1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 // FIXME: This option is only to test if the strict fp operation processed
92 // correctly by preventing mutating strict fp operation to normal fp operation
93 // during development. When the backend supports strict float operation, this
94 // option will be meaningless.
95 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
96        cl::desc("Don't mutate strict-float node to a legalize node"),
97        cl::init(false), cl::Hidden);
98 
99 static bool darwinHasSinCos(const Triple &TT) {
100   assert(TT.isOSDarwin() && "should be called with darwin triple");
101   // Don't bother with 32 bit x86.
102   if (TT.getArch() == Triple::x86)
103     return false;
104   // Macos < 10.9 has no sincos_stret.
105   if (TT.isMacOSX())
106     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
107   // iOS < 7.0 has no sincos_stret.
108   if (TT.isiOS())
109     return !TT.isOSVersionLT(7, 0);
110   // Any other darwin such as WatchOS/TvOS is new enough.
111   return true;
112 }
113 
114 // Although this default value is arbitrary, it is not random. It is assumed
115 // that a condition that evaluates the same way by a higher percentage than this
116 // is best represented as control flow. Therefore, the default value N should be
117 // set such that the win from N% correct executions is greater than the loss
118 // from (100 - N)% mispredicted executions for the majority of intended targets.
119 static cl::opt<int> MinPercentageForPredictableBranch(
120     "min-predictable-branch", cl::init(99),
121     cl::desc("Minimum percentage (0-100) that a condition must be either true "
122              "or false to assume that the condition is predictable"),
123     cl::Hidden);
124 
125 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
126 #define HANDLE_LIBCALL(code, name) \
127   setLibcallName(RTLIB::code, name);
128 #include "llvm/IR/RuntimeLibcalls.def"
129 #undef HANDLE_LIBCALL
130   // Initialize calling conventions to their default.
131   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
132     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
133 
134   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
135   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
136     setLibcallName(RTLIB::ADD_F128, "__addkf3");
137     setLibcallName(RTLIB::SUB_F128, "__subkf3");
138     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
139     setLibcallName(RTLIB::DIV_F128, "__divkf3");
140     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
141     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
142     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
143     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
144     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
145     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
146     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
147     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
148     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
149     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
150     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
151     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
152     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
153     setLibcallName(RTLIB::UNE_F128, "__nekf2");
154     setLibcallName(RTLIB::OGE_F128, "__gekf2");
155     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
156     setLibcallName(RTLIB::OLE_F128, "__lekf2");
157     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
158     setLibcallName(RTLIB::UO_F128, "__unordkf2");
159     setLibcallName(RTLIB::O_F128, "__unordkf2");
160   }
161 
162   // A few names are different on particular architectures or environments.
163   if (TT.isOSDarwin()) {
164     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
165     // of the gnueabi-style __gnu_*_ieee.
166     // FIXME: What about other targets?
167     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
168     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
169 
170     // Some darwins have an optimized __bzero/bzero function.
171     switch (TT.getArch()) {
172     case Triple::x86:
173     case Triple::x86_64:
174       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
175         setLibcallName(RTLIB::BZERO, "__bzero");
176       break;
177     case Triple::aarch64:
178     case Triple::aarch64_32:
179       setLibcallName(RTLIB::BZERO, "bzero");
180       break;
181     default:
182       break;
183     }
184 
185     if (darwinHasSinCos(TT)) {
186       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
187       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
188       if (TT.isWatchABI()) {
189         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
190                               CallingConv::ARM_AAPCS_VFP);
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
192                               CallingConv::ARM_AAPCS_VFP);
193       }
194     }
195   } else {
196     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
197     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
198   }
199 
200   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
201       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
202     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
203     setLibcallName(RTLIB::SINCOS_F64, "sincos");
204     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
205     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
206     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
207   }
208 
209   if (TT.isPS4CPU()) {
210     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
211     setLibcallName(RTLIB::SINCOS_F64, "sincos");
212   }
213 
214   if (TT.isOSOpenBSD()) {
215     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
216   }
217 }
218 
219 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
220 /// UNKNOWN_LIBCALL if there is none.
221 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
222   if (OpVT == MVT::f16) {
223     if (RetVT == MVT::f32)
224       return FPEXT_F16_F32;
225   } else if (OpVT == MVT::f32) {
226     if (RetVT == MVT::f64)
227       return FPEXT_F32_F64;
228     if (RetVT == MVT::f128)
229       return FPEXT_F32_F128;
230     if (RetVT == MVT::ppcf128)
231       return FPEXT_F32_PPCF128;
232   } else if (OpVT == MVT::f64) {
233     if (RetVT == MVT::f128)
234       return FPEXT_F64_F128;
235     else if (RetVT == MVT::ppcf128)
236       return FPEXT_F64_PPCF128;
237   } else if (OpVT == MVT::f80) {
238     if (RetVT == MVT::f128)
239       return FPEXT_F80_F128;
240   }
241 
242   return UNKNOWN_LIBCALL;
243 }
244 
245 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
246 /// UNKNOWN_LIBCALL if there is none.
247 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
248   if (RetVT == MVT::f16) {
249     if (OpVT == MVT::f32)
250       return FPROUND_F32_F16;
251     if (OpVT == MVT::f64)
252       return FPROUND_F64_F16;
253     if (OpVT == MVT::f80)
254       return FPROUND_F80_F16;
255     if (OpVT == MVT::f128)
256       return FPROUND_F128_F16;
257     if (OpVT == MVT::ppcf128)
258       return FPROUND_PPCF128_F16;
259   } else if (RetVT == MVT::f32) {
260     if (OpVT == MVT::f64)
261       return FPROUND_F64_F32;
262     if (OpVT == MVT::f80)
263       return FPROUND_F80_F32;
264     if (OpVT == MVT::f128)
265       return FPROUND_F128_F32;
266     if (OpVT == MVT::ppcf128)
267       return FPROUND_PPCF128_F32;
268   } else if (RetVT == MVT::f64) {
269     if (OpVT == MVT::f80)
270       return FPROUND_F80_F64;
271     if (OpVT == MVT::f128)
272       return FPROUND_F128_F64;
273     if (OpVT == MVT::ppcf128)
274       return FPROUND_PPCF128_F64;
275   } else if (RetVT == MVT::f80) {
276     if (OpVT == MVT::f128)
277       return FPROUND_F128_F80;
278   }
279 
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOSINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOSINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOSINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOSINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOSINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOSINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOSINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOSINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOSINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOSINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOSINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOSINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOSINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOSINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOSINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::f32) {
329     if (RetVT == MVT::i32)
330       return FPTOUINT_F32_I32;
331     if (RetVT == MVT::i64)
332       return FPTOUINT_F32_I64;
333     if (RetVT == MVT::i128)
334       return FPTOUINT_F32_I128;
335   } else if (OpVT == MVT::f64) {
336     if (RetVT == MVT::i32)
337       return FPTOUINT_F64_I32;
338     if (RetVT == MVT::i64)
339       return FPTOUINT_F64_I64;
340     if (RetVT == MVT::i128)
341       return FPTOUINT_F64_I128;
342   } else if (OpVT == MVT::f80) {
343     if (RetVT == MVT::i32)
344       return FPTOUINT_F80_I32;
345     if (RetVT == MVT::i64)
346       return FPTOUINT_F80_I64;
347     if (RetVT == MVT::i128)
348       return FPTOUINT_F80_I128;
349   } else if (OpVT == MVT::f128) {
350     if (RetVT == MVT::i32)
351       return FPTOUINT_F128_I32;
352     if (RetVT == MVT::i64)
353       return FPTOUINT_F128_I64;
354     if (RetVT == MVT::i128)
355       return FPTOUINT_F128_I128;
356   } else if (OpVT == MVT::ppcf128) {
357     if (RetVT == MVT::i32)
358       return FPTOUINT_PPCF128_I32;
359     if (RetVT == MVT::i64)
360       return FPTOUINT_PPCF128_I64;
361     if (RetVT == MVT::i128)
362       return FPTOUINT_PPCF128_I128;
363   }
364   return UNKNOWN_LIBCALL;
365 }
366 
367 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
370   if (OpVT == MVT::i32) {
371     if (RetVT == MVT::f32)
372       return SINTTOFP_I32_F32;
373     if (RetVT == MVT::f64)
374       return SINTTOFP_I32_F64;
375     if (RetVT == MVT::f80)
376       return SINTTOFP_I32_F80;
377     if (RetVT == MVT::f128)
378       return SINTTOFP_I32_F128;
379     if (RetVT == MVT::ppcf128)
380       return SINTTOFP_I32_PPCF128;
381   } else if (OpVT == MVT::i64) {
382     if (RetVT == MVT::f32)
383       return SINTTOFP_I64_F32;
384     if (RetVT == MVT::f64)
385       return SINTTOFP_I64_F64;
386     if (RetVT == MVT::f80)
387       return SINTTOFP_I64_F80;
388     if (RetVT == MVT::f128)
389       return SINTTOFP_I64_F128;
390     if (RetVT == MVT::ppcf128)
391       return SINTTOFP_I64_PPCF128;
392   } else if (OpVT == MVT::i128) {
393     if (RetVT == MVT::f32)
394       return SINTTOFP_I128_F32;
395     if (RetVT == MVT::f64)
396       return SINTTOFP_I128_F64;
397     if (RetVT == MVT::f80)
398       return SINTTOFP_I128_F80;
399     if (RetVT == MVT::f128)
400       return SINTTOFP_I128_F128;
401     if (RetVT == MVT::ppcf128)
402       return SINTTOFP_I128_PPCF128;
403   }
404   return UNKNOWN_LIBCALL;
405 }
406 
407 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
408 /// UNKNOWN_LIBCALL if there is none.
