1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118   setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121   // Initialize calling conventions to their default.
122   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124 
125   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126   if (TT.isPPC()) {
127     setLibcallName(RTLIB::ADD_F128, "__addkf3");
128     setLibcallName(RTLIB::SUB_F128, "__subkf3");
129     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130     setLibcallName(RTLIB::DIV_F128, "__divkf3");
131     setLibcallName(RTLIB::POWI_F128, "__powikf2");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149     setLibcallName(RTLIB::UNE_F128, "__nekf2");
150     setLibcallName(RTLIB::OGE_F128, "__gekf2");
151     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152     setLibcallName(RTLIB::OLE_F128, "__lekf2");
153     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154     setLibcallName(RTLIB::UO_F128, "__unordkf2");
155   }
156 
157   // A few names are different on particular architectures or environments.
158   if (TT.isOSDarwin()) {
159     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160     // of the gnueabi-style __gnu_*_ieee.
161     // FIXME: What about other targets?
162     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164 
165     // Some darwins have an optimized __bzero/bzero function.
166     switch (TT.getArch()) {
167     case Triple::x86:
168     case Triple::x86_64:
169       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170         setLibcallName(RTLIB::BZERO, "__bzero");
171       break;
172     case Triple::aarch64:
173     case Triple::aarch64_32:
174       setLibcallName(RTLIB::BZERO, "bzero");
175       break;
176     default:
177       break;
178     }
179 
180     if (darwinHasSinCos(TT)) {
181       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183       if (TT.isWatchABI()) {
184         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                               CallingConv::ARM_AAPCS_VFP);
186         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                               CallingConv::ARM_AAPCS_VFP);
188       }
189     }
190   } else {
191     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193   }
194 
195   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198     setLibcallName(RTLIB::SINCOS_F64, "sincos");
199     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202   }
203 
204   if (TT.isPS4()) {
205     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206     setLibcallName(RTLIB::SINCOS_F64, "sincos");
207   }
208 
209   if (TT.isOSOpenBSD()) {
210     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211   }
212 }
213 
214 /// GetFPLibCall - Helper to return the right libcall for the given floating
215 /// point type, or UNKNOWN_LIBCALL if there is none.
216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
217                                    RTLIB::Libcall Call_F32,
218                                    RTLIB::Libcall Call_F64,
219                                    RTLIB::Libcall Call_F80,
220                                    RTLIB::Libcall Call_F128,
221                                    RTLIB::Libcall Call_PPCF128) {
222   return
223     VT == MVT::f32 ? Call_F32 :
224     VT == MVT::f64 ? Call_F64 :
225     VT == MVT::f80 ? Call_F80 :
226     VT == MVT::f128 ? Call_F128 :
227     VT == MVT::ppcf128 ? Call_PPCF128 :
228     RTLIB::UNKNOWN_LIBCALL;
229 }
230 
231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
232 /// UNKNOWN_LIBCALL if there is none.
233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
234   if (OpVT == MVT::f16) {
235     if (RetVT == MVT::f32)
236       return FPEXT_F16_F32;
237     if (RetVT == MVT::f64)
238       return FPEXT_F16_F64;
239     if (RetVT == MVT::f80)
240       return FPEXT_F16_F80;
241     if (RetVT == MVT::f128)
242       return FPEXT_F16_F128;
243   } else if (OpVT == MVT::f32) {
244     if (RetVT == MVT::f64)
245       return FPEXT_F32_F64;
246     if (RetVT == MVT::f128)
247       return FPEXT_F32_F128;
248     if (RetVT == MVT::ppcf128)
249       return FPEXT_F32_PPCF128;
250   } else if (OpVT == MVT::f64) {
251     if (RetVT == MVT::f128)
252       return FPEXT_F64_F128;
253     else if (RetVT == MVT::ppcf128)
254       return FPEXT_F64_PPCF128;
255   } else if (OpVT == MVT::f80) {
256     if (RetVT == MVT::f128)
257       return FPEXT_F80_F128;
258   }
259 
260   return UNKNOWN_LIBCALL;
261 }
262 
263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
264 /// UNKNOWN_LIBCALL if there is none.
265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
266   if (RetVT == MVT::f16) {
267     if (OpVT == MVT::f32)
268       return FPROUND_F32_F16;
269     if (OpVT == MVT::f64)
270       return FPROUND_F64_F16;
271     if (OpVT == MVT::f80)
272       return FPROUND_F80_F16;
273     if (OpVT == MVT::f128)
274       return FPROUND_F128_F16;
275     if (OpVT == MVT::ppcf128)
276       return FPROUND_PPCF128_F16;
277   } else if (RetVT == MVT::bf16) {
278     if (OpVT == MVT::f32)
279       return FPROUND_F32_BF16;
280   } else if (RetVT == MVT::f32) {
281     if (OpVT == MVT::f64)
282       return FPROUND_F64_F32;
283     if (OpVT == MVT::f80)
284       return FPROUND_F80_F32;
285     if (OpVT == MVT::f128)
286       return FPROUND_F128_F32;
287     if (OpVT == MVT::ppcf128)
288       return FPROUND_PPCF128_F32;
289   } else if (RetVT == MVT::f64) {
290     if (OpVT == MVT::f80)
291       return FPROUND_F80_F64;
292     if (OpVT == MVT::f128)
293       return FPROUND_F128_F64;
294     if (OpVT == MVT::ppcf128)
295       return FPROUND_PPCF128_F64;
296   } else if (RetVT == MVT::f80) {
297     if (OpVT == MVT::f128)
298       return FPROUND_F128_F80;
299   }
300 
301   return UNKNOWN_LIBCALL;
302 }
303 
304 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
305 /// UNKNOWN_LIBCALL if there is none.
306 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
307   if (OpVT == MVT::f16) {
308     if (RetVT == MVT::i32)
309       return FPTOSINT_F16_I32;
310     if (RetVT == MVT::i64)
311       return FPTOSINT_F16_I64;
312     if (RetVT == MVT::i128)
313       return FPTOSINT_F16_I128;
314   } else if (OpVT == MVT::f32) {
315     if (RetVT == MVT::i32)
316       return FPTOSINT_F32_I32;
317     if (RetVT == MVT::i64)
318       return FPTOSINT_F32_I64;
319     if (RetVT == MVT::i128)
320       return FPTOSINT_F32_I128;
321   } else if (OpVT == MVT::f64) {
322     if (RetVT == MVT::i32)
323       return FPTOSINT_F64_I32;
324     if (RetVT == MVT::i64)
325       return FPTOSINT_F64_I64;
326     if (RetVT == MVT::i128)
327       return FPTOSINT_F64_I128;
328   } else if (OpVT == MVT::f80) {
329     if (RetVT == MVT::i32)
330       return FPTOSINT_F80_I32;
331     if (RetVT == MVT::i64)
332       return FPTOSINT_F80_I64;
333     if (RetVT == MVT::i128)
334       return FPTOSINT_F80_I128;
335   } else if (OpVT == MVT::f128) {
336     if (RetVT == MVT::i32)
337       return FPTOSINT_F128_I32;
338     if (RetVT == MVT::i64)
339       return FPTOSINT_F128_I64;
340     if (RetVT == MVT::i128)
341       return FPTOSINT_F128_I128;
342   } else if (OpVT == MVT::ppcf128) {
343     if (RetVT == MVT::i32)
344       return FPTOSINT_PPCF128_I32;
345     if (RetVT == MVT::i64)
346       return FPTOSINT_PPCF128_I64;
347     if (RetVT == MVT::i128)
348       return FPTOSINT_PPCF128_I128;
349   }
350   return UNKNOWN_LIBCALL;
351 }
352 
353 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
354 /// UNKNOWN_LIBCALL if there is none.
355 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
356   if (OpVT == MVT::f16) {
357     if (RetVT == MVT::i32)
358       return FPTOUINT_F16_I32;
359     if (RetVT == MVT::i64)
360       return FPTOUINT_F16_I64;
361     if (RetVT == MVT::i128)
362       return FPTOUINT_F16_I128;
363   } else if (OpVT == MVT::f32) {
364     if (RetVT == MVT::i32)
365       return FPTOUINT_F32_I32;
366     if (RetVT == MVT::i64)
367       return FPTOUINT_F32_I64;
368     if (RetVT == MVT::i128)
369       return FPTOUINT_F32_I128;
370   } else if (OpVT == MVT::f64) {
371     if (RetVT == MVT::i32)
372       return FPTOUINT_F64_I32;
373     if (RetVT == MVT::i64)
374       return FPTOUINT_F64_I64;
375     if (RetVT == MVT::i128)
376       return FPTOUINT_F64_I128;
377   } else if (OpVT == MVT::f80) {
378     if (RetVT == MVT::i32)
379       return FPTOUINT_F80_I32;
380     if (RetVT == MVT::i64)
381       return FPTOUINT_F80_I64;
382     if (RetVT == MVT::i128)
383       return FPTOUINT_F80_I128;
384   } else if (OpVT == MVT::f128) {
385     if (RetVT == MVT::i32)
386       return FPTOUINT_F128_I32;
387     if (RetVT == MVT::i64)
388       return FPTOUINT_F128_I64;
389     if (RetVT == MVT::i128)
390       return FPTOUINT_F128_I128;
391   } else if (OpVT == MVT::ppcf128) {
392     if (RetVT == MVT::i32)
393       return FPTOUINT_PPCF128_I32;
394     if (RetVT == MVT::i64)
395       return FPTOUINT_PPCF128_I64;
396     if (RetVT == MVT::i128)
397       return FPTOUINT_PPCF128_I128;
398   }
399   return UNKNOWN_LIBCALL;
400 }
401 
402 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
403 /// UNKNOWN_LIBCALL if there is none.
