1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 #include <cctype>
39 using namespace llvm;
40 
41 static cl::opt<bool> JumpIsExpensiveOverride(
42     "jump-is-expensive", cl::init(false),
43     cl::desc("Do not create extra branches to split comparison logic."),
44     cl::Hidden);
45 
46 /// InitLibcallNames - Set default libcall names.
47 ///
48 static void InitLibcallNames(const char **Names, const Triple &TT) {
49   Names[RTLIB::SHL_I16] = "__ashlhi3";
50   Names[RTLIB::SHL_I32] = "__ashlsi3";
51   Names[RTLIB::SHL_I64] = "__ashldi3";
52   Names[RTLIB::SHL_I128] = "__ashlti3";
53   Names[RTLIB::SRL_I16] = "__lshrhi3";
54   Names[RTLIB::SRL_I32] = "__lshrsi3";
55   Names[RTLIB::SRL_I64] = "__lshrdi3";
56   Names[RTLIB::SRL_I128] = "__lshrti3";
57   Names[RTLIB::SRA_I16] = "__ashrhi3";
58   Names[RTLIB::SRA_I32] = "__ashrsi3";
59   Names[RTLIB::SRA_I64] = "__ashrdi3";
60   Names[RTLIB::SRA_I128] = "__ashrti3";
61   Names[RTLIB::MUL_I8] = "__mulqi3";
62   Names[RTLIB::MUL_I16] = "__mulhi3";
63   Names[RTLIB::MUL_I32] = "__mulsi3";
64   Names[RTLIB::MUL_I64] = "__muldi3";
65   Names[RTLIB::MUL_I128] = "__multi3";
66   Names[RTLIB::MULO_I32] = "__mulosi4";
67   Names[RTLIB::MULO_I64] = "__mulodi4";
68   Names[RTLIB::MULO_I128] = "__muloti4";
69   Names[RTLIB::SDIV_I8] = "__divqi3";
70   Names[RTLIB::SDIV_I16] = "__divhi3";
71   Names[RTLIB::SDIV_I32] = "__divsi3";
72   Names[RTLIB::SDIV_I64] = "__divdi3";
73   Names[RTLIB::SDIV_I128] = "__divti3";
74   Names[RTLIB::UDIV_I8] = "__udivqi3";
75   Names[RTLIB::UDIV_I16] = "__udivhi3";
76   Names[RTLIB::UDIV_I32] = "__udivsi3";
77   Names[RTLIB::UDIV_I64] = "__udivdi3";
78   Names[RTLIB::UDIV_I128] = "__udivti3";
79   Names[RTLIB::SREM_I8] = "__modqi3";
80   Names[RTLIB::SREM_I16] = "__modhi3";
81   Names[RTLIB::SREM_I32] = "__modsi3";
82   Names[RTLIB::SREM_I64] = "__moddi3";
83   Names[RTLIB::SREM_I128] = "__modti3";
84   Names[RTLIB::UREM_I8] = "__umodqi3";
85   Names[RTLIB::UREM_I16] = "__umodhi3";
86   Names[RTLIB::UREM_I32] = "__umodsi3";
87   Names[RTLIB::UREM_I64] = "__umoddi3";
88   Names[RTLIB::UREM_I128] = "__umodti3";
89 
90   // These are generally not available.
91   Names[RTLIB::SDIVREM_I8] = nullptr;
92   Names[RTLIB::SDIVREM_I16] = nullptr;
93   Names[RTLIB::SDIVREM_I32] = nullptr;
94   Names[RTLIB::SDIVREM_I64] = nullptr;
95   Names[RTLIB::SDIVREM_I128] = nullptr;
96   Names[RTLIB::UDIVREM_I8] = nullptr;
97   Names[RTLIB::UDIVREM_I16] = nullptr;
98   Names[RTLIB::UDIVREM_I32] = nullptr;
99   Names[RTLIB::UDIVREM_I64] = nullptr;
100   Names[RTLIB::UDIVREM_I128] = nullptr;
101 
102   Names[RTLIB::NEG_I32] = "__negsi2";
103   Names[RTLIB::NEG_I64] = "__negdi2";
104   Names[RTLIB::ADD_F32] = "__addsf3";
105   Names[RTLIB::ADD_F64] = "__adddf3";
106   Names[RTLIB::ADD_F80] = "__addxf3";
107   Names[RTLIB::ADD_F128] = "__addtf3";
108   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
109   Names[RTLIB::SUB_F32] = "__subsf3";
110   Names[RTLIB::SUB_F64] = "__subdf3";
111   Names[RTLIB::SUB_F80] = "__subxf3";
112   Names[RTLIB::SUB_F128] = "__subtf3";
113   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
114   Names[RTLIB::MUL_F32] = "__mulsf3";
115   Names[RTLIB::MUL_F64] = "__muldf3";
116   Names[RTLIB::MUL_F80] = "__mulxf3";
117   Names[RTLIB::MUL_F128] = "__multf3";
118   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
119   Names[RTLIB::DIV_F32] = "__divsf3";
120   Names[RTLIB::DIV_F64] = "__divdf3";
121   Names[RTLIB::DIV_F80] = "__divxf3";
122   Names[RTLIB::DIV_F128] = "__divtf3";
123   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
124   Names[RTLIB::REM_F32] = "fmodf";
125   Names[RTLIB::REM_F64] = "fmod";
126   Names[RTLIB::REM_F80] = "fmodl";
127   Names[RTLIB::REM_F128] = "fmodl";
128   Names[RTLIB::REM_PPCF128] = "fmodl";
129   Names[RTLIB::FMA_F32] = "fmaf";
130   Names[RTLIB::FMA_F64] = "fma";
131   Names[RTLIB::FMA_F80] = "fmal";
132   Names[RTLIB::FMA_F128] = "fmal";
133   Names[RTLIB::FMA_PPCF128] = "fmal";
134   Names[RTLIB::POWI_F32] = "__powisf2";
135   Names[RTLIB::POWI_F64] = "__powidf2";
136   Names[RTLIB::POWI_F80] = "__powixf2";
137   Names[RTLIB::POWI_F128] = "__powitf2";
138   Names[RTLIB::POWI_PPCF128] = "__powitf2";
139   Names[RTLIB::SQRT_F32] = "sqrtf";
140   Names[RTLIB::SQRT_F64] = "sqrt";
141   Names[RTLIB::SQRT_F80] = "sqrtl";
142   Names[RTLIB::SQRT_F128] = "sqrtl";
143   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
144   Names[RTLIB::LOG_F32] = "logf";
145   Names[RTLIB::LOG_F64] = "log";
146   Names[RTLIB::LOG_F80] = "logl";
147   Names[RTLIB::LOG_F128] = "logl";
148   Names[RTLIB::LOG_PPCF128] = "logl";
149   Names[RTLIB::LOG2_F32] = "log2f";
150   Names[RTLIB::LOG2_F64] = "log2";
151   Names[RTLIB::LOG2_F80] = "log2l";
152   Names[RTLIB::LOG2_F128] = "log2l";
153   Names[RTLIB::LOG2_PPCF128] = "log2l";
154   Names[RTLIB::LOG10_F32] = "log10f";
155   Names[RTLIB::LOG10_F64] = "log10";
156   Names[RTLIB::LOG10_F80] = "log10l";
157   Names[RTLIB::LOG10_F128] = "log10l";
158   Names[RTLIB::LOG10_PPCF128] = "log10l";
159   Names[RTLIB::EXP_F32] = "expf";
160   Names[RTLIB::EXP_F64] = "exp";
161   Names[RTLIB::EXP_F80] = "expl";
162   Names[RTLIB::EXP_F128] = "expl";
163   Names[RTLIB::EXP_PPCF128] = "expl";
164   Names[RTLIB::EXP2_F32] = "exp2f";
165   Names[RTLIB::EXP2_F64] = "exp2";
166   Names[RTLIB::EXP2_F80] = "exp2l";
167   Names[RTLIB::EXP2_F128] = "exp2l";
168   Names[RTLIB::EXP2_PPCF128] = "exp2l";
169   Names[RTLIB::SIN_F32] = "sinf";
170   Names[RTLIB::SIN_F64] = "sin";
171   Names[RTLIB::SIN_F80] = "sinl";
172   Names[RTLIB::SIN_F128] = "sinl";
173   Names[RTLIB::SIN_PPCF128] = "sinl";
174   Names[RTLIB::COS_F32] = "cosf";
175   Names[RTLIB::COS_F64] = "cos";
176   Names[RTLIB::COS_F80] = "cosl";
177   Names[RTLIB::COS_F128] = "cosl";
178   Names[RTLIB::COS_PPCF128] = "cosl";
179   Names[RTLIB::POW_F32] = "powf";
180   Names[RTLIB::POW_F64] = "pow";
181   Names[RTLIB::POW_F80] = "powl";
182   Names[RTLIB::POW_F128] = "powl";
183   Names[RTLIB::POW_PPCF128] = "powl";
184   Names[RTLIB::CEIL_F32] = "ceilf";
185   Names[RTLIB::CEIL_F64] = "ceil";
186   Names[RTLIB::CEIL_F80] = "ceill";
187   Names[RTLIB::CEIL_F128] = "ceill";
188   Names[RTLIB::CEIL_PPCF128] = "ceill";
189   Names[RTLIB::TRUNC_F32] = "truncf";
190   Names[RTLIB::TRUNC_F64] = "trunc";
191   Names[RTLIB::TRUNC_F80] = "truncl";
192   Names[RTLIB::TRUNC_F128] = "truncl";
193   Names[RTLIB::TRUNC_PPCF128] = "truncl";
194   Names[RTLIB::RINT_F32] = "rintf";
195   Names[RTLIB::RINT_F64] = "rint";
196   Names[RTLIB::RINT_F80] = "rintl";
197   Names[RTLIB::RINT_F128] = "rintl";
198   Names[RTLIB::RINT_PPCF128] = "rintl";
199   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
200   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
201   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
202   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
203   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
204   Names[RTLIB::ROUND_F32] = "roundf";
205   Names[RTLIB::ROUND_F64] = "round";
206   Names[RTLIB::ROUND_F80] = "roundl";
207   Names[RTLIB::ROUND_F128] = "roundl";
208   Names[RTLIB::ROUND_PPCF128] = "roundl";
209   Names[RTLIB::FLOOR_F32] = "floorf";
210   Names[RTLIB::FLOOR_F64] = "floor";
211   Names[RTLIB::FLOOR_F80] = "floorl";
212   Names[RTLIB::FLOOR_F128] = "floorl";
213   Names[RTLIB::FLOOR_PPCF128] = "floorl";
214   Names[RTLIB::FMIN_F32] = "fminf";
215   Names[RTLIB::FMIN_F64] = "fmin";
216   Names[RTLIB::FMIN_F80] = "fminl";
217   Names[RTLIB::FMIN_F128] = "fminl";
218   Names[RTLIB::FMIN_PPCF128] = "fminl";
219   Names[RTLIB::FMAX_F32] = "fmaxf";
220   Names[RTLIB::FMAX_F64] = "fmax";
221   Names[RTLIB::FMAX_F80] = "fmaxl";
222   Names[RTLIB::FMAX_F128] = "fmaxl";
223   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
224   Names[RTLIB::ROUND_F32] = "roundf";
225   Names[RTLIB::ROUND_F64] = "round";
226   Names[RTLIB::ROUND_F80] = "roundl";
227   Names[RTLIB::ROUND_F128] = "roundl";
228   Names[RTLIB::ROUND_PPCF128] = "roundl";
229   Names[RTLIB::COPYSIGN_F32] = "copysignf";
230   Names[RTLIB::COPYSIGN_F64] = "copysign";
231   Names[RTLIB::COPYSIGN_F80] = "copysignl";
232   Names[RTLIB::COPYSIGN_F128] = "copysignl";
233   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
234   Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
235   Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
236   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
237   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
238   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
239   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
240   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
241   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
242   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
243   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
244   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
245   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
246   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
247   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
248   Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
249   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
250   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
