1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 static bool darwinHasSinCos(const Triple &TT) {
92   assert(TT.isOSDarwin() && "should be called with darwin triple");
93   // Don't bother with 32 bit x86.
94   if (TT.getArch() == Triple::x86)
95     return false;
96   // Macos < 10.9 has no sincos_stret.
97   if (TT.isMacOSX())
98     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99   // iOS < 7.0 has no sincos_stret.
100   if (TT.isiOS())
101     return !TT.isOSVersionLT(7, 0);
102   // Any other darwin such as WatchOS/TvOS is new enough.
103   return true;
104 }
105 
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112     "min-predictable-branch", cl::init(99),
113     cl::desc("Minimum percentage (0-100) that a condition must be either true "
114              "or false to assume that the condition is predictable"),
115     cl::Hidden);
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
128     setLibcallName(RTLIB::ADD_F128, "__addkf3");
129     setLibcallName(RTLIB::SUB_F128, "__subkf3");
130     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131     setLibcallName(RTLIB::DIV_F128, "__divkf3");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
139     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
140     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
141     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
142     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
143     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
144     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
145     setLibcallName(RTLIB::UNE_F128, "__nekf2");
146     setLibcallName(RTLIB::OGE_F128, "__gekf2");
147     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
148     setLibcallName(RTLIB::OLE_F128, "__lekf2");
149     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
150     setLibcallName(RTLIB::UO_F128, "__unordkf2");
151     setLibcallName(RTLIB::O_F128, "__unordkf2");
152   }
153 
154   // A few names are different on particular architectures or environments.
155   if (TT.isOSDarwin()) {
156     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
157     // of the gnueabi-style __gnu_*_ieee.
158     // FIXME: What about other targets?
159     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
160     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
161 
162     // Some darwins have an optimized __bzero/bzero function.
163     switch (TT.getArch()) {
164     case Triple::x86:
165     case Triple::x86_64:
166       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
167         setLibcallName(RTLIB::BZERO, "__bzero");
168       break;
169     case Triple::aarch64:
170     case Triple::aarch64_32:
171       setLibcallName(RTLIB::BZERO, "bzero");
172       break;
173     default:
174       break;
175     }
176 
177     if (darwinHasSinCos(TT)) {
178       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
179       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
180       if (TT.isWatchABI()) {
181         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
182                               CallingConv::ARM_AAPCS_VFP);
183         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
184                               CallingConv::ARM_AAPCS_VFP);
185       }
186     }
187   } else {
188     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
189     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
190   }
191 
192   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
193       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
194     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
195     setLibcallName(RTLIB::SINCOS_F64, "sincos");
196     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
197     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
198     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
199   }
200 
201   if (TT.isPS4CPU()) {
202     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
203     setLibcallName(RTLIB::SINCOS_F64, "sincos");
204   }
205 
206   if (TT.isOSOpenBSD()) {
207     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
208   }
209 }
210 
211 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
212 /// UNKNOWN_LIBCALL if there is none.
213 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
214   if (OpVT == MVT::f16) {
215     if (RetVT == MVT::f32)
216       return FPEXT_F16_F32;
217   } else if (OpVT == MVT::f32) {
218     if (RetVT == MVT::f64)
219       return FPEXT_F32_F64;
220     if (RetVT == MVT::f128)
221       return FPEXT_F32_F128;
222     if (RetVT == MVT::ppcf128)
223       return FPEXT_F32_PPCF128;
224   } else if (OpVT == MVT::f64) {
225     if (RetVT == MVT::f128)
226       return FPEXT_F64_F128;
227     else if (RetVT == MVT::ppcf128)
228       return FPEXT_F64_PPCF128;
229   } else if (OpVT == MVT::f80) {
230     if (RetVT == MVT::f128)
231       return FPEXT_F80_F128;
232   }
233 
234   return UNKNOWN_LIBCALL;
235 }
236 
237 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
238 /// UNKNOWN_LIBCALL if there is none.