404 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
405   if (OpVT == MVT::i32) {
406     if (RetVT == MVT::f16)
407       return SINTTOFP_I32_F16;
408     if (RetVT == MVT::f32)
409       return SINTTOFP_I32_F32;
410     if (RetVT == MVT::f64)
411       return SINTTOFP_I32_F64;
412     if (RetVT == MVT::f80)
413       return SINTTOFP_I32_F80;
414     if (RetVT == MVT::f128)
415       return SINTTOFP_I32_F128;
416     if (RetVT == MVT::ppcf128)
417       return SINTTOFP_I32_PPCF128;
418   } else if (OpVT == MVT::i64) {
419     if (RetVT == MVT::f16)
420       return SINTTOFP_I64_F16;
421     if (RetVT == MVT::f32)
422       return SINTTOFP_I64_F32;
423     if (RetVT == MVT::f64)
424       return SINTTOFP_I64_F64;
425     if (RetVT == MVT::f80)
426       return SINTTOFP_I64_F80;
427     if (RetVT == MVT::f128)
428       return SINTTOFP_I64_F128;
429     if (RetVT == MVT::ppcf128)
430       return SINTTOFP_I64_PPCF128;
431   } else if (OpVT == MVT::i128) {
432     if (RetVT == MVT::f16)
433       return SINTTOFP_I128_F16;
434     if (RetVT == MVT::f32)
435       return SINTTOFP_I128_F32;
436     if (RetVT == MVT::f64)
437       return SINTTOFP_I128_F64;
438     if (RetVT == MVT::f80)
439       return SINTTOFP_I128_F80;
440     if (RetVT == MVT::f128)
441       return SINTTOFP_I128_F128;
442     if (RetVT == MVT::ppcf128)
443       return SINTTOFP_I128_PPCF128;
444   }
445   return UNKNOWN_LIBCALL;
446 }
447 
448 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
449 /// UNKNOWN_LIBCALL if there is none.
450 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
451   if (OpVT == MVT::i32) {
452     if (RetVT == MVT::f16)
453       return UINTTOFP_I32_F16;
454     if (RetVT == MVT::f32)
455       return UINTTOFP_I32_F32;
456     if (RetVT == MVT::f64)
457       return UINTTOFP_I32_F64;
458     if (RetVT == MVT::f80)
459       return UINTTOFP_I32_F80;
460     if (RetVT == MVT::f128)
461       return UINTTOFP_I32_F128;
462     if (RetVT == MVT::ppcf128)
463       return UINTTOFP_I32_PPCF128;
464   } else if (OpVT == MVT::i64) {
465     if (RetVT == MVT::f16)
466       return UINTTOFP_I64_F16;
467     if (RetVT == MVT::f32)
468       return UINTTOFP_I64_F32;
469     if (RetVT == MVT::f64)
470       return UINTTOFP_I64_F64;
471     if (RetVT == MVT::f80)
472       return UINTTOFP_I64_F80;
473     if (RetVT == MVT::f128)
474       return UINTTOFP_I64_F128;
475     if (RetVT == MVT::ppcf128)
476       return UINTTOFP_I64_PPCF128;
477   } else if (OpVT == MVT::i128) {
478     if (RetVT == MVT::f16)
479       return UINTTOFP_I128_F16;
480     if (RetVT == MVT::f32)
481       return UINTTOFP_I128_F32;
482     if (RetVT == MVT::f64)
483       return UINTTOFP_I128_F64;
484     if (RetVT == MVT::f80)
485       return UINTTOFP_I128_F80;
486     if (RetVT == MVT::f128)
487       return UINTTOFP_I128_F128;
488     if (RetVT == MVT::ppcf128)
489       return UINTTOFP_I128_PPCF128;
490   }
491   return UNKNOWN_LIBCALL;
492 }
493 
494 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
495   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
496                       POWI_PPCF128);
497 }
498 
499 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
500                                         MVT VT) {
501   unsigned ModeN, ModelN;
502   switch (VT.SimpleTy) {
503   case MVT::i8:
504     ModeN = 0;
505     break;
506   case MVT::i16:
507     ModeN = 1;
508     break;
509   case MVT::i32:
510     ModeN = 2;
511     break;
512   case MVT::i64:
513     ModeN = 3;
514     break;
515   case MVT::i128:
516     ModeN = 4;
517     break;
518   default:
519     return UNKNOWN_LIBCALL;
520   }
521 
522   switch (Order) {
523   case AtomicOrdering::Monotonic:
524     ModelN = 0;
525     break;
526   case AtomicOrdering::Acquire:
527     ModelN = 1;
528     break;
529   case AtomicOrdering::Release:
530     ModelN = 2;
531     break;
532   case AtomicOrdering::AcquireRelease:
533   case AtomicOrdering::SequentiallyConsistent:
534     ModelN = 3;
535     break;
536   default:
537     return UNKNOWN_LIBCALL;
538   }
539 
540 #define LCALLS(A, B)                                                           \
541   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
542 #define LCALL5(A)                                                              \
543   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
544   switch (Opc) {
545   case ISD::ATOMIC_CMP_SWAP: {
546     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
547     return LC[ModeN][ModelN];
548   }
549   case ISD::ATOMIC_SWAP: {
550     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
551     return LC[ModeN][ModelN];
552   }
553   case ISD::ATOMIC_LOAD_ADD: {
554     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
555     return LC[ModeN][ModelN];
556   }
557   case ISD::ATOMIC_LOAD_OR: {
558     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
559     return LC[ModeN][ModelN];
560   }
561   case ISD::ATOMIC_LOAD_CLR: {
562     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
563     return LC[ModeN][ModelN];
564   }
565   case ISD::ATOMIC_LOAD_XOR: {
566     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
567     return LC[ModeN][ModelN];
568   }
569   default:
570     return UNKNOWN_LIBCALL;
571   }
572 #undef LCALLS
573 #undef LCALL5
574 }
575 
576 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
577 #define OP_TO_LIBCALL(Name, Enum)                                              \
578   case Name:                                                                   \
579     switch (VT.SimpleTy) {                                                     \
580     default:                                                                   \
581       return UNKNOWN_LIBCALL;                                                  \
582     case MVT::i8:                                                              \
583       return Enum##_1;                                                         \
584     case MVT::i16:                                                             \
585       return Enum##_2;                                                         \
586     case MVT::i32:                                                             \
587       return Enum##_4;                                                         \
588     case MVT::i64:                                                             \
589       return Enum##_8;                                                         \
590     case MVT::i128:                                                            \
591       return Enum##_16;                                                        \
592     }
593 
594   switch (Opc) {
595     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
596     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
597     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
598     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
599     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
600     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
601     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
602     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
603     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
604     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
605     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
606     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
607   }
608 
609 #undef OP_TO_LIBCALL
610 
611   return UNKNOWN_LIBCALL;
612 }
613 
614 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
615   switch (ElementSize) {
616   case 1:
617     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
618   case 2:
619     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
620   case 4:
621     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
622   case 8:
623     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
624   case 16:
625     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
626   default:
627     return UNKNOWN_LIBCALL;
628   }
629 }
630 
631 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
632   switch (ElementSize) {
633   case 1:
634     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
635   case 2:
636     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
637   case 4:
638     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
639   case 8:
640     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
641   case 16:
642     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
643   default:
644     return UNKNOWN_LIBCALL;
645   }
646 }
647 
648 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
649   switch (ElementSize) {
650   case 1:
651     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
652   case 2:
653     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
654   case 4:
655     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
656   case 8:
657     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
658   case 16:
659     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
660   default:
661     return UNKNOWN_LIBCALL;
662   }
663 }
664 
665 /// InitCmpLibcallCCs - Set default comparison libcall CC.
666 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
667   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
668   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
669   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
670   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
671   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
672   CCs[RTLIB::UNE_F32] = ISD::SETNE;
673   CCs[RTLIB::UNE_F64] = ISD::SETNE;
674   CCs[RTLIB::UNE_F128] = ISD::SETNE;
675   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
676   CCs[RTLIB::OGE_F32] = ISD::SETGE;
677   CCs[RTLIB::OGE_F64] = ISD::SETGE;
678   CCs[RTLIB::OGE_F128] = ISD::SETGE;
679   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
680   CCs[RTLIB::OLT_F32] = ISD::SETLT;
681   CCs[RTLIB::OLT_F64] = ISD::SETLT;
682   CCs[RTLIB::OLT_F128] = ISD::SETLT;
683   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
684   CCs[RTLIB::OLE_F32] = ISD::SETLE;
685   CCs[RTLIB::OLE_F64] = ISD::SETLE;
686   CCs[RTLIB::OLE_F128] = ISD::SETLE;
687   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
688   CCs[RTLIB::OGT_F32] = ISD::SETGT;
689   CCs[RTLIB::OGT_F64] = ISD::SETGT;
690   CCs[RTLIB::OGT_F128] = ISD::SETGT;
691   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
692   CCs[RTLIB::UO_F32] = ISD::SETNE;
693   CCs[RTLIB::UO_F64] = ISD::SETNE;
694   CCs[RTLIB::UO_F128] = ISD::SETNE;
695   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
696 }
697 
698 /// NOTE: The TargetMachine owns TLOF.