251   Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
252   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
253   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
254   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
255   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
256   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
257   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
258   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
259   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
260   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
261   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
262   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
263   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
264   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
265   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
266   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
267   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
268   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
269   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
270   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
271   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
272   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
273   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
274   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
275   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
276   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
277   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
278   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
279   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
280   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
281   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
282   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
283   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
284   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
285   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
286   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
287   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
288   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
289   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
290   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
291   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
292   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
293   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
294   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
295   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
296   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
297   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
298   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
299   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
300   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
301   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
302   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
303   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
304   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
305   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
306   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
307   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
308   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
309   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
310   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
311   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
312   Names[RTLIB::OEQ_F32] = "__eqsf2";
313   Names[RTLIB::OEQ_F64] = "__eqdf2";
314   Names[RTLIB::OEQ_F128] = "__eqtf2";
315   Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
316   Names[RTLIB::UNE_F32] = "__nesf2";
317   Names[RTLIB::UNE_F64] = "__nedf2";
318   Names[RTLIB::UNE_F128] = "__netf2";
319   Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
320   Names[RTLIB::OGE_F32] = "__gesf2";
321   Names[RTLIB::OGE_F64] = "__gedf2";
322   Names[RTLIB::OGE_F128] = "__getf2";
323   Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
324   Names[RTLIB::OLT_F32] = "__ltsf2";
325   Names[RTLIB::OLT_F64] = "__ltdf2";
326   Names[RTLIB::OLT_F128] = "__lttf2";
327   Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
328   Names[RTLIB::OLE_F32] = "__lesf2";
329   Names[RTLIB::OLE_F64] = "__ledf2";
330   Names[RTLIB::OLE_F128] = "__letf2";
331   Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
332   Names[RTLIB::OGT_F32] = "__gtsf2";
333   Names[RTLIB::OGT_F64] = "__gtdf2";
334   Names[RTLIB::OGT_F128] = "__gttf2";
335   Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
336   Names[RTLIB::UO_F32] = "__unordsf2";
337   Names[RTLIB::UO_F64] = "__unorddf2";
338   Names[RTLIB::UO_F128] = "__unordtf2";
339   Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
340   Names[RTLIB::O_F32] = "__unordsf2";
341   Names[RTLIB::O_F64] = "__unorddf2";
342   Names[RTLIB::O_F128] = "__unordtf2";
343   Names[RTLIB::O_PPCF128] = "__gcc_qunord";
344   Names[RTLIB::MEMCPY] = "memcpy";
345   Names[RTLIB::MEMMOVE] = "memmove";
346   Names[RTLIB::MEMSET] = "memset";
347   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
348   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
349   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
350   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
351   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
352   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
353   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
354   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
355   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
356   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
357   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
358   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
359   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
360   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
361   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
362   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
363   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
364   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
365   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
366   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
367   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
368   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
369   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
370   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
371   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
372   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
373   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
374   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
375   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
376   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
377   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
378   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
379   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
380   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
381   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
382   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
383   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
384   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
385   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
386   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
387   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
388   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
389   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
390   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
391   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
392   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
393   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
394   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
395   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
396   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
397   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
398   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
399   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
400   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
401   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
402   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
403   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
404   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
405   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
406   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
407   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
408 
409   if (TT.getEnvironment() == Triple::GNU) {
410     Names[RTLIB::SINCOS_F32] = "sincosf";
411     Names[RTLIB::SINCOS_F64] = "sincos";
412     Names[RTLIB::SINCOS_F80] = "sincosl";
413     Names[RTLIB::SINCOS_F128] = "sincosl";
414     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
415   } else {
416     // These are generally not available.
