1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MachineValueType.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 static cl::opt<bool> JumpIsExpensiveOverride(
70     "jump-is-expensive", cl::init(false),
71     cl::desc("Do not create extra branches to split comparison logic."),
72     cl::Hidden);
73 
74 static cl::opt<unsigned> MinimumJumpTableEntries
75   ("min-jump-table-entries", cl::init(4), cl::Hidden,
76    cl::desc("Set minimum number of entries to use a jump table."));
77 
78 static cl::opt<unsigned> MaximumJumpTableSize
79   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80    cl::desc("Set maximum size of jump tables."));
81 
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85                      cl::desc("Minimum density for building a jump table in "
86                               "a normal function"));
87 
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90     "optsize-jump-table-density", cl::init(40), cl::Hidden,
91     cl::desc("Minimum density for building a jump table in "
92              "an optsize function"));
93 
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99        cl::desc("Don't mutate strict-float node to a legalize node"),
100        cl::init(false), cl::Hidden);
101 
102 static bool darwinHasSinCos(const Triple &TT) {
103   assert(TT.isOSDarwin() && "should be called with darwin triple");
104   // Don't bother with 32 bit x86.
105   if (TT.getArch() == Triple::x86)
106     return false;
107   // Macos < 10.9 has no sincos_stret.
108   if (TT.isMacOSX())
109     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110   // iOS < 7.0 has no sincos_stret.
111   if (TT.isiOS())
112     return !TT.isOSVersionLT(7, 0);
113   // Any other darwin such as WatchOS/TvOS is new enough.
114   return true;
115 }
116 
117 // Although this default value is arbitrary, it is not random. It is assumed
118 // that a condition that evaluates the same way by a higher percentage than this
119 // is best represented as control flow. Therefore, the default value N should be
120 // set such that the win from N% correct executions is greater than the loss
121 // from (100 - N)% mispredicted executions for the majority of intended targets.
122 static cl::opt<int> MinPercentageForPredictableBranch(
123     "min-predictable-branch", cl::init(99),
124     cl::desc("Minimum percentage (0-100) that a condition must be either true "
125              "or false to assume that the condition is predictable"),
126     cl::Hidden);
127 
128 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
129 #define HANDLE_LIBCALL(code, name) \
130   setLibcallName(RTLIB::code, name);
131 #include "llvm/IR/RuntimeLibcalls.def"
132 #undef HANDLE_LIBCALL
133   // Initialize calling conventions to their default.
134   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
135     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
136 
137   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
138   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
139     setLibcallName(RTLIB::ADD_F128, "__addkf3");
140     setLibcallName(RTLIB::SUB_F128, "__subkf3");
141     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
142     setLibcallName(RTLIB::DIV_F128, "__divkf3");
143     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
144     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
145     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
146     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
147     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
148     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
149     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
150     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
151     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
152     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
153     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
154     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
155     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
156     setLibcallName(RTLIB::UNE_F128, "__nekf2");
157     setLibcallName(RTLIB::OGE_F128, "__gekf2");
158     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
159     setLibcallName(RTLIB::OLE_F128, "__lekf2");
160     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
161     setLibcallName(RTLIB::UO_F128, "__unordkf2");
162   }
163 
164   // A few names are different on particular architectures or environments.
165   if (TT.isOSDarwin()) {
166     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
167     // of the gnueabi-style __gnu_*_ieee.
168     // FIXME: What about other targets?
169     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
170     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
171 
172     // Some darwins have an optimized __bzero/bzero function.
173     switch (TT.getArch()) {
174     case Triple::x86:
175     case Triple::x86_64:
176       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
177         setLibcallName(RTLIB::BZERO, "__bzero");
178       break;
179     case Triple::aarch64:
180     case Triple::aarch64_32:
181       setLibcallName(RTLIB::BZERO, "bzero");
182       break;
183     default:
184       break;
185     }
186 
187     if (darwinHasSinCos(TT)) {
188       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
189       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
190       if (TT.isWatchABI()) {
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
192                               CallingConv::ARM_AAPCS_VFP);
193         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
194                               CallingConv::ARM_AAPCS_VFP);
195       }
196     }
197   } else {
198     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
199     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
200   }
201 
202   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
203       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
204     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
205     setLibcallName(RTLIB::SINCOS_F64, "sincos");
206     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
207     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
208     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
209   }
210 
211   if (TT.isPS4CPU()) {
212     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
213     setLibcallName(RTLIB::SINCOS_F64, "sincos");
214   }
215 
216   if (TT.isOSOpenBSD()) {
217     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
218   }
219 }
220 
221 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
222 /// UNKNOWN_LIBCALL if there is none.
223 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
224   if (OpVT == MVT::f16) {
225     if (RetVT == MVT::f32)
226       return FPEXT_F16_F32;
227   } else if (OpVT == MVT::f32) {
228     if (RetVT == MVT::f64)
229       return FPEXT_F32_F64;
230     if (RetVT == MVT::f128)
231       return FPEXT_F32_F128;
232     if (RetVT == MVT::ppcf128)
233       return FPEXT_F32_PPCF128;
234   } else if (OpVT == MVT::f64) {
235     if (RetVT == MVT::f128)
236       return FPEXT_F64_F128;
237     else if (RetVT == MVT::ppcf128)
238       return FPEXT_F64_PPCF128;
239   } else if (OpVT == MVT::f80) {
240     if (RetVT == MVT::f128)
241       return FPEXT_F80_F128;
242   }
243 
244   return UNKNOWN_LIBCALL;
245 }
246 
247 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
248 /// UNKNOWN_LIBCALL if there is none.
249 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
250   if (RetVT == MVT::f16) {
251     if (OpVT == MVT::f32)
252       return FPROUND_F32_F16;
253     if (OpVT == MVT::f64)
254       return FPROUND_F64_F16;
255     if (OpVT == MVT::f80)
256       return FPROUND_F80_F16;
257     if (OpVT == MVT::f128)
258       return FPROUND_F128_F16;
259     if (OpVT == MVT::ppcf128)
260       return FPROUND_PPCF128_F16;
261   } else if (RetVT == MVT::f32) {
262     if (OpVT == MVT::f64)
263       return FPROUND_F64_F32;
264     if (OpVT == MVT::f80)
265       return FPROUND_F80_F32;
266     if (OpVT == MVT::f128)
267       return FPROUND_F128_F32;
268     if (OpVT == MVT::ppcf128)
269       return FPROUND_PPCF128_F32;
270   } else if (RetVT == MVT::f64) {
271     if (OpVT == MVT::f80)
272       return FPROUND_F80_F64;
273     if (OpVT == MVT::f128)
274       return FPROUND_F128_F64;
275     if (OpVT == MVT::ppcf128)
276       return FPROUND_PPCF128_F64;
277   } else if (RetVT == MVT::f80) {
278     if (OpVT == MVT::f128)
279       return FPROUND_F128_F80;
280   }
281 
282   return UNKNOWN_LIBCALL;
283 }
284 
285 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
286 /// UNKNOWN_LIBCALL if there is none.
287 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
288   if (OpVT == MVT::f32) {
289     if (RetVT == MVT::i32)
290       return FPTOSINT_F32_I32;
291     if (RetVT == MVT::i64)
292       return FPTOSINT_F32_I64;
293     if (RetVT == MVT::i128)
294       return FPTOSINT_F32_I128;
295   } else if (OpVT == MVT::f64) {
296     if (RetVT == MVT::i32)
297       return FPTOSINT_F64_I32;
298     if (RetVT == MVT::i64)
299       return FPTOSINT_F64_I64;
300     if (RetVT == MVT::i128)
301       return FPTOSINT_F64_I128;
302   } else if (OpVT == MVT::f80) {
303     if (RetVT == MVT::i32)
304       return FPTOSINT_F80_I32;
305     if (RetVT == MVT::i64)
306       return FPTOSINT_F80_I64;
307     if (RetVT == MVT::i128)
308       return FPTOSINT_F80_I128;
309   } else if (OpVT == MVT::f128) {
310     if (RetVT == MVT::i32)
311       return FPTOSINT_F128_I32;
312     if (RetVT == MVT::i64)
313       return FPTOSINT_F128_I64;
314     if (RetVT == MVT::i128)
315       return FPTOSINT_F128_I128;
316   } else if (OpVT == MVT::ppcf128) {
317     if (RetVT == MVT::i32)
318       return FPTOSINT_PPCF128_I32;
319     if (RetVT == MVT::i64)
320       return FPTOSINT_PPCF128_I64;
321     if (RetVT == MVT::i128)
322       return FPTOSINT_PPCF128_I128;
323   }
324   return UNKNOWN_LIBCALL;
325 }
326 
327 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
328 /// UNKNOWN_LIBCALL if there is none.