409 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
410   if (OpVT == MVT::i32) {
411     if (RetVT == MVT::f32)
412       return UINTTOFP_I32_F32;
413     if (RetVT == MVT::f64)
414       return UINTTOFP_I32_F64;
415     if (RetVT == MVT::f80)
416       return UINTTOFP_I32_F80;
417     if (RetVT == MVT::f128)
418       return UINTTOFP_I32_F128;
419     if (RetVT == MVT::ppcf128)
420       return UINTTOFP_I32_PPCF128;
421   } else if (OpVT == MVT::i64) {
422     if (RetVT == MVT::f32)
423       return UINTTOFP_I64_F32;
424     if (RetVT == MVT::f64)
425       return UINTTOFP_I64_F64;
426     if (RetVT == MVT::f80)
427       return UINTTOFP_I64_F80;
428     if (RetVT == MVT::f128)
429       return UINTTOFP_I64_F128;
430     if (RetVT == MVT::ppcf128)
431       return UINTTOFP_I64_PPCF128;
432   } else if (OpVT == MVT::i128) {
433     if (RetVT == MVT::f32)
434       return UINTTOFP_I128_F32;
435     if (RetVT == MVT::f64)
436       return UINTTOFP_I128_F64;
437     if (RetVT == MVT::f80)
438       return UINTTOFP_I128_F80;
439     if (RetVT == MVT::f128)
440       return UINTTOFP_I128_F128;
441     if (RetVT == MVT::ppcf128)
442       return UINTTOFP_I128_PPCF128;
443   }
444   return UNKNOWN_LIBCALL;
445 }
446 
447 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
448 #define OP_TO_LIBCALL(Name, Enum)                                              \
449   case Name:                                                                   \
450     switch (VT.SimpleTy) {                                                     \
451     default:                                                                   \
452       return UNKNOWN_LIBCALL;                                                  \
453     case MVT::i8:                                                              \
454       return Enum##_1;                                                         \
455     case MVT::i16:                                                             \
456       return Enum##_2;                                                         \
457     case MVT::i32:                                                             \
458       return Enum##_4;                                                         \
459     case MVT::i64:                                                             \
460       return Enum##_8;                                                         \
461     case MVT::i128:                                                            \
462       return Enum##_16;                                                        \
463     }
464 
465   switch (Opc) {
466     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
467     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
468     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
477     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
478   }
479 
480 #undef OP_TO_LIBCALL
481 
482   return UNKNOWN_LIBCALL;
483 }
484 
485 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
486   switch (ElementSize) {
487   case 1:
488     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
489   case 2:
490     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
491   case 4:
492     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
493   case 8:
494     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
495   case 16:
496     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
497   default:
498     return UNKNOWN_LIBCALL;
499   }
500 }
501 
502 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
503   switch (ElementSize) {
504   case 1:
505     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
506   case 2:
507     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
508   case 4:
509     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
510   case 8:
511     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
512   case 16:
513     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
514   default:
515     return UNKNOWN_LIBCALL;
516   }
517 }
518 
519 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
520   switch (ElementSize) {
521   case 1:
522     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
523   case 2:
524     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
525   case 4:
526     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
527   case 8:
528     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
529   case 16:
530     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
531   default:
532     return UNKNOWN_LIBCALL;
533   }
534 }
535 
536 /// InitCmpLibcallCCs - Set default comparison libcall CC.
537 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
538   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
539   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
540   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
541   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
542   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
543   CCs[RTLIB::UNE_F32] = ISD::SETNE;
544   CCs[RTLIB::UNE_F64] = ISD::SETNE;
545   CCs[RTLIB::UNE_F128] = ISD::SETNE;
546   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
547   CCs[RTLIB::OGE_F32] = ISD::SETGE;
548   CCs[RTLIB::OGE_F64] = ISD::SETGE;
549   CCs[RTLIB::OGE_F128] = ISD::SETGE;
550   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
551   CCs[RTLIB::OLT_F32] = ISD::SETLT;
552   CCs[RTLIB::OLT_F64] = ISD::SETLT;
553   CCs[RTLIB::OLT_F128] = ISD::SETLT;
554   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
555   CCs[RTLIB::OLE_F32] = ISD::SETLE;
556   CCs[RTLIB::OLE_F64] = ISD::SETLE;
557   CCs[RTLIB::OLE_F128] = ISD::SETLE;
558   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
559   CCs[RTLIB::OGT_F32] = ISD::SETGT;
560   CCs[RTLIB::OGT_F64] = ISD::SETGT;
561   CCs[RTLIB::OGT_F128] = ISD::SETGT;
562   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
563   CCs[RTLIB::UO_F32] = ISD::SETNE;
564   CCs[RTLIB::UO_F64] = ISD::SETNE;
565   CCs[RTLIB::UO_F128] = ISD::SETNE;
566   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
567   CCs[RTLIB::O_F32] = ISD::SETEQ;
568   CCs[RTLIB::O_F64] = ISD::SETEQ;
569   CCs[RTLIB::O_F128] = ISD::SETEQ;
570   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
571 }
572 
573 /// NOTE: The TargetMachine owns TLOF.
574 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
575   initActions();
576 
577   // Perform these initializations only once.
578   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
579       MaxLoadsPerMemcmp = 8;
580   MaxGluedStoresPerMemcpy = 0;
581   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
582       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
583   UseUnderscoreSetJmp = false;
584   UseUnderscoreLongJmp = false;
585   HasMultipleConditionRegisters = false;
586   HasExtractBitsInsn = false;
587   JumpIsExpensive = JumpIsExpensiveOverride;
588   PredictableSelectIsExpensive = false;
589   EnableExtLdPromotion = false;
590   StackPointerRegisterToSaveRestore = 0;
591   BooleanContents = UndefinedBooleanContent;
592   BooleanFloatContents = UndefinedBooleanContent;
593   BooleanVectorContents = UndefinedBooleanContent;
594   SchedPreferenceInfo = Sched::ILP;
595   GatherAllAliasesMaxDepth = 18;
596   IsStrictFPEnabled = DisableStrictNodeMutation;
597   // TODO: the default will be switched to 0 in the next commit, along
598   // with the Target-specific changes necessary.
