1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MachineValueType.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 static cl::opt<bool> JumpIsExpensiveOverride(
70     "jump-is-expensive", cl::init(false),
71     cl::desc("Do not create extra branches to split comparison logic."),
72     cl::Hidden);
73 
74 static cl::opt<unsigned> MinimumJumpTableEntries
75   ("min-jump-table-entries", cl::init(4), cl::Hidden,
76    cl::desc("Set minimum number of entries to use a jump table."));
77 
78 static cl::opt<unsigned> MaximumJumpTableSize
79   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80    cl::desc("Set maximum size of jump tables."));
81 
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85                      cl::desc("Minimum density for building a jump table in "
86                               "a normal function"));
87 
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90     "optsize-jump-table-density", cl::init(40), cl::Hidden,
91     cl::desc("Minimum density for building a jump table in "
92              "an optsize function"));
93 
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99        cl::desc("Don't mutate strict-float node to a legalize node"),
100        cl::init(false), cl::Hidden);
101 
102 static bool darwinHasSinCos(const Triple &TT) {
103   assert(TT.isOSDarwin() && "should be called with darwin triple");
104   // Don't bother with 32 bit x86.
105   if (TT.getArch() == Triple::x86)
106     return false;
107   // Macos < 10.9 has no sincos_stret.
108   if (TT.isMacOSX())
109     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110   // iOS < 7.0 has no sincos_stret.
111   if (TT.isiOS())
112     return !TT.isOSVersionLT(7, 0);
113   // Any other darwin such as WatchOS/TvOS is new enough.
114   return true;
115 }
116 
117 // Although this default value is arbitrary, it is not random. It is assumed
118 // that a condition that evaluates the same way by a higher percentage than this
119 // is best represented as control flow. Therefore, the default value N should be
120 // set such that the win from N% correct executions is greater than the loss
121 // from (100 - N)% mispredicted executions for the majority of intended targets.
122 static cl::opt<int> MinPercentageForPredictableBranch(
123     "min-predictable-branch", cl::init(99),
124     cl::desc("Minimum percentage (0-100) that a condition must be either true "
125              "or false to assume that the condition is predictable"),
126     cl::Hidden);
127 
128 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
129 #define HANDLE_LIBCALL(code, name) \
130   setLibcallName(RTLIB::code, name);
131 #include "llvm/IR/RuntimeLibcalls.def"
132 #undef HANDLE_LIBCALL
133   // Initialize calling conventions to their default.
134   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
135     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
136 
137   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
138   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
139     setLibcallName(RTLIB::ADD_F128, "__addkf3");
140     setLibcallName(RTLIB::SUB_F128, "__subkf3");
141     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
142     setLibcallName(RTLIB::DIV_F128, "__divkf3");
143     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
144     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
145     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
146     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
147     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
148     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
149     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
150     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
151     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
152     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
153     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
154     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
155     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
156     setLibcallName(RTLIB::UNE_F128, "__nekf2");
157     setLibcallName(RTLIB::OGE_F128, "__gekf2");
158     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
159     setLibcallName(RTLIB::OLE_F128, "__lekf2");
160     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
161     setLibcallName(RTLIB::UO_F128, "__unordkf2");
162   }
163 
164   // A few names are different on particular architectures or environments.
165   if (TT.isOSDarwin()) {
166     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
167     // of the gnueabi-style __gnu_*_ieee.
168     // FIXME: What about other targets?
169     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
170     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
171 
172     // Some darwins have an optimized __bzero/bzero function.
173     switch (TT.getArch()) {
174     case Triple::x86:
175     case Triple::x86_64:
176       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
177         setLibcallName(RTLIB::BZERO, "__bzero");
178       break;
179     case Triple::aarch64:
180     case Triple::aarch64_32:
181       setLibcallName(RTLIB::BZERO, "bzero");
182       break;
183     default:
184       break;
185     }
186 
187     if (darwinHasSinCos(TT)) {
188       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
189       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
190       if (TT.isWatchABI()) {
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
192                               CallingConv::ARM_AAPCS_VFP);
193         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
194                               CallingConv::ARM_AAPCS_VFP);
195       }
196     }
197   } else {
198     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
199     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
200   }
201 
202   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
203       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
204     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
205     setLibcallName(RTLIB::SINCOS_F64, "sincos");
206     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
207     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
208     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
209   }
210 
211   if (TT.isPS4CPU()) {
212     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
213     setLibcallName(RTLIB::SINCOS_F64, "sincos");
214   }
215 
216   if (TT.isOSOpenBSD()) {
217     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
218   }
219 }
220 
221 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
222 /// UNKNOWN_LIBCALL if there is none.
223 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
224   if (OpVT == MVT::f16) {
225     if (RetVT == MVT::f32)
226       return FPEXT_F16_F32;
227   } else if (OpVT == MVT::f32) {
228     if (RetVT == MVT::f64)
229       return FPEXT_F32_F64;
230     if (RetVT == MVT::f128)
231       return FPEXT_F32_F128;
232     if (RetVT == MVT::ppcf128)
233       return FPEXT_F32_PPCF128;
234   } else if (OpVT == MVT::f64) {
235     if (RetVT == MVT::f128)
236       return FPEXT_F64_F128;
237     else if (RetVT == MVT::ppcf128)
238       return FPEXT_F64_PPCF128;
239   } else if (OpVT == MVT::f80) {
240     if (RetVT == MVT::f128)
241       return FPEXT_F80_F128;
242   }
243 
244   return UNKNOWN_LIBCALL;
245 }
246 
247 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
248 /// UNKNOWN_LIBCALL if there is none.
249 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
250   if (RetVT == MVT::f16) {
251     if (OpVT == MVT::f32)
252       return FPROUND_F32_F16;
253     if (OpVT == MVT::f64)
254       return FPROUND_F64_F16;
255     if (OpVT == MVT::f80)
256       return FPROUND_F80_F16;
257     if (OpVT == MVT::f128)
258       return FPROUND_F128_F16;
259     if (OpVT == MVT::ppcf128)
260       return FPROUND_PPCF128_F16;
261   } else if (RetVT == MVT::f32) {
262     if (OpVT == MVT::f64)
263       return FPROUND_F64_F32;
264     if (OpVT == MVT::f80)
265       return FPROUND_F80_F32;
266     if (OpVT == MVT::f128)
267       return FPROUND_F128_F32;
268     if (OpVT == MVT::ppcf128)
269       return FPROUND_PPCF128_F32;
270   } else if (RetVT == MVT::f64) {
271     if (OpVT == MVT::f80)
272       return FPROUND_F80_F64;
273     if (OpVT == MVT::f128)
274       return FPROUND_F128_F64;
275     if (OpVT == MVT::ppcf128)
276       return FPROUND_PPCF128_F64;
277   } else if (RetVT == MVT::f80) {
278     if (OpVT == MVT::f128)
279       return FPROUND_F128_F80;
280   }
281 
282   return UNKNOWN_LIBCALL;
283 }
284 
285 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
286 /// UNKNOWN_LIBCALL if there is none.
287 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
288   if (OpVT == MVT::f32) {
289     if (RetVT == MVT::i32)
290       return FPTOSINT_F32_I32;
291     if (RetVT == MVT::i64)
292       return FPTOSINT_F32_I64;
293     if (RetVT == MVT::i128)
294       return FPTOSINT_F32_I128;
295   } else if (OpVT == MVT::f64) {
296     if (RetVT == MVT::i32)
297       return FPTOSINT_F64_I32;
298     if (RetVT == MVT::i64)
299       return FPTOSINT_F64_I64;
300     if (RetVT == MVT::i128)
301       return FPTOSINT_F64_I128;
302   } else if (OpVT == MVT::f80) {
303     if (RetVT == MVT::i32)
304       return FPTOSINT_F80_I32;
305     if (RetVT == MVT::i64)
306       return FPTOSINT_F80_I64;
307     if (RetVT == MVT::i128)
308       return FPTOSINT_F80_I128;
309   } else if (OpVT == MVT::f128) {
310     if (RetVT == MVT::i32)
311       return FPTOSINT_F128_I32;
312     if (RetVT == MVT::i64)
313       return FPTOSINT_F128_I64;
314     if (RetVT == MVT::i128)
315       return FPTOSINT_F128_I128;
316   } else if (OpVT == MVT::ppcf128) {
317     if (RetVT == MVT::i32)
318       return FPTOSINT_PPCF128_I32;
319     if (RetVT == MVT::i64)
320       return FPTOSINT_PPCF128_I64;
321     if (RetVT == MVT::i128)
322       return FPTOSINT_PPCF128_I128;
323   }
324   return UNKNOWN_LIBCALL;
325 }
326 
327 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
328 /// UNKNOWN_LIBCALL if there is none.