417     Names[RTLIB::SINCOS_F32] = nullptr;
418     Names[RTLIB::SINCOS_F64] = nullptr;
419     Names[RTLIB::SINCOS_F80] = nullptr;
420     Names[RTLIB::SINCOS_F128] = nullptr;
421     Names[RTLIB::SINCOS_PPCF128] = nullptr;
422   }
423 
424   if (!TT.isOSOpenBSD()) {
425     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
426   } else {
427     // These are generally not available.
428     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
429   }
430 
431   // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
432   // of the gnueabi-style __gnu_*_ieee.
433   // FIXME: What about other targets?
434   if (TT.isOSDarwin()) {
435     Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
436     Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
437   }
438 }
439 
440 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
441 ///
442 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
443   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
444     CCs[i] = CallingConv::C;
445   }
446 }
447 
448 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
449 /// UNKNOWN_LIBCALL if there is none.
450 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
451   if (OpVT == MVT::f16) {
452     if (RetVT == MVT::f32)
453       return FPEXT_F16_F32;
454   } else if (OpVT == MVT::f32) {
455     if (RetVT == MVT::f64)
456       return FPEXT_F32_F64;
457     if (RetVT == MVT::f128)
458       return FPEXT_F32_F128;
459     if (RetVT == MVT::ppcf128)
460       return FPEXT_F32_PPCF128;
461   } else if (OpVT == MVT::f64) {
462     if (RetVT == MVT::f128)
463       return FPEXT_F64_F128;
464     else if (RetVT == MVT::ppcf128)
465       return FPEXT_F64_PPCF128;
466   }
467 
468   return UNKNOWN_LIBCALL;
469 }
470 
471 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
472 /// UNKNOWN_LIBCALL if there is none.
473 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
474   if (RetVT == MVT::f16) {
475     if (OpVT == MVT::f32)
476       return FPROUND_F32_F16;
477     if (OpVT == MVT::f64)
478       return FPROUND_F64_F16;
479     if (OpVT == MVT::f80)
480       return FPROUND_F80_F16;
481     if (OpVT == MVT::f128)
482       return FPROUND_F128_F16;
483     if (OpVT == MVT::ppcf128)
484       return FPROUND_PPCF128_F16;
485   } else if (RetVT == MVT::f32) {
486     if (OpVT == MVT::f64)
487       return FPROUND_F64_F32;
488     if (OpVT == MVT::f80)
489       return FPROUND_F80_F32;
490     if (OpVT == MVT::f128)
491       return FPROUND_F128_F32;
492     if (OpVT == MVT::ppcf128)
493       return FPROUND_PPCF128_F32;
494   } else if (RetVT == MVT::f64) {
495     if (OpVT == MVT::f80)
496       return FPROUND_F80_F64;
497     if (OpVT == MVT::f128)
498       return FPROUND_F128_F64;
499     if (OpVT == MVT::ppcf128)
500       return FPROUND_PPCF128_F64;
501   }
502 
503   return UNKNOWN_LIBCALL;
504 }
505 
506 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
507 /// UNKNOWN_LIBCALL if there is none.
508 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
509   if (OpVT == MVT::f32) {
510     if (RetVT == MVT::i32)
511       return FPTOSINT_F32_I32;
512     if (RetVT == MVT::i64)
513       return FPTOSINT_F32_I64;
514     if (RetVT == MVT::i128)
515       return FPTOSINT_F32_I128;
516   } else if (OpVT == MVT::f64) {
517     if (RetVT == MVT::i32)
518       return FPTOSINT_F64_I32;
519     if (RetVT == MVT::i64)
520       return FPTOSINT_F64_I64;
521     if (RetVT == MVT::i128)
522       return FPTOSINT_F64_I128;
523   } else if (OpVT == MVT::f80) {
524     if (RetVT == MVT::i32)
525       return FPTOSINT_F80_I32;
526     if (RetVT == MVT::i64)
527       return FPTOSINT_F80_I64;
528     if (RetVT == MVT::i128)
529       return FPTOSINT_F80_I128;
530   } else if (OpVT == MVT::f128) {
531     if (RetVT == MVT::i32)
532       return FPTOSINT_F128_I32;
533     if (RetVT == MVT::i64)
534       return FPTOSINT_F128_I64;
535     if (RetVT == MVT::i128)
536       return FPTOSINT_F128_I128;
537   } else if (OpVT == MVT::ppcf128) {
538     if (RetVT == MVT::i32)
539       return FPTOSINT_PPCF128_I32;
540     if (RetVT == MVT::i64)
541       return FPTOSINT_PPCF128_I64;
542     if (RetVT == MVT::i128)
543       return FPTOSINT_PPCF128_I128;
544   }
545   return UNKNOWN_LIBCALL;
546 }
547 
548 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
549 /// UNKNOWN_LIBCALL if there is none.
550 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
551   if (OpVT == MVT::f32) {
552     if (RetVT == MVT::i32)
553       return FPTOUINT_F32_I32;
554     if (RetVT == MVT::i64)
555       return FPTOUINT_F32_I64;
556     if (RetVT == MVT::i128)
557       return FPTOUINT_F32_I128;
558   } else if (OpVT == MVT::f64) {
559     if (RetVT == MVT::i32)
560       return FPTOUINT_F64_I32;
561     if (RetVT == MVT::i64)
562       return FPTOUINT_F64_I64;
563     if (RetVT == MVT::i128)
564       return FPTOUINT_F64_I128;
565   } else if (OpVT == MVT::f80) {
566     if (RetVT == MVT::i32)
567       return FPTOUINT_F80_I32;
568     if (RetVT == MVT::i64)
569       return FPTOUINT_F80_I64;
570     if (RetVT == MVT::i128)
571       return FPTOUINT_F80_I128;
572   } else if (OpVT == MVT::f128) {
573     if (RetVT == MVT::i32)
574       return FPTOUINT_F128_I32;
575     if (RetVT == MVT::i64)
576       return FPTOUINT_F128_I64;
577     if (RetVT == MVT::i128)
578       return FPTOUINT_F128_I128;
579   } else if (OpVT == MVT::ppcf128) {
580     if (RetVT == MVT::i32)
581       return FPTOUINT_PPCF128_I32;
582     if (RetVT == MVT::i64)
583       return FPTOUINT_PPCF128_I64;
584     if (RetVT == MVT::i128)
585       return FPTOUINT_PPCF128_I128;
586   }
587   return UNKNOWN_LIBCALL;
588 }
589 
590 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
591 /// UNKNOWN_LIBCALL if there is none.
592 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
593   if (OpVT == MVT::i32) {
594     if (RetVT == MVT::f32)
595       return SINTTOFP_I32_F32;
596     if (RetVT == MVT::f64)
597       return SINTTOFP_I32_F64;
598     if (RetVT == MVT::f80)
599       return SINTTOFP_I32_F80;
600     if (RetVT == MVT::f128)
601       return SINTTOFP_I32_F128;
602     if (RetVT == MVT::ppcf128)
603       return SINTTOFP_I32_PPCF128;
604   } else if (OpVT == MVT::i64) {
605     if (RetVT == MVT::f32)
606       return SINTTOFP_I64_F32;
607     if (RetVT == MVT::f64)
608       return SINTTOFP_I64_F64;
609     if (RetVT == MVT::f80)
610       return SINTTOFP_I64_F80;
611     if (RetVT == MVT::f128)
612       return SINTTOFP_I64_F128;
613     if (RetVT == MVT::ppcf128)
614       return SINTTOFP_I64_PPCF128;
615   } else if (OpVT == MVT::i128) {
616     if (RetVT == MVT::f32)
617       return SINTTOFP_I128_F32;
618     if (RetVT == MVT::f64)
619       return SINTTOFP_I128_F64;
620     if (RetVT == MVT::f80)
621       return SINTTOFP_I128_F80;
622     if (RetVT == MVT::f128)
623       return SINTTOFP_I128_F128;
624     if (RetVT == MVT::ppcf128)
625       return SINTTOFP_I128_PPCF128;
626   }
627   return UNKNOWN_LIBCALL;
628 }
629 
630 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
631 /// UNKNOWN_LIBCALL if there is none.