599   MaxAtomicSizeInBitsSupported = 1024;
600 
601   MinCmpXchgSizeInBits = 0;
602   SupportsUnalignedAtomics = false;
603 
604   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
605 
606   InitLibcalls(TM.getTargetTriple());
607   InitCmpLibcallCCs(CmpLibcallCCs);
608 }
609 
610 void TargetLoweringBase::initActions() {
611   // All operations default to being supported.
612   memset(OpActions, 0, sizeof(OpActions));
613   memset(LoadExtActions, 0, sizeof(LoadExtActions));
614   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
615   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
616   memset(CondCodeActions, 0, sizeof(CondCodeActions));
617   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
618   std::fill(std::begin(TargetDAGCombineArray),
619             std::end(TargetDAGCombineArray), 0);
620 
621   for (MVT VT : MVT::fp_valuetypes()) {
622     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
623     if (IntVT.isValid()) {
624       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
625       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
626     }
627   }
628 
629   // Set default actions for various operations.
630   for (MVT VT : MVT::all_valuetypes()) {
631     // Default all indexed load / store to expand.
632     for (unsigned IM = (unsigned)ISD::PRE_INC;
633          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
634       setIndexedLoadAction(IM, VT, Expand);
635       setIndexedStoreAction(IM, VT, Expand);
636     }
637 
638     // Most backends expect to see the node which just returns the value loaded.
639     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
640 
641     // These operations default to expand.
642     setOperationAction(ISD::FGETSIGN, VT, Expand);
643     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
644     setOperationAction(ISD::FMINNUM, VT, Expand);
645     setOperationAction(ISD::FMAXNUM, VT, Expand);
646     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
647     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
648     setOperationAction(ISD::FMINIMUM, VT, Expand);
649     setOperationAction(ISD::FMAXIMUM, VT, Expand);
650     setOperationAction(ISD::FMAD, VT, Expand);
651     setOperationAction(ISD::SMIN, VT, Expand);
652     setOperationAction(ISD::SMAX, VT, Expand);
653     setOperationAction(ISD::UMIN, VT, Expand);
654     setOperationAction(ISD::UMAX, VT, Expand);
655     setOperationAction(ISD::ABS, VT, Expand);
656     setOperationAction(ISD::FSHL, VT, Expand);
657     setOperationAction(ISD::FSHR, VT, Expand);
658     setOperationAction(ISD::SADDSAT, VT, Expand);
659     setOperationAction(ISD::UADDSAT, VT, Expand);
660     setOperationAction(ISD::SSUBSAT, VT, Expand);
661     setOperationAction(ISD::USUBSAT, VT, Expand);
662     setOperationAction(ISD::SMULFIX, VT, Expand);
663     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
664     setOperationAction(ISD::UMULFIX, VT, Expand);
665     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
666 
667     // Overflow operations default to expand
668     setOperationAction(ISD::SADDO, VT, Expand);
669     setOperationAction(ISD::SSUBO, VT, Expand);
670     setOperationAction(ISD::UADDO, VT, Expand);
671     setOperationAction(ISD::USUBO, VT, Expand);
672     setOperationAction(ISD::SMULO, VT, Expand);
673     setOperationAction(ISD::UMULO, VT, Expand);
674 
675     // ADDCARRY operations default to expand
676     setOperationAction(ISD::ADDCARRY, VT, Expand);
677     setOperationAction(ISD::SUBCARRY, VT, Expand);
678     setOperationAction(ISD::SETCCCARRY, VT, Expand);
679 
680     // ADDC/ADDE/SUBC/SUBE default to expand.
681     setOperationAction(ISD::ADDC, VT, Expand);
682     setOperationAction(ISD::ADDE, VT, Expand);
683     setOperationAction(ISD::SUBC, VT, Expand);
684     setOperationAction(ISD::SUBE, VT, Expand);
685 
686     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
687     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
688     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
689 
690     setOperationAction(ISD::BITREVERSE, VT, Expand);
691 
692     // These library functions default to expand.
693     setOperationAction(ISD::FROUND, VT, Expand);
694     setOperationAction(ISD::FPOWI, VT, Expand);
695 
696     // These operations default to expand for vector types.
697     if (VT.isVector()) {
698       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
699       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
700       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
701       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
702       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
703     }
704 
705     // Constrained floating-point operations default to expand.
706 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
707     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
708 #include "llvm/IR/ConstrainedOps.def"
709 
710     // For most targets @llvm.get.dynamic.area.offset just returns 0.
711     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
712 
713     // Vector reduction default to expand.
714     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
715     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
716     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
717     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
718     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
719     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
720     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
725     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
726     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
727   }
728 
729   // Most targets ignore the @llvm.prefetch intrinsic.
730   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
731 
732   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
733   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
734 
735   // ConstantFP nodes default to expand.  Targets can either change this to
736   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
737   // to optimize expansions for certain constants.
738   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
739   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
740   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
741   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
742   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
743 
744   // These library functions default to expand.
745   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
746     setOperationAction(ISD::FCBRT,      VT, Expand);
747     setOperationAction(ISD::FLOG ,      VT, Expand);
748     setOperationAction(ISD::FLOG2,      VT, Expand);
749     setOperationAction(ISD::FLOG10,     VT, Expand);
750     setOperationAction(ISD::FEXP ,      VT, Expand);
751     setOperationAction(ISD::FEXP2,      VT, Expand);
752     setOperationAction(ISD::FFLOOR,     VT, Expand);
753     setOperationAction(ISD::FNEARBYINT, VT, Expand);
754     setOperationAction(ISD::FCEIL,      VT, Expand);
755     setOperationAction(ISD::FRINT,      VT, Expand);
756     setOperationAction(ISD::FTRUNC,     VT, Expand);
757     setOperationAction(ISD::FROUND,     VT, Expand);
758     setOperationAction(ISD::LROUND,     VT, Expand);
759     setOperationAction(ISD::LLROUND,    VT, Expand);
760     setOperationAction(ISD::LRINT,      VT, Expand);
761     setOperationAction(ISD::LLRINT,     VT, Expand);
762   }
763 
764   // Default ISD::TRAP to expand (which turns it into abort).
765   setOperationAction(ISD::TRAP, MVT::Other, Expand);
766 
767   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
768   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
769   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
770 }
771 
772 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
773                                                EVT) const {
774   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
775 }
776 
777 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
778                                          bool LegalTypes) const {
779   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
780   if (LHSTy.isVector())
781     return LHSTy;
782   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
783                     : getPointerTy(DL);
784 }
785 
786 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
787   assert(isTypeLegal(VT));
788   switch (Op) {
789   default:
790     return false;
791   case ISD::SDIV:
792   case ISD::UDIV:
793   case ISD::SREM:
794   case ISD::UREM:
795     return true;
796   }
797 }
798 
799 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
800   // If the command-line option was specified, ignore this request.
801   if (!JumpIsExpensiveOverride.getNumOccurrences())
802     JumpIsExpensive = isExpensive;
803 }
804 
805 TargetLoweringBase::LegalizeKind
806 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
807   // If this is a simple type, use the ComputeRegisterProp mechanism.
808   if (VT.isSimple()) {
809     MVT SVT = VT.getSimpleVT();
810     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
811     MVT NVT = TransformToType[SVT.SimpleTy];
812     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
813 
814     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
815             (NVT.isVector() ||
816              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
817            "Promote may not follow Expand or Promote");
818 
819     if (LA == TypeSplitVector)
820       return LegalizeKind(LA,
821                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
822                                            SVT.getVectorNumElements() / 2));
823     if (LA == TypeScalarizeVector)
824       return LegalizeKind(LA, SVT.getVectorElementType());
825     return LegalizeKind(LA, NVT);
826   }
827 
828   // Handle Extended Scalar Types.
829   if (!VT.isVector()) {
830     assert(VT.isInteger() && "Float types must be simple");
831     unsigned BitSize = VT.getSizeInBits();
832     // First promote to a power-of-two size, then expand if necessary.