699 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
700   initActions();
701 
702   // Perform these initializations only once.
703   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
704       MaxLoadsPerMemcmp = 8;
705   MaxGluedStoresPerMemcpy = 0;
706   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
707       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
708   HasMultipleConditionRegisters = false;
709   HasExtractBitsInsn = false;
710   JumpIsExpensive = JumpIsExpensiveOverride;
711   PredictableSelectIsExpensive = false;
712   EnableExtLdPromotion = false;
713   StackPointerRegisterToSaveRestore = 0;
714   BooleanContents = UndefinedBooleanContent;
715   BooleanFloatContents = UndefinedBooleanContent;
716   BooleanVectorContents = UndefinedBooleanContent;
717   SchedPreferenceInfo = Sched::ILP;
718   GatherAllAliasesMaxDepth = 18;
719   IsStrictFPEnabled = DisableStrictNodeMutation;
720   MaxBytesForAlignment = 0;
721   // TODO: the default will be switched to 0 in the next commit, along
722   // with the Target-specific changes necessary.
723   MaxAtomicSizeInBitsSupported = 1024;
724 
725   MinCmpXchgSizeInBits = 0;
726   SupportsUnalignedAtomics = false;
727 
728   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
729 
730   InitLibcalls(TM.getTargetTriple());
731   InitCmpLibcallCCs(CmpLibcallCCs);
732 }
733 
734 void TargetLoweringBase::initActions() {
735   // All operations default to being supported.
736   memset(OpActions, 0, sizeof(OpActions));
737   memset(LoadExtActions, 0, sizeof(LoadExtActions));
738   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
739   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
740   memset(CondCodeActions, 0, sizeof(CondCodeActions));
741   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
742   std::fill(std::begin(TargetDAGCombineArray),
743             std::end(TargetDAGCombineArray), 0);
744 
745   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
746   // remove this and targets should individually set these types if not legal.
747   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
748                                    force_iteration_on_noniterable_enum)) {
749     for (MVT VT : {MVT::i2, MVT::i4})
750       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
751   }
752   for (MVT AVT : MVT::all_valuetypes()) {
753     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
754       setTruncStoreAction(AVT, VT, Expand);
755       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
756       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
757     }
758   }
759   for (unsigned IM = (unsigned)ISD::PRE_INC;
760        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
761     for (MVT VT : {MVT::i2, MVT::i4}) {
762       setIndexedLoadAction(IM, VT, Expand);
763       setIndexedStoreAction(IM, VT, Expand);
764       setIndexedMaskedLoadAction(IM, VT, Expand);
765       setIndexedMaskedStoreAction(IM, VT, Expand);
766     }
767   }
768 
769   for (MVT VT : MVT::fp_valuetypes()) {
770     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
771     if (IntVT.isValid()) {
772       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
773       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
774     }
775   }
776 
777   // Set default actions for various operations.
778   for (MVT VT : MVT::all_valuetypes()) {
779     // Default all indexed load / store to expand.
780     for (unsigned IM = (unsigned)ISD::PRE_INC;
781          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
782       setIndexedLoadAction(IM, VT, Expand);
783       setIndexedStoreAction(IM, VT, Expand);
784       setIndexedMaskedLoadAction(IM, VT, Expand);
785       setIndexedMaskedStoreAction(IM, VT, Expand);
786     }
787 
788     // Most backends expect to see the node which just returns the value loaded.
789     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
790 
791     // These operations default to expand.
792     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
793                         ISD::FMINNUM,        ISD::FMAXNUM,
794                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
795                         ISD::FMINIMUM,       ISD::FMAXIMUM,
796                         ISD::FMAD,           ISD::SMIN,
797                         ISD::SMAX,           ISD::UMIN,
798                         ISD::UMAX,           ISD::ABS,
799                         ISD::FSHL,           ISD::FSHR,
800                         ISD::SADDSAT,        ISD::UADDSAT,
801                         ISD::SSUBSAT,        ISD::USUBSAT,
802                         ISD::SSHLSAT,        ISD::USHLSAT,
803                         ISD::SMULFIX,        ISD::SMULFIXSAT,
804                         ISD::UMULFIX,        ISD::UMULFIXSAT,
805                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
806                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
807                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
808                         ISD::IS_FPCLASS},
809                        VT, Expand);
810 
811     // Overflow operations default to expand
812     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
813                         ISD::SMULO, ISD::UMULO},
814                        VT, Expand);
815 
816     // ADDCARRY operations default to expand
817     setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY,
818                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
819                        VT, Expand);
820 
821     // ADDC/ADDE/SUBC/SUBE default to expand.
822     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
823                        Expand);
824 
825     // Halving adds
826     setOperationAction(
827         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
828         Expand);
829 
830     // Absolute difference
831     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
832 
833     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
834     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
835                        Expand);
836 
837     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
838 
839     // These library functions default to expand.
840     setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand);
841 
842     // These operations default to expand for vector types.
843     if (VT.isVector())
844       setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG,
845                           ISD::ANY_EXTEND_VECTOR_INREG,
846                           ISD::SIGN_EXTEND_VECTOR_INREG,
847                           ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR},
848                          VT, Expand);
849 
850     // Constrained floating-point operations default to expand.
851 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
852     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
853 #include "llvm/IR/ConstrainedOps.def"
854 
855     // For most targets @llvm.get.dynamic.area.offset just returns 0.
856     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
857 
858     // Vector reduction default to expand.
859     setOperationAction(
860         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
861          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
862          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
863          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
864          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
865         VT, Expand);
866 
867     // Named vector shuffles default to expand.
868     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
869   }
870 
871   // Most targets ignore the @llvm.prefetch intrinsic.
872   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
873 
874   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
875   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
876 
877   // ConstantFP nodes default to expand.  Targets can either change this to
878   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
879   // to optimize expansions for certain constants.
880   setOperationAction(ISD::ConstantFP,
881                      {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
882                      Expand);
883 
884   // These library functions default to expand.
885   setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
886                       ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
887                       ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND,
888                       ISD::LRINT, ISD::LLRINT},
889                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
890 
891   // Default ISD::TRAP to expand (which turns it into abort).
892   setOperationAction(ISD::TRAP, MVT::Other, Expand);
893 
894   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
895   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
896   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
897 
898   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
899 }
900 
901 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
902                                                EVT) const {
903   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
904 }
905 
906 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
907                                          bool LegalTypes) const {
908   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
909   if (LHSTy.isVector())
910     return LHSTy;
911   MVT ShiftVT =
912       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
913   // If any possible shift value won't fit in the prefered type, just use
914   // something safe. Assume it will be legalized when the shift is expanded.
915   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
916     ShiftVT = MVT::i32;
917   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
918          "ShiftVT is still too small!");
919   return ShiftVT;
920 }
921 
922 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
923   assert(isTypeLegal(VT));
924   switch (Op) {
925   default:
926     return false;
927   case ISD::SDIV:
928   case ISD::UDIV:
929   case ISD::SREM:
930   case ISD::UREM:
931     return true;
932   }
933 }
934 
935 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
936                                              unsigned DestAS) const {
937   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
938 }
939 
940 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
941   // If the command-line option was specified, ignore this request.
942   if (!JumpIsExpensiveOverride.getNumOccurrences())
943     JumpIsExpensive = isExpensive;
944 }
945 
946 TargetLoweringBase::LegalizeKind
947 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
948   // If this is a simple type, use the ComputeRegisterProp mechanism.
949   if (VT.isSimple()) {
950     MVT SVT = VT.getSimpleVT();
951     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
952     MVT NVT = TransformToType[SVT.SimpleTy];
953     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
954 
955     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
956             LA == TypeSoftPromoteHalf ||
957             (NVT.isVector() ||
958              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
959            "Promote may not follow Expand or Promote");
960 
961     if (LA == TypeSplitVector)
962       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
963     if (LA == TypeScalarizeVector)
964       return LegalizeKind(LA, SVT.getVectorElementType());
965     return LegalizeKind(LA, NVT);
966   }
967 
968   // Handle Extended Scalar Types.
969   if (!VT.isVector()) {
970     assert(VT.isInteger() && "Float types must be simple");
971     unsigned BitSize = VT.getSizeInBits();
972     // First promote to a power-of-two size, then expand if necessary.
973     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
974       EVT NVT = VT.getRoundIntegerType(Context);
975       assert(NVT != VT && "Unable to round integer VT");
976       LegalizeKind NextStep = getTypeConversion(Context, NVT);
977       // Avoid multi-step promotion.
978       if (NextStep.first == TypePromoteInteger)
979         return NextStep;
980       // Return rounded integer type.
981       return LegalizeKind(TypePromoteInteger, NVT);
982     }
983 
984     return LegalizeKind(TypeExpandInteger,
985                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
986   }
987 
988   // Handle vector types.
989   ElementCount NumElts = VT.getVectorElementCount();
990   EVT EltVT = VT.getVectorElementType();
991 
992   // Vectors with only one element are always scalarized.