329 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
330   if (OpVT == MVT::f32) {
331     if (RetVT == MVT::i32)
332       return FPTOUINT_F32_I32;
333     if (RetVT == MVT::i64)
334       return FPTOUINT_F32_I64;
335     if (RetVT == MVT::i128)
336       return FPTOUINT_F32_I128;
337   } else if (OpVT == MVT::f64) {
338     if (RetVT == MVT::i32)
339       return FPTOUINT_F64_I32;
340     if (RetVT == MVT::i64)
341       return FPTOUINT_F64_I64;
342     if (RetVT == MVT::i128)
343       return FPTOUINT_F64_I128;
344   } else if (OpVT == MVT::f80) {
345     if (RetVT == MVT::i32)
346       return FPTOUINT_F80_I32;
347     if (RetVT == MVT::i64)
348       return FPTOUINT_F80_I64;
349     if (RetVT == MVT::i128)
350       return FPTOUINT_F80_I128;
351   } else if (OpVT == MVT::f128) {
352     if (RetVT == MVT::i32)
353       return FPTOUINT_F128_I32;
354     if (RetVT == MVT::i64)
355       return FPTOUINT_F128_I64;
356     if (RetVT == MVT::i128)
357       return FPTOUINT_F128_I128;
358   } else if (OpVT == MVT::ppcf128) {
359     if (RetVT == MVT::i32)
360       return FPTOUINT_PPCF128_I32;
361     if (RetVT == MVT::i64)
362       return FPTOUINT_PPCF128_I64;
363     if (RetVT == MVT::i128)
364       return FPTOUINT_PPCF128_I128;
365   }
366   return UNKNOWN_LIBCALL;
367 }
368 
369 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
370 /// UNKNOWN_LIBCALL if there is none.
371 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
372   if (OpVT == MVT::i32) {
373     if (RetVT == MVT::f32)
374       return SINTTOFP_I32_F32;
375     if (RetVT == MVT::f64)
376       return SINTTOFP_I32_F64;
377     if (RetVT == MVT::f80)
378       return SINTTOFP_I32_F80;
379     if (RetVT == MVT::f128)
380       return SINTTOFP_I32_F128;
381     if (RetVT == MVT::ppcf128)
382       return SINTTOFP_I32_PPCF128;
383   } else if (OpVT == MVT::i64) {
384     if (RetVT == MVT::f32)
385       return SINTTOFP_I64_F32;
386     if (RetVT == MVT::f64)
387       return SINTTOFP_I64_F64;
388     if (RetVT == MVT::f80)
389       return SINTTOFP_I64_F80;
390     if (RetVT == MVT::f128)
391       return SINTTOFP_I64_F128;
392     if (RetVT == MVT::ppcf128)
393       return SINTTOFP_I64_PPCF128;
394   } else if (OpVT == MVT::i128) {
395     if (RetVT == MVT::f32)
396       return SINTTOFP_I128_F32;
397     if (RetVT == MVT::f64)
398       return SINTTOFP_I128_F64;
399     if (RetVT == MVT::f80)
400       return SINTTOFP_I128_F80;
401     if (RetVT == MVT::f128)
402       return SINTTOFP_I128_F128;
403     if (RetVT == MVT::ppcf128)
404       return SINTTOFP_I128_PPCF128;
405   }
406   return UNKNOWN_LIBCALL;
407 }
408 
409 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
410 /// UNKNOWN_LIBCALL if there is none.
411 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
412   if (OpVT == MVT::i32) {
413     if (RetVT == MVT::f32)
414       return UINTTOFP_I32_F32;
415     if (RetVT == MVT::f64)
416       return UINTTOFP_I32_F64;
417     if (RetVT == MVT::f80)
418       return UINTTOFP_I32_F80;
419     if (RetVT == MVT::f128)
420       return UINTTOFP_I32_F128;
421     if (RetVT == MVT::ppcf128)
422       return UINTTOFP_I32_PPCF128;
423   } else if (OpVT == MVT::i64) {
424     if (RetVT == MVT::f32)
425       return UINTTOFP_I64_F32;
426     if (RetVT == MVT::f64)
427       return UINTTOFP_I64_F64;
428     if (RetVT == MVT::f80)
429       return UINTTOFP_I64_F80;
430     if (RetVT == MVT::f128)
431       return UINTTOFP_I64_F128;
432     if (RetVT == MVT::ppcf128)
433       return UINTTOFP_I64_PPCF128;
434   } else if (OpVT == MVT::i128) {
435     if (RetVT == MVT::f32)
436       return UINTTOFP_I128_F32;
437     if (RetVT == MVT::f64)
438       return UINTTOFP_I128_F64;
439     if (RetVT == MVT::f80)
440       return UINTTOFP_I128_F80;
441     if (RetVT == MVT::f128)
442       return UINTTOFP_I128_F128;
443     if (RetVT == MVT::ppcf128)
444       return UINTTOFP_I128_PPCF128;
445   }
446   return UNKNOWN_LIBCALL;
447 }
448 
449 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
450 #define OP_TO_LIBCALL(Name, Enum)                                              \
451   case Name:                                                                   \
452     switch (VT.SimpleTy) {                                                     \
453     default:                                                                   \
454       return UNKNOWN_LIBCALL;                                                  \
455     case MVT::i8:                                                              \
456       return Enum##_1;                                                         \
457     case MVT::i16:                                                             \
458       return Enum##_2;                                                         \
459     case MVT::i32:                                                             \
460       return Enum##_4;                                                         \
461     case MVT::i64:                                                             \
462       return Enum##_8;                                                         \
463     case MVT::i128:                                                            \
464       return Enum##_16;                                                        \
465     }
466 
467   switch (Opc) {
468     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
469     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
477     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
478     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
479     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
480   }
481 
482 #undef OP_TO_LIBCALL
483 
484   return UNKNOWN_LIBCALL;
485 }
486 
487 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
488   switch (ElementSize) {
489   case 1:
490     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
491   case 2:
492     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
493   case 4:
494     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
495   case 8:
496     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
497   case 16:
498     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
499   default:
500     return UNKNOWN_LIBCALL;
501   }
502 }
503 
504 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
505   switch (ElementSize) {
506   case 1:
507     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
508   case 2:
509     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
510   case 4:
511     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
512   case 8:
513     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
514   case 16:
515     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
516   default:
517     return UNKNOWN_LIBCALL;
518   }
519 }
520 
521 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
522   switch (ElementSize) {
523   case 1:
524     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
525   case 2:
526     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
527   case 4:
528     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
529   case 8:
530     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
531   case 16:
532     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
533   default:
534     return UNKNOWN_LIBCALL;
535   }
536 }
537 
538 /// InitCmpLibcallCCs - Set default comparison libcall CC.
539 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
540   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
541   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
542   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
543   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
544   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
545   CCs[RTLIB::UNE_F32] = ISD::SETNE;
546   CCs[RTLIB::UNE_F64] = ISD::SETNE;
547   CCs[RTLIB::UNE_F128] = ISD::SETNE;
548   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
549   CCs[RTLIB::OGE_F32] = ISD::SETGE;
550   CCs[RTLIB::OGE_F64] = ISD::SETGE;
551   CCs[RTLIB::OGE_F128] = ISD::SETGE;
552   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
553   CCs[RTLIB::OLT_F32] = ISD::SETLT;
554   CCs[RTLIB::OLT_F64] = ISD::SETLT;
555   CCs[RTLIB::OLT_F128] = ISD::SETLT;
556   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
557   CCs[RTLIB::OLE_F32] = ISD::SETLE;
558   CCs[RTLIB::OLE_F64] = ISD::SETLE;
559   CCs[RTLIB::OLE_F128] = ISD::SETLE;
560   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
561   CCs[RTLIB::OGT_F32] = ISD::SETGT;
562   CCs[RTLIB::OGT_F64] = ISD::SETGT;
563   CCs[RTLIB::OGT_F128] = ISD::SETGT;
564   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
565   CCs[RTLIB::UO_F32] = ISD::SETNE;
566   CCs[RTLIB::UO_F64] = ISD::SETNE;
567   CCs[RTLIB::UO_F128] = ISD::SETNE;
568   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
569 }
570 
571 /// NOTE: The TargetMachine owns TLOF.
572 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
573   initActions();
574 
575   // Perform these initializations only once.
576   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
577       MaxLoadsPerMemcmp = 8;
578   MaxGluedStoresPerMemcpy = 0;
579   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
580       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
581   HasMultipleConditionRegisters = false;
582   HasExtractBitsInsn = false;
583   JumpIsExpensive = JumpIsExpensiveOverride;
584   PredictableSelectIsExpensive = false;
585   EnableExtLdPromotion = false;
586   StackPointerRegisterToSaveRestore = 0;
587   BooleanContents = UndefinedBooleanContent;
588   BooleanFloatContents = UndefinedBooleanContent;
589   BooleanVectorContents = UndefinedBooleanContent;
590   SchedPreferenceInfo = Sched::ILP;
591   GatherAllAliasesMaxDepth = 18;
592   IsStrictFPEnabled = DisableStrictNodeMutation;
593   // TODO: the default will be switched to 0 in the next commit, along
594   // with the Target-specific changes necessary.