833     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
834       EVT NVT = VT.getRoundIntegerType(Context);
835       assert(NVT != VT && "Unable to round integer VT");
836       LegalizeKind NextStep = getTypeConversion(Context, NVT);
837       // Avoid multi-step promotion.
838       if (NextStep.first == TypePromoteInteger)
839         return NextStep;
840       // Return rounded integer type.
841       return LegalizeKind(TypePromoteInteger, NVT);
842     }
843 
844     return LegalizeKind(TypeExpandInteger,
845                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
846   }
847 
848   // Handle vector types.
849   unsigned NumElts = VT.getVectorNumElements();
850   EVT EltVT = VT.getVectorElementType();
851 
852   // Vectors with only one element are always scalarized.
853   if (NumElts == 1)
854     return LegalizeKind(TypeScalarizeVector, EltVT);
855 
856   // Try to widen vector elements until the element type is a power of two and
857   // promote it to a legal type later on, for example:
858   // <3 x i8> -> <4 x i8> -> <4 x i32>
859   if (EltVT.isInteger()) {
860     // Vectors with a number of elements that is not a power of two are always
861     // widened, for example <3 x i8> -> <4 x i8>.
862     if (!VT.isPow2VectorType()) {
863       NumElts = (unsigned)NextPowerOf2(NumElts);
864       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
865       return LegalizeKind(TypeWidenVector, NVT);
866     }
867 
868     // Examine the element type.
869     LegalizeKind LK = getTypeConversion(Context, EltVT);
870 
871     // If type is to be expanded, split the vector.
872     //  <4 x i140> -> <2 x i140>
873     if (LK.first == TypeExpandInteger)
874       return LegalizeKind(TypeSplitVector,
875                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
876 
877     // Promote the integer element types until a legal vector type is found
878     // or until the element integer type is too big. If a legal type was not
879     // found, fallback to the usual mechanism of widening/splitting the
880     // vector.
881     EVT OldEltVT = EltVT;
882     while (true) {
883       // Increase the bitwidth of the element to the next pow-of-two
884       // (which is greater than 8 bits).
885       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
886                   .getRoundIntegerType(Context);
887 
888       // Stop trying when getting a non-simple element type.
889       // Note that vector elements may be greater than legal vector element
890       // types. Example: X86 XMM registers hold 64bit element on 32bit
891       // systems.
892       if (!EltVT.isSimple())
893         break;
894 
895       // Build a new vector type and check if it is legal.
896       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
897       // Found a legal promoted vector type.
898       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
899         return LegalizeKind(TypePromoteInteger,
900                             EVT::getVectorVT(Context, EltVT, NumElts));
901     }
902 
903     // Reset the type to the unexpanded type if we did not find a legal vector
904     // type with a promoted vector element type.
905     EltVT = OldEltVT;
906   }
907 
908   // Try to widen the vector until a legal type is found.
909   // If there is no wider legal type, split the vector.
910   while (true) {
911     // Round up to the next power of 2.
912     NumElts = (unsigned)NextPowerOf2(NumElts);
913 
914     // If there is no simple vector type with this many elements then there
915     // cannot be a larger legal vector type.  Note that this assumes that
916     // there are no skipped intermediate vector types in the simple types.
917     if (!EltVT.isSimple())
918       break;
919     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
920     if (LargerVector == MVT())
921       break;
922 
923     // If this type is legal then widen the vector.
924     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
925       return LegalizeKind(TypeWidenVector, LargerVector);
926   }
927 
928   // Widen odd vectors to next power of two.
929   if (!VT.isPow2VectorType()) {
930     EVT NVT = VT.getPow2VectorType(Context);
931     return LegalizeKind(TypeWidenVector, NVT);
932   }
933 
934   // Vectors with illegal element types are expanded.
935   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
936   return LegalizeKind(TypeSplitVector, NVT);
937 }
938 
939 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
940                                           unsigned &NumIntermediates,
941                                           MVT &RegisterVT,
942                                           TargetLoweringBase *TLI) {
943   // Figure out the right, legal destination reg to copy into.
944   unsigned NumElts = VT.getVectorNumElements();
945   MVT EltTy = VT.getVectorElementType();
946 
947   unsigned NumVectorRegs = 1;
948 
949   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
950   // could break down into LHS/RHS like LegalizeDAG does.
951   if (!isPowerOf2_32(NumElts)) {
952     NumVectorRegs = NumElts;
953     NumElts = 1;
954   }
955 
956   // Divide the input until we get to a supported size.  This will always
957   // end with a scalar if the target doesn't support vectors.
958   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
959     NumElts >>= 1;
960     NumVectorRegs <<= 1;
961   }
962 
963   NumIntermediates = NumVectorRegs;
964 
965   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
966   if (!TLI->isTypeLegal(NewVT))
967     NewVT = EltTy;
968   IntermediateVT = NewVT;
969 
970   unsigned NewVTSize = NewVT.getSizeInBits();
971 
972   // Convert sizes such as i33 to i64.
973   if (!isPowerOf2_32(NewVTSize))
974     NewVTSize = NextPowerOf2(NewVTSize);
975 
976   MVT DestVT = TLI->getRegisterType(NewVT);
977   RegisterVT = DestVT;
978   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
979     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
980 
981   // Otherwise, promotion or legal types use the same number of registers as
982   // the vector decimated to the appropriate level.
983   return NumVectorRegs;
984 }
985 
986 /// isLegalRC - Return true if the value types that can be represented by the
987 /// specified register class are all legal.
988 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
989                                    const TargetRegisterClass &RC) const {
990   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
991     if (isTypeLegal(*I))
992       return true;
993   return false;
994 }
995 
996 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
997 /// sequence of memory operands that is recognized by PrologEpilogInserter.
998 MachineBasicBlock *
999 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1000                                    MachineBasicBlock *MBB) const {
1001   MachineInstr *MI = &InitialMI;
1002   MachineFunction &MF = *MI->getMF();
1003   MachineFrameInfo &MFI = MF.getFrameInfo();
1004 
1005   // We're handling multiple types of operands here:
1006   // PATCHPOINT MetaArgs - live-in, read only, direct
1007   // STATEPOINT Deopt Spill - live-through, read only, indirect
1008   // STATEPOINT Deopt Alloca - live-through, read only, direct
1009   // (We're currently conservative and mark the deopt slots read/write in
1010   // practice.)
1011   // STATEPOINT GC Spill - live-through, read/write, indirect
1012   // STATEPOINT GC Alloca - live-through, read/write, direct
1013   // The live-in vs live-through is handled already (the live through ones are
1014   // all stack slots), but we need to handle the different type of stackmap
1015   // operands and memory effects here.
1016 
1017   // MI changes inside this loop as we grow operands.
1018   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1019     MachineOperand &MO = MI->getOperand(OperIdx);
1020     if (!MO.isFI())
1021       continue;
1022 
1023     // foldMemoryOperand builds a new MI after replacing a single FI operand
1024     // with the canonical set of five x86 addressing-mode operands.
1025     int FI = MO.getIndex();
1026     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1027 
1028     // Copy operands before the frame-index.
1029     for (unsigned i = 0; i < OperIdx; ++i)
1030       MIB.add(MI->getOperand(i));
1031     // Add frame index operands recognized by stackmaps.cpp
1032     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1033       // indirect-mem-ref tag, size, #FI, offset.
1034       // Used for spills inserted by StatepointLowering.  This codepath is not
1035       // used for patchpoints/stackmaps at all, for these spilling is done via
1036       // foldMemoryOperand callback only.
1037       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1038       MIB.addImm(StackMaps::IndirectMemRefOp);
1039       MIB.addImm(MFI.getObjectSize(FI));
1040       MIB.add(MI->getOperand(OperIdx));
1041       MIB.addImm(0);
1042     } else {
1043       // direct-mem-ref tag, #FI, offset.