993   if (NumElts.isScalar())
994     return LegalizeKind(TypeScalarizeVector, EltVT);
995 
996   // Try to widen vector elements until the element type is a power of two and
997   // promote it to a legal type later on, for example:
998   // <3 x i8> -> <4 x i8> -> <4 x i32>
999   if (EltVT.isInteger()) {
1000     // Vectors with a number of elements that is not a power of two are always
1001     // widened, for example <3 x i8> -> <4 x i8>.
1002     if (!VT.isPow2VectorType()) {
1003       NumElts = NumElts.coefficientNextPowerOf2();
1004       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1005       return LegalizeKind(TypeWidenVector, NVT);
1006     }
1007 
1008     // Examine the element type.
1009     LegalizeKind LK = getTypeConversion(Context, EltVT);
1010 
1011     // If type is to be expanded, split the vector.
1012     //  <4 x i140> -> <2 x i140>
1013     if (LK.first == TypeExpandInteger) {
1014       if (VT.getVectorElementCount().isScalable())
1015         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1016       return LegalizeKind(TypeSplitVector,
1017                           VT.getHalfNumVectorElementsVT(Context));
1018     }
1019 
1020     // Promote the integer element types until a legal vector type is found
1021     // or until the element integer type is too big. If a legal type was not
1022     // found, fallback to the usual mechanism of widening/splitting the
1023     // vector.
1024     EVT OldEltVT = EltVT;
1025     while (true) {
1026       // Increase the bitwidth of the element to the next pow-of-two
1027       // (which is greater than 8 bits).
1028       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1029                   .getRoundIntegerType(Context);
1030 
1031       // Stop trying when getting a non-simple element type.
1032       // Note that vector elements may be greater than legal vector element
1033       // types. Example: X86 XMM registers hold 64bit element on 32bit
1034       // systems.
1035       if (!EltVT.isSimple())
1036         break;
1037 
1038       // Build a new vector type and check if it is legal.
1039       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1040       // Found a legal promoted vector type.
1041       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1042         return LegalizeKind(TypePromoteInteger,
1043                             EVT::getVectorVT(Context, EltVT, NumElts));
1044     }
1045 
1046     // Reset the type to the unexpanded type if we did not find a legal vector
1047     // type with a promoted vector element type.
1048     EltVT = OldEltVT;
1049   }
1050 
1051   // Try to widen the vector until a legal type is found.
1052   // If there is no wider legal type, split the vector.
1053   while (true) {
1054     // Round up to the next power of 2.
1055     NumElts = NumElts.coefficientNextPowerOf2();
1056 
1057     // If there is no simple vector type with this many elements then there
1058     // cannot be a larger legal vector type.  Note that this assumes that
1059     // there are no skipped intermediate vector types in the simple types.
1060     if (!EltVT.isSimple())
1061       break;
1062     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1063     if (LargerVector == MVT())
1064       break;
1065 
1066     // If this type is legal then widen the vector.
1067     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1068       return LegalizeKind(TypeWidenVector, LargerVector);
1069   }
1070 
1071   // Widen odd vectors to next power of two.
1072   if (!VT.isPow2VectorType()) {
1073     EVT NVT = VT.getPow2VectorType(Context);
1074     return LegalizeKind(TypeWidenVector, NVT);
1075   }
1076 
1077   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1078     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1079 
1080   // Vectors with illegal element types are expanded.
1081   EVT NVT = EVT::getVectorVT(Context, EltVT,
1082                              VT.getVectorElementCount().divideCoefficientBy(2));
1083   return LegalizeKind(TypeSplitVector, NVT);
1084 }
1085 
1086 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1087                                           unsigned &NumIntermediates,
1088                                           MVT &RegisterVT,
1089                                           TargetLoweringBase *TLI) {
1090   // Figure out the right, legal destination reg to copy into.
1091   ElementCount EC = VT.getVectorElementCount();
1092   MVT EltTy = VT.getVectorElementType();
1093 
1094   unsigned NumVectorRegs = 1;
1095 
1096   // Scalable vectors cannot be scalarized, so splitting or widening is
1097   // required.
1098   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1099     llvm_unreachable(
1100         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1101 
1102   // FIXME: We don't support non-power-of-2-sized vectors for now.
1103   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1104   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1105     // Split EC to unit size (scalable property is preserved).
1106     NumVectorRegs = EC.getKnownMinValue();
1107     EC = ElementCount::getFixed(1);
1108   }
1109 
1110   // Divide the input until we get to a supported size. This will
1111   // always end up with an EC that represent a scalar or a scalable
1112   // scalar.
1113   while (EC.getKnownMinValue() > 1 &&
1114          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1115     EC = EC.divideCoefficientBy(2);
1116     NumVectorRegs <<= 1;
1117   }
1118 
1119   NumIntermediates = NumVectorRegs;
1120 
1121   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1122   if (!TLI->isTypeLegal(NewVT))
1123     NewVT = EltTy;
1124   IntermediateVT = NewVT;
1125 
1126   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1127 
1128   // Convert sizes such as i33 to i64.
1129   if (!isPowerOf2_32(LaneSizeInBits))
1130     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1131 
1132   MVT DestVT = TLI->getRegisterType(NewVT);
1133   RegisterVT = DestVT;
1134   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1135     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1136 
1137   // Otherwise, promotion or legal types use the same number of registers as
1138   // the vector decimated to the appropriate level.
1139   return NumVectorRegs;
1140 }
1141 
1142 /// isLegalRC - Return true if the value types that can be represented by the
1143 /// specified register class are all legal.
1144 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1145                                    const TargetRegisterClass &RC) const {
1146   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1147     if (isTypeLegal(*I))
1148       return true;
1149   return false;
1150 }
1151 
1152 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1153 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1154 MachineBasicBlock *
1155 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1156                                    MachineBasicBlock *MBB) const {
1157   MachineInstr *MI = &InitialMI;
1158   MachineFunction &MF = *MI->getMF();
1159   MachineFrameInfo &MFI = MF.getFrameInfo();
1160 
1161   // We're handling multiple types of operands here:
1162   // PATCHPOINT MetaArgs - live-in, read only, direct
1163   // STATEPOINT Deopt Spill - live-through, read only, indirect
1164   // STATEPOINT Deopt Alloca - live-through, read only, direct
1165   // (We're currently conservative and mark the deopt slots read/write in
1166   // practice.)
1167   // STATEPOINT GC Spill - live-through, read/write, indirect
1168   // STATEPOINT GC Alloca - live-through, read/write, direct
1169   // The live-in vs live-through is handled already (the live through ones are
1170   // all stack slots), but we need to handle the different type of stackmap
1171   // operands and memory effects here.
1172 
1173   if (llvm::none_of(MI->operands(),
1174                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1175     return MBB;
1176 
1177   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1178 
1179   // Inherit previous memory operands.
1180   MIB.cloneMemRefs(*MI);
1181 
1182   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1183     MachineOperand &MO = MI->getOperand(i);
1184     if (!MO.isFI()) {
1185       // Index of Def operand this Use it tied to.
1186       // Since Defs are coming before Uses, if Use is tied, then
1187       // index of Def must be smaller that index of that Use.
1188       // Also, Defs preserve their position in new MI.
1189       unsigned TiedTo = i;
1190       if (MO.isReg() && MO.isTied())
1191         TiedTo = MI->findTiedOperandIdx(i);
1192       MIB.add(MO);
1193       if (TiedTo < i)
1194         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1195       continue;
1196     }
1197 
1198     // foldMemoryOperand builds a new MI after replacing a single FI operand
1199     // with the canonical set of five x86 addressing-mode operands.
1200     int FI = MO.getIndex();
1201 
1202     // Add frame index operands recognized by stackmaps.cpp
1203     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1204       // indirect-mem-ref tag, size, #FI, offset.
1205       // Used for spills inserted by StatepointLowering.  This codepath is not
1206       // used for patchpoints/stackmaps at all, for these spilling is done via
1207       // foldMemoryOperand callback only.
1208       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1209       MIB.addImm(StackMaps::IndirectMemRefOp);
1210       MIB.addImm(MFI.getObjectSize(FI));
1211       MIB.add(MO);
1212       MIB.addImm(0);
1213     } else {
1214       // direct-mem-ref tag, #FI, offset.
1215       // Used by patchpoint, and direct alloca arguments to statepoints
1216       MIB.addImm(StackMaps::DirectMemRefOp);
1217       MIB.add(MO);
1218       MIB.addImm(0);
1219     }
1220 
1221     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1222 
1223     // Add a new memory operand for this FI.
1224     assert(MFI.getObjectOffset(FI) != -1);
1225 
1226     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1227     // PATCHPOINT should be updated to do the same. (TODO)
1228     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1229       auto Flags = MachineMemOperand::MOLoad;
1230       MachineMemOperand *MMO = MF.getMachineMemOperand(
1231           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1232           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1233       MIB->addMemOperand(MF, MMO);
1234     }
1235   }
1236   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1237   MI->eraseFromParent();
1238   return MBB;
1239 }
1240 
1241 /// findRepresentativeClass - Return the largest legal super-reg register class
1242 /// of the register class for the specified type and its associated "cost".
1243 // This function is in TargetLowering because it uses RegClassForVT which would
1244 // need to be moved to TargetRegisterInfo and would necessitate moving
1245 // isTypeLegal over as well - a massive change that would just require
1246 // TargetLowering having a TargetRegisterInfo class member that it would use.