595   MaxAtomicSizeInBitsSupported = 1024;
596 
597   MinCmpXchgSizeInBits = 0;
598   SupportsUnalignedAtomics = false;
599 
600   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
601 
602   InitLibcalls(TM.getTargetTriple());
603   InitCmpLibcallCCs(CmpLibcallCCs);
604 }
605 
606 void TargetLoweringBase::initActions() {
607   // All operations default to being supported.
608   memset(OpActions, 0, sizeof(OpActions));
609   memset(LoadExtActions, 0, sizeof(LoadExtActions));
610   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
611   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
612   memset(CondCodeActions, 0, sizeof(CondCodeActions));
613   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
614   std::fill(std::begin(TargetDAGCombineArray),
615             std::end(TargetDAGCombineArray), 0);
616 
617   for (MVT VT : MVT::fp_valuetypes()) {
618     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits().getFixedSize());
619     if (IntVT.isValid()) {
620       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
621       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
622     }
623   }
624 
625   // Set default actions for various operations.
626   for (MVT VT : MVT::all_valuetypes()) {
627     // Default all indexed load / store to expand.
628     for (unsigned IM = (unsigned)ISD::PRE_INC;
629          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
630       setIndexedLoadAction(IM, VT, Expand);
631       setIndexedStoreAction(IM, VT, Expand);
632       setIndexedMaskedLoadAction(IM, VT, Expand);
633       setIndexedMaskedStoreAction(IM, VT, Expand);
634     }
635 
636     // Most backends expect to see the node which just returns the value loaded.
637     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
638 
639     // These operations default to expand.
640     setOperationAction(ISD::FGETSIGN, VT, Expand);
641     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
642     setOperationAction(ISD::FMINNUM, VT, Expand);
643     setOperationAction(ISD::FMAXNUM, VT, Expand);
644     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
645     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
646     setOperationAction(ISD::FMINIMUM, VT, Expand);
647     setOperationAction(ISD::FMAXIMUM, VT, Expand);
648     setOperationAction(ISD::FMAD, VT, Expand);
649     setOperationAction(ISD::SMIN, VT, Expand);
650     setOperationAction(ISD::SMAX, VT, Expand);
651     setOperationAction(ISD::UMIN, VT, Expand);
652     setOperationAction(ISD::UMAX, VT, Expand);
653     setOperationAction(ISD::ABS, VT, Expand);
654     setOperationAction(ISD::FSHL, VT, Expand);
655     setOperationAction(ISD::FSHR, VT, Expand);
656     setOperationAction(ISD::SADDSAT, VT, Expand);
657     setOperationAction(ISD::UADDSAT, VT, Expand);
658     setOperationAction(ISD::SSUBSAT, VT, Expand);
659     setOperationAction(ISD::USUBSAT, VT, Expand);
660     setOperationAction(ISD::SMULFIX, VT, Expand);
661     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
662     setOperationAction(ISD::UMULFIX, VT, Expand);
663     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
664     setOperationAction(ISD::SDIVFIX, VT, Expand);
665     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
666     setOperationAction(ISD::UDIVFIX, VT, Expand);
667     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
668 
669     // Overflow operations default to expand
670     setOperationAction(ISD::SADDO, VT, Expand);
671     setOperationAction(ISD::SSUBO, VT, Expand);
672     setOperationAction(ISD::UADDO, VT, Expand);
673     setOperationAction(ISD::USUBO, VT, Expand);
674     setOperationAction(ISD::SMULO, VT, Expand);
675     setOperationAction(ISD::UMULO, VT, Expand);
676 
677     // ADDCARRY operations default to expand
678     setOperationAction(ISD::ADDCARRY, VT, Expand);
679     setOperationAction(ISD::SUBCARRY, VT, Expand);
680     setOperationAction(ISD::SETCCCARRY, VT, Expand);
681 
682     // ADDC/ADDE/SUBC/SUBE default to expand.
683     setOperationAction(ISD::ADDC, VT, Expand);
684     setOperationAction(ISD::ADDE, VT, Expand);
685     setOperationAction(ISD::SUBC, VT, Expand);
686     setOperationAction(ISD::SUBE, VT, Expand);
687 
688     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
689     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
691 
692     setOperationAction(ISD::BITREVERSE, VT, Expand);
693 
694     // These library functions default to expand.
695     setOperationAction(ISD::FROUND, VT, Expand);
696     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
697     setOperationAction(ISD::FPOWI, VT, Expand);
698 
699     // These operations default to expand for vector types.
700     if (VT.isVector()) {
701       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
702       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
703       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
704       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
705       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
706       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
707     }
708 
709     // Constrained floating-point operations default to expand.
710 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
711     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
712 #include "llvm/IR/ConstrainedOps.def"
713 
714     // For most targets @llvm.get.dynamic.area.offset just returns 0.
715     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
716 
717     // Vector reduction default to expand.
718     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
719     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
720     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
725     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
726     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
727     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
728     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
729     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
730     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
731   }
732 
733   // Most targets ignore the @llvm.prefetch intrinsic.
734   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
735 
736   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
737   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
738 
739   // ConstantFP nodes default to expand.  Targets can either change this to
740   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
741   // to optimize expansions for certain constants.
742   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
743   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
744   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
745   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
746   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
747 
748   // These library functions default to expand.
749   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
750     setOperationAction(ISD::FCBRT,      VT, Expand);
751     setOperationAction(ISD::FLOG ,      VT, Expand);
752     setOperationAction(ISD::FLOG2,      VT, Expand);
753     setOperationAction(ISD::FLOG10,     VT, Expand);
754     setOperationAction(ISD::FEXP ,      VT, Expand);
755     setOperationAction(ISD::FEXP2,      VT, Expand);
756     setOperationAction(ISD::FFLOOR,     VT, Expand);
757     setOperationAction(ISD::FNEARBYINT, VT, Expand);
758     setOperationAction(ISD::FCEIL,      VT, Expand);
759     setOperationAction(ISD::FRINT,      VT, Expand);
760     setOperationAction(ISD::FTRUNC,     VT, Expand);
761     setOperationAction(ISD::FROUND,     VT, Expand);
762     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
763     setOperationAction(ISD::LROUND,     VT, Expand);
764     setOperationAction(ISD::LLROUND,    VT, Expand);
765     setOperationAction(ISD::LRINT,      VT, Expand);
766     setOperationAction(ISD::LLRINT,     VT, Expand);
767   }
768 
769   // Default ISD::TRAP to expand (which turns it into abort).
770   setOperationAction(ISD::TRAP, MVT::Other, Expand);
771 
772   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
773   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
774   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
775 }
776 
777 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
778                                                EVT) const {
779   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
780 }
781 
782 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
783                                          bool LegalTypes) const {
784   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
785   if (LHSTy.isVector())
786     return LHSTy;
787   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
788                     : getPointerTy(DL);
789 }
790 
791 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
792   assert(isTypeLegal(VT));
793   switch (Op) {
794   default:
795     return false;
796   case ISD::SDIV:
797   case ISD::UDIV:
798   case ISD::SREM:
799   case ISD::UREM:
800     return true;
801   }
802 }
803 
804 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
805   // If the command-line option was specified, ignore this request.
806   if (!JumpIsExpensiveOverride.getNumOccurrences())
807     JumpIsExpensive = isExpensive;
808 }
809 
810 TargetLoweringBase::LegalizeKind
811 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
812   // If this is a simple type, use the ComputeRegisterProp mechanism.
813   if (VT.isSimple()) {
814     MVT SVT = VT.getSimpleVT();
815     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
816     MVT NVT = TransformToType[SVT.SimpleTy];
817     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
818 
819     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
820             LA == TypeSoftPromoteHalf ||
821             (NVT.isVector() ||
822              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
823            "Promote may not follow Expand or Promote");
824 
825     if (LA == TypeSplitVector)
826       return LegalizeKind(LA,
827                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
828                                            SVT.getVectorElementCount() / 2));
829     if (LA == TypeScalarizeVector)
830       return LegalizeKind(LA, SVT.getVectorElementType());
831     return LegalizeKind(LA, NVT);
832   }
833 
834   // Handle Extended Scalar Types.
835   if (!VT.isVector()) {
836     assert(VT.isInteger() && "Float types must be simple");
837     unsigned BitSize = VT.getSizeInBits();
838     // First promote to a power-of-two size, then expand if necessary.
839     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
840       EVT NVT = VT.getRoundIntegerType(Context);
841       assert(NVT != VT && "Unable to round integer VT");
842       LegalizeKind NextStep = getTypeConversion(Context, NVT);
843       // Avoid multi-step promotion.
844       if (NextStep.first == TypePromoteInteger)
845         return NextStep;
846       // Return rounded integer type.
847       return LegalizeKind(TypePromoteInteger, NVT);
848     }
849 
850     return LegalizeKind(TypeExpandInteger,
851                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
852   }
853 
854   // Handle vector types.
855   ElementCount NumElts = VT.getVectorElementCount();
856   EVT EltVT = VT.getVectorElementType();
857 
858   // Vectors with only one element are always scalarized.