1044       // Used by patchpoint, and direct alloca arguments to statepoints
1045       MIB.addImm(StackMaps::DirectMemRefOp);
1046       MIB.add(MI->getOperand(OperIdx));
1047       MIB.addImm(0);
1048     }
1049     // Copy the operands after the frame index.
1050     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1051       MIB.add(MI->getOperand(i));
1052 
1053     // Inherit previous memory operands.
1054     MIB.cloneMemRefs(*MI);
1055     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1056 
1057     // Add a new memory operand for this FI.
1058     assert(MFI.getObjectOffset(FI) != -1);
1059 
1060     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1061     // PATCHPOINT should be updated to do the same. (TODO)
1062     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1063       auto Flags = MachineMemOperand::MOLoad;
1064       MachineMemOperand *MMO = MF.getMachineMemOperand(
1065           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1066           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1067       MIB->addMemOperand(MF, MMO);
1068     }
1069 
1070     // Replace the instruction and update the operand index.
1071     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1072     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1073     MI->eraseFromParent();
1074     MI = MIB;
1075   }
1076   return MBB;
1077 }
1078 
1079 MachineBasicBlock *
1080 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1081                                         MachineBasicBlock *MBB) const {
1082   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1083          "Called emitXRayCustomEvent on the wrong MI!");
1084   auto &MF = *MI.getMF();
1085   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1086   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1087     MIB.add(MI.getOperand(OpIdx));
1088 
1089   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1090   MI.eraseFromParent();
1091   return MBB;
1092 }
1093 
1094 MachineBasicBlock *
1095 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1096                                        MachineBasicBlock *MBB) const {
1097   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1098          "Called emitXRayTypedEvent on the wrong MI!");
1099   auto &MF = *MI.getMF();
1100   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1101   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1102     MIB.add(MI.getOperand(OpIdx));
1103 
1104   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1105   MI.eraseFromParent();
1106   return MBB;
1107 }
1108 
1109 /// findRepresentativeClass - Return the largest legal super-reg register class
1110 /// of the register class for the specified type and its associated "cost".
1111 // This function is in TargetLowering because it uses RegClassForVT which would
1112 // need to be moved to TargetRegisterInfo and would necessitate moving
1113 // isTypeLegal over as well - a massive change that would just require
1114 // TargetLowering having a TargetRegisterInfo class member that it would use.
1115 std::pair<const TargetRegisterClass *, uint8_t>
1116 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1117                                             MVT VT) const {
1118   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1119   if (!RC)
1120     return std::make_pair(RC, 0);
1121 
1122   // Compute the set of all super-register classes.
1123   BitVector SuperRegRC(TRI->getNumRegClasses());
1124   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1125     SuperRegRC.setBitsInMask(RCI.getMask());
1126 
1127   // Find the first legal register class with the largest spill size.
1128   const TargetRegisterClass *BestRC = RC;
1129   for (unsigned i : SuperRegRC.set_bits()) {
1130     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1131     // We want the largest possible spill size.
1132     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1133       continue;
1134     if (!isLegalRC(*TRI, *SuperRC))
1135       continue;
1136     BestRC = SuperRC;
1137   }
1138   return std::make_pair(BestRC, 1);
1139 }
1140 
1141 /// computeRegisterProperties - Once all of the register classes are added,
1142 /// this allows us to compute derived properties we expose.
1143 void TargetLoweringBase::computeRegisterProperties(
1144     const TargetRegisterInfo *TRI) {
1145   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1146                 "Too many value types for ValueTypeActions to hold!");
1147 
1148   // Everything defaults to needing one register.
1149   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1150     NumRegistersForVT[i] = 1;
1151     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1152   }
1153   // ...except isVoid, which doesn't need any registers.
1154   NumRegistersForVT[MVT::isVoid] = 0;
1155 
1156   // Find the largest integer register class.
1157   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1158   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1159     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1160 
1161   // Every integer value type larger than this largest register takes twice as
1162   // many registers to represent as the previous ValueType.
1163   for (unsigned ExpandedReg = LargestIntReg + 1;
1164        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1165     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1166     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1167     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1168     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1169                                    TypeExpandInteger);
1170   }
1171 
1172   // Inspect all of the ValueType's smaller than the largest integer
1173   // register to see which ones need promotion.
1174   unsigned LegalIntReg = LargestIntReg;
1175   for (unsigned IntReg = LargestIntReg - 1;
1176        IntReg >= (unsigned)MVT::i1; --IntReg) {
1177     MVT IVT = (MVT::SimpleValueType)IntReg;
1178     if (isTypeLegal(IVT)) {
1179       LegalIntReg = IntReg;
1180     } else {
1181       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1182         (MVT::SimpleValueType)LegalIntReg;
1183       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1184     }
1185   }
1186 
1187   // ppcf128 type is really two f64's.
1188   if (!isTypeLegal(MVT::ppcf128)) {
1189     if (isTypeLegal(MVT::f64)) {
1190       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1191       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1192       TransformToType[MVT::ppcf128] = MVT::f64;
1193       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1194     } else {
1195       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1196       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1197       TransformToType[MVT::ppcf128] = MVT::i128;
1198       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1199     }
1200   }
1201 
1202   // Decide how to handle f128. If the target does not have native f128 support,
1203   // expand it to i128 and we will be generating soft float library calls.
1204   if (!isTypeLegal(MVT::f128)) {
1205     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1206     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1207     TransformToType[MVT::f128] = MVT::i128;
1208     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1209   }
1210 
1211   // Decide how to handle f64. If the target does not have native f64 support,
1212   // expand it to i64 and we will be generating soft float library calls.
1213   if (!isTypeLegal(MVT::f64)) {
1214     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1215     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1216     TransformToType[MVT::f64] = MVT::i64;
1217     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1218   }
1219 
1220   // Decide how to handle f32. If the target does not have native f32 support,
1221   // expand it to i32 and we will be generating soft float library calls.
1222   if (!isTypeLegal(MVT::f32)) {
1223     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1224     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1225     TransformToType[MVT::f32] = MVT::i32;
1226     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1227   }
1228 
1229   // Decide how to handle f16. If the target does not have native f16 support,
1230   // promote it to f32, because there are no f16 library calls (except for
1231   // conversions).
1232   if (!isTypeLegal(MVT::f16)) {
1233     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1234     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1235     TransformToType[MVT::f16] = MVT::f32;
1236     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1237   }
1238 
1239   // Loop over all of the vector value types to see which need transformations.
1240   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1241        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1242     MVT VT = (MVT::SimpleValueType) i;
1243     if (isTypeLegal(VT))
1244       continue;
1245 
1246     MVT EltVT = VT.getVectorElementType();
1247     unsigned NElts = VT.getVectorNumElements();
1248     bool IsLegalWiderType = false;
1249     bool IsScalable = VT.isScalableVector();
1250     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1251     switch (PreferredAction) {
1252     case TypePromoteInteger: {
1253       MVT::SimpleValueType EndVT = IsScalable ?
1254                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1255                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1256       // Try to promote the elements of integer vectors. If no legal
1257       // promotion was found, fall through to the widen-vector method.
1258       for (unsigned nVT = i + 1;
1259            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1260         MVT SVT = (MVT::SimpleValueType) nVT;
1261         // Promote vectors of integers to vectors with the same number
1262         // of elements, with a wider element type.
1263         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1264             SVT.getVectorNumElements() == NElts &&
1265             SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1266           TransformToType[i] = SVT;
1267           RegisterTypeForVT[i] = SVT;
1268           NumRegistersForVT[i] = 1;
1269           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1270           IsLegalWiderType = true;
1271           break;
1272         }
1273       }
1274       if (IsLegalWiderType)
1275         break;
1276       LLVM_FALLTHROUGH;
1277     }
1278 
1279     case TypeWidenVector:
1280       if (isPowerOf2_32(NElts)) {
1281         // Try to widen the vector.
