVT::i32) {
847     if (RetVT == MVT::f32)
848       return UINTTOFP_I32_F32;
849     if (RetVT == MVT::f64)
850       return UINTTOFP_I32_F64;
851     if (RetVT == MVT::f80)
852       return UINTTOFP_I32_F80;
853     if (RetVT == MVT::f128)
854       return UINTTOFP_I32_F128;
855     if (RetVT == MVT::ppcf128)
856       return UINTTOFP_I32_PPCF128;
857   } else if (OpVT == MVT::i64) {
858     if (RetVT == MVT::f32)
859       return UINTTOFP_I64_F32;
860     if (RetVT == MVT::f64)
861       return UINTTOFP_I64_F64;
862     if (RetVT == MVT::f80)
863       return UINTTOFP_I64_F80;
864     if (RetVT == MVT::f128)
865       return UINTTOFP_I64_F128;
866     if (RetVT == MVT::ppcf128)
867       return UINTTOFP_I64_PPCF128;
868   } else if (OpVT == MVT::i128) {
869     if (RetVT == MVT::f32)
870       return UINTTOFP_I128_F32;
871     if (RetVT == MVT::f64)
872       return UINTTOFP_I128_F64;
873     if (RetVT == MVT::f80)
874       return UINTTOFP_I128_F80;
875     if (RetVT == MVT::f128)
876       return UINTTOFP_I128_F128;
877     if (RetVT == MVT::ppcf128)
878       return UINTTOFP_I128_PPCF128;
879   }
880   return UNKNOWN_LIBCALL;
881 }
882 
883 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
884 #define OP_TO_LIBCALL(Name, Enum)                                              \
885   case Name:                                                                   \
886     switch (VT.SimpleTy) {                                                     \
887     default:                                                                   \
888       return UNKNOWN_LIBCALL;                                                  \
889     case MVT::i8:                                                              \
890       return Enum##_1;                                                         \
891     case MVT::i16:                                                             \
892       return Enum##_2;                                                         \
893     case MVT::i32:                                                             \
894       return Enum##_4;                                                         \
895     case MVT::i64:                                                             \
896       return Enum##_8;                                                         \
897     case MVT::i128:                                                            \
898       return Enum##_16;                                                        \
899     }
900 
901   switch (Opc) {
902     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
903     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
904     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
905     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
906     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
907     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
908     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
909     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
910     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
911     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
912     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
913     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
914   }
915 
916 #undef OP_TO_LIBCALL
917 
918   return UNKNOWN_LIBCALL;
919 }
920 
921 /// InitCmpLibcallCCs - Set default comparison libcall CC.
922 ///
923 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
924   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
925   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
926   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
927   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
928   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
929   CCs[RTLIB::UNE_F32] = ISD::SETNE;
930   CCs[RTLIB::UNE_F64] = ISD::SETNE;
931   CCs[RTLIB::UNE_F128] = ISD::SETNE;
932   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
933   CCs[RTLIB::OGE_F32] = ISD::SETGE;
934   CCs[RTLIB::OGE_F64] = ISD::SETGE;
935   CCs[RTLIB::OGE_F128] = ISD::SETGE;
936   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
937   CCs[RTLIB::OLT_F32] = ISD::SETLT;
938   CCs[RTLIB::OLT_F64] = ISD::SETLT;
939   CCs[RTLIB::OLT_F128] = ISD::SETLT;
940   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
941   CCs[RTLIB::OLE_F32] = ISD::SETLE;
942   CCs[RTLIB::OLE_F64] = ISD::SETLE;
943   CCs[RTLIB::OLE_F128] = ISD::SETLE;
944   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
945   CCs[RTLIB::OGT_F32] = ISD::SETGT;
946   CCs[RTLIB::OGT_F64] = ISD::SETGT;
947   CCs[RTLIB::OGT_F128] = ISD::SETGT;
948   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
949   CCs[RTLIB::UO_F32] = ISD::SETNE;
950   CCs[RTLIB::UO_F64] = ISD::SETNE;
951   CCs[RTLIB::UO_F128] = ISD::SETNE;
952   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
953   CCs[RTLIB::O_F32] = ISD::SETEQ;
954   CCs[RTLIB::O_F64] = ISD::SETEQ;
955   CCs[RTLIB::O_F128] = ISD::SETEQ;
956   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
957 }
958 
959 /// NOTE: The TargetMachine owns TLOF.
960 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
961   initActions();
962 
963   // Perform these initializations only once.
964   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
965   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
966     = MaxStoresPerMemmoveOptSize = 4;
967   UseUnderscoreSetJmp = false;
968   UseUnderscoreLongJmp = false;
969   SelectIsExpensive = false;
970   HasMultipleConditionRegisters = false;
971   HasExtractBitsInsn = false;
972   JumpIsExpensive = JumpIsExpensiveOverride;
973   PredictableSelectIsExpensive = false;
974   MaskAndBranchFoldingIsLegal = false;
975   EnableExtLdPromotion = false;
976   HasFloatingPointExceptions = true;
977   StackPointerRegisterToSaveRestore = 0;
978   BooleanContents = UndefinedBooleanContent;
979   BooleanFloatContents = UndefinedBooleanContent;
980   BooleanVectorContents = UndefinedBooleanContent;
981   SchedPreferenceInfo = Sched::ILP;
982   JumpBufSize = 0;
983   JumpBufAlignment = 0;
984   MinFunctionAlignment = 0;
985   PrefFunctionAlignment = 0;
986   PrefLoopAlignment = 0;
987   GatherAllAliasesMaxDepth = 6;
988   MinStackArgumentAlignment = 1;
989   MinimumJumpTableEntries = 4;
990   // TODO: the default will be switched to 0 in the next commit, along
991   // with the Target-specific changes necessary.