859   if (NumElts == 1)
860     return LegalizeKind(TypeScalarizeVector, EltVT);
861 
862   if (VT.getVectorElementCount() == ElementCount(1, true))
863     report_fatal_error("Cannot legalize this vector");
864 
865   // Try to widen vector elements until the element type is a power of two and
866   // promote it to a legal type later on, for example:
867   // <3 x i8> -> <4 x i8> -> <4 x i32>
868   if (EltVT.isInteger()) {
869     // Vectors with a number of elements that is not a power of two are always
870     // widened, for example <3 x i8> -> <4 x i8>.
871     if (!VT.isPow2VectorType()) {
872       NumElts = NumElts.NextPowerOf2();
873       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
874       return LegalizeKind(TypeWidenVector, NVT);
875     }
876 
877     // Examine the element type.
878     LegalizeKind LK = getTypeConversion(Context, EltVT);
879 
880     // If type is to be expanded, split the vector.
881     //  <4 x i140> -> <2 x i140>
882     if (LK.first == TypeExpandInteger)
883       return LegalizeKind(TypeSplitVector,
884                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
885 
886     // Promote the integer element types until a legal vector type is found
887     // or until the element integer type is too big. If a legal type was not
888     // found, fallback to the usual mechanism of widening/splitting the
889     // vector.
890     EVT OldEltVT = EltVT;
891     while (true) {
892       // Increase the bitwidth of the element to the next pow-of-two
893       // (which is greater than 8 bits).
894       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
895                   .getRoundIntegerType(Context);
896 
897       // Stop trying when getting a non-simple element type.
898       // Note that vector elements may be greater than legal vector element
899       // types. Example: X86 XMM registers hold 64bit element on 32bit
900       // systems.
901       if (!EltVT.isSimple())
902         break;
903 
904       // Build a new vector type and check if it is legal.
905       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
906       // Found a legal promoted vector type.
907       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
908         return LegalizeKind(TypePromoteInteger,
909                             EVT::getVectorVT(Context, EltVT, NumElts));
910     }
911 
912     // Reset the type to the unexpanded type if we did not find a legal vector
913     // type with a promoted vector element type.
914     EltVT = OldEltVT;
915   }
916 
917   // Try to widen the vector until a legal type is found.
918   // If there is no wider legal type, split the vector.
919   while (true) {
920     // Round up to the next power of 2.
921     NumElts = NumElts.NextPowerOf2();
922 
923     // If there is no simple vector type with this many elements then there
924     // cannot be a larger legal vector type.  Note that this assumes that
925     // there are no skipped intermediate vector types in the simple types.
926     if (!EltVT.isSimple())
927       break;
928     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
929     if (LargerVector == MVT())
930       break;
931 
932     // If this type is legal then widen the vector.
933     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
934       return LegalizeKind(TypeWidenVector, LargerVector);
935   }
936 
937   // Widen odd vectors to next power of two.
938   if (!VT.isPow2VectorType()) {
939     EVT NVT = VT.getPow2VectorType(Context);
940     return LegalizeKind(TypeWidenVector, NVT);
941   }
942 
943   // Vectors with illegal element types are expanded.
944   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorElementCount() / 2);
945   return LegalizeKind(TypeSplitVector, NVT);
946 }
947 
948 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
949                                           unsigned &NumIntermediates,
950                                           MVT &RegisterVT,
951                                           TargetLoweringBase *TLI) {
952   // Figure out the right, legal destination reg to copy into.
953   ElementCount EC = VT.getVectorElementCount();
954   MVT EltTy = VT.getVectorElementType();
955 
956   unsigned NumVectorRegs = 1;
957 
958   // Scalable vectors cannot be scalarized, so splitting or widening is
959   // required.
960   if (VT.isScalableVector() && !isPowerOf2_32(EC.Min))
961     llvm_unreachable(
962         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
963 
964   // FIXME: We don't support non-power-of-2-sized vectors for now.
965   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
966   if (!isPowerOf2_32(EC.Min)) {
967     // Split EC to unit size (scalable property is preserved).
968     NumVectorRegs = EC.Min;
969     EC = EC / NumVectorRegs;
970   }
971 
972   // Divide the input until we get to a supported size. This will
973   // always end up with an EC that represent a scalar or a scalable
974   // scalar.
975   while (EC.Min > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
976     EC.Min >>= 1;
977     NumVectorRegs <<= 1;
978   }
979 
980   NumIntermediates = NumVectorRegs;
981 
982   MVT NewVT = MVT::getVectorVT(EltTy, EC);
983   if (!TLI->isTypeLegal(NewVT))
984     NewVT = EltTy;
985   IntermediateVT = NewVT;
986 
987   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits().getFixedSize();
988 
989   // Convert sizes such as i33 to i64.
990   if (!isPowerOf2_32(LaneSizeInBits))
991     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
992 
993   MVT DestVT = TLI->getRegisterType(NewVT);
994   RegisterVT = DestVT;
995   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
996     return NumVectorRegs *
997            (LaneSizeInBits / DestVT.getScalarSizeInBits().getFixedSize());
998 
999   // Otherwise, promotion or legal types use the same number of registers as
1000   // the vector decimated to the appropriate level.
1001   return NumVectorRegs;
1002 }
1003 
1004 /// isLegalRC - Return true if the value types that can be represented by the
1005 /// specified register class are all legal.
1006 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1007                                    const TargetRegisterClass &RC) const {
1008   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1009     if (isTypeLegal(*I))
1010       return true;
1011   return false;
1012 }
1013 
1014 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1015 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1016 MachineBasicBlock *
1017 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1018                                    MachineBasicBlock *MBB) const {
1019   MachineInstr *MI = &InitialMI;
1020   MachineFunction &MF = *MI->getMF();
1021   MachineFrameInfo &MFI = MF.getFrameInfo();
1022 
1023   // We're handling multiple types of operands here:
1024   // PATCHPOINT MetaArgs - live-in, read only, direct
1025   // STATEPOINT Deopt Spill - live-through, read only, indirect
1026   // STATEPOINT Deopt Alloca - live-through, read only, direct
1027   // (We're currently conservative and mark the deopt slots read/write in
1028   // practice.)
1029   // STATEPOINT GC Spill - live-through, read/write, indirect
1030   // STATEPOINT GC Alloca - live-through, read/write, direct
1031   // The live-in vs live-through is handled already (the live through ones are
1032   // all stack slots), but we need to handle the different type of stackmap
1033   // operands and memory effects here.
1034 
1035   if (!llvm::any_of(MI->operands(),
1036                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1037     return MBB;
1038 
1039   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1040 
1041   // Inherit previous memory operands.
1042   MIB.cloneMemRefs(*MI);
1043 
1044   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1045     MachineOperand &MO = MI->getOperand(i);
1046     if (!MO.isFI()) {
1047       // Index of Def operand this Use it tied to.
1048       // Since Defs are coming before Uses, if Use is tied, then
1049       // index of Def must be smaller that index of that Use.
1050       // Also, Defs preserve their position in new MI.
1051       unsigned TiedTo = i;
1052       if (MO.isReg() && MO.isTied())
1053         TiedTo = MI->findTiedOperandIdx(i);
1054       MIB.add(MO);
1055       if (TiedTo < i)
1056         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1057       continue;
1058     }
1059 
1060     // foldMemoryOperand builds a new MI after replacing a single FI operand
1061     // with the canonical set of five x86 addressing-mode operands.
1062     int FI = MO.getIndex();
1063 
1064     // Add frame index operands recognized by stackmaps.cpp
1065     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1066       // indirect-mem-ref tag, size, #FI, offset.
1067       // Used for spills inserted by StatepointLowering.  This codepath is not
1068       // used for patchpoints/stackmaps at all, for these spilling is done via
1069       // foldMemoryOperand callback only.
1070       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1071       MIB.addImm(StackMaps::IndirectMemRefOp);
1072       MIB.addImm(MFI.getObjectSize(FI));
1073       MIB.add(MO);
1074       MIB.addImm(0);
1075     } else {
1076       // direct-mem-ref tag, #FI, offset.
1077       // Used by patchpoint, and direct alloca arguments to statepoints
1078       MIB.addImm(StackMaps::DirectMemRefOp);
1079       MIB.add(MO);
1080       MIB.addImm(0);
1081     }
1082 
1083     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1084 
1085     // Add a new memory operand for this FI.
1086     assert(MFI.getObjectOffset(FI) != -1);
1087 
1088     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1089     // PATCHPOINT should be updated to do the same. (TODO)
1090     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1091       auto Flags = MachineMemOperand::MOLoad;
1092       MachineMemOperand *MMO = MF.getMachineMemOperand(
1093           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1094           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1095       MIB->addMemOperand(MF, MMO);
1096     }
1097   }
1098   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1099   MI->eraseFromParent();
1100   return MBB;
1101 }
1102 
1103 MachineBasicBlock *
1104 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1105                                         MachineBasicBlock *MBB) const {
1106   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1107          "Called emitXRayCustomEvent on the wrong MI!");
1108   auto &MF = *MI.getMF();
1109   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1110   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1111     MIB.add(MI.getOperand(OpIdx));
1112 
1113   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1114   MI.eraseFromParent();
1115   return MBB;
1116 }
1117 
1118 MachineBasicBlock *
1119 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1120                                        MachineBasicBlock *MBB) const {
1121   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1122          "Called emitXRayTypedEvent on the wrong MI!");
1123   auto &MF = *MI.getMF();
1124   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1125   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1126     MIB.add(MI.getOperand(OpIdx));
1127 
1128   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1129   MI.eraseFromParent();
1130   return MBB;
1131 }
1132 
1133 /// findRepresentativeClass - Return the largest legal super-reg register class
1134 /// of the register class for the specified type and its associated "cost".