329 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
330   if (OpVT == MVT::f32) {
331     if (RetVT == MVT::i32)
332       return FPTOUINT_F32_I32;
333     if (RetVT == MVT::i64)
334       return FPTOUINT_F32_I64;
335     if (RetVT == MVT::i128)
336       return FPTOUINT_F32_I128;
337   } else if (OpVT == MVT::f64) {
338     if (RetVT == MVT::i32)
339       return FPTOUINT_F64_I32;
340     if (RetVT == MVT::i64)
341       return FPTOUINT_F64_I64;
342     if (RetVT == MVT::i128)
343       return FPTOUINT_F64_I128;
344   } else if (OpVT == MVT::f80) {
345     if (RetVT == MVT::i32)
346       return FPTOUINT_F80_I32;
347     if (RetVT == MVT::i64)
348       return FPTOUINT_F80_I64;
349     if (RetVT == MVT::i128)
350       return FPTOUINT_F80_I128;
351   } else if (OpVT == MVT::f128) {
352     if (RetVT == MVT::i32)
353       return FPTOUINT_F128_I32;
354     if (RetVT == MVT::i64)
355       return FPTOUINT_F128_I64;
356     if (RetVT == MVT::i128)
357       return FPTOUINT_F128_I128;
358   } else if (OpVT == MVT::ppcf128) {
359     if (RetVT == MVT::i32)
360       return FPTOUINT_PPCF128_I32;
361     if (RetVT == MVT::i64)
362       return FPTOUINT_PPCF128_I64;
363     if (RetVT == MVT::i128)
364       return FPTOUINT_PPCF128_I128;
365   }
366   return UNKNOWN_LIBCALL;
367 }
368 
369 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
370 /// UNKNOWN_LIBCALL if there is none.
371 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
372   if (OpVT == MVT::i32) {
373     if (RetVT == MVT::f32)
374       return SINTTOFP_I32_F32;
375     if (RetVT == MVT::f64)
376       return SINTTOFP_I32_F64;
377     if (RetVT == MVT::f80)
378       return SINTTOFP_I32_F80;
379     if (RetVT == MVT::f128)
380       return SINTTOFP_I32_F128;
381     if (RetVT == MVT::ppcf128)
382       return SINTTOFP_I32_PPCF128;
383   } else if (OpVT == MVT::i64) {
384     if (RetVT == MVT::f32)
385       return SINTTOFP_I64_F32;
386     if (RetVT == MVT::f64)
387       return SINTTOFP_I64_F64;
388     if (RetVT == MVT::f80)
389       return SINTTOFP_I64_F80;
390     if (RetVT == MVT::f128)
391       return SINTTOFP_I64_F128;
392     if (RetVT == MVT::ppcf128)
393       return SINTTOFP_I64_PPCF128;
394   } else if (OpVT == MVT::i128) {
395     if (RetVT == MVT::f32)
396       return SINTTOFP_I128_F32;
397     if (RetVT == MVT::f64)
398       return SINTTOFP_I128_F64;
399     if (RetVT == MVT::f80)
400       return SINTTOFP_I128_F80;
401     if (RetVT == MVT::f128)
402       return SINTTOFP_I128_F128;
403     if (RetVT == MVT::ppcf128)
404       return SINTTOFP_I128_PPCF128;
405   }
406   return UNKNOWN_LIBCALL;
407 }
408 
409 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
410 /// UNKNOWN_LIBCALL if there is none.
411 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
412   if (OpVT == MVT::i32) {
413     if (RetVT == MVT::f32)
414       return UINTTOFP_I32_F32;
415     if (RetVT == MVT::f64)
416       return UINTTOFP_I32_F64;
417     if (RetVT == MVT::f80)
418       return UINTTOFP_I32_F80;
419     if (RetVT == MVT::f128)
420       return UINTTOFP_I32_F128;
421     if (RetVT == MVT::ppcf128)
422       return UINTTOFP_I32_PPCF128;
423   } else if (OpVT == MVT::i64) {
424     if (RetVT == MVT::f32)
425       return UINTTOFP_I64_F32;
426     if (RetVT == MVT::f64)
427       return UINTTOFP_I64_F64;
428     if (RetVT == MVT::f80)
429       return UINTTOFP_I64_F80;
430     if (RetVT == MVT::f128)
431       return UINTTOFP_I64_F128;
432     if (RetVT == MVT::ppcf128)
433       return UINTTOFP_I64_PPCF128;
434   } else if (OpVT == MVT::i128) {
435     if (RetVT == MVT::f32)
436       return UINTTOFP_I128_F32;
437     if (RetVT == MVT::f64)
438       return UINTTOFP_I128_F64;
439     if (RetVT == MVT::f80)
440       return UINTTOFP_I128_F80;
441     if (RetVT == MVT::f128)
442       return UINTTOFP_I128_F128;
443     if (RetVT == MVT::ppcf128)
444       return UINTTOFP_I128_PPCF128;
445   }
446   return UNKNOWN_LIBCALL;
447 }
448 
449 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
450 #define OP_TO_LIBCALL(Name, Enum)                                              \
451   case Name:                                                                   \
452     switch (VT.SimpleTy) {                                                     \
453     default:                                                                   \
454       return UNKNOWN_LIBCALL;                                                  \
455     case MVT::i8:                                                              \
456       return Enum##_1;                                                         \
457     case MVT::i16:                                                             \
458       return Enum##_2;                                                         \
459     case MVT::i32:                                                             \
460       return Enum##_4;                                                         \
461     case MVT::i64:                                                             \
462       return Enum##_8;                                                         \
463     case MVT::i128:                                                            \
464       return Enum##_16;                                                        \
465     }
466 
467   switch (Opc) {
468     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
469     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
477     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
478     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
479     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
480   }
481 
482 #undef OP_TO_LIBCALL
483 
484   return UNKNOWN_LIBCALL;
485 }
486 
487 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
488   switch (ElementSize) {
489   case 1:
490     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
491   case 2:
492     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
493   case 4:
494     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
495   case 8:
496     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
497   case 16:
498     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
499   default:
500     return UNKNOWN_LIBCALL;
501   }
502 }
503 
504 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
505   switch (ElementSize) {
506   case 1:
507     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
508   case 2:
509     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
510   case 4:
511     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
512   case 8:
513     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
514   case 16:
515     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
516   default:
517     return UNKNOWN_LIBCALL;
518   }
519 }
520 
521 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
522   switch (ElementSize) {
523   case 1:
524     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
525   case 2:
526     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
527   case 4:
528     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
529   case 8:
530     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
531   case 16:
532     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
533   default:
534     return UNKNOWN_LIBCALL;
535   }
536 }
537 
538 /// InitCmpLibcallCCs - Set default comparison libcall CC.
539 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
540   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
541   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
542   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
543   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
544   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
545   CCs[RTLIB::UNE_F32] = ISD::SETNE;
546   CCs[RTLIB::UNE_F64] = ISD::SETNE;
547   CCs[RTLIB::UNE_F128] = ISD::SETNE;
548   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
549   CCs[RTLIB::OGE_F32] = ISD::SETGE;
550   CCs[RTLIB::OGE_F64] = ISD::SETGE;
551   CCs[RTLIB::OGE_F128] = ISD::SETGE;
552   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
553   CCs[RTLIB::OLT_F32] = ISD::SETLT;
554   CCs[RTLIB::OLT_F64] = ISD::SETLT;
555   CCs[RTLIB::OLT_F128] = ISD::SETLT;
556   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
557   CCs[RTLIB::OLE_F32] = ISD::SETLE;
558   CCs[RTLIB::OLE_F64] = ISD::SETLE;
559   CCs[RTLIB::OLE_F128] = ISD::SETLE;
560   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
561   CCs[RTLIB::OGT_F32] = ISD::SETGT;
562   CCs[RTLIB::OGT_F64] = ISD::SETGT;
563   CCs[RTLIB::OGT_F128] = ISD::SETGT;
564   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
565   CCs[RTLIB::UO_F32] = ISD::SETNE;
566   CCs[RTLIB::UO_F64] = ISD::SETNE;
567   CCs[RTLIB::UO_F128] = ISD::SETNE;
568   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
569 }
570 
571 /// NOTE: The TargetMachine owns TLOF.
572 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
573   initActions();
574 
575   // Perform these initializations only once.
576   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
577       MaxLoadsPerMemcmp = 8;
578   MaxGluedStoresPerMemcpy = 0;
579   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
580       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
581   HasMultipleConditionRegisters = false;
582   HasExtractBitsInsn = false;
583   JumpIsExpensive = JumpIsExpensiveOverride;
584   PredictableSelectIsExpensive = false;
585   EnableExtLdPromotion = false;
586   StackPointerRegisterToSaveRestore = 0;
587   BooleanContents = UndefinedBooleanContent;
588   BooleanFloatContents = UndefinedBooleanContent;
589   BooleanVectorContents = UndefinedBooleanContent;
590   SchedPreferenceInfo = Sched::ILP;
591   GatherAllAliasesMaxDepth = 18;
592   IsStrictFPEnabled = DisableStrictNodeMutation;
593   // TODO: the default will be switched to 0 in the next commit, along
594   // with the Target-specific changes necessary.