1247 std::pair<const TargetRegisterClass *, uint8_t>
1248 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1249                                             MVT VT) const {
1250   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1251   if (!RC)
1252     return std::make_pair(RC, 0);
1253 
1254   // Compute the set of all super-register classes.
1255   BitVector SuperRegRC(TRI->getNumRegClasses());
1256   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1257     SuperRegRC.setBitsInMask(RCI.getMask());
1258 
1259   // Find the first legal register class with the largest spill size.
1260   const TargetRegisterClass *BestRC = RC;
1261   for (unsigned i : SuperRegRC.set_bits()) {
1262     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1263     // We want the largest possible spill size.
1264     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1265       continue;
1266     if (!isLegalRC(*TRI, *SuperRC))
1267       continue;
1268     BestRC = SuperRC;
1269   }
1270   return std::make_pair(BestRC, 1);
1271 }
1272 
1273 /// computeRegisterProperties - Once all of the register classes are added,
1274 /// this allows us to compute derived properties we expose.
1275 void TargetLoweringBase::computeRegisterProperties(
1276     const TargetRegisterInfo *TRI) {
1277   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1278                 "Too many value types for ValueTypeActions to hold!");
1279 
1280   // Everything defaults to needing one register.
1281   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1282     NumRegistersForVT[i] = 1;
1283     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1284   }
1285   // ...except isVoid, which doesn't need any registers.
1286   NumRegistersForVT[MVT::isVoid] = 0;
1287 
1288   // Find the largest integer register class.
1289   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1290   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1291     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1292 
1293   // Every integer value type larger than this largest register takes twice as
1294   // many registers to represent as the previous ValueType.
1295   for (unsigned ExpandedReg = LargestIntReg + 1;
1296        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1297     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1298     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1299     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1300     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1301                                    TypeExpandInteger);
1302   }
1303 
1304   // Inspect all of the ValueType's smaller than the largest integer
1305   // register to see which ones need promotion.
1306   unsigned LegalIntReg = LargestIntReg;
1307   for (unsigned IntReg = LargestIntReg - 1;
1308        IntReg >= (unsigned)MVT::i1; --IntReg) {
1309     MVT IVT = (MVT::SimpleValueType)IntReg;
1310     if (isTypeLegal(IVT)) {
1311       LegalIntReg = IntReg;
1312     } else {
1313       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1314         (MVT::SimpleValueType)LegalIntReg;
1315       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1316     }
1317   }
1318 
1319   // ppcf128 type is really two f64's.
1320   if (!isTypeLegal(MVT::ppcf128)) {
1321     if (isTypeLegal(MVT::f64)) {
1322       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1323       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1324       TransformToType[MVT::ppcf128] = MVT::f64;
1325       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1326     } else {
1327       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1328       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1329       TransformToType[MVT::ppcf128] = MVT::i128;
1330       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1331     }
1332   }
1333 
1334   // Decide how to handle f128. If the target does not have native f128 support,
1335   // expand it to i128 and we will be generating soft float library calls.
1336   if (!isTypeLegal(MVT::f128)) {
1337     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1338     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1339     TransformToType[MVT::f128] = MVT::i128;
1340     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1341   }
1342 
1343   // Decide how to handle f64. If the target does not have native f64 support,
1344   // expand it to i64 and we will be generating soft float library calls.
1345   if (!isTypeLegal(MVT::f64)) {
1346     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1347     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1348     TransformToType[MVT::f64] = MVT::i64;
1349     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1350   }
1351 
1352   // Decide how to handle f32. If the target does not have native f32 support,
1353   // expand it to i32 and we will be generating soft float library calls.
1354   if (!isTypeLegal(MVT::f32)) {
1355     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1356     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1357     TransformToType[MVT::f32] = MVT::i32;
1358     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1359   }
1360 
1361   // Decide how to handle f16. If the target does not have native f16 support,
1362   // promote it to f32, because there are no f16 library calls (except for
1363   // conversions).
1364   if (!isTypeLegal(MVT::f16)) {
1365     // Allow targets to control how we legalize half.
1366     if (softPromoteHalfType()) {
1367       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1368       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1369       TransformToType[MVT::f16] = MVT::f32;
1370       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1371     } else {
1372       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1373       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1374       TransformToType[MVT::f16] = MVT::f32;
1375       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1376     }
1377   }
1378 
1379   // Decide how to handle bf16. If the target does not have native bf16 support,
1380   // promote it to f32, because there are no bf16 library calls (except for
1381   // converting from f32 to bf16).
1382   if (!isTypeLegal(MVT::bf16)) {
1383     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1384     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1385     TransformToType[MVT::bf16] = MVT::f32;
1386     ValueTypeActions.setTypeAction(MVT::bf16, TypePromoteFloat);
1387   }
1388 
1389   // Loop over all of the vector value types to see which need transformations.
1390   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1391        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1392     MVT VT = (MVT::SimpleValueType) i;
1393     if (isTypeLegal(VT))
1394       continue;
1395 
1396     MVT EltVT = VT.getVectorElementType();
1397     ElementCount EC = VT.getVectorElementCount();
1398     bool IsLegalWiderType = false;
1399     bool IsScalable = VT.isScalableVector();
1400     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1401     switch (PreferredAction) {
1402     case TypePromoteInteger: {
1403       MVT::SimpleValueType EndVT = IsScalable ?
1404                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1405                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1406       // Try to promote the elements of integer vectors. If no legal
1407       // promotion was found, fall through to the widen-vector method.
1408       for (unsigned nVT = i + 1;
1409            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1410         MVT SVT = (MVT::SimpleValueType) nVT;
1411         // Promote vectors of integers to vectors with the same number
1412         // of elements, with a wider element type.
1413         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1414             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1415           TransformToType[i] = SVT;
1416           RegisterTypeForVT[i] = SVT;
1417           NumRegistersForVT[i] = 1;
1418           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1419           IsLegalWiderType = true;
1420           break;
1421         }
1422       }
1423       if (IsLegalWiderType)
1424         break;
1425       LLVM_FALLTHROUGH;
1426     }
1427 
1428     case TypeWidenVector:
1429       if (isPowerOf2_32(EC.getKnownMinValue())) {
1430         // Try to widen the vector.
1431         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1432           MVT SVT = (MVT::SimpleValueType) nVT;
1433           if (SVT.getVectorElementType() == EltVT &&
1434               SVT.isScalableVector() == IsScalable &&
1435               SVT.getVectorElementCount().getKnownMinValue() >
1436                   EC.getKnownMinValue() &&
1437               isTypeLegal(SVT)) {
1438             TransformToType[i] = SVT;
1439             RegisterTypeForVT[i] = SVT;
1440             NumRegistersForVT[i] = 1;
1441             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1442             IsLegalWiderType = true;
1443             break;
1444           }
1445         }
1446         if (IsLegalWiderType)
1447           break;
1448       } else {
1449         // Only widen to the next power of 2 to keep consistency with EVT.
1450         MVT NVT = VT.getPow2VectorType();
1451         if (isTypeLegal(NVT)) {
1452           TransformToType[i] = NVT;
1453           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1454           RegisterTypeForVT[i] = NVT;
1455           NumRegistersForVT[i] = 1;
1456           break;
1457         }
1458       }
1459       LLVM_FALLTHROUGH;
1460 
1461     case TypeSplitVector:
1462     case TypeScalarizeVector: {
1463       MVT IntermediateVT;
1464       MVT RegisterVT;
1465       unsigned NumIntermediates;
1466       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1467           NumIntermediates, RegisterVT, this);
1468       NumRegistersForVT[i] = NumRegisters;
1469       assert(NumRegistersForVT[i] == NumRegisters &&
1470              "NumRegistersForVT size cannot represent NumRegisters!");
1471       RegisterTypeForVT[i] = RegisterVT;
1472 
1473       MVT NVT = VT.getPow2VectorType();
1474       if (NVT == VT) {
1475         // Type is already a power of 2.  The default action is to split.
1476         TransformToType[i] = MVT::Other;
1477         if (PreferredAction == TypeScalarizeVector)
1478           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1479         else if (PreferredAction == TypeSplitVector)
1480           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1481         else if (EC.getKnownMinValue() > 1)
1482           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1483         else
1484           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1485                                                  ? TypeScalarizeScalableVector
1486                                                  : TypeScalarizeVector);
1487       } else {
1488         TransformToType[i] = NVT;
1489         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1490       }
1491       break;
1492     }
1493     default:
1494       llvm_unreachable("Unknown vector legalization action!");
1495     }
1496   }
1497 
1498   // Determine the 'representative' register class for each value type.
1499   // An representative register class is the largest (meaning one which is
1500   // not a sub-register class / subreg register class) legal register class for
1501   // a group of value types. For example, on i386, i8, i16, and i32
1502   // representative would be GR32; while on x86_64 it's GR64.
1503   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1504     const TargetRegisterClass* RRC;
1505     uint8_t Cost;
1506     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1507     RepRegClassForVT[i] = RRC;
1508     RepRegClassCostForVT[i] = Cost;
1509   }
1510 }
1511 
1512 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1513                                            EVT VT) const {
1514   assert(!VT.isVector() && "No default SetCC type for vectors!");
1515   return getPointerTy(DL).SimpleTy;
1516 }
1517 
1518 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1519   return MVT::i32; // return the default value
1520 }
1521 
1522 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1523 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1524 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1525 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1526 ///
1527 /// This method returns the number of registers needed, and the VT for each
1528 /// register.  It also returns the VT and quantity of the intermediate values
1529 /// before they are promoted/expanded.