239 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
240   if (RetVT == MVT::f16) {
241     if (OpVT == MVT::f32)
242       return FPROUND_F32_F16;
243     if (OpVT == MVT::f64)
244       return FPROUND_F64_F16;
245     if (OpVT == MVT::f80)
246       return FPROUND_F80_F16;
247     if (OpVT == MVT::f128)
248       return FPROUND_F128_F16;
249     if (OpVT == MVT::ppcf128)
250       return FPROUND_PPCF128_F16;
251   } else if (RetVT == MVT::f32) {
252     if (OpVT == MVT::f64)
253       return FPROUND_F64_F32;
254     if (OpVT == MVT::f80)
255       return FPROUND_F80_F32;
256     if (OpVT == MVT::f128)
257       return FPROUND_F128_F32;
258     if (OpVT == MVT::ppcf128)
259       return FPROUND_PPCF128_F32;
260   } else if (RetVT == MVT::f64) {
261     if (OpVT == MVT::f80)
262       return FPROUND_F80_F64;
263     if (OpVT == MVT::f128)
264       return FPROUND_F128_F64;
265     if (OpVT == MVT::ppcf128)
266       return FPROUND_PPCF128_F64;
267   } else if (RetVT == MVT::f80) {
268     if (OpVT == MVT::f128)
269       return FPROUND_F128_F80;
270   }
271 
272   return UNKNOWN_LIBCALL;
273 }
274 
275 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
278   if (OpVT == MVT::f32) {
279     if (RetVT == MVT::i32)
280       return FPTOSINT_F32_I32;
281     if (RetVT == MVT::i64)
282       return FPTOSINT_F32_I64;
283     if (RetVT == MVT::i128)
284       return FPTOSINT_F32_I128;
285   } else if (OpVT == MVT::f64) {
286     if (RetVT == MVT::i32)
287       return FPTOSINT_F64_I32;
288     if (RetVT == MVT::i64)
289       return FPTOSINT_F64_I64;
290     if (RetVT == MVT::i128)
291       return FPTOSINT_F64_I128;
292   } else if (OpVT == MVT::f80) {
293     if (RetVT == MVT::i32)
294       return FPTOSINT_F80_I32;
295     if (RetVT == MVT::i64)
296       return FPTOSINT_F80_I64;
297     if (RetVT == MVT::i128)
298       return FPTOSINT_F80_I128;
299   } else if (OpVT == MVT::f128) {
300     if (RetVT == MVT::i32)
301       return FPTOSINT_F128_I32;
302     if (RetVT == MVT::i64)
303       return FPTOSINT_F128_I64;
304     if (RetVT == MVT::i128)
305       return FPTOSINT_F128_I128;
306   } else if (OpVT == MVT::ppcf128) {
307     if (RetVT == MVT::i32)
308       return FPTOSINT_PPCF128_I32;
309     if (RetVT == MVT::i64)
310       return FPTOSINT_PPCF128_I64;
311     if (RetVT == MVT::i128)
312       return FPTOSINT_PPCF128_I128;
313   }
314   return UNKNOWN_LIBCALL;
315 }
316 
317 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
318 /// UNKNOWN_LIBCALL if there is none.