595   MaxAtomicSizeInBitsSupported = 1024;
596 
597   MinCmpXchgSizeInBits = 0;
598   SupportsUnalignedAtomics = false;
599 
600   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
601 
602   InitLibcalls(TM.getTargetTriple());
603   InitCmpLibcallCCs(CmpLibcallCCs);
604 }
605 
606 void TargetLoweringBase::initActions() {
607   // All operations default to being supported.
608   memset(OpActions, 0, sizeof(OpActions));
609   memset(LoadExtActions, 0, sizeof(LoadExtActions));
610   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
611   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
612   memset(CondCodeActions, 0, sizeof(CondCodeActions));
613   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
614   std::fill(std::begin(TargetDAGCombineArray),
615             std::end(TargetDAGCombineArray), 0);
616 
617   for (MVT VT : MVT::fp_valuetypes()) {
618     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits().getFixedSize());
619     if (IntVT.isValid()) {
620       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
621       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
622     }
623   }
624 
625   // Set default actions for various operations.
626   for (MVT VT : MVT::all_valuetypes()) {
627     // Default all indexed load / store to expand.
628     for (unsigned IM = (unsigned)ISD::PRE_INC;
629          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
630       setIndexedLoadAction(IM, VT, Expand);
631       setIndexedStoreAction(IM, VT, Expand);
632       setIndexedMaskedLoadAction(IM, VT, Expand);
633       setIndexedMaskedStoreAction(IM, VT, Expand);
634     }
635 
636     // Most backends expect to see the node which just returns the value loaded.
637     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
638 
639     // These operations default to expand.
640     setOperationAction(ISD::FGETSIGN, VT, Expand);
641     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
642     setOperationAction(ISD::FMINNUM, VT, Expand);
643     setOperationAction(ISD::FMAXNUM, VT, Expand);
644     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
645     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
646     setOperationAction(ISD::FMINIMUM, VT, Expand);
647     setOperationAction(ISD::FMAXIMUM, VT, Expand);
648     setOperationAction(ISD::FMAD, VT, Expand);
649     setOperationAction(ISD::SMIN, VT, Expand);
650     setOperationAction(ISD::SMAX, VT, Expand);
651     setOperationAction(ISD::UMIN, VT, Expand);
652     setOperationAction(ISD::UMAX, VT, Expand);
653     setOperationAction(ISD::ABS, VT, Expand);
654     setOperationAction(ISD::FSHL, VT, Expand);
655     setOperationAction(ISD::FSHR, VT, Expand);
656     setOperationAction(ISD::SADDSAT, VT, Expand);
657     setOperationAction(ISD::UADDSAT, VT, Expand);
658     setOperationAction(ISD::SSUBSAT, VT, Expand);
659     setOperationAction(ISD::USUBSAT, VT, Expand);
660     setOperationAction(ISD::SSHLSAT, VT, Expand);
661     setOperationAction(ISD::USHLSAT, VT, Expand);
662     setOperationAction(ISD::SMULFIX, VT, Expand);
663     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
664     setOperationAction(ISD::UMULFIX, VT, Expand);
665     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
666     setOperationAction(ISD::SDIVFIX, VT, Expand);
667     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
668     setOperationAction(ISD::UDIVFIX, VT, Expand);
669     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
670 
671     // Overflow operations default to expand
672     setOperationAction(ISD::SADDO, VT, Expand);
673     setOperationAction(ISD::SSUBO, VT, Expand);
674     setOperationAction(ISD::UADDO, VT, Expand);
675     setOperationAction(ISD::USUBO, VT, Expand);
676     setOperationAction(ISD::SMULO, VT, Expand);
677     setOperationAction(ISD::UMULO, VT, Expand);
678 
679     // ADDCARRY operations default to expand
680     setOperationAction(ISD::ADDCARRY, VT, Expand);
681     setOperationAction(ISD::SUBCARRY, VT, Expand);
682     setOperationAction(ISD::SETCCCARRY, VT, Expand);
683 
684     // ADDC/ADDE/SUBC/SUBE default to expand.
685     setOperationAction(ISD::ADDC, VT, Expand);
686     setOperationAction(ISD::ADDE, VT, Expand);
687     setOperationAction(ISD::SUBC, VT, Expand);
688     setOperationAction(ISD::SUBE, VT, Expand);
689 
690     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
691     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
692     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
693 
694     setOperationAction(ISD::BITREVERSE, VT, Expand);
695 
696     // These library functions default to expand.
697     setOperationAction(ISD::FROUND, VT, Expand);
698     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
699     setOperationAction(ISD::FPOWI, VT, Expand);
700 
701     // These operations default to expand for vector types.
702     if (VT.isVector()) {
703       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
704       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
705       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
706       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
707       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
708       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
709     }
710 
711     // Constrained floating-point operations default to expand.
712 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
713     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
714 #include "llvm/IR/ConstrainedOps.def"
715 
716     // For most targets @llvm.get.dynamic.area.offset just returns 0.
717     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
718 
719     // Vector reduction default to expand.
720     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
725     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
726     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
727     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
728     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
729     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
730     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
731     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
732     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
733   }
734 
735   // Most targets ignore the @llvm.prefetch intrinsic.
736   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
737 
738   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
739   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
740 
741   // ConstantFP nodes default to expand.  Targets can either change this to
742   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
743   // to optimize expansions for certain constants.
744   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
745   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
746   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
747   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
748   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
749 
750   // These library functions default to expand.
751   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
752     setOperationAction(ISD::FCBRT,      VT, Expand);
753     setOperationAction(ISD::FLOG ,      VT, Expand);
754     setOperationAction(ISD::FLOG2,      VT, Expand);
755     setOperationAction(ISD::FLOG10,     VT, Expand);
756     setOperationAction(ISD::FEXP ,      VT, Expand);
757     setOperationAction(ISD::FEXP2,      VT, Expand);
758     setOperationAction(ISD::FFLOOR,     VT, Expand);
759     setOperationAction(ISD::FNEARBYINT, VT, Expand);
760     setOperationAction(ISD::FCEIL,      VT, Expand);
761     setOperationAction(ISD::FRINT,      VT, Expand);
762     setOperationAction(ISD::FTRUNC,     VT, Expand);
763     setOperationAction(ISD::FROUND,     VT, Expand);
764     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
765     setOperationAction(ISD::LROUND,     VT, Expand);
766     setOperationAction(ISD::LLROUND,    VT, Expand);
767     setOperationAction(ISD::LRINT,      VT, Expand);
768     setOperationAction(ISD::LLRINT,     VT, Expand);
769   }
770 
771   // Default ISD::TRAP to expand (which turns it into abort).
772   setOperationAction(ISD::TRAP, MVT::Other, Expand);
773 
774   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
775   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
776   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
777 }
778 
779 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
780                                                EVT) const {
781   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
782 }
783 
784 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
785                                          bool LegalTypes) const {
786   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
787   if (LHSTy.isVector())
788     return LHSTy;
789   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
790                     : getPointerTy(DL);
791 }
792 
793 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
794   assert(isTypeLegal(VT));
795   switch (Op) {
796   default:
797     return false;
798   case ISD::SDIV:
799   case ISD::UDIV:
800   case ISD::SREM:
801   case ISD::UREM:
802     return true;
803   }
804 }
805 
806 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
807                                              unsigned DestAS) const {
808   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
809 }
810 
811 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
812   // If the command-line option was specified, ignore this request.
813   if (!JumpIsExpensiveOverride.getNumOccurrences())
814     JumpIsExpensive = isExpensive;
815 }
816 
817 TargetLoweringBase::LegalizeKind
818 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
819   // If this is a simple type, use the ComputeRegisterProp mechanism.
820   if (VT.isSimple()) {
821     MVT SVT = VT.getSimpleVT();
822     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
823     MVT NVT = TransformToType[SVT.SimpleTy];
824     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
825 
826     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
827             LA == TypeSoftPromoteHalf ||
828             (NVT.isVector() ||
829              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
830            "Promote may not follow Expand or Promote");
831 
832     if (LA == TypeSplitVector)
833       return LegalizeKind(LA,
834                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
835                                            SVT.getVectorElementCount() / 2));
836     if (LA == TypeScalarizeVector)
837       return LegalizeKind(LA, SVT.getVectorElementType());
838     return LegalizeKind(LA, NVT);
839   }
840 
841   // Handle Extended Scalar Types.
842   if (!VT.isVector()) {
843     assert(VT.isInteger() && "Float types must be simple");
844     unsigned BitSize = VT.getSizeInBits();
845     // First promote to a power-of-two size, then expand if necessary.
846     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
847       EVT NVT = VT.getRoundIntegerType(Context);
848       assert(NVT != VT && "Unable to round integer VT");
849       LegalizeKind NextStep = getTypeConversion(Context, NVT);
850       // Avoid multi-step promotion.
851       if (NextStep.first == TypePromoteInteger)
852         return NextStep;
853       // Return rounded integer type.
854       return LegalizeKind(TypePromoteInteger, NVT);
855     }
856 
857     return LegalizeKind(TypeExpandInteger,
858                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
859   }
860 
861   // Handle vector types.
862   ElementCount NumElts = VT.getVectorElementCount();
863   EVT EltVT = VT.getVectorElementType();
864 
865   // Vectors with only one element are always scalarized.