632 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
633   if (OpVT == MVT::i32) {
634     if (RetVT == MVT::f32)
635       return UINTTOFP_I32_F32;
636     if (RetVT == MVT::f64)
637       return UINTTOFP_I32_F64;
638     if (RetVT == MVT::f80)
639       return UINTTOFP_I32_F80;
640     if (RetVT == MVT::f128)
641       return UINTTOFP_I32_F128;
642     if (RetVT == MVT::ppcf128)
643       return UINTTOFP_I32_PPCF128;
644   } else if (OpVT == MVT::i64) {
645     if (RetVT == MVT::f32)
646       return UINTTOFP_I64_F32;
647     if (RetVT == MVT::f64)
648       return UINTTOFP_I64_F64;
649     if (RetVT == MVT::f80)
650       return UINTTOFP_I64_F80;
651     if (RetVT == MVT::f128)
652       return UINTTOFP_I64_F128;
653     if (RetVT == MVT::ppcf128)
654       return UINTTOFP_I64_PPCF128;
655   } else if (OpVT == MVT::i128) {
656     if (RetVT == MVT::f32)
657       return UINTTOFP_I128_F32;
658     if (RetVT == MVT::f64)
659       return UINTTOFP_I128_F64;
660     if (RetVT == MVT::f80)
661       return UINTTOFP_I128_F80;
662     if (RetVT == MVT::f128)
663       return UINTTOFP_I128_F128;
664     if (RetVT == MVT::ppcf128)
665       return UINTTOFP_I128_PPCF128;
666   }
667   return UNKNOWN_LIBCALL;
668 }
669 
670 RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
671 #define OP_TO_LIBCALL(Name, Enum)                                              \
672   case Name:                                                                   \
673     switch (VT.SimpleTy) {                                                     \
674     default:                                                                   \
675       return UNKNOWN_LIBCALL;                                                  \
676     case MVT::i8:                                                              \
677       return Enum##_1;                                                         \
678     case MVT::i16:                                                             \
679       return Enum##_2;                                                         \
680     case MVT::i32:                                                             \
681       return Enum##_4;                                                         \
682     case MVT::i64:                                                             \
683       return Enum##_8;                                                         \
684     case MVT::i128:                                                            \
685       return Enum##_16;                                                        \
686     }
687 
688   switch (Opc) {
689     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
690     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
691     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
692     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
693     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
694     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
695     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
696     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
697     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
698     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
699     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
700     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
701   }
702 
703 #undef OP_TO_LIBCALL
704 
705   return UNKNOWN_LIBCALL;
706 }
707 
708 /// InitCmpLibcallCCs - Set default comparison libcall CC.
709 ///
710 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
711   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
712   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
713   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
714   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
715   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
716   CCs[RTLIB::UNE_F32] = ISD::SETNE;
717   CCs[RTLIB::UNE_F64] = ISD::SETNE;
718   CCs[RTLIB::UNE_F128] = ISD::SETNE;
719   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
720   CCs[RTLIB::OGE_F32] = ISD::SETGE;
721   CCs[RTLIB::OGE_F64] = ISD::SETGE;
722   CCs[RTLIB::OGE_F128] = ISD::SETGE;
723   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
724   CCs[RTLIB::OLT_F32] = ISD::SETLT;
725   CCs[RTLIB::OLT_F64] = ISD::SETLT;
726   CCs[RTLIB::OLT_F128] = ISD::SETLT;
727   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
728   CCs[RTLIB::OLE_F32] = ISD::SETLE;
729   CCs[RTLIB::OLE_F64] = ISD::SETLE;
730   CCs[RTLIB::OLE_F128] = ISD::SETLE;
731   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
732   CCs[RTLIB::OGT_F32] = ISD::SETGT;
733   CCs[RTLIB::OGT_F64] = ISD::SETGT;
734   CCs[RTLIB::OGT_F128] = ISD::SETGT;
735   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
736   CCs[RTLIB::UO_F32] = ISD::SETNE;
737   CCs[RTLIB::UO_F64] = ISD::SETNE;
738   CCs[RTLIB::UO_F128] = ISD::SETNE;
739   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
740   CCs[RTLIB::O_F32] = ISD::SETEQ;
741   CCs[RTLIB::O_F64] = ISD::SETEQ;
742   CCs[RTLIB::O_F128] = ISD::SETEQ;
743   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
744 }
745 
746 /// NOTE: The TargetMachine owns TLOF.
747 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
748   initActions();
749 
750   // Perform these initializations only once.
751   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
752   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
753     = MaxStoresPerMemmoveOptSize = 4;
754   UseUnderscoreSetJmp = false;
755   UseUnderscoreLongJmp = false;
756   SelectIsExpensive = false;
757   HasMultipleConditionRegisters = false;
758   HasExtractBitsInsn = false;
759   FsqrtIsCheap = false;
760   JumpIsExpensive = JumpIsExpensiveOverride;
761   PredictableSelectIsExpensive = false;
762   MaskAndBranchFoldingIsLegal = false;
763   EnableExtLdPromotion = false;
764   HasFloatingPointExceptions = true;
765   StackPointerRegisterToSaveRestore = 0;
766   BooleanContents = UndefinedBooleanContent;
767   BooleanFloatContents = UndefinedBooleanContent;
768   BooleanVectorContents = UndefinedBooleanContent;
769   SchedPreferenceInfo = Sched::ILP;
770   JumpBufSize = 0;
771   JumpBufAlignment = 0;
772   MinFunctionAlignment = 0;
773   PrefFunctionAlignment = 0;
774   PrefLoopAlignment = 0;
775   GatherAllAliasesMaxDepth = 6;
776   MinStackArgumentAlignment = 1;
777   InsertFencesForAtomic = false;
778   MinimumJumpTableEntries = 4;
779 
780   InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
781   InitCmpLibcallCCs(CmpLibcallCCs);
782   InitLibcallCallingConvs(LibcallCallingConvs);
783 }
784 
785 void TargetLoweringBase::initActions() {
786   // All operations default to being supported.
787   memset(OpActions, 0, sizeof(OpActions));
788   memset(LoadExtActions, 0, sizeof(LoadExtActions));
789   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
790   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
791   memset(CondCodeActions, 0, sizeof(CondCodeActions));
792   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
793   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
794 
795   // Set default actions for various operations.
796   for (MVT VT : MVT::all_valuetypes()) {
797     // Default all indexed load / store to expand.
798     for (unsigned IM = (unsigned)ISD::PRE_INC;
799          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
800       setIndexedLoadAction(IM, VT, Expand);
801       setIndexedStoreAction(IM, VT, Expand);
802     }
803 
804     // Most backends expect to see the node which just returns the value loaded.
805     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
806 
807     // These operations default to expand.
808     setOperationAction(ISD::FGETSIGN, VT, Expand);
809     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
810     setOperationAction(ISD::FMINNUM, VT, Expand);
811     setOperationAction(ISD::FMAXNUM, VT, Expand);
812     setOperationAction(ISD::FMINNAN, VT, Expand);
813     setOperationAction(ISD::FMAXNAN, VT, Expand);
814     setOperationAction(ISD::FMAD, VT, Expand);
815     setOperationAction(ISD::SMIN, VT, Expand);
816     setOperationAction(ISD::SMAX, VT, Expand);
817     setOperationAction(ISD::UMIN, VT, Expand);
818     setOperationAction(ISD::UMAX, VT, Expand);
819 
820     // Overflow operations default to expand
821     setOperationAction(ISD::SADDO, VT, Expand);
822     setOperationAction(ISD::SSUBO, VT, Expand);
823     setOperationAction(ISD::UADDO, VT, Expand);
824     setOperationAction(ISD::USUBO, VT, Expand);
825     setOperationAction(ISD::SMULO, VT, Expand);
826     setOperationAction(ISD::UMULO, VT, Expand);
827 
828     setOperationAction(ISD::BITREVERSE, VT, Expand);
829 
830     // These library functions default to expand.