319 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
320   if (OpVT == MVT::f32) {
321     if (RetVT == MVT::i32)
322       return FPTOUINT_F32_I32;
323     if (RetVT == MVT::i64)
324       return FPTOUINT_F32_I64;
325     if (RetVT == MVT::i128)
326       return FPTOUINT_F32_I128;
327   } else if (OpVT == MVT::f64) {
328     if (RetVT == MVT::i32)
329       return FPTOUINT_F64_I32;
330     if (RetVT == MVT::i64)
331       return FPTOUINT_F64_I64;
332     if (RetVT == MVT::i128)
333       return FPTOUINT_F64_I128;
334   } else if (OpVT == MVT::f80) {
335     if (RetVT == MVT::i32)
336       return FPTOUINT_F80_I32;
337     if (RetVT == MVT::i64)
338       return FPTOUINT_F80_I64;
339     if (RetVT == MVT::i128)
340       return FPTOUINT_F80_I128;
341   } else if (OpVT == MVT::f128) {
342     if (RetVT == MVT::i32)
343       return FPTOUINT_F128_I32;
344     if (RetVT == MVT::i64)
345       return FPTOUINT_F128_I64;
346     if (RetVT == MVT::i128)
347       return FPTOUINT_F128_I128;
348   } else if (OpVT == MVT::ppcf128) {
349     if (RetVT == MVT::i32)
350       return FPTOUINT_PPCF128_I32;
351     if (RetVT == MVT::i64)
352       return FPTOUINT_PPCF128_I64;
353     if (RetVT == MVT::i128)
354       return FPTOUINT_PPCF128_I128;
355   }
356   return UNKNOWN_LIBCALL;
357 }
358 
359 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
360 /// UNKNOWN_LIBCALL if there is none.
361 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
362   if (OpVT == MVT::i32) {
363     if (RetVT == MVT::f32)
364       return SINTTOFP_I32_F32;
365     if (RetVT == MVT::f64)
366       return SINTTOFP_I32_F64;
367     if (RetVT == MVT::f80)
368       return SINTTOFP_I32_F80;
369     if (RetVT == MVT::f128)
370       return SINTTOFP_I32_F128;
371     if (RetVT == MVT::ppcf128)
372       return SINTTOFP_I32_PPCF128;
373   } else if (OpVT == MVT::i64) {
374     if (RetVT == MVT::f32)
375       return SINTTOFP_I64_F32;
376     if (RetVT == MVT::f64)
377       return SINTTOFP_I64_F64;
378     if (RetVT == MVT::f80)
379       return SINTTOFP_I64_F80;
380     if (RetVT == MVT::f128)
381       return SINTTOFP_I64_F128;
382     if (RetVT == MVT::ppcf128)
383       return SINTTOFP_I64_PPCF128;
384   } else if (OpVT == MVT::i128) {
385     if (RetVT == MVT::f32)
386       return SINTTOFP_I128_F32;
387     if (RetVT == MVT::f64)
388       return SINTTOFP_I128_F64;
389     if (RetVT == MVT::f80)
390       return SINTTOFP_I128_F80;
391     if (RetVT == MVT::f128)
392       return SINTTOFP_I128_F128;
393     if (RetVT == MVT::ppcf128)
394       return SINTTOFP_I128_PPCF128;
395   }
396   return UNKNOWN_LIBCALL;
397 }
398 
399 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
400 /// UNKNOWN_LIBCALL if there is none.
401 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
402   if (OpVT == MVT::i32) {
403     if (RetVT == MVT::f32)
404       return UINTTOFP_I32_F32;
405     if (RetVT == MVT::f64)
406       return UINTTOFP_I32_F64;
407     if (RetVT == MVT::f80)
408       return UINTTOFP_I32_F80;
409     if (RetVT == MVT::f128)
410       return UINTTOFP_I32_F128;
411     if (RetVT == MVT::ppcf128)
412       return UINTTOFP_I32_PPCF128;
413   } else if (OpVT == MVT::i64) {
414     if (RetVT == MVT::f32)
415       return UINTTOFP_I64_F32;
416     if (RetVT == MVT::f64)
417       return UINTTOFP_I64_F64;
418     if (RetVT == MVT::f80)
419       return UINTTOFP_I64_F80;
420     if (RetVT == MVT::f128)
421       return UINTTOFP_I64_F128;
422     if (RetVT == MVT::ppcf128)
423       return UINTTOFP_I64_PPCF128;
424   } else if (OpVT == MVT::i128) {
425     if (RetVT == MVT::f32)
426       return UINTTOFP_I128_F32;
427     if (RetVT == MVT::f64)
428       return UINTTOFP_I128_F64;
429     if (RetVT == MVT::f80)
430       return UINTTOFP_I128_F80;
431     if (RetVT == MVT::f128)
432       return UINTTOFP_I128_F128;
433     if (RetVT == MVT::ppcf128)
434       return UINTTOFP_I128_PPCF128;
435   }
436   return UNKNOWN_LIBCALL;
437 }
438 
439 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
440 #define OP_TO_LIBCALL(Name, Enum)                                              \
441   case Name:                                                                   \
442     switch (VT.SimpleTy) {                                                     \
443     default:                                                                   \
444       return UNKNOWN_LIBCALL;                                                  \
445     case MVT::i8:                                                              \