992   MaxAtomicSizeInBitsSupported = 1024;
993 
994   MinCmpXchgSizeInBits = 0;
995 
996   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
997 
998   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
999   InitCmpLibcallCCs(CmpLibcallCCs);
1000   InitLibcallCallingConvs(LibcallCallingConvs, TM.getTargetTriple());
1001 }
1002 
1003 void TargetLoweringBase::initActions() {
1004   // All operations default to being supported.
1005   memset(OpActions, 0, sizeof(OpActions));
1006   memset(LoadExtActions, 0, sizeof(LoadExtActions));
1007   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
1008   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
1009   memset(CondCodeActions, 0, sizeof(CondCodeActions));
1010   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
1011   std::fill(std::begin(TargetDAGCombineArray),
1012             std::end(TargetDAGCombineArray), 0);
1013 
1014   // Set default actions for various operations.
1015   for (MVT VT : MVT::all_valuetypes()) {
1016     // Default all indexed load / store to expand.
1017     for (unsigned IM = (unsigned)ISD::PRE_INC;
1018          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1019       setIndexedLoadAction(IM, VT, Expand);
1020       setIndexedStoreAction(IM, VT, Expand);
1021     }
1022 
1023     // Most backends expect to see the node which just returns the value loaded.
1024     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
1025 
1026     // These operations default to expand.
1027     setOperationAction(ISD::FGETSIGN, VT, Expand);
1028     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
1029     setOperationAction(ISD::FMINNUM, VT, Expand);
1030     setOperationAction(ISD::FMAXNUM, VT, Expand);
1031     setOperationAction(ISD::FMINNAN, VT, Expand);
1032     setOperationAction(ISD::FMAXNAN, VT, Expand);
1033     setOperationAction(ISD::FMAD, VT, Expand);
1034     setOperationAction(ISD::SMIN, VT, Expand);
1035     setOperationAction(ISD::SMAX, VT, Expand);
1036     setOperationAction(ISD::UMIN, VT, Expand);
1037     setOperationAction(ISD::UMAX, VT, Expand);
1038 
1039     // Overflow operations default to expand
1040     setOperationAction(ISD::SADDO, VT, Expand);
1041     setOperationAction(ISD::SSUBO, VT, Expand);
1042     setOperationAction(ISD::UADDO, VT, Expand);
1043     setOperationAction(ISD::USUBO, VT, Expand);
1044     setOperationAction(ISD::SMULO, VT, Expand);
1045     setOperationAction(ISD::UMULO, VT, Expand);
1046 
1047     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
1048     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
1049     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
1050 
1051     setOperationAction(ISD::BITREVERSE, VT, Expand);
1052 
1053     // These library functions default to expand.
1054     setOperationAction(ISD::FROUND, VT, Expand);
1055 
1056     // These operations default to expand for vector types.
1057     if (VT.isVector()) {
1058       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
1059       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
1060       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
1061       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
1062     }
1063 
1064     // For most targets @llvm.get.dynamic.area.offset just returns 0.
1065     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
1066   }
1067 
1068   // Most targets ignore the @llvm.prefetch intrinsic.
1069   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
1070 
1071   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
1072   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
1073 
1074   // ConstantFP nodes default to expand.  Targets can either change this to
1075   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
1076   // to optimize expansions for certain constants.
1077   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
1078   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
1079   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
1080   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
1081   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
1082 
1083   // These library functions default to expand.
1084   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
1085     setOperationAction(ISD::FLOG ,      VT, Expand);
1086     setOperationAction(ISD::FLOG2,      VT, Expand);
1087     setOperationAction(ISD::FLOG10,     VT, Expand);
1088     setOperationAction(ISD::FEXP ,      VT, Expand);
1089     setOperationAction(ISD::FEXP2,      VT, Expand);
1090     setOperationAction(ISD::FFLOOR,     VT, Expand);
1091     setOperationAction(ISD::FNEARBYINT, VT, Expand);
1092     setOperationAction(ISD::FCEIL,      VT, Expand);
1093     setOperationAction(ISD::FRINT,      VT, Expand);
1094     setOperationAction(ISD::FTRUNC,     VT, Expand);
1095     setOperationAction(ISD::FROUND,     VT, Expand);
1096   }
1097 
1098   // Default ISD::TRAP to expand (which turns it into abort).