831     setOperationAction(ISD::FROUND, VT, Expand);
832 
833     // These operations default to expand for vector types.
834     if (VT.isVector()) {
835       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
836       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
837       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
838       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
839     }
840 
841     // For most targets @llvm.get.dynamic.area.offest just returns 0.
842     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
843   }
844 
845   // Most targets ignore the @llvm.prefetch intrinsic.
846   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
847 
848   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
849   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
850 
851   // ConstantFP nodes default to expand.  Targets can either change this to
852   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
853   // to optimize expansions for certain constants.
854   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
855   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
856   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
857   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
858   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
859 
860   // These library functions default to expand.
861   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
862     setOperationAction(ISD::FLOG ,      VT, Expand);
863     setOperationAction(ISD::FLOG2,      VT, Expand);
864     setOperationAction(ISD::FLOG10,     VT, Expand);
865     setOperationAction(ISD::FEXP ,      VT, Expand);
866     setOperationAction(ISD::FEXP2,      VT, Expand);
867     setOperationAction(ISD::FFLOOR,     VT, Expand);
868     setOperationAction(ISD::FMINNUM,    VT, Expand);
869     setOperationAction(ISD::FMAXNUM,    VT, Expand);
870     setOperationAction(ISD::FNEARBYINT, VT, Expand);
871     setOperationAction(ISD::FCEIL,      VT, Expand);
872     setOperationAction(ISD::FRINT,      VT, Expand);
873     setOperationAction(ISD::FTRUNC,     VT, Expand);
874     setOperationAction(ISD::FROUND,     VT, Expand);
875   }
876 
877   // Default ISD::TRAP to expand (which turns it into abort).
878   setOperationAction(ISD::TRAP, MVT::Other, Expand);
879 
880   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
881   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
882   //
883   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
884 }
885 
886 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
887                                                EVT) const {
888   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
889 }
890 
891 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
892                                          const DataLayout &DL) const {
893   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
894   if (LHSTy.isVector())
895     return LHSTy;
896   return getScalarShiftAmountTy(DL, LHSTy);
897 }
898 
899 /// canOpTrap - Returns true if the operation can trap for the value type.
900 /// VT must be a legal type.
901 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
902   assert(isTypeLegal(VT));
903   switch (Op) {
904   default:
905     return false;
906   case ISD::FDIV:
907   case ISD::FREM:
908   case ISD::SDIV:
909   case ISD::UDIV:
910   case ISD::SREM:
911   case ISD::UREM:
912     return true;
913   }
914 }
915 
916 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
917   // If the command-line option was specified, ignore this request.
918   if (!JumpIsExpensiveOverride.getNumOccurrences())
919     JumpIsExpensive = isExpensive;
920 }
921 
922 TargetLoweringBase::LegalizeKind
923 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
924   // If this is a simple type, use the ComputeRegisterProp mechanism.
925   if (VT.isSimple()) {
926     MVT SVT = VT.getSimpleVT();
927     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
928     MVT NVT = TransformToType[SVT.SimpleTy];
929     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
930 
931     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
932             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
933            "Promote may not follow Expand or Promote");
934 
935     if (LA == TypeSplitVector)
936       return LegalizeKind(LA,
937                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
938                                            SVT.getVectorNumElements() / 2));
939     if (LA == TypeScalarizeVector)
940       return LegalizeKind(LA, SVT.getVectorElementType());
941     return LegalizeKind(LA, NVT);
942   }
943 
944   // Handle Extended Scalar Types.
945   if (!VT.isVector()) {
946     assert(VT.isInteger() && "Float types must be simple");
947     unsigned BitSize = VT.getSizeInBits();
948     // First promote to a power-of-two size, then expand if necessary.
949     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
950       EVT NVT = VT.getRoundIntegerType(Context);
951       assert(NVT != VT && "Unable to round integer VT");
952       LegalizeKind NextStep = getTypeConversion(Context, NVT);
953       // Avoid multi-step promotion.
954       if (NextStep.first == TypePromoteInteger)
955         return NextStep;
956       // Return rounded integer type.
957       return LegalizeKind(TypePromoteInteger, NVT);
958     }
959 
960     return LegalizeKind(TypeExpandInteger,
961                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
962   }
963 
964   // Handle vector types.
965   unsigned NumElts = VT.getVectorNumElements();
966   EVT EltVT = VT.getVectorElementType();
967 
968   // Vectors with only one element are always scalarized.
969   if (NumElts == 1)
970     return LegalizeKind(TypeScalarizeVector, EltVT);
971 
972   // Try to widen vector elements until the element type is a power of two and
973   // promote it to a legal type later on, for example:
974   // <3 x i8> -> <4 x i8> -> <4 x i32>
975   if (EltVT.isInteger()) {
976     // Vectors with a number of elements that is not a power of two are always
977     // widened, for example <3 x i8> -> <4 x i8>.
978     if (!VT.isPow2VectorType()) {
979       NumElts = (unsigned)NextPowerOf2(NumElts);
980       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
981       return LegalizeKind(TypeWidenVector, NVT);
982     }
983 
984     // Examine the element type.
985     LegalizeKind LK = getTypeConversion(Context, EltVT);
986 
987     // If type is to be expanded, split the vector.
988     //  <4 x i140> -> <2 x i140>
989     if (LK.first == TypeExpandInteger)
990       return LegalizeKind(TypeSplitVector,
991                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
992 
993     // Promote the integer element types until a legal vector type is found
994     // or until the element integer type is too big. If a legal type was not
995     // found, fallback to the usual mechanism of widening/splitting the
996     // vector.
997     EVT OldEltVT = EltVT;
998     while (1) {
999       // Increase the bitwidth of the element to the next pow-of-two
1000       // (which is greater than 8 bits).
1001       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1002                   .getRoundIntegerType(Context);
1003 
1004       // Stop trying when getting a non-simple element type.
1005       // Note that vector elements may be greater than legal vector element
1006       // types. Example: X86 XMM registers hold 64bit element on 32bit
1007       // systems.
1008       if (!EltVT.isSimple())
1009         break;
1010 
1011       // Build a new vector type and check if it is legal.
1012       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1013       // Found a legal promoted vector type.
1014       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1015         return LegalizeKind(TypePromoteInteger,
1016                             EVT::getVectorVT(Context, EltVT, NumElts));
1017     }
1018 
1019     // Reset the type to the unexpanded type if we did not find a legal vector
1020     // type with a promoted vector element type.
1021     EltVT = OldEltVT;
1022   }
1023 
1024   // Try to widen the vector until a legal type is found.
1025   // If there is no wider legal type, split the vector.
1026   while (1) {
1027     // Round up to the next power of 2.
1028     NumElts = (unsigned)NextPowerOf2(NumElts);
1029 
1030     // If there is no simple vector type with this many elements then there
1031     // cannot be a larger legal vector type.  Note that this assumes that
1032     // there are no skipped intermediate vector types in the simple types.
1033     if (!EltVT.isSimple())
1034       break;
1035     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1036     if (LargerVector == MVT())
1037       break;
1038 
1039     // If this type is legal then widen the vector.
1040     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1041       return LegalizeKind(TypeWidenVector, LargerVector);
1042   }
1043 
1044   // Widen odd vectors to next power of two.
1045   if (!VT.isPow2VectorType()) {
1046     EVT NVT = VT.getPow2VectorType(Context);
1047     return LegalizeKind(TypeWidenVector, NVT);
1048   }
1049 
1050   // Vectors with illegal element types are expanded.
1051   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1052   return LegalizeKind(TypeSplitVector, NVT);
1053 }
1054 
1055 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1056                                           unsigned &NumIntermediates,
1057                                           MVT &RegisterVT,
1058                                           TargetLoweringBase *TLI) {
1059   // Figure out the right, legal destination reg to copy into.
1060   unsigned NumElts = VT.getVectorNumElements();
1061   MVT EltTy = VT.getVectorElementType();
1062 
1063   unsigned NumVectorRegs = 1;
1064 
1065   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1066   // could break down into LHS/RHS like LegalizeDAG does.