1135 // This function is in TargetLowering because it uses RegClassForVT which would
1136 // need to be moved to TargetRegisterInfo and would necessitate moving
1137 // isTypeLegal over as well - a massive change that would just require
1138 // TargetLowering having a TargetRegisterInfo class member that it would use.
1139 std::pair<const TargetRegisterClass *, uint8_t>
1140 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1141                                             MVT VT) const {
1142   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1143   if (!RC)
1144     return std::make_pair(RC, 0);
1145 
1146   // Compute the set of all super-register classes.
1147   BitVector SuperRegRC(TRI->getNumRegClasses());
1148   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1149     SuperRegRC.setBitsInMask(RCI.getMask());
1150 
1151   // Find the first legal register class with the largest spill size.
1152   const TargetRegisterClass *BestRC = RC;
1153   for (unsigned i : SuperRegRC.set_bits()) {
1154     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1155     // We want the largest possible spill size.
1156     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1157       continue;
1158     if (!isLegalRC(*TRI, *SuperRC))
1159       continue;
1160     BestRC = SuperRC;
1161   }
1162   return std::make_pair(BestRC, 1);
1163 }
1164 
1165 /// computeRegisterProperties - Once all of the register classes are added,
1166 /// this allows us to compute derived properties we expose.
1167 void TargetLoweringBase::computeRegisterProperties(
1168     const TargetRegisterInfo *TRI) {
1169   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1170                 "Too many value types for ValueTypeActions to hold!");
1171 
1172   // Everything defaults to needing one register.
1173   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1174     NumRegistersForVT[i] = 1;
1175     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1176   }
1177   // ...except isVoid, which doesn't need any registers.
1178   NumRegistersForVT[MVT::isVoid] = 0;
1179 
1180   // Find the largest integer register class.
1181   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1182   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1183     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1184 
1185   // Every integer value type larger than this largest register takes twice as
1186   // many registers to represent as the previous ValueType.
1187   for (unsigned ExpandedReg = LargestIntReg + 1;
1188        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1189     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1190     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1191     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1192     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1193                                    TypeExpandInteger);
1194   }
1195 
1196   // Inspect all of the ValueType's smaller than the largest integer
1197   // register to see which ones need promotion.
1198   unsigned LegalIntReg = LargestIntReg;
1199   for (unsigned IntReg = LargestIntReg - 1;
1200        IntReg >= (unsigned)MVT::i1; --IntReg) {
1201     MVT IVT = (MVT::SimpleValueType)IntReg;
1202     if (isTypeLegal(IVT)) {
1203       LegalIntReg = IntReg;
1204     } else {
1205       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1206         (MVT::SimpleValueType)LegalIntReg;
1207       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1208     }
1209   }
1210 
1211   // ppcf128 type is really two f64's.
1212   if (!isTypeLegal(MVT::ppcf128)) {
1213     if (isTypeLegal(MVT::f64)) {
1214       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1215       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1216       TransformToType[MVT::ppcf128] = MVT::f64;
1217       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1218     } else {
1219       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1220       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1221       TransformToType[MVT::ppcf128] = MVT::i128;
1222       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1223     }
1224   }
1225 
1226   // Decide how to handle f128. If the target does not have native f128 support,
1227   // expand it to i128 and we will be generating soft float library calls.
1228   if (!isTypeLegal(MVT::f128)) {
1229     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1230     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1231     TransformToType[MVT::f128] = MVT::i128;
1232     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1233   }
1234 
1235   // Decide how to handle f64. If the target does not have native f64 support,
1236   // expand it to i64 and we will be generating soft float library calls.
1237   if (!isTypeLegal(MVT::f64)) {
1238     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1239     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1240     TransformToType[MVT::f64] = MVT::i64;
1241     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1242   }
1243 
1244   // Decide how to handle f32. If the target does not have native f32 support,
1245   // expand it to i32 and we will be generating soft float library calls.
1246   if (!isTypeLegal(MVT::f32)) {
1247     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1248     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1249     TransformToType[MVT::f32] = MVT::i32;
1250     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1251   }
1252 
1253   // Decide how to handle f16. If the target does not have native f16 support,
1254   // promote it to f32, because there are no f16 library calls (except for
1255   // conversions).
1256   if (!isTypeLegal(MVT::f16)) {
1257     // Allow targets to control how we legalize half.
1258     if (softPromoteHalfType()) {
1259       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1260       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1261       TransformToType[MVT::f16] = MVT::f32;
1262       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1263     } else {
1264       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1265       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1266       TransformToType[MVT::f16] = MVT::f32;
1267       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1268     }
1269   }
1270 
1271   // Loop over all of the vector value types to see which need transformations.
1272   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1273        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1274     MVT VT = (MVT::SimpleValueType) i;
1275     if (isTypeLegal(VT))
1276       continue;
1277 
1278     MVT EltVT = VT.getVectorElementType();
1279     ElementCount EC = VT.getVectorElementCount();
1280     bool IsLegalWiderType = false;
1281     bool IsScalable = VT.isScalableVector();
1282     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1283     switch (PreferredAction) {
1284     case TypePromoteInteger: {
1285       MVT::SimpleValueType EndVT = IsScalable ?
1286                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1287                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1288       // Try to promote the elements of integer vectors. If no legal
1289       // promotion was found, fall through to the widen-vector method.
1290       for (unsigned nVT = i + 1;
1291            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1292         MVT SVT = (MVT::SimpleValueType) nVT;
1293         // Promote vectors of integers to vectors with the same number
1294         // of elements, with a wider element type.
1295         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1296             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1297           TransformToType[i] = SVT;
1298           RegisterTypeForVT[i] = SVT;
1299           NumRegistersForVT[i] = 1;
1300           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1301           IsLegalWiderType = true;
1302           break;
1303         }
1304       }
1305       if (IsLegalWiderType)
1306         break;
1307       LLVM_FALLTHROUGH;
1308     }
1309 
1310     case TypeWidenVector:
1311       if (isPowerOf2_32(EC.Min)) {
1312         // Try to widen the vector.
1313         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1314           MVT SVT = (MVT::SimpleValueType) nVT;
1315           if (SVT.getVectorElementType() == EltVT &&
1316               SVT.isScalableVector() == IsScalable &&
1317               SVT.getVectorElementCount().Min > EC.Min && isTypeLegal(SVT)) {
1318             TransformToType[i] = SVT;
1319             RegisterTypeForVT[i] = SVT;
1320             NumRegistersForVT[i] = 1;
1321             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1322             IsLegalWiderType = true;
1323             break;
1324           }
1325         }
1326         if (IsLegalWiderType)
1327           break;
1328       } else {
1329         // Only widen to the next power of 2 to keep consistency with EVT.
1330         MVT NVT = VT.getPow2VectorType();
1331         if (isTypeLegal(NVT)) {
1332           TransformToType[i] = NVT;
1333           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1334           RegisterTypeForVT[i] = NVT;
1335           NumRegistersForVT[i] = 1;
1336           break;
1337         }
1338       }
1339       LLVM_FALLTHROUGH;
1340 
1341     case TypeSplitVector:
1342     case TypeScalarizeVector: {
1343       MVT IntermediateVT;
1344       MVT RegisterVT;
1345       unsigned NumIntermediates;
1346       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1347           NumIntermediates, RegisterVT, this);
1348       NumRegistersForVT[i] = NumRegisters;
1349       assert(NumRegistersForVT[i] == NumRegisters &&
1350              "NumRegistersForVT size cannot represent NumRegisters!");
1351       RegisterTypeForVT[i] = RegisterVT;
1352 
1353       MVT NVT = VT.getPow2VectorType();
1354       if (NVT == VT) {
1355         // Type is already a power of 2.  The default action is to split.
1356         TransformToType[i] = MVT::Other;
1357         if (PreferredAction == TypeScalarizeVector)
1358           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1359         else if (PreferredAction == TypeSplitVector)
1360           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1361         else if (EC.Min > 1)
1362           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1363         else
1364           ValueTypeActions.setTypeAction(VT, EC.Scalable
1365                                                  ? TypeScalarizeScalableVector
1366                                                  : TypeScalarizeVector);
1367       } else {
1368         TransformToType[i] = NVT;
1369         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1370       }
1371       break;
1372     }
1373     default:
1374       llvm_unreachable("Unknown vector legalization action!");
1375     }
1376   }
1377 
1378   // Determine the 'representative' register class for each value type.