1099   setOperationAction(ISD::TRAP, MVT::Other, Expand);
1100 
1101   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1102   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1103   //
1104   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
1105 }
1106 
1107 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
1108                                                EVT) const {
1109   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
1110 }
1111 
1112 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
1113                                          const DataLayout &DL) const {
1114   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1115   if (LHSTy.isVector())
1116     return LHSTy;
1117   return getScalarShiftAmountTy(DL, LHSTy);
1118 }
1119 
1120 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1121   assert(isTypeLegal(VT));
1122   switch (Op) {
1123   default:
1124     return false;
1125   case ISD::SDIV:
1126   case ISD::UDIV:
1127   case ISD::SREM:
1128   case ISD::UREM:
1129     return true;
1130   }
1131 }
1132 
1133 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1134   // If the command-line option was specified, ignore this request.
1135   if (!JumpIsExpensiveOverride.getNumOccurrences())
1136     JumpIsExpensive = isExpensive;
1137 }
1138 
1139 TargetLoweringBase::LegalizeKind
1140 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1141   // If this is a simple type, use the ComputeRegisterProp mechanism.
1142   if (VT.isSimple()) {
1143     MVT SVT = VT.getSimpleVT();
1144     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1145     MVT NVT = TransformToType[SVT.SimpleTy];
1146     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1147 
1148     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1149             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
1150            "Promote may not follow Expand or Promote");
1151 
1152     if (LA == TypeSplitVector)
1153       return LegalizeKind(LA,
1154                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
1155                                            SVT.getVectorNumElements() / 2));
1156     if (LA == TypeScalarizeVector)
1157       return LegalizeKind(LA, SVT.getVectorElementType());
1158     return LegalizeKind(LA, NVT);
1159   }
1160 
1161   // Handle Extended Scalar Types.
1162   if (!VT.isVector()) {
1163     assert(VT.isInteger() && "Float types must be simple");
1164     unsigned BitSize = VT.getSizeInBits();
1165     // First promote to a power-of-two size, then expand if necessary.
1166     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1167       EVT NVT = VT.getRoundIntegerType(Context);
1168       assert(NVT != VT && "Unable to round integer VT");
1169       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1170       // Avoid multi-step promotion.
1171       if (NextStep.first == TypePromoteInteger)
1172         return NextStep;
1173       // Return rounded integer type.
1174       return LegalizeKind(TypePromoteInteger, NVT);
1175     }
1176 
1177     return LegalizeKind(TypeExpandInteger,
1178                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1179   }
1180 
1181   // Handle vector types.
1182   unsigned NumElts = VT.getVectorNumElements();
1183   EVT EltVT = VT.getVectorElementType();
1184 
1185   // Vectors with only one element are always scalarized.
1186   if (NumElts == 1)
1187     return LegalizeKind(TypeScalarizeVector, EltVT);
1188 
1189   // Try to widen vector elements until the element type is a power of two and
1190   // promote it to a legal type later on, for example:
1191   // <3 x i8> -> <4 x i8> -> <4 x i32>
1192   if (EltVT.isInteger()) {
1193     // Vectors with a number of elements that is not a power of two are always
1194     // widened, for example <3 x i8> -> <4 x i8>.
1195     if (!VT.isPow2VectorType()) {
1196       NumElts = (unsigned)NextPowerOf2(NumElts);
1197       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1198       return LegalizeKind(TypeWidenVector, NVT);
1199     }
1200 
1201     // Examine the element type.
1202     LegalizeKind LK = getTypeConversion(Context, EltVT);
1203 
1204     // If type is to be expanded, split the vector.
1205     //  <4 x i140> -> <2 x i140>
1206     if (LK.first == TypeExpandInteger)
1207       return LegalizeKind(TypeSplitVector,
1208                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
1209 
1210     // Promote the integer element types until a legal vector type is found
1211     // or until the element integer type is too big. If a legal type was not
1212     // found, fallback to the usual mechanism of widening/splitting the
1213     // vector.
1214     EVT OldEltVT = EltVT;
1215     while (1) {
1216       // Increase the bitwidth of the element to the next pow-of-two
1217       // (which is greater than 8 bits).
1218       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1219                   .getRoundIntegerType(Context);
1220 
1221       // Stop trying when getting a non-simple element type.
1222       // Note that vector elements may be greater than legal vector element
1223       // types. Example: X86 XMM registers hold 64bit element on 32bit
1224       // systems.
1225       if (!EltVT.isSimple())
1226         break;
1227 
1228       // Build a new vector type and check if it is legal.
1229       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1230       // Found a legal promoted vector type.
1231       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1232         return LegalizeKind(TypePromoteInteger,
1233                             EVT::getVectorVT(Context, EltVT, NumElts));
1234     }
1235 
1236     // Reset the type to the unexpanded type if we did not find a legal vector
1237     // type with a promoted vector element type.
1238     EltVT = OldEltVT;
1239   }
1240 
1241   // Try to widen the vector until a legal type is found.
1242   // If there is no wider legal type, split the vector.
1243   while (1) {
1244     // Round up to the next power of 2.
1245     NumElts = (unsigned)NextPowerOf2(NumElts);
1246 
1247     // If there is no simple vector type with this many elements then there
1248     // cannot be a larger legal vector type.  Note that this assumes that
1249     // there are no skipped intermediate vector types in the simple types.
1250     if (!EltVT.isSimple())
1251       break;
1252     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1253     if (LargerVector == MVT())
1254       break;
1255 
1256     // If this type is legal then widen the vector.