446       return Enum##_1;                                                         \
447     case MVT::i16:                                                             \
448       return Enum##_2;                                                         \
449     case MVT::i32:                                                             \
450       return Enum##_4;                                                         \
451     case MVT::i64:                                                             \
452       return Enum##_8;                                                         \
453     case MVT::i128:                                                            \
454       return Enum##_16;                                                        \
455     }
456 
457   switch (Opc) {
458     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
459     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
460     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
461     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
462     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
463     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
464     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
465     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
466     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
467     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
468     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
470   }
471 
472 #undef OP_TO_LIBCALL
473 
474   return UNKNOWN_LIBCALL;
475 }
476 
477 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
495   switch (ElementSize) {
496   case 1:
497     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
498   case 2:
499     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
500   case 4:
501     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
502   case 8:
503     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
504   case 16:
505     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
506   default:
507     return UNKNOWN_LIBCALL;
508   }
509 }
510 
511 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
512   switch (ElementSize) {
513   case 1:
514     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
515   case 2:
516     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
517   case 4:
518     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
519   case 8:
520     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
521   case 16:
522     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
523   default:
524     return UNKNOWN_LIBCALL;
525   }
526 }
527 
528 /// InitCmpLibcallCCs - Set default comparison libcall CC.
529 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
530   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
531   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
532   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
533   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
534   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
535   CCs[RTLIB::UNE_F32] = ISD::SETNE;
536   CCs[RTLIB::UNE_F64] = ISD::SETNE;
537   CCs[RTLIB::UNE_F128] = ISD::SETNE;
538   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
539   CCs[RTLIB::OGE_F32] = ISD::SETGE;
540   CCs[RTLIB::OGE_F64] = ISD::SETGE;
541   CCs[RTLIB::OGE_F128] = ISD::SETGE;
542   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
543   CCs[RTLIB::OLT_F32] = ISD::SETLT;
544   CCs[RTLIB::OLT_F64] = ISD::SETLT;
545   CCs[RTLIB::OLT_F128] = ISD::SETLT;
546   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
547   CCs[RTLIB::OLE_F32] = ISD::SETLE;
548   CCs[RTLIB::OLE_F64] = ISD::SETLE;
549   CCs[RTLIB::OLE_F128] = ISD::SETLE;
550   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
551   CCs[RTLIB::OGT_F32] = ISD::SETGT;
552   CCs[RTLIB::OGT_F64] = ISD::SETGT;
553   CCs[RTLIB::OGT_F128] = ISD::SETGT;
554   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
555   CCs[RTLIB::UO_F32] = ISD::SETNE;
556   CCs[RTLIB::UO_F64] = ISD::SETNE;
557   CCs[RTLIB::UO_F128] = ISD::SETNE;
558   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
559   CCs[RTLIB::O_F32] = ISD::SETEQ;
560   CCs[RTLIB::O_F64] = ISD::SETEQ;
561   CCs[RTLIB::O_F128] = ISD::SETEQ;
562   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
563 }
564 
565 /// NOTE: The TargetMachine owns TLOF.
566 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
567   initActions();
568 
569   // Perform these initializations only once.