866   if (NumElts == 1)
867     return LegalizeKind(TypeScalarizeVector, EltVT);
868 
869   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
870     report_fatal_error("Cannot legalize this vector");
871 
872   // Try to widen vector elements until the element type is a power of two and
873   // promote it to a legal type later on, for example:
874   // <3 x i8> -> <4 x i8> -> <4 x i32>
875   if (EltVT.isInteger()) {
876     // Vectors with a number of elements that is not a power of two are always
877     // widened, for example <3 x i8> -> <4 x i8>.
878     if (!VT.isPow2VectorType()) {
879       NumElts = NumElts.NextPowerOf2();
880       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
881       return LegalizeKind(TypeWidenVector, NVT);
882     }
883 
884     // Examine the element type.
885     LegalizeKind LK = getTypeConversion(Context, EltVT);
886 
887     // If type is to be expanded, split the vector.
888     //  <4 x i140> -> <2 x i140>
889     if (LK.first == TypeExpandInteger)
890       return LegalizeKind(TypeSplitVector,
891                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
892 
893     // Promote the integer element types until a legal vector type is found
894     // or until the element integer type is too big. If a legal type was not
895     // found, fallback to the usual mechanism of widening/splitting the
896     // vector.
897     EVT OldEltVT = EltVT;
898     while (true) {
899       // Increase the bitwidth of the element to the next pow-of-two
900       // (which is greater than 8 bits).
901       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
902                   .getRoundIntegerType(Context);
903 
904       // Stop trying when getting a non-simple element type.
905       // Note that vector elements may be greater than legal vector element
906       // types. Example: X86 XMM registers hold 64bit element on 32bit
907       // systems.
908       if (!EltVT.isSimple())
909         break;
910 
911       // Build a new vector type and check if it is legal.
912       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
913       // Found a legal promoted vector type.
914       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
915         return LegalizeKind(TypePromoteInteger,
916                             EVT::getVectorVT(Context, EltVT, NumElts));
917     }
918 
919     // Reset the type to the unexpanded type if we did not find a legal vector
920     // type with a promoted vector element type.
921     EltVT = OldEltVT;
922   }
923 
924   // Try to widen the vector until a legal type is found.
925   // If there is no wider legal type, split the vector.
926   while (true) {
927     // Round up to the next power of 2.
928     NumElts = NumElts.NextPowerOf2();
929 
930     // If there is no simple vector type with this many elements then there
931     // cannot be a larger legal vector type.  Note that this assumes that
932     // there are no skipped intermediate vector types in the simple types.
933     if (!EltVT.isSimple())
934       break;
935     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
936     if (LargerVector == MVT())
937       break;
938 
939     // If this type is legal then widen the vector.
940     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
941       return LegalizeKind(TypeWidenVector, LargerVector);
942   }
943 
944   // Widen odd vectors to next power of two.
945   if (!VT.isPow2VectorType()) {
946     EVT NVT = VT.getPow2VectorType(Context);
947     return LegalizeKind(TypeWidenVector, NVT);
948   }
949 
950   // Vectors with illegal element types are expanded.
951   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorElementCount() / 2);
952   return LegalizeKind(TypeSplitVector, NVT);
953 }
954 
955 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
956                                           unsigned &NumIntermediates,
957                                           MVT &RegisterVT,
958                                           TargetLoweringBase *TLI) {
959   // Figure out the right, legal destination reg to copy into.
960   ElementCount EC = VT.getVectorElementCount();
961   MVT EltTy = VT.getVectorElementType();
962 
963   unsigned NumVectorRegs = 1;
964 
965   // Scalable vectors cannot be scalarized, so splitting or widening is
966   // required.
967   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
968     llvm_unreachable(
969         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
970 
971   // FIXME: We don't support non-power-of-2-sized vectors for now.
972   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
973   if (!isPowerOf2_32(EC.getKnownMinValue())) {
974     // Split EC to unit size (scalable property is preserved).
975     NumVectorRegs = EC.getKnownMinValue();
976     EC = ElementCount::getFixed(1);
977   }
978 
979   // Divide the input until we get to a supported size. This will
980   // always end up with an EC that represent a scalar or a scalable
981   // scalar.
982   while (EC.getKnownMinValue() > 1 &&
983          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
984     EC /= 2;
985     NumVectorRegs <<= 1;
986   }
987 
988   NumIntermediates = NumVectorRegs;
989 
990   MVT NewVT = MVT::getVectorVT(EltTy, EC);
991   if (!TLI->isTypeLegal(NewVT))
992     NewVT = EltTy;
993   IntermediateVT = NewVT;
994 
995   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits().getFixedSize();
996 
997   // Convert sizes such as i33 to i64.
998   if (!isPowerOf2_32(LaneSizeInBits))
999     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1000 
1001   MVT DestVT = TLI->getRegisterType(NewVT);
1002   RegisterVT = DestVT;
1003   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1004     return NumVectorRegs *
1005            (LaneSizeInBits / DestVT.getScalarSizeInBits().getFixedSize());
1006 
1007   // Otherwise, promotion or legal types use the same number of registers as
1008   // the vector decimated to the appropriate level.
1009   return NumVectorRegs;
1010 }
1011 
1012 /// isLegalRC - Return true if the value types that can be represented by the
1013 /// specified register class are all legal.
1014 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1015                                    const TargetRegisterClass &RC) const {
1016   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1017     if (isTypeLegal(*I))
1018       return true;
1019   return false;
1020 }
1021 
1022 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1023 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1024 MachineBasicBlock *
1025 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1026                                    MachineBasicBlock *MBB) const {
1027   MachineInstr *MI = &InitialMI;
1028   MachineFunction &MF = *MI->getMF();
1029   MachineFrameInfo &MFI = MF.getFrameInfo();
1030 
1031   // We're handling multiple types of operands here:
1032   // PATCHPOINT MetaArgs - live-in, read only, direct
1033   // STATEPOINT Deopt Spill - live-through, read only, indirect
1034   // STATEPOINT Deopt Alloca - live-through, read only, direct
1035   // (We're currently conservative and mark the deopt slots read/write in
1036   // practice.)
1037   // STATEPOINT GC Spill - live-through, read/write, indirect
1038   // STATEPOINT GC Alloca - live-through, read/write, direct
1039   // The live-in vs live-through is handled already (the live through ones are
1040   // all stack slots), but we need to handle the different type of stackmap
1041   // operands and memory effects here.
1042 
1043   if (!llvm::any_of(MI->operands(),
1044                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1045     return MBB;
1046 
1047   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1048 
1049   // Inherit previous memory operands.
1050   MIB.cloneMemRefs(*MI);
1051 
1052   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1053     MachineOperand &MO = MI->getOperand(i);
1054     if (!MO.isFI()) {
1055       // Index of Def operand this Use it tied to.
1056       // Since Defs are coming before Uses, if Use is tied, then
1057       // index of Def must be smaller that index of that Use.
1058       // Also, Defs preserve their position in new MI.
1059       unsigned TiedTo = i;
1060       if (MO.isReg() && MO.isTied())
1061         TiedTo = MI->findTiedOperandIdx(i);
1062       MIB.add(MO);
1063       if (TiedTo < i)
1064         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1065       continue;
1066     }
1067 
1068     // foldMemoryOperand builds a new MI after replacing a single FI operand
1069     // with the canonical set of five x86 addressing-mode operands.
1070     int FI = MO.getIndex();
1071 
1072     // Add frame index operands recognized by stackmaps.cpp
1073     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1074       // indirect-mem-ref tag, size, #FI, offset.
1075       // Used for spills inserted by StatepointLowering.  This codepath is not
1076       // used for patchpoints/stackmaps at all, for these spilling is done via
1077       // foldMemoryOperand callback only.
1078       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1079       MIB.addImm(StackMaps::IndirectMemRefOp);
1080       MIB.addImm(MFI.getObjectSize(FI));
1081       MIB.add(MO);
1082       MIB.addImm(0);
1083     } else {
1084       // direct-mem-ref tag, #FI, offset.
1085       // Used by patchpoint, and direct alloca arguments to statepoints
1086       MIB.addImm(StackMaps::DirectMemRefOp);
1087       MIB.add(MO);
1088       MIB.addImm(0);
1089     }
1090 
1091     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1092 
1093     // Add a new memory operand for this FI.
1094     assert(MFI.getObjectOffset(FI) != -1);
1095 
1096     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1097     // PATCHPOINT should be updated to do the same. (TODO)
1098     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1099       auto Flags = MachineMemOperand::MOLoad;
1100       MachineMemOperand *MMO = MF.getMachineMemOperand(
1101           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1102           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1103       MIB->addMemOperand(MF, MMO);
1104     }
1105   }
1106   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1107   MI->eraseFromParent();
1108   return MBB;
1109 }
1110 
1111 MachineBasicBlock *
1112 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1113                                         MachineBasicBlock *MBB) const {
1114   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1115          "Called emitXRayCustomEvent on the wrong MI!");
1116   auto &MF = *MI.getMF();
1117   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1118   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1119     MIB.add(MI.getOperand(OpIdx));
1120 
1121   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1122   MI.eraseFromParent();
1123   return MBB;
1124 }
1125 
1126 MachineBasicBlock *
1127 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1128                                        MachineBasicBlock *MBB) const {
1129   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1130          "Called emitXRayTypedEvent on the wrong MI!");
1131   auto &MF = *MI.getMF();
1132   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1133   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1134     MIB.add(MI.getOperand(OpIdx));
1135 
1136   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1137   MI.eraseFromParent();
1138   return MBB;
1139 }
1140 
1141 /// findRepresentativeClass - Return the largest legal super-reg register class
1142 /// of the register class for the specified type and its associated "cost".