1257     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1258       return LegalizeKind(TypeWidenVector, LargerVector);
1259   }
1260 
1261   // Widen odd vectors to next power of two.
1262   if (!VT.isPow2VectorType()) {
1263     EVT NVT = VT.getPow2VectorType(Context);
1264     return LegalizeKind(TypeWidenVector, NVT);
1265   }
1266 
1267   // Vectors with illegal element types are expanded.
1268   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1269   return LegalizeKind(TypeSplitVector, NVT);
1270 }
1271 
1272 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1273                                           unsigned &NumIntermediates,
1274                                           MVT &RegisterVT,
1275                                           TargetLoweringBase *TLI) {
1276   // Figure out the right, legal destination reg to copy into.
1277   unsigned NumElts = VT.getVectorNumElements();
1278   MVT EltTy = VT.getVectorElementType();
1279 
1280   unsigned NumVectorRegs = 1;
1281 
1282   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1283   // could break down into LHS/RHS like LegalizeDAG does.
1284   if (!isPowerOf2_32(NumElts)) {
1285     NumVectorRegs = NumElts;
1286     NumElts = 1;
1287   }
1288 
1289   // Divide the input until we get to a supported size.  This will always
1290   // end with a scalar if the target doesn't support vectors.
1291   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1292     NumElts >>= 1;
1293     NumVectorRegs <<= 1;
1294   }
1295 
1296   NumIntermediates = NumVectorRegs;
1297 
1298   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1299   if (!TLI->isTypeLegal(NewVT))
1300     NewVT = EltTy;
1301   IntermediateVT = NewVT;
1302 
1303   unsigned NewVTSize = NewVT.getSizeInBits();
1304 
1305   // Convert sizes such as i33 to i64.
1306   if (!isPowerOf2_32(NewVTSize))
1307     NewVTSize = NextPowerOf2(NewVTSize);
1308 
1309   MVT DestVT = TLI->getRegisterType(NewVT);
1310   RegisterVT = DestVT;
1311   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1312     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1313 
1314   // Otherwise, promotion or legal types use the same number of registers as
1315   // the vector decimated to the appropriate level.
1316   return NumVectorRegs;
1317 }
1318 
1319 /// isLegalRC - Return true if the value types that can be represented by the
1320 /// specified register class are all legal.
1321 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
1322   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1323        I != E; ++I) {
1324     if (isTypeLegal(*I))
1325       return true;
1326   }
1327   return false;
1328 }
1329 
1330 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1331 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1332 MachineBasicBlock *
1333 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1334                                    MachineBasicBlock *MBB) const {
1335   MachineInstr *MI = &InitialMI;
1336   MachineFunction &MF = *MI->getParent()->getParent();
1337   MachineFrameInfo &MFI = MF.getFrameInfo();
1338 
1339   // We're handling multiple types of operands here:
1340   // PATCHPOINT MetaArgs - live-in, read only, direct
1341   // STATEPOINT Deopt Spill - live-through, read only, indirect
1342   // STATEPOINT Deopt Alloca - live-through, read only, direct
1343   // (We're currently conservative and mark the deopt slots read/write in
1344   // practice.)
1345   // STATEPOINT GC Spill - live-through, read/write, indirect
1346   // STATEPOINT GC Alloca - live-through, read/write, direct
1347   // The live-in vs live-through is handled already (the live through ones are
1348   // all stack slots), but we need to handle the different type of stackmap
1349   // operands and memory effects here.
1350 
1351   // MI changes inside this loop as we grow operands.
1352   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1353     MachineOperand &MO = MI->getOperand(OperIdx);
1354     if (!MO.isFI())
1355       continue;
1356 
1357     // foldMemoryOperand builds a new MI after replacing a single FI operand
1358     // with the canonical set of five x86 addressing-mode operands.
1359     int FI = MO.getIndex();
1360     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1361 
1362     // Copy operands before the frame-index.
1363     for (unsigned i = 0; i < OperIdx; ++i)
1364       MIB.addOperand(MI->getOperand(i));
1365     // Add frame index operands recognized by stackmaps.cpp
1366     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1367       // indirect-mem-ref tag, size, #FI, offset.
1368       // Used for spills inserted by StatepointLowering.  This codepath is not
1369       // used for patchpoints/stackmaps at all, for these spilling is done via
1370       // foldMemoryOperand callback only.
1371       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1372       MIB.addImm(StackMaps::IndirectMemRefOp);
1373       MIB.addImm(MFI.getObjectSize(FI));
1374       MIB.addOperand(MI->getOperand(OperIdx));
1375       MIB.addImm(0);
1376     } else {
1377       // direct-mem-ref tag, #FI, offset.
1378       // Used by patchpoint, and direct alloca arguments to statepoints
1379       MIB.addImm(StackMaps::DirectMemRefOp);
1380       MIB.addOperand(MI->getOperand(OperIdx));
1381       MIB.addImm(0);
1382     }
1383     // Copy the operands after the frame index.
1384     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1385       MIB.addOperand(MI->getOperand(i));
1386 
1387     // Inherit previous memory operands.
1388     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1389     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1390 
1391     // Add a new memory operand for this FI.