1282         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1283           MVT SVT = (MVT::SimpleValueType) nVT;
1284           if (SVT.getVectorElementType() == EltVT
1285               && SVT.getVectorNumElements() > NElts
1286               && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1287             TransformToType[i] = SVT;
1288             RegisterTypeForVT[i] = SVT;
1289             NumRegistersForVT[i] = 1;
1290             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1291             IsLegalWiderType = true;
1292             break;
1293           }
1294         }
1295         if (IsLegalWiderType)
1296           break;
1297       } else {
1298         // Only widen to the next power of 2 to keep consistency with EVT.
1299         MVT NVT = VT.getPow2VectorType();
1300         if (isTypeLegal(NVT)) {
1301           TransformToType[i] = NVT;
1302           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1303           RegisterTypeForVT[i] = NVT;
1304           NumRegistersForVT[i] = 1;
1305           break;
1306         }
1307       }
1308       LLVM_FALLTHROUGH;
1309 
1310     case TypeSplitVector:
1311     case TypeScalarizeVector: {
1312       MVT IntermediateVT;
1313       MVT RegisterVT;
1314       unsigned NumIntermediates;
1315       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1316           NumIntermediates, RegisterVT, this);
1317       NumRegistersForVT[i] = NumRegisters;
1318       assert(NumRegistersForVT[i] == NumRegisters &&
1319              "NumRegistersForVT size cannot represent NumRegisters!");
1320       RegisterTypeForVT[i] = RegisterVT;
1321 
1322       MVT NVT = VT.getPow2VectorType();
1323       if (NVT == VT) {
1324         // Type is already a power of 2.  The default action is to split.
1325         TransformToType[i] = MVT::Other;
1326         if (PreferredAction == TypeScalarizeVector)
1327           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1328         else if (PreferredAction == TypeSplitVector)
1329           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1330         else
1331           // Set type action according to the number of elements.
1332           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1333                                                         : TypeSplitVector);
1334       } else {
1335         TransformToType[i] = NVT;
1336         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1337       }
1338       break;
1339     }
1340     default:
1341       llvm_unreachable("Unknown vector legalization action!");
1342     }
1343   }
1344 
1345   // Determine the 'representative' register class for each value type.
1346   // An representative register class is the largest (meaning one which is
1347   // not a sub-register class / subreg register class) legal register class for
1348   // a group of value types. For example, on i386, i8, i16, and i32
1349   // representative would be GR32; while on x86_64 it's GR64.
1350   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1351     const TargetRegisterClass* RRC;
1352     uint8_t Cost;
1353     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1354     RepRegClassForVT[i] = RRC;
1355     RepRegClassCostForVT[i] = Cost;
1356   }
1357 }
1358 
1359 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1360                                            EVT VT) const {
1361   assert(!VT.isVector() && "No default SetCC type for vectors!");
1362   return getPointerTy(DL).SimpleTy;
1363 }
1364 
1365 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1366   return MVT::i32; // return the default value
1367 }
1368 
1369 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1370 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1371 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1372 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1373 ///
1374 /// This method returns the number of registers needed, and the VT for each
1375 /// register.  It also returns the VT and quantity of the intermediate values
1376 /// before they are promoted/expanded.
1377 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1378                                                 EVT &IntermediateVT,
1379                                                 unsigned &NumIntermediates,
1380                                                 MVT &RegisterVT) const {
1381   unsigned NumElts = VT.getVectorNumElements();
1382 
1383   // If there is a wider vector type with the same element type as this one,
1384   // or a promoted vector type that has the same number of elements which
1385   // are wider, then we should convert to that legal vector type.
1386   // This handles things like <2 x float> -> <4 x float> and
1387   // <4 x i1> -> <4 x i32>.
1388   LegalizeTypeAction TA = getTypeAction(Context, VT);
1389   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1390     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1391     if (isTypeLegal(RegisterEVT)) {
1392       IntermediateVT = RegisterEVT;
1393       RegisterVT = RegisterEVT.getSimpleVT();
1394       NumIntermediates = 1;
1395       return 1;
1396     }
1397   }
1398 
1399   // Figure out the right, legal destination reg to copy into.
1400   EVT EltTy = VT.getVectorElementType();
1401 
1402   unsigned NumVectorRegs = 1;
1403 
1404   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1405   // could break down into LHS/RHS like LegalizeDAG does.
1406   if (!isPowerOf2_32(NumElts)) {
1407     NumVectorRegs = NumElts;
1408     NumElts = 1;
1409   }
1410 
1411   // Divide the input until we get to a supported size.  This will always
1412   // end with a scalar if the target doesn't support vectors.
1413   while (NumElts > 1 && !isTypeLegal(
1414                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1415     NumElts >>= 1;
1416     NumVectorRegs <<= 1;
1417   }
1418 
1419   NumIntermediates = NumVectorRegs;
1420 
1421   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1422   if (!isTypeLegal(NewVT))
1423     NewVT = EltTy;
1424   IntermediateVT = NewVT;
1425 
1426   MVT DestVT = getRegisterType(Context, NewVT);
1427   RegisterVT = DestVT;
1428   unsigned NewVTSize = NewVT.getSizeInBits();
1429 
1430   // Convert sizes such as i33 to i64.
1431   if (!isPowerOf2_32(NewVTSize))
1432     NewVTSize = NextPowerOf2(NewVTSize);
1433 
1434   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1435     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1436 
1437   // Otherwise, promotion or legal types use the same number of registers as
1438   // the vector decimated to the appropriate level.
1439   return NumVectorRegs;
1440 }
1441 
1442 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1443                                                 uint64_t NumCases,
1444                                                 uint64_t Range,
1445                                                 ProfileSummaryInfo *PSI,
1446                                                 BlockFrequencyInfo *BFI) const {
1447   // FIXME: This function check the maximum table size and density, but the
1448   // minimum size is not checked. It would be nice if the minimum size is
1449   // also combined within this function. Currently, the minimum size check is
1450   // performed in findJumpTable() in SelectionDAGBuiler and
1451   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1452   const bool OptForSize =
1453       SI->getParent()->getParent()->hasOptSize() ||
1454       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1455   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1456   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1457 
1458   // Check whether the number of cases is small enough and
1459   // the range is dense enough for a jump table.
1460   return (OptForSize || Range <= MaxJumpTableSize) &&
1461          (NumCases * 100 >= Range * MinDensity);
1462 }
1463 
1464 /// Get the EVTs and ArgFlags collections that represent the legalized return
1465 /// type of the given function.  This does not require a DAG or a return value,
1466 /// and is suitable for use before any DAGs for the function are constructed.
1467 /// TODO: Move this out of TargetLowering.cpp.
1468 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1469                          AttributeList attr,
1470                          SmallVectorImpl<ISD::OutputArg> &Outs,
1471                          const TargetLowering &TLI, const DataLayout &DL) {
1472   SmallVector<EVT, 4> ValueVTs;
1473   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1474   unsigned NumValues = ValueVTs.size();
1475   if (NumValues == 0) return;
1476 
1477   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1478     EVT VT = ValueVTs[j];
1479     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1480 
1481     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1482       ExtendKind = ISD::SIGN_EXTEND;
1483     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1484       ExtendKind = ISD::ZERO_EXTEND;
1485 
1486     // FIXME: C calling convention requires the return type to be promoted to
1487     // at least 32-bit. But this is not necessary for non-C calling
1488     // conventions. The frontend should mark functions whose return values
1489     // require promoting with signext or zeroext attributes.
1490     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1491       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1492       if (VT.bitsLT(MinVT))
1493         VT = MinVT;
1494     }
1495 
1496     unsigned NumParts =
1497         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1498     MVT PartVT =
1499         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1500 
1501     // 'inreg' on function refers to return value
1502     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1503     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1504       Flags.setInReg();
1505 
1506     // Propagate extension type if any
1507     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1508       Flags.setSExt();
1509     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1510       Flags.setZExt();
1511 
1512     for (unsigned i = 0; i < NumParts; ++i)
1513       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1514   }
1515 }
1516 
1517 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1518 /// function arguments in the caller parameter area.  This is the actual
1519 /// alignment, not its logarithm.