570   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
571       MaxLoadsPerMemcmp = 8;
572   MaxGluedStoresPerMemcpy = 0;
573   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
574       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
575   UseUnderscoreSetJmp = false;
576   UseUnderscoreLongJmp = false;
577   HasMultipleConditionRegisters = false;
578   HasExtractBitsInsn = false;
579   JumpIsExpensive = JumpIsExpensiveOverride;
580   PredictableSelectIsExpensive = false;
581   EnableExtLdPromotion = false;
582   StackPointerRegisterToSaveRestore = 0;
583   BooleanContents = UndefinedBooleanContent;
584   BooleanFloatContents = UndefinedBooleanContent;
585   BooleanVectorContents = UndefinedBooleanContent;
586   SchedPreferenceInfo = Sched::ILP;
587   GatherAllAliasesMaxDepth = 18;
588   // TODO: the default will be switched to 0 in the next commit, along
589   // with the Target-specific changes necessary.
590   MaxAtomicSizeInBitsSupported = 1024;
591 
592   MinCmpXchgSizeInBits = 0;
593   SupportsUnalignedAtomics = false;
594 
595   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
596 
597   InitLibcalls(TM.getTargetTriple());
598   InitCmpLibcallCCs(CmpLibcallCCs);
599 }
600 
601 void TargetLoweringBase::initActions() {
602   // All operations default to being supported.
603   memset(OpActions, 0, sizeof(OpActions));
604   memset(LoadExtActions, 0, sizeof(LoadExtActions));
605   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
606   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
607   memset(CondCodeActions, 0, sizeof(CondCodeActions));
608   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
609   std::fill(std::begin(TargetDAGCombineArray),
610             std::end(TargetDAGCombineArray), 0);
611 
612   for (MVT VT : MVT::fp_valuetypes()) {
613     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
614     if (IntVT.isValid()) {
615       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
616       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
617     }
618   }
619 
620   // Set default actions for various operations.
621   for (MVT VT : MVT::all_valuetypes()) {
622     // Default all indexed load / store to expand.
623     for (unsigned IM = (unsigned)ISD::PRE_INC;
624          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
625       setIndexedLoadAction(IM, VT, Expand);
626       setIndexedStoreAction(IM, VT, Expand);
627     }
628 
629     // Most backends expect to see the node which just returns the value loaded.
630     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
631 
632     // These operations default to expand.
633     setOperationAction(ISD::FGETSIGN, VT, Expand);
634     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
635     setOperationAction(ISD::FMINNUM, VT, Expand);
636     setOperationAction(ISD::FMAXNUM, VT, Expand);
637     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
638     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
639     setOperationAction(ISD::FMINIMUM, VT, Expand);
640     setOperationAction(ISD::FMAXIMUM, VT, Expand);
641     setOperationAction(ISD::FMAD, VT, Expand);
642     setOperationAction(ISD::SMIN, VT, Expand);
643     setOperationAction(ISD::SMAX, VT, Expand);
644     setOperationAction(ISD::UMIN, VT, Expand);
645     setOperationAction(ISD::UMAX, VT, Expand);
646     setOperationAction(ISD::ABS, VT, Expand);
647     setOperationAction(ISD::FSHL, VT, Expand);
648     setOperationAction(ISD::FSHR, VT, Expand);
649     setOperationAction(ISD::SADDSAT, VT, Expand);
650     setOperationAction(ISD::UADDSAT, VT, Expand);
651     setOperationAction(ISD::SSUBSAT, VT, Expand);
652     setOperationAction(ISD::USUBSAT, VT, Expand);
653     setOperationAction(ISD::SMULFIX, VT, Expand);
654     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
655     setOperationAction(ISD::UMULFIX, VT, Expand);
656     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
657 
658     // Overflow operations default to expand
659     setOperationAction(ISD::SADDO, VT, Expand);
660     setOperationAction(ISD::SSUBO, VT, Expand);
661     setOperationAction(ISD::UADDO, VT, Expand);
662     setOperationAction(ISD::USUBO, VT, Expand);
663     setOperationAction(ISD::SMULO, VT, Expand);
664     setOperationAction(ISD::UMULO, VT, Expand);
665 
666     // ADDCARRY operations default to expand
667     setOperationAction(ISD::ADDCARRY, VT, Expand);
668     setOperationAction(ISD::SUBCARRY, VT, Expand);
669     setOperationAction(ISD::SETCCCARRY, VT, Expand);
670 
671     // ADDC/ADDE/SUBC/SUBE default to expand.