1392     assert(MFI.getObjectOffset(FI) != -1);
1393 
1394     auto Flags = MachineMemOperand::MOLoad;
1395     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1396       Flags |= MachineMemOperand::MOStore;
1397       Flags |= MachineMemOperand::MOVolatile;
1398     }
1399     MachineMemOperand *MMO = MF.getMachineMemOperand(
1400         MachinePointerInfo::getFixedStack(MF, FI), Flags,
1401         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1402     MIB->addMemOperand(MF, MMO);
1403 
1404     // Replace the instruction and update the operand index.
1405     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1406     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1407     MI->eraseFromParent();
1408     MI = MIB;
1409   }
1410   return MBB;
1411 }
1412 
1413 /// findRepresentativeClass - Return the largest legal super-reg register class
1414 /// of the register class for the specified type and its associated "cost".
1415 // This function is in TargetLowering because it uses RegClassForVT which would
1416 // need to be moved to TargetRegisterInfo and would necessitate moving
1417 // isTypeLegal over as well - a massive change that would just require
1418 // TargetLowering having a TargetRegisterInfo class member that it would use.
1419 std::pair<const TargetRegisterClass *, uint8_t>
1420 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1421                                             MVT VT) const {
1422   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1423   if (!RC)
1424     return std::make_pair(RC, 0);
1425 
1426   // Compute the set of all super-register classes.
1427   BitVector SuperRegRC(TRI->getNumRegClasses());
1428   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1429     SuperRegRC.setBitsInMask(RCI.getMask());
1430 
1431   // Find the first legal register class with the largest spill size.
1432   const TargetRegisterClass *BestRC = RC;
1433   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1434     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1435     // We want the largest possible spill size.
1436     if (SuperRC->getSize() <= BestRC->getSize())
1437       continue;
1438     if (!isLegalRC(SuperRC))
1439       continue;
1440     BestRC = SuperRC;
1441   }
1442   return std::make_pair(BestRC, 1);
1443 }
1444 
1445 /// computeRegisterProperties - Once all of the register classes are added,
1446 /// this allows us to compute derived properties we expose.
1447 void TargetLoweringBase::computeRegisterProperties(
1448     const TargetRegisterInfo *TRI) {
1449   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1450                 "Too many value types for ValueTypeActions to hold!");
1451 
1452   // Everything defaults to needing one register.
1453   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1454     NumRegistersForVT[i] = 1;
1455     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1456   }
1457   // ...except isVoid, which doesn't need any registers.
1458   NumRegistersForVT[MVT::isVoid] = 0;
1459 
1460   // Find the largest integer register class.
1461   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1462   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1463     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1464 
1465   // Every integer value type larger than this largest register takes twice as
1466   // many registers to represent as the previous ValueType.
1467   for (unsigned ExpandedReg = LargestIntReg + 1;
1468        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1469     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1470     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1471     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1472     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1473                                    TypeExpandInteger);
1474   }
1475 
1476   // Inspect all of the ValueType's smaller than the largest integer
1477   // register to see which ones need promotion.
1478   unsigned LegalIntReg = LargestIntReg;
1479   for (unsigned IntReg = LargestIntReg - 1;
1480        IntReg >= (unsigned)MVT::i1; --IntReg) {
1481     MVT IVT = (MVT::SimpleValueType)IntReg;
1482     if (isTypeLegal(IVT)) {
1483       LegalIntReg = IntReg;
1484     } else {
1485       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1486         (const MVT::SimpleValueType)LegalIntReg;
1487       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1488     }
1489   }
1490 
1491   // ppcf128 type is really two f64's.
1492   if (!isTypeLegal(MVT::ppcf128)) {
1493     if (isTypeLegal(MVT::f64)) {
1494       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1495       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1496       TransformToType[MVT::ppcf128] = MVT::f64;
1497       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1498     } else {
1499       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1500       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1501       TransformToType[MVT::ppcf128] = MVT::i128;
1502       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1503     }
1504   }
1505 
1506   // Decide how to handle f128. If the target does not have native f128 support,
1507   // expand it to i128 and we will be generating soft float library calls.
1508   if (!isTypeLegal(MVT::f128)) {
1509     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1510     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1511     TransformToType[MVT::f128] = MVT::i128;
1512     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1513   }
1514 
1515   // Decide how to handle f64. If the target does not have native f64 support,
1516   // expand it to i64 and we will be generating soft float library calls.
1517   if (!isTypeLegal(MVT::f64)) {
1518     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1519     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1520     TransformToType[MVT::f64] = MVT::i64;
1521     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1522   }
1523 
1524   // Decide how to handle f32. If the target does not have native f32 support,
1525   // expand it to i32 and we will be generating soft float library calls.
1526   if (!isTypeLegal(MVT::f32)) {
1527     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1528     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1529     TransformToType[MVT::f32] = MVT::i32;
1530     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1531   }
1532 
1533   // Decide how to handle f16. If the target does not have native f16 support,
1534   // promote it to f32, because there are no f16 library calls (except for
1535   // conversions).
1536   if (!isTypeLegal(MVT::f16)) {
1537     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1538     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1539     TransformToType[MVT::f16] = MVT::f32;
1540     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1541   }
1542 
1543   // Loop over all of the vector value types to see which need transformations.