1530 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1531                                                     EVT VT, EVT &IntermediateVT,
1532                                                     unsigned &NumIntermediates,
1533                                                     MVT &RegisterVT) const {
1534   ElementCount EltCnt = VT.getVectorElementCount();
1535 
1536   // If there is a wider vector type with the same element type as this one,
1537   // or a promoted vector type that has the same number of elements which
1538   // are wider, then we should convert to that legal vector type.
1539   // This handles things like <2 x float> -> <4 x float> and
1540   // <4 x i1> -> <4 x i32>.
1541   LegalizeTypeAction TA = getTypeAction(Context, VT);
1542   if (!EltCnt.isScalar() &&
1543       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1544     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1545     if (isTypeLegal(RegisterEVT)) {
1546       IntermediateVT = RegisterEVT;
1547       RegisterVT = RegisterEVT.getSimpleVT();
1548       NumIntermediates = 1;
1549       return 1;
1550     }
1551   }
1552 
1553   // Figure out the right, legal destination reg to copy into.
1554   EVT EltTy = VT.getVectorElementType();
1555 
1556   unsigned NumVectorRegs = 1;
1557 
1558   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1559   // types like done elsewhere in SelectionDAG.
1560   if (EltCnt.isScalable()) {
1561     LegalizeKind LK;
1562     EVT PartVT = VT;
1563     do {
1564       // Iterate until we've found a legal (part) type to hold VT.
1565       LK = getTypeConversion(Context, PartVT);
1566       PartVT = LK.second;
1567     } while (LK.first != TypeLegal);
1568 
1569     if (!PartVT.isVector()) {
1570       report_fatal_error(
1571           "Don't know how to legalize this scalable vector type");
1572     }
1573 
1574     NumIntermediates =
1575         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1576                    PartVT.getVectorElementCount().getKnownMinValue());
1577     IntermediateVT = PartVT;
1578     RegisterVT = getRegisterType(Context, IntermediateVT);
1579     return NumIntermediates;
1580   }
1581 
1582   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1583   // we could break down into LHS/RHS like LegalizeDAG does.
1584   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1585     NumVectorRegs = EltCnt.getKnownMinValue();
1586     EltCnt = ElementCount::getFixed(1);
1587   }
1588 
1589   // Divide the input until we get to a supported size.  This will always
1590   // end with a scalar if the target doesn't support vectors.
1591   while (EltCnt.getKnownMinValue() > 1 &&
1592          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1593     EltCnt = EltCnt.divideCoefficientBy(2);
1594     NumVectorRegs <<= 1;
1595   }
1596 
1597   NumIntermediates = NumVectorRegs;
1598 
1599   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1600   if (!isTypeLegal(NewVT))
1601     NewVT = EltTy;
1602   IntermediateVT = NewVT;
1603 
1604   MVT DestVT = getRegisterType(Context, NewVT);
1605   RegisterVT = DestVT;
1606 
1607   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1608     TypeSize NewVTSize = NewVT.getSizeInBits();
1609     // Convert sizes such as i33 to i64.
1610     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1611       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1612     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1613   }
1614 
1615   // Otherwise, promotion or legal types use the same number of registers as
1616   // the vector decimated to the appropriate level.
1617   return NumVectorRegs;
1618 }
1619 
1620 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1621                                                 uint64_t NumCases,
1622                                                 uint64_t Range,
1623                                                 ProfileSummaryInfo *PSI,
1624                                                 BlockFrequencyInfo *BFI) const {
1625   // FIXME: This function check the maximum table size and density, but the
1626   // minimum size is not checked. It would be nice if the minimum size is
1627   // also combined within this function. Currently, the minimum size check is
1628   // performed in findJumpTable() in SelectionDAGBuiler and
1629   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1630   const bool OptForSize =
1631       SI->getParent()->getParent()->hasOptSize() ||
1632       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1633   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1634   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1635 
1636   // Check whether the number of cases is small enough and
1637   // the range is dense enough for a jump table.
1638   return (OptForSize || Range <= MaxJumpTableSize) &&
1639          (NumCases * 100 >= Range * MinDensity);
1640 }
1641 
1642 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1643                                                         EVT ConditionVT) const {
1644   return getRegisterType(Context, ConditionVT);
1645 }
1646 
1647 /// Get the EVTs and ArgFlags collections that represent the legalized return
1648 /// type of the given function.  This does not require a DAG or a return value,
1649 /// and is suitable for use before any DAGs for the function are constructed.
1650 /// TODO: Move this out of TargetLowering.cpp.
1651 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1652                          AttributeList attr,
1653                          SmallVectorImpl<ISD::OutputArg> &Outs,
1654                          const TargetLowering &TLI, const DataLayout &DL) {
1655   SmallVector<EVT, 4> ValueVTs;
1656   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1657   unsigned NumValues = ValueVTs.size();
1658   if (NumValues == 0) return;
1659 
1660   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1661     EVT VT = ValueVTs[j];
1662     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1663 
1664     if (attr.hasRetAttr(Attribute::SExt))
1665       ExtendKind = ISD::SIGN_EXTEND;
1666     else if (attr.hasRetAttr(Attribute::ZExt))
1667       ExtendKind = ISD::ZERO_EXTEND;
1668 
1669     // FIXME: C calling convention requires the return type to be promoted to
1670     // at least 32-bit. But this is not necessary for non-C calling
1671     // conventions. The frontend should mark functions whose return values
1672     // require promoting with signext or zeroext attributes.
1673     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1674       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1675       if (VT.bitsLT(MinVT))
1676         VT = MinVT;
1677     }
1678 
1679     unsigned NumParts =
1680         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1681     MVT PartVT =
1682         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1683 
1684     // 'inreg' on function refers to return value
1685     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1686     if (attr.hasRetAttr(Attribute::InReg))
1687       Flags.setInReg();
1688 
1689     // Propagate extension type if any
1690     if (attr.hasRetAttr(Attribute::SExt))
1691       Flags.setSExt();
1692     else if (attr.hasRetAttr(Attribute::ZExt))
1693       Flags.setZExt();
1694 
1695     for (unsigned i = 0; i < NumParts; ++i)
1696       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1697   }
1698 }
1699 
1700 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1701 /// function arguments in the caller parameter area.  This is the actual
1702 /// alignment, not its logarithm.
1703 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1704                                                    const DataLayout &DL) const {
1705   return DL.getABITypeAlign(Ty).value();
1706 }
1707 
1708 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1709     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1710     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1711   // Check if the specified alignment is sufficient based on the data layout.
1712   // TODO: While using the data layout works in practice, a better solution
1713   // would be to implement this check directly (make this a virtual function).
1714   // For example, the ABI alignment may change based on software platform while
1715   // this function should only be affected by hardware implementation.
1716   Type *Ty = VT.getTypeForEVT(Context);
1717   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1718     // Assume that an access that meets the ABI-specified alignment is fast.
1719     if (Fast != nullptr)
1720       *Fast = true;
1721     return true;
1722   }
1723 
1724   // This is a misaligned access.