672     setOperationAction(ISD::ADDC, VT, Expand);
673     setOperationAction(ISD::ADDE, VT, Expand);
674     setOperationAction(ISD::SUBC, VT, Expand);
675     setOperationAction(ISD::SUBE, VT, Expand);
676 
677     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
678     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
679     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
680 
681     setOperationAction(ISD::BITREVERSE, VT, Expand);
682 
683     // These library functions default to expand.
684     setOperationAction(ISD::FROUND, VT, Expand);
685     setOperationAction(ISD::FPOWI, VT, Expand);
686 
687     // These operations default to expand for vector types.
688     if (VT.isVector()) {
689       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
690       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
691       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
692       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
693       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
694     }
695 
696     // Constrained floating-point operations default to expand.
697 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
698     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
699 #include "llvm/IR/ConstrainedOps.def"
700 
701     // For most targets @llvm.get.dynamic.area.offset just returns 0.
702     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
703 
704     // Vector reduction default to expand.
705     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
706     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
707     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
708     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
709     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
710     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
711     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
712     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
713     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
714     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
715     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
716     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
717     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
718   }
719 
720   // Most targets ignore the @llvm.prefetch intrinsic.
721   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
722 
723   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
724   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
725 
726   // ConstantFP nodes default to expand.  Targets can either change this to
727   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
728   // to optimize expansions for certain constants.
729   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
730   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
731   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
732   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
733   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
734 
735   // These library functions default to expand.
736   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
737     setOperationAction(ISD::FCBRT,      VT, Expand);
738     setOperationAction(ISD::FLOG ,      VT, Expand);
739     setOperationAction(ISD::FLOG2,      VT, Expand);
740     setOperationAction(ISD::FLOG10,     VT, Expand);
741     setOperationAction(ISD::FEXP ,      VT, Expand);
742     setOperationAction(ISD::FEXP2,      VT, Expand);
743     setOperationAction(ISD::FFLOOR,     VT, Expand);
744     setOperationAction(ISD::FNEARBYINT, VT, Expand);
745     setOperationAction(ISD::FCEIL,      VT, Expand);
746     setOperationAction(ISD::FRINT,      VT, Expand);
747     setOperationAction(ISD::FTRUNC,     VT, Expand);
748     setOperationAction(ISD::FROUND,     VT, Expand);
749     setOperationAction(ISD::LROUND,     VT, Expand);
750     setOperationAction(ISD::LLROUND,    VT, Expand);
751     setOperationAction(ISD::LRINT,      VT, Expand);
752     setOperationAction(ISD::LLRINT,     VT, Expand);
753   }
754 
755   // Default ISD::TRAP to expand (which turns it into abort).
756   setOperationAction(ISD::TRAP, MVT::Other, Expand);
757 
758   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
759   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
760   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
761 }
762 
763 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
764                                                EVT) const {
765   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
766 }
767 
768 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
769                                          bool LegalTypes) const {
770   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
771   if (LHSTy.isVector())
772     return LHSTy;
773   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
774                     : getPointerTy(DL);
775 }
776 
777 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
778   assert(isTypeLegal(VT));
779   switch (Op) {
780   default:
781     return false;
782   case ISD::SDIV:
783   case ISD::UDIV:
784   case ISD::SREM:
785   case ISD::UREM:
786     return true;
787   }
788 }
789 
790 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
791   // If the command-line option was specified, ignore this request.
792   if (!JumpIsExpensiveOverride.getNumOccurrences())
793     JumpIsExpensive = isExpensive;
794 }
795 
796 TargetLoweringBase::LegalizeKind
797 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
798   // If this is a simple type, use the ComputeRegisterProp mechanism.