1379   // An representative register class is the largest (meaning one which is
1380   // not a sub-register class / subreg register class) legal register class for
1381   // a group of value types. For example, on i386, i8, i16, and i32
1382   // representative would be GR32; while on x86_64 it's GR64.
1383   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1384     const TargetRegisterClass* RRC;
1385     uint8_t Cost;
1386     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1387     RepRegClassForVT[i] = RRC;
1388     RepRegClassCostForVT[i] = Cost;
1389   }
1390 }
1391 
1392 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1393                                            EVT VT) const {
1394   assert(!VT.isVector() && "No default SetCC type for vectors!");
1395   return getPointerTy(DL).SimpleTy;
1396 }
1397 
1398 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1399   return MVT::i32; // return the default value
1400 }
1401 
1402 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1403 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1404 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1405 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1406 ///
1407 /// This method returns the number of registers needed, and the VT for each
1408 /// register.  It also returns the VT and quantity of the intermediate values
1409 /// before they are promoted/expanded.
1410 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1411                                                 EVT &IntermediateVT,
1412                                                 unsigned &NumIntermediates,
1413                                                 MVT &RegisterVT) const {
1414   ElementCount EltCnt = VT.getVectorElementCount();
1415 
1416   // If there is a wider vector type with the same element type as this one,
1417   // or a promoted vector type that has the same number of elements which
1418   // are wider, then we should convert to that legal vector type.
1419   // This handles things like <2 x float> -> <4 x float> and
1420   // <4 x i1> -> <4 x i32>.
1421   LegalizeTypeAction TA = getTypeAction(Context, VT);
1422   if (EltCnt.Min != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1423     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1424     if (isTypeLegal(RegisterEVT)) {
1425       IntermediateVT = RegisterEVT;
1426       RegisterVT = RegisterEVT.getSimpleVT();
1427       NumIntermediates = 1;
1428       return 1;
1429     }
1430   }
1431 
1432   // Figure out the right, legal destination reg to copy into.
1433   EVT EltTy = VT.getVectorElementType();
1434 
1435   unsigned NumVectorRegs = 1;
1436 
1437   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1438   // types like done elsewhere in SelectionDAG.
1439   if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.Min)) {
1440     LegalizeKind LK;
1441     EVT PartVT = VT;
1442     do {
1443       // Iterate until we've found a legal (part) type to hold VT.
1444       LK = getTypeConversion(Context, PartVT);
1445       PartVT = LK.second;
1446     } while (LK.first != TypeLegal);
1447 
1448     NumIntermediates =
1449         VT.getVectorElementCount().Min / PartVT.getVectorElementCount().Min;
1450 
1451     // FIXME: This code needs to be extended to handle more complex vector
1452     // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
1453     // supported cases are vectors that are broken down into equal parts
1454     // such as nxv6i64 -> 3 x nxv2i64.
1455     assert(NumIntermediates * PartVT.getVectorElementCount().Min ==
1456                VT.getVectorElementCount().Min &&
1457            "Expected an integer multiple of PartVT");
1458     IntermediateVT = PartVT;
1459     RegisterVT = getRegisterType(Context, IntermediateVT);
1460     return NumIntermediates;
1461   }
1462 
1463   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1464   // we could break down into LHS/RHS like LegalizeDAG does.
1465   if (!isPowerOf2_32(EltCnt.Min)) {
1466     NumVectorRegs = EltCnt.Min;
1467     EltCnt.Min = 1;
1468   }
1469 
1470   // Divide the input until we get to a supported size.  This will always
1471   // end with a scalar if the target doesn't support vectors.
1472   while (EltCnt.Min > 1 &&
1473          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1474     EltCnt.Min >>= 1;
1475     NumVectorRegs <<= 1;
1476   }
1477 
1478   NumIntermediates = NumVectorRegs;
1479 
1480   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1481   if (!isTypeLegal(NewVT))
1482     NewVT = EltTy;
1483   IntermediateVT = NewVT;
1484 
1485   MVT DestVT = getRegisterType(Context, NewVT);
1486   RegisterVT = DestVT;
1487 
1488   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1489     TypeSize NewVTSize = NewVT.getSizeInBits();
1490     // Convert sizes such as i33 to i64.
1491     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1492       NewVTSize = NewVTSize.NextPowerOf2();
1493     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1494   }
1495 
1496   // Otherwise, promotion or legal types use the same number of registers as
1497   // the vector decimated to the appropriate level.
1498   return NumVectorRegs;
1499 }
1500 
1501 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1502                                                 uint64_t NumCases,
1503                                                 uint64_t Range,
1504                                                 ProfileSummaryInfo *PSI,
1505                                                 BlockFrequencyInfo *BFI) const {
1506   // FIXME: This function check the maximum table size and density, but the
1507   // minimum size is not checked. It would be nice if the minimum size is
1508   // also combined within this function. Currently, the minimum size check is
1509   // performed in findJumpTable() in SelectionDAGBuiler and
1510   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1511   const bool OptForSize =
1512       SI->getParent()->getParent()->hasOptSize() ||
1513       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1514   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1515   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1516 
1517   // Check whether the number of cases is small enough and
1518   // the range is dense enough for a jump table.
1519   return (OptForSize || Range <= MaxJumpTableSize) &&
1520          (NumCases * 100 >= Range * MinDensity);
1521 }
1522 
1523 /// Get the EVTs and ArgFlags collections that represent the legalized return
1524 /// type of the given function.  This does not require a DAG or a return value,
1525 /// and is suitable for use before any DAGs for the function are constructed.
1526 /// TODO: Move this out of TargetLowering.cpp.
1527 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1528                          AttributeList attr,
1529                          SmallVectorImpl<ISD::OutputArg> &Outs,
1530                          const TargetLowering &TLI, const DataLayout &DL) {
1531   SmallVector<EVT, 4> ValueVTs;
1532   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1533   unsigned NumValues = ValueVTs.size();
1534   if (NumValues == 0) return;
1535 
1536   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1537     EVT VT = ValueVTs[j];
1538     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1539 
1540     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1541       ExtendKind = ISD::SIGN_EXTEND;
1542     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1543       ExtendKind = ISD::ZERO_EXTEND;
1544 
1545     // FIXME: C calling convention requires the return type to be promoted to
1546     // at least 32-bit. But this is not necessary for non-C calling
1547     // conventions. The frontend should mark functions whose return values
1548     // require promoting with signext or zeroext attributes.
1549     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1550       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1551       if (VT.bitsLT(MinVT))
1552         VT = MinVT;
1553     }
1554 
1555     unsigned NumParts =
1556         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1557     MVT PartVT =
1558         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1559 
1560     // 'inreg' on function refers to return value
1561     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1562     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1563       Flags.setInReg();
1564 
1565     // Propagate extension type if any
1566     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1567       Flags.setSExt();
1568     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1569       Flags.setZExt();
1570 
1571     for (unsigned i = 0; i < NumParts; ++i)
1572       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1573   }
1574 }
1575 
1576 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1577 /// function arguments in the caller parameter area.  This is the actual
1578 /// alignment, not its logarithm.
1579 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1580                                                    const DataLayout &DL) const {
1581   return DL.getABITypeAlign(Ty).value();
1582 }
1583 
1584 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1585     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1586     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1587   // Check if the specified alignment is sufficient based on the data layout.
1588   // TODO: While using the data layout works in practice, a better solution
1589   // would be to implement this check directly (make this a virtual function).
1590   // For example, the ABI alignment may change based on software platform while
1591   // this function should only be affected by hardware implementation.
1592   Type *Ty = VT.getTypeForEVT(Context);
1593   if (Alignment >= DL.getABITypeAlign(Ty)) {
1594     // Assume that an access that meets the ABI-specified alignment is fast.
1595     if (Fast != nullptr)
1596       *Fast = true;
1597     return true;
1598   }
1599 
1600   // This is a misaligned access.