1725   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1726 }
1727 
1728 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1729     LLVMContext &Context, const DataLayout &DL, EVT VT,
1730     const MachineMemOperand &MMO, bool *Fast) const {
1731   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1732                                         MMO.getAlign(), MMO.getFlags(), Fast);
1733 }
1734 
1735 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1736                                             const DataLayout &DL, EVT VT,
1737                                             unsigned AddrSpace, Align Alignment,
1738                                             MachineMemOperand::Flags Flags,
1739                                             bool *Fast) const {
1740   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1741                                         Flags, Fast);
1742 }
1743 
1744 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1745                                             const DataLayout &DL, EVT VT,
1746                                             const MachineMemOperand &MMO,
1747                                             bool *Fast) const {
1748   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1749                             MMO.getFlags(), Fast);
1750 }
1751 
1752 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1753                                             const DataLayout &DL, LLT Ty,
1754                                             const MachineMemOperand &MMO,
1755                                             bool *Fast) const {
1756   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1757   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1758                             MMO.getFlags(), Fast);
1759 }
1760 
1761 //===----------------------------------------------------------------------===//
1762 //  TargetTransformInfo Helpers
1763 //===----------------------------------------------------------------------===//
1764 
1765 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1766   enum InstructionOpcodes {
1767 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1768 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1769 #include "llvm/IR/Instruction.def"
1770   };
1771   switch (static_cast<InstructionOpcodes>(Opcode)) {
1772   case Ret:            return 0;
1773   case Br:             return 0;
1774   case Switch:         return 0;
1775   case IndirectBr:     return 0;
1776   case Invoke:         return 0;
1777   case CallBr:         return 0;
1778   case Resume:         return 0;
1779   case Unreachable:    return 0;
1780   case CleanupRet:     return 0;
1781   case CatchRet:       return 0;
1782   case CatchPad:       return 0;
1783   case CatchSwitch:    return 0;
1784   case CleanupPad:     return 0;
1785   case FNeg:           return ISD::FNEG;
1786   case Add:            return ISD::ADD;
1787   case FAdd:           return ISD::FADD;
1788   case Sub:            return ISD::SUB;
1789   case FSub:           return ISD::FSUB;
1790   case Mul:            return ISD::MUL;
1791   case FMul:           return ISD::FMUL;
1792   case UDiv:           return ISD::UDIV;
1793   case SDiv:           return ISD::SDIV;
1794   case FDiv:           return ISD::FDIV;
1795   case URem:           return ISD::UREM;
1796   case SRem:           return ISD::SREM;
1797   case FRem:           return ISD::FREM;
1798   case Shl:            return ISD::SHL;
1799   case LShr:           return ISD::SRL;
1800   case AShr:           return ISD::SRA;
1801   case And:            return ISD::AND;
1802   case Or:             return ISD::OR;
1803   case Xor:            return ISD::XOR;
1804   case Alloca:         return 0;
1805   case Load:           return ISD::LOAD;
1806   case Store:          return ISD::STORE;
1807   case GetElementPtr:  return 0;
1808   case Fence:          return 0;
1809   case AtomicCmpXchg:  return 0;
1810   case AtomicRMW:      return 0;
1811   case Trunc:          return ISD::TRUNCATE;
1812   case ZExt:           return ISD::ZERO_EXTEND;
1813   case SExt:           return ISD::SIGN_EXTEND;
1814   case FPToUI:         return ISD::FP_TO_UINT;
1815   case FPToSI:         return ISD::FP_TO_SINT;
1816   case UIToFP:         return ISD::UINT_TO_FP;
1817   case SIToFP:         return ISD::SINT_TO_FP;
1818   case FPTrunc:        return ISD::FP_ROUND;
1819   case FPExt:          return ISD::FP_EXTEND;
1820   case PtrToInt:       return ISD::BITCAST;
1821   case IntToPtr:       return ISD::BITCAST;
1822   case BitCast:        return ISD::BITCAST;
1823   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1824   case ICmp:           return ISD::SETCC;
1825   case FCmp:           return ISD::SETCC;
1826   case PHI:            return 0;
1827   case Call:           return 0;
1828   case Select:         return ISD::SELECT;
1829   case UserOp1:        return 0;
1830   case UserOp2:        return 0;
1831   case VAArg:          return 0;
1832   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1833   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1834   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1835   case ExtractValue:   return ISD::MERGE_VALUES;
1836   case InsertValue:    return ISD::MERGE_VALUES;
1837   case LandingPad:     return 0;
1838   case Freeze:         return ISD::FREEZE;
1839   }
1840 
1841   llvm_unreachable("Unknown instruction type encountered!");
1842 }
1843 
1844 std::pair<InstructionCost, MVT>
1845 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1846                                             Type *Ty) const {
1847   LLVMContext &C = Ty->getContext();
1848   EVT MTy = getValueType(DL, Ty);
1849 
1850   InstructionCost Cost = 1;
1851   // We keep legalizing the type until we find a legal kind. We assume that
1852   // the only operation that costs anything is the split. After splitting
1853   // we need to handle two types.
1854   while (true) {
1855     LegalizeKind LK = getTypeConversion(C, MTy);
1856 
1857     if (LK.first == TypeScalarizeScalableVector) {
1858       // Ensure we return a sensible simple VT here, since many callers of this
1859       // function require it.
1860       MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
1861       return std::make_pair(InstructionCost::getInvalid(), VT);
1862     }
1863 
1864     if (LK.first == TypeLegal)
1865       return std::make_pair(Cost, MTy.getSimpleVT());
1866 
1867     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1868       Cost *= 2;
1869 
1870     // Do not loop with f128 type.
1871     if (MTy == LK.second)
1872       return std::make_pair(Cost, MTy.getSimpleVT());
1873 
1874     // Keep legalizing the type.
1875     MTy = LK.second;
1876   }
1877 }
1878 
1879 Value *
1880 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1881                                                        bool UseTLS) const {
1882   // compiler-rt provides a variable with a magic name.  Targets that do not
1883   // link with compiler-rt may also provide such a variable.
1884   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1885   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1886   auto UnsafeStackPtr =
1887       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1888 
1889   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1890 
1891   if (!UnsafeStackPtr) {
1892     auto TLSModel = UseTLS ?
1893         GlobalValue::InitialExecTLSModel :
1894         GlobalValue::NotThreadLocal;
1895     // The global variable is not defined yet, define it ourselves.
1896     // We use the initial-exec TLS model because we do not support the
1897     // variable living anywhere other than in the main executable.
1898     UnsafeStackPtr = new GlobalVariable(
1899         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1900         UnsafeStackPtrVar, nullptr, TLSModel);
1901   } else {
1902     // The variable exists, check its type and attributes.
1903     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1904       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1905     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1906       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1907                          (UseTLS ? "" : "not ") + "be thread-local");
1908   }
1909   return UnsafeStackPtr;
1910 }
1911 
1912 Value *
1913 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1914   if (!TM.getTargetTriple().isAndroid())
1915     return getDefaultSafeStackPointerLocation(IRB, true);
1916 
1917   // Android provides a libc function to retrieve the address of the current
1918   // thread's unsafe stack pointer.
1919   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1920   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1921   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1922                                              StackPtrTy->getPointerTo(0));
1923   return IRB.CreateCall(Fn);
1924 }
1925 
1926 //===----------------------------------------------------------------------===//
1927 //  Loop Strength Reduction hooks
1928 //===----------------------------------------------------------------------===//
1929 
1930 /// isLegalAddressingMode - Return true if the addressing mode represented
1931 /// by AM is legal for this target, for a load/store of the specified type.
1932 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1933                                                const AddrMode &AM, Type *Ty,
1934                                                unsigned AS, Instruction *I) const {
1935   // The default implementation of this implements a conservative RISCy, r+r and
1936   // r+i addr mode.
1937 
1938   // Allows a sign-extended 16-bit immediate field.
1939   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1940     return false;
1941 
1942   // No global is ever allowed as a base.
1943   if (AM.BaseGV)
1944     return false;
1945 
1946   // Only support r+r,
1947   switch (AM.Scale) {
1948   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1949     break;
1950   case 1:
1951     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1952       return false;
1953     // Otherwise we have r+r or r+i.
1954     break;
1955   case 2:
1956     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1957       return false;
1958     // Allow 2*r as r+r.
1959     break;
1960   default: // Don't allow n * r
1961     return false;
1962   }
1963 
1964   return true;
1965 }
1966 
1967 //===----------------------------------------------------------------------===//
1968 //  Stack Protector
1969 //===----------------------------------------------------------------------===//
1970 
1971 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1972 // so that SelectionDAG handle SSP.
1973 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1974   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1975     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1976     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1977     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1978     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1979       G->setVisibility(GlobalValue::HiddenVisibility);
1980     return C;
1981   }
1982   return nullptr;
1983 }
1984 
1985 // Currently only support "standard" __stack_chk_guard.
1986 // TODO: add LOAD_STACK_GUARD support.
1987 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1988   if (!M.getNamedValue("__stack_chk_guard")) {
1989     auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1990                                   GlobalVariable::ExternalLinkage, nullptr,
1991                                   "__stack_chk_guard");
1992 
1993     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1994     if (TM.getRelocationModel() == Reloc::Static &&
1995         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1996         !TM.getTargetTriple().isOSFreeBSD())
1997       GV->setDSOLocal(true);
1998   }
1999 }
2000 
2001 // Currently only support "standard" __stack_chk_guard.
2002 // TODO: add LOAD_STACK_GUARD support.
2003 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2004   return M.getNamedValue("__stack_chk_guard");
2005 }
2006 
2007 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2008   return nullptr;
2009 }
2010 
2011 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2012   return MinimumJumpTableEntries;
2013 }
2014 
2015 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2016   MinimumJumpTableEntries = Val;
2017 }
2018 
2019 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2020   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2021 }
2022 
2023 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2024   return MaximumJumpTableSize;
2025 }
2026 
2027 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2028   MaximumJumpTableSize = Val;
2029 }
2030 
2031 bool TargetLoweringBase::isJumpTableRelative() const {
2032   return getTargetMachine().isPositionIndependent();
2033 }
2034 
2035 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2036   if (TM.Options.LoopAlignment)
2037     return Align(TM.Options.LoopAlignment);
2038   return PrefLoopAlignment;
2039 }
2040 
2041 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2042     MachineBasicBlock *MBB) const {
2043   return MaxBytesForAlignment;
2044 }
2045 
2046 //===----------------------------------------------------------------------===//
2047 //  Reciprocal Estimates
2048 //===----------------------------------------------------------------------===//
2049 
2050 /// Get the reciprocal estimate attribute string for a function that will
2051 /// override the target defaults.
2052 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2053   const Function &F = MF.getFunction();
2054   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2055 }
2056 
2057 /// Construct a string for the given reciprocal operation of the given type.
2058 /// This string should match the corresponding option to the front-end's
2059 /// "-mrecip" flag assuming those strings have been passed through in an
2060 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2061 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2062   std::string Name = VT.isVector() ? "vec-" : "";
2063 
2064   Name += IsSqrt ? "sqrt" : "div";
2065 
2066   // TODO: Handle other float types?