799   if (VT.isSimple()) {
800     MVT SVT = VT.getSimpleVT();
801     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
802     MVT NVT = TransformToType[SVT.SimpleTy];
803     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
804 
805     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
806             (NVT.isVector() ||
807              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
808            "Promote may not follow Expand or Promote");
809 
810     if (LA == TypeSplitVector)
811       return LegalizeKind(LA,
812                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
813                                            SVT.getVectorNumElements() / 2));
814     if (LA == TypeScalarizeVector)
815       return LegalizeKind(LA, SVT.getVectorElementType());
816     return LegalizeKind(LA, NVT);
817   }
818 
819   // Handle Extended Scalar Types.
820   if (!VT.isVector()) {
821     assert(VT.isInteger() && "Float types must be simple");
822     unsigned BitSize = VT.getSizeInBits();
823     // First promote to a power-of-two size, then expand if necessary.
824     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
825       EVT NVT = VT.getRoundIntegerType(Context);
826       assert(NVT != VT && "Unable to round integer VT");
827       LegalizeKind NextStep = getTypeConversion(Context, NVT);
828       // Avoid multi-step promotion.
829       if (NextStep.first == TypePromoteInteger)
830         return NextStep;
831       // Return rounded integer type.
832       return LegalizeKind(TypePromoteInteger, NVT);
833     }
834 
835     return LegalizeKind(TypeExpandInteger,
836                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
837   }
838 
839   // Handle vector types.
840   unsigned NumElts = VT.getVectorNumElements();
841   EVT EltVT = VT.getVectorElementType();
842 
843   // Vectors with only one element are always scalarized.
844   if (NumElts == 1)
845     return LegalizeKind(TypeScalarizeVector, EltVT);
846 
847   // Try to widen vector elements until the element type is a power of two and
848   // promote it to a legal type later on, for example:
849   // <3 x i8> -> <4 x i8> -> <4 x i32>
850   if (EltVT.isInteger()) {
851     // Vectors with a number of elements that is not a power of two are always
852     // widened, for example <3 x i8> -> <4 x i8>.
853     if (!VT.isPow2VectorType()) {
854       NumElts = (unsigned)NextPowerOf2(NumElts);
855       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
856       return LegalizeKind(TypeWidenVector, NVT);
857     }
858 
859     // Examine the element type.
860     LegalizeKind LK = getTypeConversion(Context, EltVT);
861 
862     // If type is to be expanded, split the vector.
863     //  <4 x i140> -> <2 x i140>
864     if (LK.first == TypeExpandInteger)
865       return LegalizeKind(TypeSplitVector,
866                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
867 
868     // Promote the integer element types until a legal vector type is found
869     // or until the element integer type is too big. If a legal type was not
870     // found, fallback to the usual mechanism of widening/splitting the
871     // vector.
872     EVT OldEltVT = EltVT;
873     while (true) {
874       // Increase the bitwidth of the element to the next pow-of-two
875       // (which is greater than 8 bits).
876       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
877                   .getRoundIntegerType(Context);
878 
879       // Stop trying when getting a non-simple element type.
880       // Note that vector elements may be greater than legal vector element
881       // types. Example: X86 XMM registers hold 64bit element on 32bit
882       // systems.
883       if (!EltVT.isSimple())
884         break;
885 
886       // Build a new vector type and check if it is legal.
887       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
888       // Found a legal promoted vector type.
889       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
890         return LegalizeKind(TypePromoteInteger,
891                             EVT::getVectorVT(Context, EltVT, NumElts));
892     }
893 
894     // Reset the type to the unexpanded type if we did not find a legal vector
895     // type with a promoted vector element type.
896     EltVT = OldEltVT;
897   }
898 
899   // Try to widen the vector until a legal type is found.
900   // If there is no wider legal type, split the vector.
901   while (true) {
902     // Round up to the next power of 2.
903     NumElts = (unsigned)NextPowerOf2(NumElts);
904 
905     // If there is no simple vector type with this many elements then there
906     // cannot be a larger legal vector type.  Note that this assumes that
907     // there are no skipped intermediate vector types in the simple types.