1520 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1521                                                    const DataLayout &DL) const {
1522   return DL.getABITypeAlignment(Ty);
1523 }
1524 
1525 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1526     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1527     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1528   // Check if the specified alignment is sufficient based on the data layout.
1529   // TODO: While using the data layout works in practice, a better solution
1530   // would be to implement this check directly (make this a virtual function).
1531   // For example, the ABI alignment may change based on software platform while
1532   // this function should only be affected by hardware implementation.
1533   Type *Ty = VT.getTypeForEVT(Context);
1534   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1535     // Assume that an access that meets the ABI-specified alignment is fast.
1536     if (Fast != nullptr)
1537       *Fast = true;
1538     return true;
1539   }
1540 
1541   // This is a misaligned access.
1542   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1543 }
1544 
1545 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1546     LLVMContext &Context, const DataLayout &DL, EVT VT,
1547     const MachineMemOperand &MMO, bool *Fast) const {
1548   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1549                                         MMO.getAlignment(), MMO.getFlags(),
1550                                         Fast);
1551 }
1552 
1553 bool TargetLoweringBase::allowsMemoryAccess(
1554     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1555     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1556   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1557                                         Flags, Fast);
1558 }
1559 
1560 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1561                                             const DataLayout &DL, EVT VT,
1562                                             const MachineMemOperand &MMO,
1563                                             bool *Fast) const {
1564   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1565                             MMO.getAlignment(), MMO.getFlags(), Fast);
1566 }
1567 
1568 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1569   return BranchProbability(MinPercentageForPredictableBranch, 100);
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 //  TargetTransformInfo Helpers
1574 //===----------------------------------------------------------------------===//
1575 
1576 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1577   enum InstructionOpcodes {
1578 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1579 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1580 #include "llvm/IR/Instruction.def"
1581   };
1582   switch (static_cast<InstructionOpcodes>(Opcode)) {
1583   case Ret:            return 0;
1584   case Br:             return 0;
1585   case Switch:         return 0;
1586   case IndirectBr:     return 0;
1587   case Invoke:         return 0;
1588   case CallBr:         return 0;
1589   case Resume:         return 0;
1590   case Unreachable:    return 0;
1591   case CleanupRet:     return 0;
1592   case CatchRet:       return 0;
1593   case CatchPad:       return 0;
1594   case CatchSwitch:    return 0;
1595   case CleanupPad:     return 0;
1596   case FNeg:           return ISD::FNEG;
1597   case Add:            return ISD::ADD;
1598   case FAdd:           return ISD::FADD;
1599   case Sub:            return ISD::SUB;
1600   case FSub:           return ISD::FSUB;
1601   case Mul:            return ISD::MUL;
1602   case FMul:           return ISD::FMUL;
1603   case UDiv:           return ISD::UDIV;
1604   case SDiv:           return ISD::SDIV;
1605   case FDiv:           return ISD::FDIV;
1606   case URem:           return ISD::UREM;
1607   case SRem:           return ISD::SREM;
1608   case FRem:           return ISD::FREM;
1609   case Shl:            return ISD::SHL;
1610   case LShr:           return ISD::SRL;
1611   case AShr:           return ISD::SRA;
1612   case And:            return ISD::AND;
1613   case Or:             return ISD::OR;
1614   case Xor:            return ISD::XOR;
1615   case Alloca:         return 0;
1616   case Load:           return ISD::LOAD;
1617   case Store:          return ISD::STORE;
1618   case GetElementPtr:  return 0;
1619   case Fence:          return 0;
1620   case AtomicCmpXchg:  return 0;
1621   case AtomicRMW:      return 0;
1622   case Trunc:          return ISD::TRUNCATE;
1623   case ZExt:           return ISD::ZERO_EXTEND;
1624   case SExt:           return ISD::SIGN_EXTEND;
1625   case FPToUI:         return ISD::FP_TO_UINT;
1626   case FPToSI:         return ISD::FP_TO_SINT;
1627   case UIToFP:         return ISD::UINT_TO_FP;
1628   case SIToFP:         return ISD::SINT_TO_FP;
1629   case FPTrunc:        return ISD::FP_ROUND;
1630   case FPExt:          return ISD::FP_EXTEND;
1631   case PtrToInt:       return ISD::BITCAST;
1632   case IntToPtr:       return ISD::BITCAST;
1633   case BitCast:        return ISD::BITCAST;
1634   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1635   case ICmp:           return ISD::SETCC;
1636   case FCmp:           return ISD::SETCC;
1637   case PHI:            return 0;
1638   case Call:           return 0;
1639   case Select:         return ISD::SELECT;
1640   case UserOp1:        return 0;
1641   case UserOp2:        return 0;
1642   case VAArg:          return 0;
1643   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1644   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1645   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1646   case ExtractValue:   return ISD::MERGE_VALUES;
1647   case InsertValue:    return ISD::MERGE_VALUES;
1648   case LandingPad:     return 0;
1649   case Freeze:         return 0;
1650   }
1651 
1652   llvm_unreachable("Unknown instruction type encountered!");
1653 }
1654 
1655 std::pair<int, MVT>
1656 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1657                                             Type *Ty) const {
1658   LLVMContext &C = Ty->getContext();
1659   EVT MTy = getValueType(DL, Ty);
1660 
1661   int Cost = 1;
1662   // We keep legalizing the type until we find a legal kind. We assume that
1663   // the only operation that costs anything is the split. After splitting
1664   // we need to handle two types.
1665   while (true) {
1666     LegalizeKind LK = getTypeConversion(C, MTy);
1667 
1668     if (LK.first == TypeLegal)
1669       return std::make_pair(Cost, MTy.getSimpleVT());
1670 
1671     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1672       Cost *= 2;
1673 
1674     // Do not loop with f128 type.
1675     if (MTy == LK.second)
1676       return std::make_pair(Cost, MTy.getSimpleVT());
1677 
1678     // Keep legalizing the type.
1679     MTy = LK.second;
1680   }
1681 }
1682 
1683 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1684                                                               bool UseTLS) const {
1685   // compiler-rt provides a variable with a magic name.  Targets that do not
1686   // link with compiler-rt may also provide such a variable.
1687   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1688   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1689   auto UnsafeStackPtr =
1690       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1691 
1692   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1693 
1694   if (!UnsafeStackPtr) {
1695     auto TLSModel = UseTLS ?
1696         GlobalValue::InitialExecTLSModel :
1697         GlobalValue::NotThreadLocal;
1698     // The global variable is not defined yet, define it ourselves.
1699     // We use the initial-exec TLS model because we do not support the
1700     // variable living anywhere other than in the main executable.
1701     UnsafeStackPtr = new GlobalVariable(
1702         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1703         UnsafeStackPtrVar, nullptr, TLSModel);
1704   } else {
1705     // The variable exists, check its type and attributes.
1706     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1707       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1708     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1709       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1710                          (UseTLS ? "" : "not ") + "be thread-local");
1711   }
1712   return UnsafeStackPtr;
1713 }
1714 
1715 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1716   if (!TM.getTargetTriple().isAndroid())
1717     return getDefaultSafeStackPointerLocation(IRB, true);
1718 
1719   // Android provides a libc function to retrieve the address of the current
1720   // thread's unsafe stack pointer.
1721   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1722   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1723   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1724                                              StackPtrTy->getPointerTo(0));
1725   return IRB.CreateCall(Fn);
1726 }
1727 
1728 //===----------------------------------------------------------------------===//
1729 //  Loop Strength Reduction hooks
1730 //===----------------------------------------------------------------------===//
1731 
1732 /// isLegalAddressingMode - Return true if the addressing mode represented
1733 /// by AM is legal for this target, for a load/store of the specified type.