1601   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags,
1602                                         Fast);
1603 }
1604 
1605 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1606     LLVMContext &Context, const DataLayout &DL, EVT VT,
1607     const MachineMemOperand &MMO, bool *Fast) const {
1608   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1609                                         MMO.getAlign(), MMO.getFlags(), Fast);
1610 }
1611 
1612 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1613                                             const DataLayout &DL, EVT VT,
1614                                             unsigned AddrSpace, Align Alignment,
1615                                             MachineMemOperand::Flags Flags,
1616                                             bool *Fast) const {
1617   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1618                                         Flags, Fast);
1619 }
1620 
1621 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1622                                             const DataLayout &DL, EVT VT,
1623                                             const MachineMemOperand &MMO,
1624                                             bool *Fast) const {
1625   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1626                             MMO.getFlags(), Fast);
1627 }
1628 
1629 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1630   return BranchProbability(MinPercentageForPredictableBranch, 100);
1631 }
1632 
1633 //===----------------------------------------------------------------------===//
1634 //  TargetTransformInfo Helpers
1635 //===----------------------------------------------------------------------===//
1636 
1637 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1638   enum InstructionOpcodes {
1639 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1640 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1641 #include "llvm/IR/Instruction.def"
1642   };
1643   switch (static_cast<InstructionOpcodes>(Opcode)) {
1644   case Ret:            return 0;
1645   case Br:             return 0;
1646   case Switch:         return 0;
1647   case IndirectBr:     return 0;
1648   case Invoke:         return 0;
1649   case CallBr:         return 0;
1650   case Resume:         return 0;
1651   case Unreachable:    return 0;
1652   case CleanupRet:     return 0;
1653   case CatchRet:       return 0;
1654   case CatchPad:       return 0;
1655   case CatchSwitch:    return 0;
1656   case CleanupPad:     return 0;
1657   case FNeg:           return ISD::FNEG;
1658   case Add:            return ISD::ADD;
1659   case FAdd:           return ISD::FADD;
1660   case Sub:            return ISD::SUB;
1661   case FSub:           return ISD::FSUB;
1662   case Mul:            return ISD::MUL;
1663   case FMul:           return ISD::FMUL;
1664   case UDiv:           return ISD::UDIV;
1665   case SDiv:           return ISD::SDIV;
1666   case FDiv:           return ISD::FDIV;
1667   case URem:           return ISD::UREM;
1668   case SRem:           return ISD::SREM;
1669   case FRem:           return ISD::FREM;
1670   case Shl:            return ISD::SHL;
1671   case LShr:           return ISD::SRL;
1672   case AShr:           return ISD::SRA;
1673   case And:            return ISD::AND;
1674   case Or:             return ISD::OR;
1675   case Xor:            return ISD::XOR;
1676   case Alloca:         return 0;
1677   case Load:           return ISD::LOAD;
1678   case Store:          return ISD::STORE;
1679   case GetElementPtr:  return 0;
1680   case Fence:          return 0;
1681   case AtomicCmpXchg:  return 0;
1682   case AtomicRMW:      return 0;
1683   case Trunc:          return ISD::TRUNCATE;
1684   case ZExt:           return ISD::ZERO_EXTEND;
1685   case SExt:           return ISD::SIGN_EXTEND;
1686   case FPToUI:         return ISD::FP_TO_UINT;
1687   case FPToSI:         return ISD::FP_TO_SINT;
1688   case UIToFP:         return ISD::UINT_TO_FP;
1689   case SIToFP:         return ISD::SINT_TO_FP;
1690   case FPTrunc:        return ISD::FP_ROUND;
1691   case FPExt:          return ISD::FP_EXTEND;
1692   case PtrToInt:       return ISD::BITCAST;
1693   case IntToPtr:       return ISD::BITCAST;
1694   case BitCast:        return ISD::BITCAST;
1695   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1696   case ICmp:           return ISD::SETCC;
1697   case FCmp:           return ISD::SETCC;
1698   case PHI:            return 0;
1699   case Call:           return 0;
1700   case Select:         return ISD::SELECT;
1701   case UserOp1:        return 0;
1702   case UserOp2:        return 0;
1703   case VAArg:          return 0;
1704   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1705   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1706   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1707   case ExtractValue:   return ISD::MERGE_VALUES;
1708   case InsertValue:    return ISD::MERGE_VALUES;
1709   case LandingPad:     return 0;
1710   case Freeze:         return ISD::FREEZE;
1711   }
1712 
1713   llvm_unreachable("Unknown instruction type encountered!");
1714 }
1715 
1716 std::pair<int, MVT>
1717 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1718                                             Type *Ty) const {
1719   LLVMContext &C = Ty->getContext();
1720   EVT MTy = getValueType(DL, Ty);
1721 
1722   int Cost = 1;
1723   // We keep legalizing the type until we find a legal kind. We assume that
1724   // the only operation that costs anything is the split. After splitting
1725   // we need to handle two types.
1726   while (true) {
1727     LegalizeKind LK = getTypeConversion(C, MTy);
1728 
1729     if (LK.first == TypeLegal)
1730       return std::make_pair(Cost, MTy.getSimpleVT());
1731 
1732     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1733       Cost *= 2;
1734 
1735     // Do not loop with f128 type.
1736     if (MTy == LK.second)
1737       return std::make_pair(Cost, MTy.getSimpleVT());
1738 
1739     // Keep legalizing the type.
1740     MTy = LK.second;
1741   }
1742 }
1743 
1744 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1745                                                               bool UseTLS) const {
1746   // compiler-rt provides a variable with a magic name.  Targets that do not
1747   // link with compiler-rt may also provide such a variable.
1748   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1749   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1750   auto UnsafeStackPtr =
1751       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1752 
1753   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1754 
1755   if (!UnsafeStackPtr) {
1756     auto TLSModel = UseTLS ?
1757         GlobalValue::InitialExecTLSModel :
1758         GlobalValue::NotThreadLocal;
1759     // The global variable is not defined yet, define it ourselves.
1760     // We use the initial-exec TLS model because we do not support the
1761     // variable living anywhere other than in the main executable.
1762     UnsafeStackPtr = new GlobalVariable(
1763         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1764         UnsafeStackPtrVar, nullptr, TLSModel);
1765   } else {
1766     // The variable exists, check its type and attributes.
1767     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1768       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1769     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1770       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1771                          (UseTLS ? "" : "not ") + "be thread-local");
1772   }
1773   return UnsafeStackPtr;
1774 }
1775 
1776 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1777   if (!TM.getTargetTriple().isAndroid())
1778     return getDefaultSafeStackPointerLocation(IRB, true);
1779 
1780   // Android provides a libc function to retrieve the address of the current
1781   // thread's unsafe stack pointer.
1782   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1783   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1784   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1785                                              StackPtrTy->getPointerTo(0));
1786   return IRB.CreateCall(Fn);
1787 }
1788 
1789 //===----------------------------------------------------------------------===//
1790 //  Loop Strength Reduction hooks
1791 //===----------------------------------------------------------------------===//
1792 
1793 /// isLegalAddressingMode - Return true if the addressing mode represented
1794 /// by AM is legal for this target, for a load/store of the specified type.
1795 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1796                                                const AddrMode &AM, Type *Ty,
1797                                                unsigned AS, Instruction *I) const {
1798   // The default implementation of this implements a conservative RISCy, r+r and
1799   // r+i addr mode.
1800 
1801   // Allows a sign-extended 16-bit immediate field.
1802   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1803     return false;
1804 
1805   // No global is ever allowed as a base.
1806   if (AM.BaseGV)
1807     return false;
1808 
1809   // Only support r+r,
1810   switch (AM.Scale) {
1811   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1812     break;
1813   case 1:
1814     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1815       return false;
1816     // Otherwise we have r+r or r+i.
1817     break;
1818   case 2:
1819     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1820       return false;
1821     // Allow 2*r as r+r.
1822     break;
1823   default: // Don't allow n * r
1824     return false;
1825   }
1826 
1827   return true;
1828 }
1829 
1830 //===----------------------------------------------------------------------===//
1831 //  Stack Protector
1832 //===----------------------------------------------------------------------===//
1833 
1834 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1835 // so that SelectionDAG handle SSP.
1836 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1837   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1838     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1839     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1840     return M.getOrInsertGlobal("__guard_local", PtrTy);
1841   }
1842   return nullptr;
1843 }
1844 
1845 // Currently only support "standard" __stack_chk_guard.
1846 // TODO: add LOAD_STACK_GUARD support.
1847 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1848   if (!M.getNamedValue("__stack_chk_guard"))
1849     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1850                        GlobalVariable::ExternalLinkage,
1851                        nullptr, "__stack_chk_guard");
1852 }
1853 
1854 // Currently only support "standard" __stack_chk_guard.
1855 // TODO: add LOAD_STACK_GUARD support.
1856 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1857   return M.getNamedValue("__stack_chk_guard");
1858 }
1859 
1860 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1861   return nullptr;
1862 }
1863 
1864 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1865   return MinimumJumpTableEntries;
1866 }
1867 
1868 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1869   MinimumJumpTableEntries = Val;
1870 }
1871 
1872 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1873   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1874 }
1875 
1876 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1877   return MaximumJumpTableSize;
1878 }
1879 
1880 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1881   MaximumJumpTableSize = Val;
1882 }
1883 
1884 bool TargetLoweringBase::isJumpTableRelative() const {
1885   return getTargetMachine().isPositionIndependent();
1886 }
1887 
1888 //===----------------------------------------------------------------------===//
1889 //  Reciprocal Estimates
1890 //===----------------------------------------------------------------------===//
1891 
1892 /// Get the reciprocal estimate attribute string for a function that will
1893 /// override the target defaults.
1894 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1895   const Function &F = MF.getFunction();
1896   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1897 }
1898 
1899 /// Construct a string for the given reciprocal operation of the given type.
1900 /// This string should match the corresponding option to the front-end's
1901 /// "-mrecip" flag assuming those strings have been passed through in an
1902 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1903 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1904   std::string Name = VT.isVector() ? "vec-" : "";
1905 
1906   Name += IsSqrt ? "sqrt" : "div";
1907 
1908   // TODO: Handle "half" or other float types?