2067   if (VT.getScalarType() == MVT::f64) {
2068     Name += "d";
2069   } else if (VT.getScalarType() == MVT::f16) {
2070     Name += "h";
2071   } else {
2072     assert(VT.getScalarType() == MVT::f32 &&
2073            "Unexpected FP type for reciprocal estimate");
2074     Name += "f";
2075   }
2076 
2077   return Name;
2078 }
2079 
2080 /// Return the character position and value (a single numeric character) of a
2081 /// customized refinement operation in the input string if it exists. Return
2082 /// false if there is no customized refinement step count.
2083 static bool parseRefinementStep(StringRef In, size_t &Position,
2084                                 uint8_t &Value) {
2085   const char RefStepToken = ':';
2086   Position = In.find(RefStepToken);
2087   if (Position == StringRef::npos)
2088     return false;
2089 
2090   StringRef RefStepString = In.substr(Position + 1);
2091   // Allow exactly one numeric character for the additional refinement
2092   // step parameter.
2093   if (RefStepString.size() == 1) {
2094     char RefStepChar = RefStepString[0];
2095     if (isDigit(RefStepChar)) {
2096       Value = RefStepChar - '0';
2097       return true;
2098     }
2099   }
2100   report_fatal_error("Invalid refinement step for -recip.");
2101 }
2102 
2103 /// For the input attribute string, return one of the ReciprocalEstimate enum
2104 /// status values (enabled, disabled, or not specified) for this operation on
2105 /// the specified data type.
2106 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2107   if (Override.empty())
2108     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2109 
2110   SmallVector<StringRef, 4> OverrideVector;
2111   Override.split(OverrideVector, ',');
2112   unsigned NumArgs = OverrideVector.size();
2113 
2114   // Check if "all", "none", or "default" was specified.
2115   if (NumArgs == 1) {
2116     // Look for an optional setting of the number of refinement steps needed
2117     // for this type of reciprocal operation.
2118     size_t RefPos;
2119     uint8_t RefSteps;
2120     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2121       // Split the string for further processing.
2122       Override = Override.substr(0, RefPos);
2123     }
2124 
2125     // All reciprocal types are enabled.
2126     if (Override == "all")
2127       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2128 
2129     // All reciprocal types are disabled.
2130     if (Override == "none")
2131       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2132 
2133     // Target defaults for enablement are used.
2134     if (Override == "default")
2135       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2136   }
2137 
2138   // The attribute string may omit the size suffix ('f'/'d').
2139   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2140   std::string VTNameNoSize = VTName;
2141   VTNameNoSize.pop_back();
2142   static const char DisabledPrefix = '!';
2143 
2144   for (StringRef RecipType : OverrideVector) {
2145     size_t RefPos;
2146     uint8_t RefSteps;
2147     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2148       RecipType = RecipType.substr(0, RefPos);
2149 
2150     // Ignore the disablement token for string matching.
2151     bool IsDisabled = RecipType[0] == DisabledPrefix;
2152     if (IsDisabled)
2153       RecipType = RecipType.substr(1);
2154 
2155     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2156       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2157                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2158   }
2159 
2160   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2161 }
2162 
2163 /// For the input attribute string, return the customized refinement step count
2164 /// for this operation on the specified data type. If the step count does not
2165 /// exist, return the ReciprocalEstimate enum value for unspecified.
2166 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2167   if (Override.empty())
2168     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2169 
2170   SmallVector<StringRef, 4> OverrideVector;
2171   Override.split(OverrideVector, ',');
2172   unsigned NumArgs = OverrideVector.size();
2173 
2174   // Check if "all", "default", or "none" was specified.
2175   if (NumArgs == 1) {
2176     // Look for an optional setting of the number of refinement steps needed
2177     // for this type of reciprocal operation.
2178     size_t RefPos;
2179     uint8_t RefSteps;
2180     if (!parseRefinementStep(Override, RefPos, RefSteps))
2181       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2182 
2183     // Split the string for further processing.
2184     Override = Override.substr(0, RefPos);
2185     assert(Override != "none" &&
2186            "Disabled reciprocals, but specifed refinement steps?");
2187 
2188     // If this is a general override, return the specified number of steps.
2189     if (Override == "all" || Override == "default")
2190       return RefSteps;
2191   }
2192 
2193   // The attribute string may omit the size suffix ('f'/'d').
2194   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2195   std::string VTNameNoSize = VTName;
2196   VTNameNoSize.pop_back();
2197 
2198   for (StringRef RecipType : OverrideVector) {
2199     size_t RefPos;
2200     uint8_t RefSteps;
2201     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2202       continue;
2203 
2204     RecipType = RecipType.substr(0, RefPos);
2205     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2206       return RefSteps;
2207   }
2208 
2209   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2210 }
2211 
2212 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2213                                                     MachineFunction &MF) const {
2214   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2215 }
2216 
2217 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2218                                                    MachineFunction &MF) const {
2219   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2220 }
2221 
2222 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2223                                                MachineFunction &MF) const {
2224   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2225 }
2226 
2227 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2228                                               MachineFunction &MF) const {
2229   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2230 }
2231 
2232 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2233   MF.getRegInfo().freezeReservedRegs(MF);
2234 }
2235 
2236 MachineMemOperand::Flags
2237 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2238                                            const DataLayout &DL) const {
2239   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2240   if (LI.isVolatile())
2241     Flags |= MachineMemOperand::MOVolatile;
2242 
2243   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2244     Flags |= MachineMemOperand::MONonTemporal;
2245 
2246   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2247     Flags |= MachineMemOperand::MOInvariant;
2248 
2249   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2250     Flags |= MachineMemOperand::MODereferenceable;
2251 
2252   Flags |= getTargetMMOFlags(LI);
2253   return Flags;
2254 }
2255 
2256 MachineMemOperand::Flags
2257 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2258                                             const DataLayout &DL) const {
2259   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2260 
2261   if (SI.isVolatile())
2262     Flags |= MachineMemOperand::MOVolatile;
2263 
2264   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2265     Flags |= MachineMemOperand::MONonTemporal;
2266 
2267   // FIXME: Not preserving dereferenceable
2268   Flags |= getTargetMMOFlags(SI);
2269   return Flags;
2270 }
2271 
2272 MachineMemOperand::Flags
2273 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2274                                              const DataLayout &DL) const {
2275   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2276 
2277   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2278     if (RMW->isVolatile())
2279       Flags |= MachineMemOperand::MOVolatile;
2280   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2281     if (CmpX->isVolatile())
2282       Flags |= MachineMemOperand::MOVolatile;
2283   } else
2284     llvm_unreachable("not an atomic instruction");
2285 
2286   // FIXME: Not preserving dereferenceable
2287   Flags |= getTargetMMOFlags(AI);
2288   return Flags;
2289 }
2290 
2291 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2292                                                   Instruction *Inst,
2293                                                   AtomicOrdering Ord) const {
2294   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2295     return Builder.CreateFence(Ord);
2296   else
2297     return nullptr;
2298 }
2299 
2300 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2301                                                    Instruction *Inst,
2302                                                    AtomicOrdering Ord) const {
2303   if (isAcquireOrStronger(Ord))
2304     return Builder.CreateFence(Ord);
2305   else
2306     return nullptr;
2307 }
2308 
2309 //===----------------------------------------------------------------------===//
2310 //  GlobalISel Hooks
2311 //===----------------------------------------------------------------------===//
2312 
2313 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2314                                         const TargetTransformInfo *TTI) const {
2315   auto &MF = *MI.getMF();
2316   auto &MRI = MF.getRegInfo();
2317   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2318   // this helper function computes the maximum number of uses we should consider
2319   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2320   // break even in terms of code size when the original MI has 2 users vs
2321   // choosing to potentially spill. Any more than 2 users we we have a net code
2322   // size increase. This doesn't take into account register pressure though.
2323   auto maxUses = [](unsigned RematCost) {
2324     // A cost of 1 means remats are basically free.
2325     if (RematCost == 1)
2326       return UINT_MAX;
2327     if (RematCost == 2)
2328       return 2U;
2329 
2330     // Remat is too expensive, only sink if there's one user.
2331     if (RematCost > 2)
2332       return 1U;
2333     llvm_unreachable("Unexpected remat cost");
2334   };
2335 
2336   // Helper to walk through uses and terminate if we've reached a limit. Saves
2337   // us spending time traversing uses if all we want to know is if it's >= min.
2338   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2339     unsigned NumUses = 0;
2340     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2341     for (; UI != UE && NumUses < MaxUses; ++UI) {
2342       NumUses++;
2343     }
2344     // If we haven't reached the end yet then there are more than MaxUses users.
2345     return UI == UE;
2346   };
2347 
2348   switch (MI.getOpcode()) {
2349   default:
2350     return false;
2351   // Constants-like instructions should be close to their users.
2352   // We don't want long live-ranges for them.
2353   case TargetOpcode::G_CONSTANT:
2354   case TargetOpcode::G_FCONSTANT:
2355   case TargetOpcode::G_FRAME_INDEX:
2356   case TargetOpcode::G_INTTOPTR:
2357     return true;
2358   case TargetOpcode::G_GLOBAL_VALUE: {
2359     unsigned RematCost = TTI->getGISelRematGlobalCost();
2360     Register Reg = MI.getOperand(0).getReg();
2361     unsigned MaxUses = maxUses(RematCost);
2362     if (MaxUses == UINT_MAX)
2363       return true; // Remats are "free" so always localize.
2364     bool B = isUsesAtMost(Reg, MaxUses);
2365     return B;
2366   }
2367   }
2368 }
2369