1067   if (!isPowerOf2_32(NumElts)) {
1068     NumVectorRegs = NumElts;
1069     NumElts = 1;
1070   }
1071 
1072   // Divide the input until we get to a supported size.  This will always
1073   // end with a scalar if the target doesn't support vectors.
1074   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1075     NumElts >>= 1;
1076     NumVectorRegs <<= 1;
1077   }
1078 
1079   NumIntermediates = NumVectorRegs;
1080 
1081   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1082   if (!TLI->isTypeLegal(NewVT))
1083     NewVT = EltTy;
1084   IntermediateVT = NewVT;
1085 
1086   unsigned NewVTSize = NewVT.getSizeInBits();
1087 
1088   // Convert sizes such as i33 to i64.
1089   if (!isPowerOf2_32(NewVTSize))
1090     NewVTSize = NextPowerOf2(NewVTSize);
1091 
1092   MVT DestVT = TLI->getRegisterType(NewVT);
1093   RegisterVT = DestVT;
1094   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1095     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1096 
1097   // Otherwise, promotion or legal types use the same number of registers as
1098   // the vector decimated to the appropriate level.
1099   return NumVectorRegs;
1100 }
1101 
1102 /// isLegalRC - Return true if the value types that can be represented by the
1103 /// specified register class are all legal.
1104 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
1105   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1106        I != E; ++I) {
1107     if (isTypeLegal(*I))
1108       return true;
1109   }
1110   return false;
1111 }
1112 
1113 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1114 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1115 MachineBasicBlock*
1116 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
1117                                    MachineBasicBlock *MBB) const {
1118   MachineFunction &MF = *MI->getParent()->getParent();
1119   MachineFrameInfo &MFI = *MF.getFrameInfo();
1120 
1121   // We're handling multiple types of operands here:
1122   // PATCHPOINT MetaArgs - live-in, read only, direct
1123   // STATEPOINT Deopt Spill - live-through, read only, indirect
1124   // STATEPOINT Deopt Alloca - live-through, read only, direct
1125   // (We're currently conservative and mark the deopt slots read/write in
1126   // practice.)
1127   // STATEPOINT GC Spill - live-through, read/write, indirect
1128   // STATEPOINT GC Alloca - live-through, read/write, direct
1129   // The live-in vs live-through is handled already (the live through ones are
1130   // all stack slots), but we need to handle the different type of stackmap
1131   // operands and memory effects here.
1132 
1133   // MI changes inside this loop as we grow operands.
1134   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1135     MachineOperand &MO = MI->getOperand(OperIdx);
1136     if (!MO.isFI())
1137       continue;
1138 
1139     // foldMemoryOperand builds a new MI after replacing a single FI operand
1140     // with the canonical set of five x86 addressing-mode operands.
1141     int FI = MO.getIndex();
1142     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1143 
1144     // Copy operands before the frame-index.
1145     for (unsigned i = 0; i < OperIdx; ++i)
1146       MIB.addOperand(MI->getOperand(i));
1147     // Add frame index operands recognized by stackmaps.cpp
1148     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1149       // indirect-mem-ref tag, size, #FI, offset.
1150       // Used for spills inserted by StatepointLowering.  This codepath is not
1151       // used for patchpoints/stackmaps at all, for these spilling is done via
1152       // foldMemoryOperand callback only.
1153       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1154       MIB.addImm(StackMaps::IndirectMemRefOp);
1155       MIB.addImm(MFI.getObjectSize(FI));
1156       MIB.addOperand(MI->getOperand(OperIdx));
1157       MIB.addImm(0);
1158     } else {
1159       // direct-mem-ref tag, #FI, offset.
1160       // Used by patchpoint, and direct alloca arguments to statepoints
1161       MIB.addImm(StackMaps::DirectMemRefOp);
1162       MIB.addOperand(MI->getOperand(OperIdx));
1163       MIB.addImm(0);
1164     }
1165     // Copy the operands after the frame index.
1166     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1167       MIB.addOperand(MI->getOperand(i));
1168 
1169     // Inherit previous memory operands.
1170     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1171     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1172 
1173     // Add a new memory operand for this FI.
1174     assert(MFI.getObjectOffset(FI) != -1);
1175 
1176     unsigned Flags = MachineMemOperand::MOLoad;
1177     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1178       Flags |= MachineMemOperand::MOStore;
1179       Flags |= MachineMemOperand::MOVolatile;
1180     }
1181     MachineMemOperand *MMO = MF.getMachineMemOperand(
1182         MachinePointerInfo::getFixedStack(MF, FI), Flags,
1183         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1184     MIB->addMemOperand(MF, MMO);
1185 
1186     // Replace the instruction and update the operand index.
1187     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1188     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1189     MI->eraseFromParent();
1190     MI = MIB;
1191   }
1192   return MBB;
1193 }
1194 
1195 /// findRepresentativeClass - Return the largest legal super-reg register class
1196 /// of the register class for the specified type and its associated "cost".
1197 // This function is in TargetLowering because it uses RegClassForVT which would
1198 // need to be moved to TargetRegisterInfo and would necessitate moving
1199 // isTypeLegal over as well - a massive change that would just require
1200 // TargetLowering having a TargetRegisterInfo class member that it would use.
1201 std::pair<const TargetRegisterClass *, uint8_t>
1202 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1203                                             MVT VT) const {
1204   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1205   if (!RC)
1206     return std::make_pair(RC, 0);
1207 
1208   // Compute the set of all super-register classes.
1209   BitVector SuperRegRC(TRI->getNumRegClasses());
1210   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1211     SuperRegRC.setBitsInMask(RCI.getMask());
1212 
1213   // Find the first legal register class with the largest spill size.
1214   const TargetRegisterClass *BestRC = RC;
1215   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1216     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1217     // We want the largest possible spill size.
1218     if (SuperRC->getSize() <= BestRC->getSize())
1219       continue;
1220     if (!isLegalRC(SuperRC))
1221       continue;
1222     BestRC = SuperRC;
1223   }
1224   return std::make_pair(BestRC, 1);
1225 }
1226 
1227 /// computeRegisterProperties - Once all of the register classes are added,
1228 /// this allows us to compute derived properties we expose.
1229 void TargetLoweringBase::computeRegisterProperties(
1230     const TargetRegisterInfo *TRI) {
1231   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1232                 "Too many value types for ValueTypeActions to hold!");
1233 
1234   // Everything defaults to needing one register.
1235   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1236     NumRegistersForVT[i] = 1;
1237     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1238   }
1239   // ...except isVoid, which doesn't need any registers.
1240   NumRegistersForVT[MVT::isVoid] = 0;
1241 
1242   // Find the largest integer register class.
1243   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1244   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1245     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1246 
1247   // Every integer value type larger than this largest register takes twice as
1248   // many registers to represent as the previous ValueType.
1249   for (unsigned ExpandedReg = LargestIntReg + 1;
1250        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1251     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1252     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1253     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1254     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1255                                    TypeExpandInteger);
1256   }
1257 
1258   // Inspect all of the ValueType's smaller than the largest integer
1259   // register to see which ones need promotion.
1260   unsigned LegalIntReg = LargestIntReg;
1261   for (unsigned IntReg = LargestIntReg - 1;
1262        IntReg >= (unsigned)MVT::i1; --IntReg) {
1263     MVT IVT = (MVT::SimpleValueType)IntReg;
1264     if (isTypeLegal(IVT)) {
1265       LegalIntReg = IntReg;
1266     } else {
1267       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1268         (const MVT::SimpleValueType)LegalIntReg;
1269       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1270     }
1271   }
1272 
1273   // ppcf128 type is really two f64's.