1143 // This function is in TargetLowering because it uses RegClassForVT which would
1144 // need to be moved to TargetRegisterInfo and would necessitate moving
1145 // isTypeLegal over as well - a massive change that would just require
1146 // TargetLowering having a TargetRegisterInfo class member that it would use.
1147 std::pair<const TargetRegisterClass *, uint8_t>
1148 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1149                                             MVT VT) const {
1150   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1151   if (!RC)
1152     return std::make_pair(RC, 0);
1153 
1154   // Compute the set of all super-register classes.
1155   BitVector SuperRegRC(TRI->getNumRegClasses());
1156   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1157     SuperRegRC.setBitsInMask(RCI.getMask());
1158 
1159   // Find the first legal register class with the largest spill size.
1160   const TargetRegisterClass *BestRC = RC;
1161   for (unsigned i : SuperRegRC.set_bits()) {
1162     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1163     // We want the largest possible spill size.
1164     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1165       continue;
1166     if (!isLegalRC(*TRI, *SuperRC))
1167       continue;
1168     BestRC = SuperRC;
1169   }
1170   return std::make_pair(BestRC, 1);
1171 }
1172 
1173 /// computeRegisterProperties - Once all of the register classes are added,
1174 /// this allows us to compute derived properties we expose.
1175 void TargetLoweringBase::computeRegisterProperties(
1176     const TargetRegisterInfo *TRI) {
1177   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1178                 "Too many value types for ValueTypeActions to hold!");
1179 
1180   // Everything defaults to needing one register.
1181   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1182     NumRegistersForVT[i] = 1;
1183     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1184   }
1185   // ...except isVoid, which doesn't need any registers.
1186   NumRegistersForVT[MVT::isVoid] = 0;
1187 
1188   // Find the largest integer register class.
1189   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1190   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1191     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1192 
1193   // Every integer value type larger than this largest register takes twice as
1194   // many registers to represent as the previous ValueType.
1195   for (unsigned ExpandedReg = LargestIntReg + 1;
1196        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1197     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1198     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1199     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1200     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1201                                    TypeExpandInteger);
1202   }
1203 
1204   // Inspect all of the ValueType's smaller than the largest integer
1205   // register to see which ones need promotion.
1206   unsigned LegalIntReg = LargestIntReg;
1207   for (unsigned IntReg = LargestIntReg - 1;
1208        IntReg >= (unsigned)MVT::i1; --IntReg) {
1209     MVT IVT = (MVT::SimpleValueType)IntReg;
1210     if (isTypeLegal(IVT)) {
1211       LegalIntReg = IntReg;
1212     } else {
1213       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1214         (MVT::SimpleValueType)LegalIntReg;
1215       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1216     }
1217   }
1218 
1219   // ppcf128 type is really two f64's.
1220   if (!isTypeLegal(MVT::ppcf128)) {
1221     if (isTypeLegal(MVT::f64)) {
1222       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1223       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1224       TransformToType[MVT::ppcf128] = MVT::f64;
1225       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1226     } else {
1227       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1228       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1229       TransformToType[MVT::ppcf128] = MVT::i128;
1230       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1231     }
1232   }
1233 
1234   // Decide how to handle f128. If the target does not have native f128 support,
1235   // expand it to i128 and we will be generating soft float library calls.
1236   if (!isTypeLegal(MVT::f128)) {
1237     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1238     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1239     TransformToType[MVT::f128] = MVT::i128;
1240     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1241   }
1242 
1243   // Decide how to handle f64. If the target does not have native f64 support,
1244   // expand it to i64 and we will be generating soft float library calls.
1245   if (!isTypeLegal(MVT::f64)) {
1246     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1247     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1248     TransformToType[MVT::f64] = MVT::i64;
1249     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1250   }
1251 
1252   // Decide how to handle f32. If the target does not have native f32 support,
1253   // expand it to i32 and we will be generating soft float library calls.
1254   if (!isTypeLegal(MVT::f32)) {
1255     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1256     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1257     TransformToType[MVT::f32] = MVT::i32;
1258     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1259   }
1260 
1261   // Decide how to handle f16. If the target does not have native f16 support,
1262   // promote it to f32, because there are no f16 library calls (except for
1263   // conversions).
1264   if (!isTypeLegal(MVT::f16)) {
1265     // Allow targets to control how we legalize half.
1266     if (softPromoteHalfType()) {
1267       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1268       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1269       TransformToType[MVT::f16] = MVT::f32;
1270       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1271     } else {
1272       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1273       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1274       TransformToType[MVT::f16] = MVT::f32;
1275       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1276     }
1277   }
1278 
1279   // Loop over all of the vector value types to see which need transformations.
1280   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1281        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1282     MVT VT = (MVT::SimpleValueType) i;
1283     if (isTypeLegal(VT))
1284       continue;
1285 
1286     MVT EltVT = VT.getVectorElementType();
1287     ElementCount EC = VT.getVectorElementCount();
1288     bool IsLegalWiderType = false;
1289     bool IsScalable = VT.isScalableVector();
1290     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1291     switch (PreferredAction) {
1292     case TypePromoteInteger: {
1293       MVT::SimpleValueType EndVT = IsScalable ?
1294                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1295                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1296       // Try to promote the elements of integer vectors. If no legal
1297       // promotion was found, fall through to the widen-vector method.
1298       for (unsigned nVT = i + 1;
1299            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1300         MVT SVT = (MVT::SimpleValueType) nVT;
1301         // Promote vectors of integers to vectors with the same number
1302         // of elements, with a wider element type.
1303         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1304             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1305           TransformToType[i] = SVT;
1306           RegisterTypeForVT[i] = SVT;
1307           NumRegistersForVT[i] = 1;
1308           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1309           IsLegalWiderType = true;
1310           break;
1311         }
1312       }
1313       if (IsLegalWiderType)
1314         break;
1315       LLVM_FALLTHROUGH;
1316     }
1317 
1318     case TypeWidenVector:
1319       if (isPowerOf2_32(EC.getKnownMinValue())) {
1320         // Try to widen the vector.
1321         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1322           MVT SVT = (MVT::SimpleValueType) nVT;
1323           if (SVT.getVectorElementType() == EltVT &&
1324               SVT.isScalableVector() == IsScalable &&
1325               SVT.getVectorElementCount().getKnownMinValue() >
1326                   EC.getKnownMinValue() &&
1327               isTypeLegal(SVT)) {
1328             TransformToType[i] = SVT;
1329             RegisterTypeForVT[i] = SVT;
1330             NumRegistersForVT[i] = 1;
1331             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1332             IsLegalWiderType = true;
1333             break;
1334           }
1335         }
1336         if (IsLegalWiderType)
1337           break;
1338       } else {
1339         // Only widen to the next power of 2 to keep consistency with EVT.
1340         MVT NVT = VT.getPow2VectorType();
1341         if (isTypeLegal(NVT)) {
1342           TransformToType[i] = NVT;
1343           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1344           RegisterTypeForVT[i] = NVT;
1345           NumRegistersForVT[i] = 1;
1346           break;
1347         }
1348       }
1349       LLVM_FALLTHROUGH;
1350 
1351     case TypeSplitVector:
1352     case TypeScalarizeVector: {
1353       MVT IntermediateVT;
1354       MVT RegisterVT;
1355       unsigned NumIntermediates;
1356       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1357           NumIntermediates, RegisterVT, this);
1358       NumRegistersForVT[i] = NumRegisters;
1359       assert(NumRegistersForVT[i] == NumRegisters &&
1360              "NumRegistersForVT size cannot represent NumRegisters!");
1361       RegisterTypeForVT[i] = RegisterVT;
1362 
1363       MVT NVT = VT.getPow2VectorType();
1364       if (NVT == VT) {
1365         // Type is already a power of 2.  The default action is to split.
1366         TransformToType[i] = MVT::Other;
1367         if (PreferredAction == TypeScalarizeVector)
1368           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1369         else if (PreferredAction == TypeSplitVector)
1370           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1371         else if (EC.getKnownMinValue() > 1)
1372           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1373         else
1374           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1375                                                  ? TypeScalarizeScalableVector
1376                                                  : TypeScalarizeVector);
1377       } else {
1378         TransformToType[i] = NVT;
1379         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1380       }
1381       break;
1382     }
1383     default:
1384       llvm_unreachable("Unknown vector legalization action!");
1385     }
1386   }
1387 
1388   // Determine the 'representative' register class for each value type.