1544   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1545        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1546     MVT VT = (MVT::SimpleValueType) i;
1547     if (isTypeLegal(VT))
1548       continue;
1549 
1550     MVT EltVT = VT.getVectorElementType();
1551     unsigned NElts = VT.getVectorNumElements();
1552     bool IsLegalWiderType = false;
1553     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1554     switch (PreferredAction) {
1555     case TypePromoteInteger: {
1556       // Try to promote the elements of integer vectors. If no legal
1557       // promotion was found, fall through to the widen-vector method.
1558       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1559         MVT SVT = (MVT::SimpleValueType) nVT;
1560         // Promote vectors of integers to vectors with the same number
1561         // of elements, with a wider element type.
1562         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() &&
1563             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1564           TransformToType[i] = SVT;
1565           RegisterTypeForVT[i] = SVT;
1566           NumRegistersForVT[i] = 1;
1567           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1568           IsLegalWiderType = true;
1569           break;
1570         }
1571       }
1572       if (IsLegalWiderType)
1573         break;
1574     }
1575     case TypeWidenVector: {
1576       // Try to widen the vector.
1577       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1578         MVT SVT = (MVT::SimpleValueType) nVT;
1579         if (SVT.getVectorElementType() == EltVT
1580             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1581           TransformToType[i] = SVT;
1582           RegisterTypeForVT[i] = SVT;
1583           NumRegistersForVT[i] = 1;
1584           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1585           IsLegalWiderType = true;
1586           break;
1587         }
1588       }
1589       if (IsLegalWiderType)
1590         break;
1591     }
1592     case TypeSplitVector:
1593     case TypeScalarizeVector: {
1594       MVT IntermediateVT;
1595       MVT RegisterVT;
1596       unsigned NumIntermediates;
1597       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1598           NumIntermediates, RegisterVT, this);
1599       RegisterTypeForVT[i] = RegisterVT;
1600 
1601       MVT NVT = VT.getPow2VectorType();
1602       if (NVT == VT) {
1603         // Type is already a power of 2.  The default action is to split.
1604         TransformToType[i] = MVT::Other;
1605         if (PreferredAction == TypeScalarizeVector)
1606           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1607         else if (PreferredAction == TypeSplitVector)
1608           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1609         else
1610           // Set type action according to the number of elements.
1611           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1612                                                         : TypeSplitVector);
1613       } else {
1614         TransformToType[i] = NVT;
1615         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1616       }
1617       break;
1618     }
1619     default:
1620       llvm_unreachable("Unknown vector legalization action!");
1621     }
1622   }
1623 
1624   // Determine the 'representative' register class for each value type.
1625   // An representative register class is the largest (meaning one which is
1626   // not a sub-register class / subreg register class) legal register class for
1627   // a group of value types. For example, on i386, i8, i16, and i32
1628   // representative would be GR32; while on x86_64 it's GR64.
1629   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1630     const TargetRegisterClass* RRC;
1631     uint8_t Cost;
1632     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1633     RepRegClassForVT[i] = RRC;
1634     RepRegClassCostForVT[i] = Cost;
1635   }
1636 }
1637 
1638 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1639                                            EVT VT) const {
1640   assert(!VT.isVector() && "No default SetCC type for vectors!");
1641   return getPointerTy(DL).SimpleTy;
1642 }
1643 
1644 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1645   return MVT::i32; // return the default value
1646 }
1647 
1648 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1649 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1650 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1651 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1652 ///
1653 /// This method returns the number of registers needed, and the VT for each
1654 /// register.  It also returns the VT and quantity of the intermediate values
1655 /// before they are promoted/expanded.
1656 ///
1657 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1658                                                 EVT &IntermediateVT,
1659                                                 unsigned &NumIntermediates,
1660                                                 MVT &RegisterVT) const {
1661   unsigned NumElts = VT.getVectorNumElements();
1662 
1663   // If there is a wider vector type with the same element type as this one,
1664   // or a promoted vector type that has the same number of elements which
1665   // are wider, then we should convert to that legal vector type.
1666   // This handles things like <2 x float> -> <4 x float> and
1667   // <4 x i1> -> <4 x i32>.
1668   LegalizeTypeAction TA = getTypeAction(Context, VT);
1669   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1670     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1671     if (isTypeLegal(RegisterEVT)) {
1672       IntermediateVT = RegisterEVT;
1673       RegisterVT = RegisterEVT.getSimpleVT();
1674       NumIntermediates = 1;
1675       return 1;
1676     }
1677   }
1678 
1679   // Figure out the right, legal destination reg to copy into.
1680   EVT EltTy = VT.getVectorElementType();
1681 
1682   unsigned NumVectorRegs = 1;
1683 
1684   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1685   // could break down into LHS/RHS like LegalizeDAG does.
1686   if (!isPowerOf2_32(NumElts)) {
1687     NumVectorRegs = NumElts;
1688     NumElts = 1;
1689   }
1690 
1691   // Divide the input until we get to a supported size.  This will always
1692   // end with a scalar if the target doesn't support vectors.