1909   if (VT.getScalarType() == MVT::f64) {
1910     Name += "d";
1911   } else {
1912     assert(VT.getScalarType() == MVT::f32 &&
1913            "Unexpected FP type for reciprocal estimate");
1914     Name += "f";
1915   }
1916 
1917   return Name;
1918 }
1919 
1920 /// Return the character position and value (a single numeric character) of a
1921 /// customized refinement operation in the input string if it exists. Return
1922 /// false if there is no customized refinement step count.
1923 static bool parseRefinementStep(StringRef In, size_t &Position,
1924                                 uint8_t &Value) {
1925   const char RefStepToken = ':';
1926   Position = In.find(RefStepToken);
1927   if (Position == StringRef::npos)
1928     return false;
1929 
1930   StringRef RefStepString = In.substr(Position + 1);
1931   // Allow exactly one numeric character for the additional refinement
1932   // step parameter.
1933   if (RefStepString.size() == 1) {
1934     char RefStepChar = RefStepString[0];
1935     if (RefStepChar >= '0' && RefStepChar <= '9') {
1936       Value = RefStepChar - '0';
1937       return true;
1938     }
1939   }
1940   report_fatal_error("Invalid refinement step for -recip.");
1941 }
1942 
1943 /// For the input attribute string, return one of the ReciprocalEstimate enum
1944 /// status values (enabled, disabled, or not specified) for this operation on
1945 /// the specified data type.
1946 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1947   if (Override.empty())
1948     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1949 
1950   SmallVector<StringRef, 4> OverrideVector;
1951   Override.split(OverrideVector, ',');
1952   unsigned NumArgs = OverrideVector.size();
1953 
1954   // Check if "all", "none", or "default" was specified.
1955   if (NumArgs == 1) {
1956     // Look for an optional setting of the number of refinement steps needed
1957     // for this type of reciprocal operation.
1958     size_t RefPos;
1959     uint8_t RefSteps;
1960     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1961       // Split the string for further processing.
1962       Override = Override.substr(0, RefPos);
1963     }
1964 
1965     // All reciprocal types are enabled.
1966     if (Override == "all")
1967       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1968 
1969     // All reciprocal types are disabled.
1970     if (Override == "none")
1971       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1972 
1973     // Target defaults for enablement are used.
1974     if (Override == "default")
1975       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1976   }
1977 
1978   // The attribute string may omit the size suffix ('f'/'d').
1979   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1980   std::string VTNameNoSize = VTName;
1981   VTNameNoSize.pop_back();
1982   static const char DisabledPrefix = '!';
1983 
1984   for (StringRef RecipType : OverrideVector) {
1985     size_t RefPos;
1986     uint8_t RefSteps;
1987     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1988       RecipType = RecipType.substr(0, RefPos);
1989 
1990     // Ignore the disablement token for string matching.
1991     bool IsDisabled = RecipType[0] == DisabledPrefix;
1992     if (IsDisabled)
1993       RecipType = RecipType.substr(1);
1994 
1995     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1996       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1997                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1998   }
1999 
2000   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2001 }
2002 
2003 /// For the input attribute string, return the customized refinement step count
2004 /// for this operation on the specified data type. If the step count does not
2005 /// exist, return the ReciprocalEstimate enum value for unspecified.
2006 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2007   if (Override.empty())
2008     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2009 
2010   SmallVector<StringRef, 4> OverrideVector;
2011   Override.split(OverrideVector, ',');
2012   unsigned NumArgs = OverrideVector.size();
2013 
2014   // Check if "all", "default", or "none" was specified.
2015   if (NumArgs == 1) {
2016     // Look for an optional setting of the number of refinement steps needed
2017     // for this type of reciprocal operation.
2018     size_t RefPos;
2019     uint8_t RefSteps;
2020     if (!parseRefinementStep(Override, RefPos, RefSteps))
2021       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2022 
2023     // Split the string for further processing.
2024     Override = Override.substr(0, RefPos);
2025     assert(Override != "none" &&
2026            "Disabled reciprocals, but specifed refinement steps?");
2027 
2028     // If this is a general override, return the specified number of steps.
2029     if (Override == "all" || Override == "default")
2030       return RefSteps;
2031   }
2032 
2033   // The attribute string may omit the size suffix ('f'/'d').
2034   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2035   std::string VTNameNoSize = VTName;
2036   VTNameNoSize.pop_back();
2037 
2038   for (StringRef RecipType : OverrideVector) {
2039     size_t RefPos;
2040     uint8_t RefSteps;
2041     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2042       continue;
2043 
2044     RecipType = RecipType.substr(0, RefPos);
2045     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2046       return RefSteps;
2047   }
2048 
2049   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2050 }
2051 
2052 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2053                                                     MachineFunction &MF) const {
2054   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2055 }
2056 
2057 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2058                                                    MachineFunction &MF) const {
2059   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2060 }
2061 
2062 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2063                                                MachineFunction &MF) const {
2064   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2065 }
2066 
2067 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2068                                               MachineFunction &MF) const {
2069   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2070 }
2071 
2072 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2073   MF.getRegInfo().freezeReservedRegs(MF);
2074 }
2075 
2076 MachineMemOperand::Flags
2077 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2078                                            const DataLayout &DL) const {
2079   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2080   if (LI.isVolatile())
2081     Flags |= MachineMemOperand::MOVolatile;
2082 
2083   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2084     Flags |= MachineMemOperand::MONonTemporal;
2085 
2086   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2087     Flags |= MachineMemOperand::MOInvariant;
2088 
2089   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2090     Flags |= MachineMemOperand::MODereferenceable;
2091 
2092   Flags |= getTargetMMOFlags(LI);
2093   return Flags;
2094 }
2095 
2096 MachineMemOperand::Flags
2097 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2098                                             const DataLayout &DL) const {
2099   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2100 
2101   if (SI.isVolatile())
2102     Flags |= MachineMemOperand::MOVolatile;
2103 
2104   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2105     Flags |= MachineMemOperand::MONonTemporal;
2106 
2107   // FIXME: Not preserving dereferenceable
2108   Flags |= getTargetMMOFlags(SI);
2109   return Flags;
2110 }
2111 
2112 MachineMemOperand::Flags
2113 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2114                                              const DataLayout &DL) const {
2115   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2116 
2117   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2118     if (RMW->isVolatile())
2119       Flags |= MachineMemOperand::MOVolatile;
2120   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2121     if (CmpX->isVolatile())
2122       Flags |= MachineMemOperand::MOVolatile;
2123   } else
2124     llvm_unreachable("not an atomic instruction");
2125 
2126   // FIXME: Not preserving dereferenceable
2127   Flags |= getTargetMMOFlags(AI);
2128   return Flags;
2129 }
2130 
2131 //===----------------------------------------------------------------------===//
2132 //  GlobalISel Hooks
2133 //===----------------------------------------------------------------------===//
2134 
2135 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2136                                         const TargetTransformInfo *TTI) const {
2137   auto &MF = *MI.getMF();
2138   auto &MRI = MF.getRegInfo();
2139   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2140   // this helper function computes the maximum number of uses we should consider
2141   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2142   // break even in terms of code size when the original MI has 2 users vs
2143   // choosing to potentially spill. Any more than 2 users we we have a net code
2144   // size increase. This doesn't take into account register pressure though.
2145   auto maxUses = [](unsigned RematCost) {
2146     // A cost of 1 means remats are basically free.
2147     if (RematCost == 1)
2148       return UINT_MAX;
2149     if (RematCost == 2)
2150       return 2U;
2151 
2152     // Remat is too expensive, only sink if there's one user.
2153     if (RematCost > 2)
2154       return 1U;
2155     llvm_unreachable("Unexpected remat cost");
2156   };
2157 
2158   // Helper to walk through uses and terminate if we've reached a limit. Saves
2159   // us spending time traversing uses if all we want to know is if it's >= min.
2160   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2161     unsigned NumUses = 0;
2162     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2163     for (; UI != UE && NumUses < MaxUses; ++UI) {
2164       NumUses++;
2165     }
2166     // If we haven't reached the end yet then there are more than MaxUses users.
2167     return UI == UE;
2168   };
2169 
2170   switch (MI.getOpcode()) {
2171   default:
2172     return false;
2173   // Constants-like instructions should be close to their users.
2174   // We don't want long live-ranges for them.
2175   case TargetOpcode::G_CONSTANT:
2176   case TargetOpcode::G_FCONSTANT:
2177   case TargetOpcode::G_FRAME_INDEX:
2178   case TargetOpcode::G_INTTOPTR:
2179     return true;
2180   case TargetOpcode::G_GLOBAL_VALUE: {
2181     unsigned RematCost = TTI->getGISelRematGlobalCost();
2182     Register Reg = MI.getOperand(0).getReg();
2183     unsigned MaxUses = maxUses(RematCost);
2184     if (MaxUses == UINT_MAX)
2185       return true; // Remats are "free" so always localize.
2186     bool B = isUsesAtMost(Reg, MaxUses);
2187     return B;
2188   }
2189   }
2190 }
2191