1389   // An representative register class is the largest (meaning one which is
1390   // not a sub-register class / subreg register class) legal register class for
1391   // a group of value types. For example, on i386, i8, i16, and i32
1392   // representative would be GR32; while on x86_64 it's GR64.
1393   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1394     const TargetRegisterClass* RRC;
1395     uint8_t Cost;
1396     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1397     RepRegClassForVT[i] = RRC;
1398     RepRegClassCostForVT[i] = Cost;
1399   }
1400 }
1401 
1402 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1403                                            EVT VT) const {
1404   assert(!VT.isVector() && "No default SetCC type for vectors!");
1405   return getPointerTy(DL).SimpleTy;
1406 }
1407 
1408 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1409   return MVT::i32; // return the default value
1410 }
1411 
1412 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1413 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1414 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1415 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1416 ///
1417 /// This method returns the number of registers needed, and the VT for each
1418 /// register.  It also returns the VT and quantity of the intermediate values
1419 /// before they are promoted/expanded.
1420 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1421                                                 EVT &IntermediateVT,
1422                                                 unsigned &NumIntermediates,
1423                                                 MVT &RegisterVT) const {
1424   ElementCount EltCnt = VT.getVectorElementCount();
1425 
1426   // If there is a wider vector type with the same element type as this one,
1427   // or a promoted vector type that has the same number of elements which
1428   // are wider, then we should convert to that legal vector type.
1429   // This handles things like <2 x float> -> <4 x float> and
1430   // <4 x i1> -> <4 x i32>.
1431   LegalizeTypeAction TA = getTypeAction(Context, VT);
1432   if (EltCnt.getKnownMinValue() != 1 &&
1433       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1434     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1435     if (isTypeLegal(RegisterEVT)) {
1436       IntermediateVT = RegisterEVT;
1437       RegisterVT = RegisterEVT.getSimpleVT();
1438       NumIntermediates = 1;
1439       return 1;
1440     }
1441   }
1442 
1443   // Figure out the right, legal destination reg to copy into.
1444   EVT EltTy = VT.getVectorElementType();
1445 
1446   unsigned NumVectorRegs = 1;
1447 
1448   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1449   // types like done elsewhere in SelectionDAG.
1450   if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) {
1451     LegalizeKind LK;
1452     EVT PartVT = VT;
1453     do {
1454       // Iterate until we've found a legal (part) type to hold VT.
1455       LK = getTypeConversion(Context, PartVT);
1456       PartVT = LK.second;
1457     } while (LK.first != TypeLegal);
1458 
1459     NumIntermediates = VT.getVectorElementCount().getKnownMinValue() /
1460                        PartVT.getVectorElementCount().getKnownMinValue();
1461 
1462     // FIXME: This code needs to be extended to handle more complex vector
1463     // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
1464     // supported cases are vectors that are broken down into equal parts
1465     // such as nxv6i64 -> 3 x nxv2i64.
1466     assert((PartVT.getVectorElementCount() * NumIntermediates) ==
1467                VT.getVectorElementCount() &&
1468            "Expected an integer multiple of PartVT");
1469     IntermediateVT = PartVT;
1470     RegisterVT = getRegisterType(Context, IntermediateVT);
1471     return NumIntermediates;
1472   }
1473 
1474   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1475   // we could break down into LHS/RHS like LegalizeDAG does.
1476   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1477     NumVectorRegs = EltCnt.getKnownMinValue();
1478     EltCnt = ElementCount::getFixed(1);
1479   }
1480 
1481   // Divide the input until we get to a supported size.  This will always
1482   // end with a scalar if the target doesn't support vectors.
1483   while (EltCnt.getKnownMinValue() > 1 &&
1484          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1485     EltCnt /= 2;
1486     NumVectorRegs <<= 1;
1487   }
1488 
1489   NumIntermediates = NumVectorRegs;
1490 
1491   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1492   if (!isTypeLegal(NewVT))
1493     NewVT = EltTy;
1494   IntermediateVT = NewVT;
1495 
1496   MVT DestVT = getRegisterType(Context, NewVT);
1497   RegisterVT = DestVT;
1498 
1499   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1500     TypeSize NewVTSize = NewVT.getSizeInBits();
1501     // Convert sizes such as i33 to i64.
1502     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1503       NewVTSize = NewVTSize.NextPowerOf2();
1504     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1505   }
1506 
1507   // Otherwise, promotion or legal types use the same number of registers as
1508   // the vector decimated to the appropriate level.
1509   return NumVectorRegs;
1510 }
1511 
1512 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1513                                                 uint64_t NumCases,
1514                                                 uint64_t Range,
1515                                                 ProfileSummaryInfo *PSI,
1516                                                 BlockFrequencyInfo *BFI) const {
1517   // FIXME: This function check the maximum table size and density, but the
1518   // minimum size is not checked. It would be nice if the minimum size is
1519   // also combined within this function. Currently, the minimum size check is
1520   // performed in findJumpTable() in SelectionDAGBuiler and
1521   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1522   const bool OptForSize =
1523       SI->getParent()->getParent()->hasOptSize() ||
1524       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1525   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1526   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1527 
1528   // Check whether the number of cases is small enough and
1529   // the range is dense enough for a jump table.
1530   return (OptForSize || Range <= MaxJumpTableSize) &&
1531          (NumCases * 100 >= Range * MinDensity);
1532 }
1533 
1534 /// Get the EVTs and ArgFlags collections that represent the legalized return
1535 /// type of the given function.  This does not require a DAG or a return value,
1536 /// and is suitable for use before any DAGs for the function are constructed.
1537 /// TODO: Move this out of TargetLowering.cpp.
1538 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1539                          AttributeList attr,
1540                          SmallVectorImpl<ISD::OutputArg> &Outs,
1541                          const TargetLowering &TLI, const DataLayout &DL) {
1542   SmallVector<EVT, 4> ValueVTs;
1543   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1544   unsigned NumValues = ValueVTs.size();
1545   if (NumValues == 0) return;
1546 
1547   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1548     EVT VT = ValueVTs[j];
1549     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1550 
1551     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1552       ExtendKind = ISD::SIGN_EXTEND;
1553     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1554       ExtendKind = ISD::ZERO_EXTEND;
1555 
1556     // FIXME: C calling convention requires the return type to be promoted to
1557     // at least 32-bit. But this is not necessary for non-C calling
1558     // conventions. The frontend should mark functions whose return values
1559     // require promoting with signext or zeroext attributes.
1560     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1561       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1562       if (VT.bitsLT(MinVT))
1563         VT = MinVT;
1564     }
1565 
1566     unsigned NumParts =
1567         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1568     MVT PartVT =
1569         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1570 
1571     // 'inreg' on function refers to return value
1572     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1573     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1574       Flags.setInReg();
1575 
1576     // Propagate extension type if any
1577     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1578       Flags.setSExt();
1579     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1580       Flags.setZExt();
1581 
1582     for (unsigned i = 0; i < NumParts; ++i)
1583       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1584   }
1585 }
1586 
1587 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1588 /// function arguments in the caller parameter area.  This is the actual
1589 /// alignment, not its logarithm.
1590 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1591                                                    const DataLayout &DL) const {
1592   return DL.getABITypeAlign(Ty).value();
1593 }
1594 
1595 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1596     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1597     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1598   // Check if the specified alignment is sufficient based on the data layout.
1599   // TODO: While using the data layout works in practice, a better solution
1600   // would be to implement this check directly (make this a virtual function).
1601   // For example, the ABI alignment may change based on software platform while
1602   // this function should only be affected by hardware implementation.
1603   Type *Ty = VT.getTypeForEVT(Context);
1604   if (Alignment >= DL.getABITypeAlign(Ty)) {
1605     // Assume that an access that meets the ABI-specified alignment is fast.
1606     if (Fast != nullptr)
1607       *Fast = true;
1608     return true;
1609   }
1610 
1611   // This is a misaligned access.