1693   while (NumElts > 1 && !isTypeLegal(
1694                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1695     NumElts >>= 1;
1696     NumVectorRegs <<= 1;
1697   }
1698 
1699   NumIntermediates = NumVectorRegs;
1700 
1701   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1702   if (!isTypeLegal(NewVT))
1703     NewVT = EltTy;
1704   IntermediateVT = NewVT;
1705 
1706   MVT DestVT = getRegisterType(Context, NewVT);
1707   RegisterVT = DestVT;
1708   unsigned NewVTSize = NewVT.getSizeInBits();
1709 
1710   // Convert sizes such as i33 to i64.
1711   if (!isPowerOf2_32(NewVTSize))
1712     NewVTSize = NextPowerOf2(NewVTSize);
1713 
1714   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1715     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1716 
1717   // Otherwise, promotion or legal types use the same number of registers as
1718   // the vector decimated to the appropriate level.
1719   return NumVectorRegs;
1720 }
1721 
1722 /// Get the EVTs and ArgFlags collections that represent the legalized return
1723 /// type of the given function.  This does not require a DAG or a return value,
1724 /// and is suitable for use before any DAGs for the function are constructed.
1725 /// TODO: Move this out of TargetLowering.cpp.
1726 void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
1727                          SmallVectorImpl<ISD::OutputArg> &Outs,
1728                          const TargetLowering &TLI, const DataLayout &DL) {
1729   SmallVector<EVT, 4> ValueVTs;
1730   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1731   unsigned NumValues = ValueVTs.size();
1732   if (NumValues == 0) return;
1733 
1734   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1735     EVT VT = ValueVTs[j];
1736     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1737 
1738     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1739       ExtendKind = ISD::SIGN_EXTEND;
1740     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1741       ExtendKind = ISD::ZERO_EXTEND;
1742 
1743     // FIXME: C calling convention requires the return type to be promoted to
1744     // at least 32-bit. But this is not necessary for non-C calling
1745     // conventions. The frontend should mark functions whose return values
1746     // require promoting with signext or zeroext attributes.
1747     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1748       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1749       if (VT.bitsLT(MinVT))
1750         VT = MinVT;
1751     }
1752 
1753     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1754     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1755 
1756     // 'inreg' on function refers to return value
1757     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1758     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1759       Flags.setInReg();
1760 
1761     // Propagate extension type if any
1762     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1763       Flags.setSExt();
1764     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1765       Flags.setZExt();
1766 
1767     for (unsigned i = 0; i < NumParts; ++i)
1768       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1769   }
1770 }
1771 
1772 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1773 /// function arguments in the caller parameter area.  This is the actual
1774 /// alignment, not its logarithm.
1775 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1776                                                    const DataLayout &DL) const {
1777   return DL.getABITypeAlignment(Ty);
1778 }
1779 
1780 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1781                                             const DataLayout &DL, EVT VT,
1782                                             unsigned AddrSpace,
1783                                             unsigned Alignment,
1784                                             bool *Fast) const {
1785   // Check if the specified alignment is sufficient based on the data layout.
1786   // TODO: While using the data layout works in practice, a better solution
1787   // would be to implement this check directly (make this a virtual function).
1788   // For example, the ABI alignment may change based on software platform while
1789   // this function should only be affected by hardware implementation.
1790   Type *Ty = VT.getTypeForEVT(Context);
1791   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1792     // Assume that an access that meets the ABI-specified alignment is fast.
1793     if (Fast != nullptr)
1794       *Fast = true;
1795     return true;
1796   }
1797 
1798   // This is a misaligned access.
1799   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1800 }
1801 
1802 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1803   return BranchProbability(MinPercentageForPredictableBranch, 100);
1804 }
1805 
1806 //===----------------------------------------------------------------------===//
1807 //  TargetTransformInfo Helpers
1808 //===----------------------------------------------------------------------===//
1809 
1810 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1811   enum InstructionOpcodes {
1812 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1813 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1814 #include "llvm/IR/Instruction.def"
1815   };
1816   switch (static_cast<InstructionOpcodes>(Opcode)) {
1817   case Ret:            return 0;
1818   case Br:             return 0;
1819   case Switch:         return 0;
1820   case IndirectBr:     return 0;
1821   case Invoke:         return 0;
1822   case Resume:         return 0;
1823   case Unreachable:    return 0;
1824   case CleanupRet:     return 0;
1825   case CatchRet:       return 0;
1826   case CatchPad:       return 0;
1827   case CatchSwitch:    return 0;
1828   case CleanupPad:     return 0;
1829   case Add:            return ISD::ADD;
1830   case FAdd:           return ISD::FADD;
1831   case Sub:            return ISD::SUB;
1832   case FSub:           return ISD::FSUB;
1833   case Mul:            return ISD::MUL;
1834   case FMul:           return ISD::FMUL;
1835   case UDiv:           return ISD::UDIV;
1836   case SDiv:           return ISD::SDIV;
1837   case FDiv:           return ISD::FDIV;