1734 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1735                                                const AddrMode &AM, Type *Ty,
1736                                                unsigned AS, Instruction *I) const {
1737   // The default implementation of this implements a conservative RISCy, r+r and
1738   // r+i addr mode.
1739 
1740   // Allows a sign-extended 16-bit immediate field.
1741   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1742     return false;
1743 
1744   // No global is ever allowed as a base.
1745   if (AM.BaseGV)
1746     return false;
1747 
1748   // Only support r+r,
1749   switch (AM.Scale) {
1750   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1751     break;
1752   case 1:
1753     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1754       return false;
1755     // Otherwise we have r+r or r+i.
1756     break;
1757   case 2:
1758     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1759       return false;
1760     // Allow 2*r as r+r.
1761     break;
1762   default: // Don't allow n * r
1763     return false;
1764   }
1765 
1766   return true;
1767 }
1768 
1769 //===----------------------------------------------------------------------===//
1770 //  Stack Protector
1771 //===----------------------------------------------------------------------===//
1772 
1773 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1774 // so that SelectionDAG handle SSP.
1775 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1776   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1777     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1778     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1779     return M.getOrInsertGlobal("__guard_local", PtrTy);
1780   }
1781   return nullptr;
1782 }
1783 
1784 // Currently only support "standard" __stack_chk_guard.
1785 // TODO: add LOAD_STACK_GUARD support.
1786 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1787   if (!M.getNamedValue("__stack_chk_guard"))
1788     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1789                        GlobalVariable::ExternalLinkage,
1790                        nullptr, "__stack_chk_guard");
1791 }
1792 
1793 // Currently only support "standard" __stack_chk_guard.
1794 // TODO: add LOAD_STACK_GUARD support.
1795 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1796   return M.getNamedValue("__stack_chk_guard");
1797 }
1798 
1799 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1800   return nullptr;
1801 }
1802 
1803 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1804   return MinimumJumpTableEntries;
1805 }
1806 
1807 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1808   MinimumJumpTableEntries = Val;
1809 }
1810 
1811 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1812   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1813 }
1814 
1815 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1816   return MaximumJumpTableSize;
1817 }
1818 
1819 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1820   MaximumJumpTableSize = Val;
1821 }
1822 
1823 //===----------------------------------------------------------------------===//
1824 //  Reciprocal Estimates
1825 //===----------------------------------------------------------------------===//
1826 
1827 /// Get the reciprocal estimate attribute string for a function that will
1828 /// override the target defaults.
1829 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1830   const Function &F = MF.getFunction();
1831   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1832 }
1833 
1834 /// Construct a string for the given reciprocal operation of the given type.
1835 /// This string should match the corresponding option to the front-end's
1836 /// "-mrecip" flag assuming those strings have been passed through in an
1837 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1838 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1839   std::string Name = VT.isVector() ? "vec-" : "";
1840 
1841   Name += IsSqrt ? "sqrt" : "div";
1842 
1843   // TODO: Handle "half" or other float types?
1844   if (VT.getScalarType() == MVT::f64) {
1845     Name += "d";
1846   } else {
1847     assert(VT.getScalarType() == MVT::f32 &&
1848            "Unexpected FP type for reciprocal estimate");
1849     Name += "f";
1850   }
1851 
1852   return Name;
1853 }
1854 
1855 /// Return the character position and value (a single numeric character) of a
1856 /// customized refinement operation in the input string if it exists. Return
1857 /// false if there is no customized refinement step count.
1858 static bool parseRefinementStep(StringRef In, size_t &Position,
1859                                 uint8_t &Value) {
1860   const char RefStepToken = ':';
1861   Position = In.find(RefStepToken);
1862   if (Position == StringRef::npos)
1863     return false;
1864 
1865   StringRef RefStepString = In.substr(Position + 1);
1866   // Allow exactly one numeric character for the additional refinement
1867   // step parameter.
1868   if (RefStepString.size() == 1) {
1869     char RefStepChar = RefStepString[0];
1870     if (RefStepChar >= '0' && RefStepChar <= '9') {
1871       Value = RefStepChar - '0';
1872       return true;
1873     }
1874   }
1875   report_fatal_error("Invalid refinement step for -recip.");
1876 }
1877 
1878 /// For the input attribute string, return one of the ReciprocalEstimate enum
1879 /// status values (enabled, disabled, or not specified) for this operation on
1880 /// the specified data type.
1881 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1882   if (Override.empty())
1883     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1884 
1885   SmallVector<StringRef, 4> OverrideVector;
1886   Override.split(OverrideVector, ',');
1887   unsigned NumArgs = OverrideVector.size();
1888 
1889   // Check if "all", "none", or "default" was specified.
1890   if (NumArgs == 1) {
1891     // Look for an optional setting of the number of refinement steps needed
1892     // for this type of reciprocal operation.
1893     size_t RefPos;
1894     uint8_t RefSteps;
1895     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1896       // Split the string for further processing.
1897       Override = Override.substr(0, RefPos);
1898     }
1899 
1900     // All reciprocal types are enabled.
1901     if (Override == "all")
1902       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1903 
1904     // All reciprocal types are disabled.
1905     if (Override == "none")
1906       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1907 
1908     // Target defaults for enablement are used.
1909     if (Override == "default")
1910       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1911   }
1912 
1913   // The attribute string may omit the size suffix ('f'/'d').
1914   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1915   std::string VTNameNoSize = VTName;
1916   VTNameNoSize.pop_back();
1917   static const char DisabledPrefix = '!';
1918 
1919   for (StringRef RecipType : OverrideVector) {
1920     size_t RefPos;
1921     uint8_t RefSteps;
1922     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1923       RecipType = RecipType.substr(0, RefPos);
1924 
1925     // Ignore the disablement token for string matching.
1926     bool IsDisabled = RecipType[0] == DisabledPrefix;
1927     if (IsDisabled)
1928       RecipType = RecipType.substr(1);
1929 
1930     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1931       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1932                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1933   }
1934 
1935   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1936 }
1937 
1938 /// For the input attribute string, return the customized refinement step count
1939 /// for this operation on the specified data type. If the step count does not
1940 /// exist, return the ReciprocalEstimate enum value for unspecified.
1941 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1942   if (Override.empty())
1943     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1944 
1945   SmallVector<StringRef, 4> OverrideVector;
1946   Override.split(OverrideVector, ',');
1947   unsigned NumArgs = OverrideVector.size();
1948 
1949   // Check if "all", "default", or "none" was specified.
1950   if (NumArgs == 1) {
1951     // Look for an optional setting of the number of refinement steps needed
1952     // for this type of reciprocal operation.
1953     size_t RefPos;
1954     uint8_t RefSteps;
1955     if (!parseRefinementStep(Override, RefPos, RefSteps))
1956       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1957 
1958     // Split the string for further processing.
1959     Override = Override.substr(0, RefPos);
1960     assert(Override != "none" &&
1961            "Disabled reciprocals, but specifed refinement steps?");
1962 
1963     // If this is a general override, return the specified number of steps.
1964     if (Override == "all" || Override == "default")
1965       return RefSteps;
1966   }
1967 
1968   // The attribute string may omit the size suffix ('f'/'d').
1969   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1970   std::string VTNameNoSize = VTName;
1971   VTNameNoSize.pop_back();
1972 
1973   for (StringRef RecipType : OverrideVector) {
1974     size_t RefPos;
1975     uint8_t RefSteps;
1976     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1977       continue;
1978 
1979     RecipType = RecipType.substr(0, RefPos);
1980     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1981       return RefSteps;
1982   }
1983 
1984   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1985 }
1986 
1987 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1988                                                     MachineFunction &MF) const {
1989   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1990 }
1991 
1992 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1993                                                    MachineFunction &MF) const {
1994   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1995 }
1996 
1997 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1998                                                MachineFunction &MF) const {
1999   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2000 }
2001 
2002 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2003                                               MachineFunction &MF) const {
2004   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2005 }
2006 
2007 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2008   MF.getRegInfo().freezeReservedRegs(MF);
2009 }
2010