1612   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags,
1613                                         Fast);
1614 }
1615 
1616 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1617     LLVMContext &Context, const DataLayout &DL, EVT VT,
1618     const MachineMemOperand &MMO, bool *Fast) const {
1619   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1620                                         MMO.getAlign(), MMO.getFlags(), Fast);
1621 }
1622 
1623 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1624                                             const DataLayout &DL, EVT VT,
1625                                             unsigned AddrSpace, Align Alignment,
1626                                             MachineMemOperand::Flags Flags,
1627                                             bool *Fast) const {
1628   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1629                                         Flags, Fast);
1630 }
1631 
1632 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1633                                             const DataLayout &DL, EVT VT,
1634                                             const MachineMemOperand &MMO,
1635                                             bool *Fast) const {
1636   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1637                             MMO.getFlags(), Fast);
1638 }
1639 
1640 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1641   return BranchProbability(MinPercentageForPredictableBranch, 100);
1642 }
1643 
1644 //===----------------------------------------------------------------------===//
1645 //  TargetTransformInfo Helpers
1646 //===----------------------------------------------------------------------===//
1647 
1648 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1649   enum InstructionOpcodes {
1650 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1651 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1652 #include "llvm/IR/Instruction.def"
1653   };
1654   switch (static_cast<InstructionOpcodes>(Opcode)) {
1655   case Ret:            return 0;
1656   case Br:             return 0;
1657   case Switch:         return 0;
1658   case IndirectBr:     return 0;
1659   case Invoke:         return 0;
1660   case CallBr:         return 0;
1661   case Resume:         return 0;
1662   case Unreachable:    return 0;
1663   case CleanupRet:     return 0;
1664   case CatchRet:       return 0;
1665   case CatchPad:       return 0;
1666   case CatchSwitch:    return 0;
1667   case CleanupPad:     return 0;
1668   case FNeg:           return ISD::FNEG;
1669   case Add:            return ISD::ADD;
1670   case FAdd:           return ISD::FADD;
1671   case Sub:            return ISD::SUB;
1672   case FSub:           return ISD::FSUB;
1673   case Mul:            return ISD::MUL;
1674   case FMul:           return ISD::FMUL;
1675   case UDiv:           return ISD::UDIV;
1676   case SDiv:           return ISD::SDIV;
1677   case FDiv:           return ISD::FDIV;
1678   case URem:           return ISD::UREM;
1679   case SRem:           return ISD::SREM;
1680   case FRem:           return ISD::FREM;
1681   case Shl:            return ISD::SHL;
1682   case LShr:           return ISD::SRL;
1683   case AShr:           return ISD::SRA;
1684   case And:            return ISD::AND;
1685   case Or:             return ISD::OR;
1686   case Xor:            return ISD::XOR;
1687   case Alloca:         return 0;
1688   case Load:           return ISD::LOAD;
1689   case Store:          return ISD::STORE;
1690   case GetElementPtr:  return 0;
1691   case Fence:          return 0;
1692   case AtomicCmpXchg:  return 0;
1693   case AtomicRMW:      return 0;
1694   case Trunc:          return ISD::TRUNCATE;
1695   case ZExt:           return ISD::ZERO_EXTEND;
1696   case SExt:           return ISD::SIGN_EXTEND;
1697   case FPToUI:         return ISD::FP_TO_UINT;
1698   case FPToSI:         return ISD::FP_TO_SINT;
1699   case UIToFP:         return ISD::UINT_TO_FP;
1700   case SIToFP:         return ISD::SINT_TO_FP;
1701   case FPTrunc:        return ISD::FP_ROUND;
1702   case FPExt:          return ISD::FP_EXTEND;
1703   case PtrToInt:       return ISD::BITCAST;
1704   case IntToPtr:       return ISD::BITCAST;
1705   case BitCast:        return ISD::BITCAST;
1706   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1707   case ICmp:           return ISD::SETCC;
1708   case FCmp:           return ISD::SETCC;
1709   case PHI:            return 0;
1710   case Call:           return 0;
1711   case Select:         return ISD::SELECT;
1712   case UserOp1:        return 0;
1713   case UserOp2:        return 0;
1714   case VAArg:          return 0;
1715   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1716   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1717   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1718   case ExtractValue:   return ISD::MERGE_VALUES;
1719   case InsertValue:    return ISD::MERGE_VALUES;
1720   case LandingPad:     return 0;
1721   case Freeze:         return ISD::FREEZE;
1722   }
1723 
1724   llvm_unreachable("Unknown instruction type encountered!");
1725 }
1726 
1727 std::pair<int, MVT>
1728 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1729                                             Type *Ty) const {
1730   LLVMContext &C = Ty->getContext();
1731   EVT MTy = getValueType(DL, Ty);
1732 
1733   int Cost = 1;
1734   // We keep legalizing the type until we find a legal kind. We assume that
1735   // the only operation that costs anything is the split. After splitting
1736   // we need to handle two types.
1737   while (true) {
1738     LegalizeKind LK = getTypeConversion(C, MTy);
1739 
1740     if (LK.first == TypeLegal)
1741       return std::make_pair(Cost, MTy.getSimpleVT());
1742 
1743     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1744       Cost *= 2;
1745 
1746     // Do not loop with f128 type.
1747     if (MTy == LK.second)
1748       return std::make_pair(Cost, MTy.getSimpleVT());
1749 
1750     // Keep legalizing the type.
1751     MTy = LK.second;
1752   }
1753 }
1754 
1755 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1756                                                               bool UseTLS) const {
1757   // compiler-rt provides a variable with a magic name.  Targets that do not
1758   // link with compiler-rt may also provide such a variable.
1759   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1760   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1761   auto UnsafeStackPtr =
1762       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1763 
1764   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1765 
1766   if (!UnsafeStackPtr) {
1767     auto TLSModel = UseTLS ?
1768         GlobalValue::InitialExecTLSModel :
1769         GlobalValue::NotThreadLocal;
1770     // The global variable is not defined yet, define it ourselves.
1771     // We use the initial-exec TLS model because we do not support the
1772     // variable living anywhere other than in the main executable.
1773     UnsafeStackPtr = new GlobalVariable(
1774         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1775         UnsafeStackPtrVar, nullptr, TLSModel);
1776   } else {
1777     // The variable exists, check its type and attributes.
1778     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1779       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1780     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1781       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1782                          (UseTLS ? "" : "not ") + "be thread-local");
1783   }
1784   return UnsafeStackPtr;
1785 }
1786 
1787 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1788   if (!TM.getTargetTriple().isAndroid())
1789     return getDefaultSafeStackPointerLocation(IRB, true);
1790 
1791   // Android provides a libc function to retrieve the address of the current
1792   // thread's unsafe stack pointer.
1793   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1794   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1795   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1796                                              StackPtrTy->getPointerTo(0));
1797   return IRB.CreateCall(Fn);
1798 }
1799 
1800 //===----------------------------------------------------------------------===//
1801 //  Loop Strength Reduction hooks
1802 //===----------------------------------------------------------------------===//
1803 
1804 /// isLegalAddressingMode - Return true if the addressing mode represented
1805 /// by AM is legal for this target, for a load/store of the specified type.
1806 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1807                                                const AddrMode &AM, Type *Ty,
1808                                                unsigned AS, Instruction *I) const {
1809   // The default implementation of this implements a conservative RISCy, r+r and
1810   // r+i addr mode.
1811 
1812   // Allows a sign-extended 16-bit immediate field.
1813   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1814     return false;
1815 
1816   // No global is ever allowed as a base.
1817   if (AM.BaseGV)
1818     return false;
1819 
1820   // Only support r+r,
1821   switch (AM.Scale) {
1822   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1823     break;
1824   case 1:
1825     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1826       return false;
1827     // Otherwise we have r+r or r+i.
1828     break;
1829   case 2:
1830     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1831       return false;
1832     // Allow 2*r as r+r.
1833     break;
1834   default: // Don't allow n * r
1835     return false;
1836   }
1837 
1838   return true;
1839 }
1840 
1841 //===----------------------------------------------------------------------===//
1842 //  Stack Protector
1843 //===----------------------------------------------------------------------===//
1844 
1845 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1846 // so that SelectionDAG handle SSP.
1847 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1848   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1849     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1850     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1851     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1852     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1853       G->setVisibility(GlobalValue::HiddenVisibility);
1854     return C;
1855   }
1856   return nullptr;
1857 }
1858 
1859 // Currently only support "standard" __stack_chk_guard.
1860 // TODO: add LOAD_STACK_GUARD support.
1861 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1862   if (!M.getNamedValue("__stack_chk_guard"))
1863     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1864                        GlobalVariable::ExternalLinkage,
1865                        nullptr, "__stack_chk_guard");
1866 }
1867 
1868 // Currently only support "standard" __stack_chk_guard.
1869 // TODO: add LOAD_STACK_GUARD support.
1870 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1871   return M.getNamedValue("__stack_chk_guard");
1872 }
1873 
1874 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1875   return nullptr;
1876 }
1877 
1878 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1879   return MinimumJumpTableEntries;
1880 }
1881 
1882 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1883   MinimumJumpTableEntries = Val;
1884 }
1885 
1886 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1887   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1888 }
1889 
1890 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1891   return MaximumJumpTableSize;
1892 }
1893 
1894 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1895   MaximumJumpTableSize = Val;
1896 }
1897 
1898 bool TargetLoweringBase::isJumpTableRelative() const {
1899   return getTargetMachine().isPositionIndependent();
1900 }
1901 
1902 //===----------------------------------------------------------------------===//
1903 //  Reciprocal Estimates
1904 //===----------------------------------------------------------------------===//
1905 
1906 /// Get the reciprocal estimate attribute string for a function that will
1907 /// override the target defaults.
1908 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1909   const Function &F = MF.getFunction();
1910   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1911 }
1912 
1913 /// Construct a string for the given reciprocal operation of the given type.
1914 /// This string should match the corresponding option to the front-end's
1915 /// "-mrecip" flag assuming those strings have been passed through in an
1916 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1917 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1918   std::string Name = VT.isVector() ? "vec-" : "";
1919 
1920   Name += IsSqrt ? "sqrt" : "div";
1921 
1922   // TODO: Handle "half" or other float types?