1838   case URem:           return ISD::UREM;
1839   case SRem:           return ISD::SREM;
1840   case FRem:           return ISD::FREM;
1841   case Shl:            return ISD::SHL;
1842   case LShr:           return ISD::SRL;
1843   case AShr:           return ISD::SRA;
1844   case And:            return ISD::AND;
1845   case Or:             return ISD::OR;
1846   case Xor:            return ISD::XOR;
1847   case Alloca:         return 0;
1848   case Load:           return ISD::LOAD;
1849   case Store:          return ISD::STORE;
1850   case GetElementPtr:  return 0;
1851   case Fence:          return 0;
1852   case AtomicCmpXchg:  return 0;
1853   case AtomicRMW:      return 0;
1854   case Trunc:          return ISD::TRUNCATE;
1855   case ZExt:           return ISD::ZERO_EXTEND;
1856   case SExt:           return ISD::SIGN_EXTEND;
1857   case FPToUI:         return ISD::FP_TO_UINT;
1858   case FPToSI:         return ISD::FP_TO_SINT;
1859   case UIToFP:         return ISD::UINT_TO_FP;
1860   case SIToFP:         return ISD::SINT_TO_FP;
1861   case FPTrunc:        return ISD::FP_ROUND;
1862   case FPExt:          return ISD::FP_EXTEND;
1863   case PtrToInt:       return ISD::BITCAST;
1864   case IntToPtr:       return ISD::BITCAST;
1865   case BitCast:        return ISD::BITCAST;
1866   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1867   case ICmp:           return ISD::SETCC;
1868   case FCmp:           return ISD::SETCC;
1869   case PHI:            return 0;
1870   case Call:           return 0;
1871   case Select:         return ISD::SELECT;
1872   case UserOp1:        return 0;
1873   case UserOp2:        return 0;
1874   case VAArg:          return 0;
1875   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1876   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1877   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1878   case ExtractValue:   return ISD::MERGE_VALUES;
1879   case InsertValue:    return ISD::MERGE_VALUES;
1880   case LandingPad:     return 0;
1881   }
1882 
1883   llvm_unreachable("Unknown instruction type encountered!");
1884 }
1885 
1886 std::pair<int, MVT>
1887 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1888                                             Type *Ty) const {
1889   LLVMContext &C = Ty->getContext();
1890   EVT MTy = getValueType(DL, Ty);
1891 
1892   int Cost = 1;
1893   // We keep legalizing the type until we find a legal kind. We assume that
1894   // the only operation that costs anything is the split. After splitting
1895   // we need to handle two types.
1896   while (true) {
1897     LegalizeKind LK = getTypeConversion(C, MTy);
1898 
1899     if (LK.first == TypeLegal)
1900       return std::make_pair(Cost, MTy.getSimpleVT());
1901 
1902     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1903       Cost *= 2;
1904 
1905     // Do not loop with f128 type.
1906     if (MTy == LK.second)
1907       return std::make_pair(Cost, MTy.getSimpleVT());
1908 
1909     // Keep legalizing the type.
1910     MTy = LK.second;
1911   }
1912 }
1913 
1914 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1915   if (!TM.getTargetTriple().isAndroid())
1916     return nullptr;
1917 
1918   // Android provides a libc function to retrieve the address of the current
1919   // thread's unsafe stack pointer.
1920   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1921   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1922   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1923                                      StackPtrTy->getPointerTo(0), nullptr);
1924   return IRB.CreateCall(Fn);
1925 }
1926 
1927 //===----------------------------------------------------------------------===//
1928 //  Loop Strength Reduction hooks
1929 //===----------------------------------------------------------------------===//
1930 
1931 /// isLegalAddressingMode - Return true if the addressing mode represented
1932 /// by AM is legal for this target, for a load/store of the specified type.
1933 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1934                                                const AddrMode &AM, Type *Ty,
1935                                                unsigned AS) const {
1936   // The default implementation of this implements a conservative RISCy, r+r and
1937   // r+i addr mode.
1938 
1939   // Allows a sign-extended 16-bit immediate field.
1940   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1941     return false;
1942 
1943   // No global is ever allowed as a base.
1944   if (AM.BaseGV)
1945     return false;
1946 
1947   // Only support r+r,
1948   switch (AM.Scale) {
1949   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1950     break;
1951   case 1:
1952     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1953       return false;
1954     // Otherwise we have r+r or r+i.
1955     break;
1956   case 2:
1957     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1958       return false;
1959     // Allow 2*r as r+r.
1960     break;
1961   default: // Don't allow n * r
1962     return false;
1963   }
1964 
1965   return true;
1966 }
1967 
1968 //===----------------------------------------------------------------------===//
1969 //  Stack Protector
1970 //===----------------------------------------------------------------------===//
1971 
1972 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1973 // so that SelectionDAG handle SSP.
1974 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1975   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1976     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1977     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1978     return M.getOrInsertGlobal("__guard_local", PtrTy);
1979   }
1980   return nullptr;
1981 }
1982 
1983 // Currently only support "standard" __stack_chk_guard.
1984 // TODO: add LOAD_STACK_GUARD support.
1985 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1986   M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
1987 }
1988 
1989 // Currently only support "standard" __stack_chk_guard.
1990 // TODO: add LOAD_STACK_GUARD support.
1991 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1992   return M.getGlobalVariable("__stack_chk_guard", true);
1993 }
1994 
1995 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1996   return nullptr;
1997 }
1998