1274   if (!isTypeLegal(MVT::ppcf128)) {
1275     if (isTypeLegal(MVT::f64)) {
1276       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1277       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1278       TransformToType[MVT::ppcf128] = MVT::f64;
1279       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1280     } else {
1281       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1282       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1283       TransformToType[MVT::ppcf128] = MVT::i128;
1284       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1285     }
1286   }
1287 
1288   // Decide how to handle f128. If the target does not have native f128 support,
1289   // expand it to i128 and we will be generating soft float library calls.
1290   if (!isTypeLegal(MVT::f128)) {
1291     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1292     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1293     TransformToType[MVT::f128] = MVT::i128;
1294     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1295   }
1296 
1297   // Decide how to handle f64. If the target does not have native f64 support,
1298   // expand it to i64 and we will be generating soft float library calls.
1299   if (!isTypeLegal(MVT::f64)) {
1300     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1301     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1302     TransformToType[MVT::f64] = MVT::i64;
1303     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1304   }
1305 
1306   // Decide how to handle f32. If the target does not have native f32 support,
1307   // expand it to i32 and we will be generating soft float library calls.
1308   if (!isTypeLegal(MVT::f32)) {
1309     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1310     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1311     TransformToType[MVT::f32] = MVT::i32;
1312     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1313   }
1314 
1315   // Decide how to handle f16. If the target does not have native f16 support,
1316   // promote it to f32, because there are no f16 library calls (except for
1317   // conversions).
1318   if (!isTypeLegal(MVT::f16)) {
1319     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1320     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1321     TransformToType[MVT::f16] = MVT::f32;
1322     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1323   }
1324 
1325   // Loop over all of the vector value types to see which need transformations.
1326   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1327        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1328     MVT VT = (MVT::SimpleValueType) i;
1329     if (isTypeLegal(VT))
1330       continue;
1331 
1332     MVT EltVT = VT.getVectorElementType();
1333     unsigned NElts = VT.getVectorNumElements();
1334     bool IsLegalWiderType = false;
1335     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1336     switch (PreferredAction) {
1337     case TypePromoteInteger: {
1338       // Try to promote the elements of integer vectors. If no legal
1339       // promotion was found, fall through to the widen-vector method.
1340       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1341         MVT SVT = (MVT::SimpleValueType) nVT;
1342         // Promote vectors of integers to vectors with the same number
1343         // of elements, with a wider element type.
1344         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1345             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
1346             && SVT.getScalarType().isInteger()) {
1347           TransformToType[i] = SVT;
1348           RegisterTypeForVT[i] = SVT;
1349           NumRegistersForVT[i] = 1;
1350           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1351           IsLegalWiderType = true;
1352           break;
1353         }
1354       }
1355       if (IsLegalWiderType)
1356         break;
1357     }
1358     case TypeWidenVector: {
1359       // Try to widen the vector.
1360       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1361         MVT SVT = (MVT::SimpleValueType) nVT;
1362         if (SVT.getVectorElementType() == EltVT
1363             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1364           TransformToType[i] = SVT;
1365           RegisterTypeForVT[i] = SVT;
1366           NumRegistersForVT[i] = 1;
1367           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1368           IsLegalWiderType = true;
1369           break;
1370         }
1371       }
1372       if (IsLegalWiderType)
1373         break;
1374     }
1375     case TypeSplitVector:
1376     case TypeScalarizeVector: {
1377       MVT IntermediateVT;
1378       MVT RegisterVT;
1379       unsigned NumIntermediates;
1380       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1381           NumIntermediates, RegisterVT, this);
1382       RegisterTypeForVT[i] = RegisterVT;
1383 
1384       MVT NVT = VT.getPow2VectorType();
1385       if (NVT == VT) {
1386         // Type is already a power of 2.  The default action is to split.
1387         TransformToType[i] = MVT::Other;
1388         if (PreferredAction == TypeScalarizeVector)
1389           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1390         else if (PreferredAction == TypeSplitVector)
1391           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1392         else
1393           // Set type action according to the number of elements.
1394           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1395                                                         : TypeSplitVector);
1396       } else {
1397         TransformToType[i] = NVT;
1398         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1399       }
1400       break;
1401     }
1402     default:
1403       llvm_unreachable("Unknown vector legalization action!");
1404     }
1405   }
1406 
1407   // Determine the 'representative' register class for each value type.
1408   // An representative register class is the largest (meaning one which is
1409   // not a sub-register class / subreg register class) legal register class for
1410   // a group of value types. For example, on i386, i8, i16, and i32
1411   // representative would be GR32; while on x86_64 it's GR64.
1412   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1413     const TargetRegisterClass* RRC;
1414     uint8_t Cost;
1415     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1416     RepRegClassForVT[i] = RRC;
1417     RepRegClassCostForVT[i] = Cost;
1418   }
1419 }
1420 
1421 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1422                                            EVT VT) const {
1423   assert(!VT.isVector() && "No default SetCC type for vectors!");
1424   return getPointerTy(DL).SimpleTy;
1425 }
1426 
1427 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1428   return MVT::i32; // return the default value
1429 }
1430 
1431 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1432 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1433 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1434 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1435 ///
1436 /// This method returns the number of registers needed, and the VT for each
1437 /// register.  It also returns the VT and quantity of the intermediate values
1438 /// before they are promoted/expanded.
1439 ///
1440 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1441                                                 EVT &IntermediateVT,
1442                                                 unsigned &NumIntermediates,
1443                                                 MVT &RegisterVT) const {
1444   unsigned NumElts = VT.getVectorNumElements();
1445 
1446   // If there is a wider vector type with the same element type as this one,
1447   // or a promoted vector type that has the same number of elements which
1448   // are wider, then we should convert to that legal vector type.
1449   // This handles things like <2 x float> -> <4 x float> and
1450   // <4 x i1> -> <4 x i32>.
1451   LegalizeTypeAction TA = getTypeAction(Context, VT);
1452   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1453     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1454     if (isTypeLegal(RegisterEVT)) {
1455       IntermediateVT = RegisterEVT;
1456       RegisterVT = RegisterEVT.getSimpleVT();
1457       NumIntermediates = 1;
1458       return 1;
1459     }
1460   }
1461 
1462   // Figure out the right, legal destination reg to copy into.
1463   EVT EltTy = VT.getVectorElementType();
1464 
1465   unsigned NumVectorRegs = 1;
1466 
1467   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1468   // could break down into LHS/RHS like LegalizeDAG does.
1469   if (!isPowerOf2_32(NumElts)) {
1470     NumVectorRegs = NumElts;
1471     NumElts = 1;
1472   }
1473 
1474   // Divide the input until we get to a supported size.  This will always
1475   // end with a scalar if the target doesn't support vectors.
1476   while (NumElts > 1 && !isTypeLegal(
1477                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1478     NumElts >>= 1;
1479     NumVectorRegs <<= 1;
1480   }
1481 
1482   NumIntermediates = NumVectorRegs;
1483 
1484   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1485   if (!isTypeLegal(NewVT))
1486     NewVT = EltTy;
1487   IntermediateVT = NewVT;
1488 
1489   MVT DestVT = getRegisterType(Context, NewVT);
1490   RegisterVT = DestVT;
1491   unsigned NewVTSize = NewVT.getSizeInBits();
1492 
1493   // Convert sizes such as i33 to i64.
1494   if (!isPowerOf2_32(NewVTSize))
1495     NewVTSize = NextPowerOf2(NewVTSize);
1496 
1497   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1498     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1499 
1500   // Otherwise, promotion or legal types use the same number of registers as
1501   // the vector decimated to the appropriate level.
1502   return NumVectorRegs;
1503 }
1504 
1505 /// Get the EVTs and ArgFlags collections that represent the legalized return
1506 /// type of the given function.  This does not require a DAG or a return value,
1507 /// and is suitable for use before any DAGs for the function are constructed.
1508 /// TODO: Move this out of TargetLowering.cpp.