1923   if (VT.getScalarType() == MVT::f64) {
1924     Name += "d";
1925   } else {
1926     assert(VT.getScalarType() == MVT::f32 &&
1927            "Unexpected FP type for reciprocal estimate");
1928     Name += "f";
1929   }
1930 
1931   return Name;
1932 }
1933 
1934 /// Return the character position and value (a single numeric character) of a
1935 /// customized refinement operation in the input string if it exists. Return
1936 /// false if there is no customized refinement step count.
1937 static bool parseRefinementStep(StringRef In, size_t &Position,
1938                                 uint8_t &Value) {
1939   const char RefStepToken = ':';
1940   Position = In.find(RefStepToken);
1941   if (Position == StringRef::npos)
1942     return false;
1943 
1944   StringRef RefStepString = In.substr(Position + 1);
1945   // Allow exactly one numeric character for the additional refinement
1946   // step parameter.
1947   if (RefStepString.size() == 1) {
1948     char RefStepChar = RefStepString[0];
1949     if (RefStepChar >= '0' && RefStepChar <= '9') {
1950       Value = RefStepChar - '0';
1951       return true;
1952     }
1953   }
1954   report_fatal_error("Invalid refinement step for -recip.");
1955 }
1956 
1957 /// For the input attribute string, return one of the ReciprocalEstimate enum
1958 /// status values (enabled, disabled, or not specified) for this operation on
1959 /// the specified data type.
1960 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1961   if (Override.empty())
1962     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1963 
1964   SmallVector<StringRef, 4> OverrideVector;
1965   Override.split(OverrideVector, ',');
1966   unsigned NumArgs = OverrideVector.size();
1967 
1968   // Check if "all", "none", or "default" was specified.
1969   if (NumArgs == 1) {
1970     // Look for an optional setting of the number of refinement steps needed
1971     // for this type of reciprocal operation.
1972     size_t RefPos;
1973     uint8_t RefSteps;
1974     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1975       // Split the string for further processing.
1976       Override = Override.substr(0, RefPos);
1977     }
1978 
1979     // All reciprocal types are enabled.
1980     if (Override == "all")
1981       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1982 
1983     // All reciprocal types are disabled.
1984     if (Override == "none")
1985       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1986 
1987     // Target defaults for enablement are used.
1988     if (Override == "default")
1989       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1990   }
1991 
1992   // The attribute string may omit the size suffix ('f'/'d').
1993   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1994   std::string VTNameNoSize = VTName;
1995   VTNameNoSize.pop_back();
1996   static const char DisabledPrefix = '!';
1997 
1998   for (StringRef RecipType : OverrideVector) {
1999     size_t RefPos;
2000     uint8_t RefSteps;
2001     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2002       RecipType = RecipType.substr(0, RefPos);
2003 
2004     // Ignore the disablement token for string matching.
2005     bool IsDisabled = RecipType[0] == DisabledPrefix;
2006     if (IsDisabled)
2007       RecipType = RecipType.substr(1);
2008 
2009     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2010       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2011                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2012   }
2013 
2014   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2015 }
2016 
2017 /// For the input attribute string, return the customized refinement step count
2018 /// for this operation on the specified data type. If the step count does not
2019 /// exist, return the ReciprocalEstimate enum value for unspecified.
2020 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2021   if (Override.empty())
2022     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2023 
2024   SmallVector<StringRef, 4> OverrideVector;
2025   Override.split(OverrideVector, ',');
2026   unsigned NumArgs = OverrideVector.size();
2027 
2028   // Check if "all", "default", or "none" was specified.
2029   if (NumArgs == 1) {
2030     // Look for an optional setting of the number of refinement steps needed
2031     // for this type of reciprocal operation.
2032     size_t RefPos;
2033     uint8_t RefSteps;
2034     if (!parseRefinementStep(Override, RefPos, RefSteps))
2035       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2036 
2037     // Split the string for further processing.
2038     Override = Override.substr(0, RefPos);
2039     assert(Override != "none" &&
2040            "Disabled reciprocals, but specifed refinement steps?");
2041 
2042     // If this is a general override, return the specified number of steps.
2043     if (Override == "all" || Override == "default")
2044       return RefSteps;
2045   }
2046 
2047   // The attribute string may omit the size suffix ('f'/'d').
2048   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2049   std::string VTNameNoSize = VTName;
2050   VTNameNoSize.pop_back();
2051 
2052   for (StringRef RecipType : OverrideVector) {
2053     size_t RefPos;
2054     uint8_t RefSteps;
2055     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2056       continue;
2057 
2058     RecipType = RecipType.substr(0, RefPos);
2059     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2060       return RefSteps;
2061   }
2062 
2063   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2064 }
2065 
2066 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2067                                                     MachineFunction &MF) const {
2068   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2069 }
2070 
2071 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2072                                                    MachineFunction &MF) const {
2073   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2074 }
2075 
2076 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2077                                                MachineFunction &MF) const {
2078   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2079 }
2080 
2081 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2082                                               MachineFunction &MF) const {
2083   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2084 }
2085 
2086 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2087   MF.getRegInfo().freezeReservedRegs(MF);
2088 }
2089 
2090 MachineMemOperand::Flags
2091 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2092                                            const DataLayout &DL) const {
2093   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2094   if (LI.isVolatile())
2095     Flags |= MachineMemOperand::MOVolatile;
2096 
2097   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2098     Flags |= MachineMemOperand::MONonTemporal;
2099 
2100   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2101     Flags |= MachineMemOperand::MOInvariant;
2102 
2103   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2104     Flags |= MachineMemOperand::MODereferenceable;
2105 
2106   Flags |= getTargetMMOFlags(LI);
2107   return Flags;
2108 }
2109 
2110 MachineMemOperand::Flags
2111 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2112                                             const DataLayout &DL) const {
2113   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2114 
2115   if (SI.isVolatile())
2116     Flags |= MachineMemOperand::MOVolatile;
2117 
2118   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2119     Flags |= MachineMemOperand::MONonTemporal;
2120 
2121   // FIXME: Not preserving dereferenceable
2122   Flags |= getTargetMMOFlags(SI);
2123   return Flags;
2124 }
2125 
2126 MachineMemOperand::Flags
2127 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2128                                              const DataLayout &DL) const {
2129   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2130 
2131   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2132     if (RMW->isVolatile())
2133       Flags |= MachineMemOperand::MOVolatile;
2134   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2135     if (CmpX->isVolatile())
2136       Flags |= MachineMemOperand::MOVolatile;
2137   } else
2138     llvm_unreachable("not an atomic instruction");
2139 
2140   // FIXME: Not preserving dereferenceable
2141   Flags |= getTargetMMOFlags(AI);
2142   return Flags;
2143 }
2144 
2145 //===----------------------------------------------------------------------===//
2146 //  GlobalISel Hooks
2147 //===----------------------------------------------------------------------===//
2148 
2149 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2150                                         const TargetTransformInfo *TTI) const {
2151   auto &MF = *MI.getMF();
2152   auto &MRI = MF.getRegInfo();
2153   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2154   // this helper function computes the maximum number of uses we should consider
2155   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2156   // break even in terms of code size when the original MI has 2 users vs
2157   // choosing to potentially spill. Any more than 2 users we we have a net code
2158   // size increase. This doesn't take into account register pressure though.
2159   auto maxUses = [](unsigned RematCost) {
2160     // A cost of 1 means remats are basically free.
2161     if (RematCost == 1)
2162       return UINT_MAX;
2163     if (RematCost == 2)
2164       return 2U;
2165 
2166     // Remat is too expensive, only sink if there's one user.
2167     if (RematCost > 2)
2168       return 1U;
2169     llvm_unreachable("Unexpected remat cost");
2170   };
2171 
2172   // Helper to walk through uses and terminate if we've reached a limit. Saves
2173   // us spending time traversing uses if all we want to know is if it's >= min.
2174   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2175     unsigned NumUses = 0;
2176     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2177     for (; UI != UE && NumUses < MaxUses; ++UI) {
2178       NumUses++;
2179     }
2180     // If we haven't reached the end yet then there are more than MaxUses users.
2181     return UI == UE;
2182   };
2183 
2184   switch (MI.getOpcode()) {
2185   default:
2186     return false;
2187   // Constants-like instructions should be close to their users.
2188   // We don't want long live-ranges for them.
2189   case TargetOpcode::G_CONSTANT:
2190   case TargetOpcode::G_FCONSTANT:
2191   case TargetOpcode::G_FRAME_INDEX:
2192   case TargetOpcode::G_INTTOPTR:
2193     return true;
2194   case TargetOpcode::G_GLOBAL_VALUE: {
2195     unsigned RematCost = TTI->getGISelRematGlobalCost();
2196     Register Reg = MI.getOperand(0).getReg();
2197     unsigned MaxUses = maxUses(RematCost);
2198     if (MaxUses == UINT_MAX)
2199       return true; // Remats are "free" so always localize.
2200     bool B = isUsesAtMost(Reg, MaxUses);
2201     return B;
2202   }
2203   }
2204 }
2205