1509 void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
1510                          SmallVectorImpl<ISD::OutputArg> &Outs,
1511                          const TargetLowering &TLI, const DataLayout &DL) {
1512   SmallVector<EVT, 4> ValueVTs;
1513   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1514   unsigned NumValues = ValueVTs.size();
1515   if (NumValues == 0) return;
1516 
1517   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1518     EVT VT = ValueVTs[j];
1519     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1520 
1521     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1522       ExtendKind = ISD::SIGN_EXTEND;
1523     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1524       ExtendKind = ISD::ZERO_EXTEND;
1525 
1526     // FIXME: C calling convention requires the return type to be promoted to
1527     // at least 32-bit. But this is not necessary for non-C calling
1528     // conventions. The frontend should mark functions whose return values
1529     // require promoting with signext or zeroext attributes.
1530     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1531       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1532       if (VT.bitsLT(MinVT))
1533         VT = MinVT;
1534     }
1535 
1536     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1537     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1538 
1539     // 'inreg' on function refers to return value
1540     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1541     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1542       Flags.setInReg();
1543 
1544     // Propagate extension type if any
1545     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1546       Flags.setSExt();
1547     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1548       Flags.setZExt();
1549 
1550     for (unsigned i = 0; i < NumParts; ++i)
1551       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1552   }
1553 }
1554 
1555 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1556 /// function arguments in the caller parameter area.  This is the actual
1557 /// alignment, not its logarithm.
1558 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1559                                                    const DataLayout &DL) const {
1560   return DL.getABITypeAlignment(Ty);
1561 }
1562 
1563 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1564                                             const DataLayout &DL, EVT VT,
1565                                             unsigned AddrSpace,
1566                                             unsigned Alignment,
1567                                             bool *Fast) const {
1568   // Check if the specified alignment is sufficient based on the data layout.
1569   // TODO: While using the data layout works in practice, a better solution
1570   // would be to implement this check directly (make this a virtual function).
1571   // For example, the ABI alignment may change based on software platform while
1572   // this function should only be affected by hardware implementation.
1573   Type *Ty = VT.getTypeForEVT(Context);
1574   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1575     // Assume that an access that meets the ABI-specified alignment is fast.
1576     if (Fast != nullptr)
1577       *Fast = true;
1578     return true;
1579   }
1580 
1581   // This is a misaligned access.
1582   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1583 }
1584 
1585 
1586 //===----------------------------------------------------------------------===//
1587 //  TargetTransformInfo Helpers
1588 //===----------------------------------------------------------------------===//
1589 
1590 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1591   enum InstructionOpcodes {
1592 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1593 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1594 #include "llvm/IR/Instruction.def"
1595   };
1596   switch (static_cast<InstructionOpcodes>(Opcode)) {
1597   case Ret:            return 0;
1598   case Br:             return 0;
1599   case Switch:         return 0;
1600   case IndirectBr:     return 0;
1601   case Invoke:         return 0;
1602   case Resume:         return 0;
1603   case Unreachable:    return 0;
1604   case CleanupRet:     return 0;
1605   case CatchRet:       return 0;
1606   case CatchPad:       return 0;
1607   case CatchSwitch:    return 0;
1608   case CleanupPad:     return 0;
1609   case Add:            return ISD::ADD;
1610   case FAdd:           return ISD::FADD;
1611   case Sub:            return ISD::SUB;
1612   case FSub:           return ISD::FSUB;
1613   case Mul:            return ISD::MUL;
1614   case FMul:           return ISD::FMUL;
1615   case UDiv:           return ISD::UDIV;
1616   case SDiv:           return ISD::SDIV;
1617   case FDiv:           return ISD::FDIV;
1618   case URem:           return ISD::UREM;
1619   case SRem:           return ISD::SREM;
1620   case FRem:           return ISD::FREM;
1621   case Shl:            return ISD::SHL;
1622   case LShr:           return ISD::SRL;
1623   case AShr:           return ISD::SRA;
1624   case And:            return ISD::AND;
1625   case Or:             return ISD::OR;
1626   case Xor:            return ISD::XOR;
1627   case Alloca:         return 0;
1628   case Load:           return ISD::LOAD;
1629   case Store:          return ISD::STORE;
1630   case GetElementPtr:  return 0;
1631   case Fence:          return 0;
1632   case AtomicCmpXchg:  return 0;
1633   case AtomicRMW:      return 0;
1634   case Trunc:          return ISD::TRUNCATE;
1635   case ZExt:           return ISD::ZERO_EXTEND;
1636   case SExt:           return ISD::SIGN_EXTEND;
1637   case FPToUI:         return ISD::FP_TO_UINT;
1638   case FPToSI:         return ISD::FP_TO_SINT;
1639   case UIToFP:         return ISD::UINT_TO_FP;
1640   case SIToFP:         return ISD::SINT_TO_FP;
1641   case FPTrunc:        return ISD::FP_ROUND;
1642   case FPExt:          return ISD::FP_EXTEND;
1643   case PtrToInt:       return ISD::BITCAST;
1644   case IntToPtr:       return ISD::BITCAST;
1645   case BitCast:        return ISD::BITCAST;
1646   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1647   case ICmp:           return ISD::SETCC;
1648   case FCmp:           return ISD::SETCC;
1649   case PHI:            return 0;
1650   case Call:           return 0;
1651   case Select:         return ISD::SELECT;
1652   case UserOp1:        return 0;
1653   case UserOp2:        return 0;
1654   case VAArg:          return 0;
1655   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1656   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1657   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1658   case ExtractValue:   return ISD::MERGE_VALUES;
1659   case InsertValue:    return ISD::MERGE_VALUES;
1660   case LandingPad:     return 0;
1661   }
1662 
1663   llvm_unreachable("Unknown instruction type encountered!");
1664 }
1665 
1666 std::pair<int, MVT>
1667 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1668                                             Type *Ty) const {
1669   LLVMContext &C = Ty->getContext();
1670   EVT MTy = getValueType(DL, Ty);
1671 
1672   int Cost = 1;
1673   // We keep legalizing the type until we find a legal kind. We assume that
1674   // the only operation that costs anything is the split. After splitting
1675   // we need to handle two types.
1676   while (true) {
1677     LegalizeKind LK = getTypeConversion(C, MTy);
1678 
1679     if (LK.first == TypeLegal)
1680       return std::make_pair(Cost, MTy.getSimpleVT());
1681 
1682     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1683       Cost *= 2;
1684 
1685     // Do not loop with f128 type.
1686     if (MTy == LK.second)
1687       return std::make_pair(Cost, MTy.getSimpleVT());
1688 
1689     // Keep legalizing the type.
1690     MTy = LK.second;
1691   }
1692 }
1693 
1694 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1695   if (!TM.getTargetTriple().isAndroid())
1696     return nullptr;
1697 
1698   // Android provides a libc function to retrieve the address of the current
1699   // thread's unsafe stack pointer.
1700   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1701   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1702   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1703                                      StackPtrTy->getPointerTo(0), nullptr);
1704   return IRB.CreateCall(Fn);
1705 }
1706 
1707 //===----------------------------------------------------------------------===//
1708 //  Loop Strength Reduction hooks
1709 //===----------------------------------------------------------------------===//
1710 
1711 /// isLegalAddressingMode - Return true if the addressing mode represented
1712 /// by AM is legal for this target, for a load/store of the specified type.
1713 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1714                                                const AddrMode &AM, Type *Ty,
1715                                                unsigned AS) const {
1716   // The default implementation of this implements a conservative RISCy, r+r and
1717   // r+i addr mode.
1718 
1719   // Allows a sign-extended 16-bit immediate field.
1720   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1721     return false;
1722 
1723   // No global is ever allowed as a base.
1724   if (AM.BaseGV)
1725     return false;
1726 
1727   // Only support r+r,
1728   switch (AM.Scale) {
1729   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1730     break;
1731   case 1:
1732     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1733       return false;
1734     // Otherwise we have r+r or r+i.
1735     break;
1736   case 2:
1737     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1738       return false;
1739     // Allow 2*r as r+r.
1740     break;
1741   default: // Don't allow n * r
1742     return false;
1743   }
1744 
1745   return true;
1746 }
1747