908     if (!EltVT.isSimple())
909       break;
910     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
911     if (LargerVector == MVT())
912       break;
913 
914     // If this type is legal then widen the vector.
915     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
916       return LegalizeKind(TypeWidenVector, LargerVector);
917   }
918 
919   // Widen odd vectors to next power of two.
920   if (!VT.isPow2VectorType()) {
921     EVT NVT = VT.getPow2VectorType(Context);
922     return LegalizeKind(TypeWidenVector, NVT);
923   }
924 
925   // Vectors with illegal element types are expanded.
926   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
927   return LegalizeKind(TypeSplitVector, NVT);
928 }
929 
930 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
931                                           unsigned &NumIntermediates,
932                                           MVT &RegisterVT,
933                                           TargetLoweringBase *TLI) {
934   // Figure out the right, legal destination reg to copy into.
935   unsigned NumElts = VT.getVectorNumElements();
936   MVT EltTy = VT.getVectorElementType();
937 
938   unsigned NumVectorRegs = 1;
939 
940   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
941   // could break down into LHS/RHS like LegalizeDAG does.
942   if (!isPowerOf2_32(NumElts)) {
943     NumVectorRegs = NumElts;
944     NumElts = 1;
945   }
946 
947   // Divide the input until we get to a supported size.  This will always
948   // end with a scalar if the target doesn't support vectors.
949   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
950     NumElts >>= 1;
951     NumVectorRegs <<= 1;
952   }
953 
954   NumIntermediates = NumVectorRegs;
955 
956   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
957   if (!TLI->isTypeLegal(NewVT))
958     NewVT = EltTy;
959   IntermediateVT = NewVT;
960 
961   unsigned NewVTSize = NewVT.getSizeInBits();
962 
963   // Convert sizes such as i33 to i64.
964   if (!isPowerOf2_32(NewVTSize))
965     NewVTSize = NextPowerOf2(NewVTSize);
966 
967   MVT DestVT = TLI->getRegisterType(NewVT);
968   RegisterVT = DestVT;
969   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
970     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
971 
972   // Otherwise, promotion or legal types use the same number of registers as
973   // the vector decimated to the appropriate level.
974   return NumVectorRegs;
975 }
976 
977 /// isLegalRC - Return true if the value types that can be represented by the
978 /// specified register class are all legal.
979 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
980                                    const TargetRegisterClass &RC) const {
981   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
982     if (isTypeLegal(*I))
983       return true;
984   return false;
985 }
986 
987 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
988 /// sequence of memory operands that is recognized by PrologEpilogInserter.
989 MachineBasicBlock *
990 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
991                                    MachineBasicBlock *MBB) const {
992   MachineInstr *MI = &InitialMI;
993   MachineFunction &MF = *MI->getMF();
994   MachineFrameInfo &MFI = MF.getFrameInfo();
995 
996   // We're handling multiple types of operands here:
997   // PATCHPOINT MetaArgs - live-in, read only, direct
998   // STATEPOINT Deopt Spill - live-through, read only, indirect
999   // STATEPOINT Deopt Alloca - live-through, read only, direct
1000   // (We're currently conservative and mark the deopt slots read/write in
1001   // practice.)
1002   // STATEPOINT GC Spill - live-through, read/write, indirect
1003   // STATEPOINT GC Alloca - live-through, read/write, direct
1004   // The live-in vs live-through is handled already (the live through ones are
1005   // all stack slots), but we need to handle the different type of stackmap
1006   // operands and memory effects here.
1007 
1008   // MI changes inside this loop as we grow operands.
1009   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1010     MachineOperand &MO = MI->getOperand(OperIdx);
1011     if (!MO.isFI())
1012       continue;
1013 
1014     // foldMemoryOperand builds a new MI after replacing a single FI operand
1015     // with the canonical set of five x86 addressing-mode operands.
1016     int FI = MO.getIndex();
1017     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1018 
1019     // Copy operands before the frame-index.
1020     for (unsigned i = 0; i < OperIdx; ++i)
1021       MIB.add(MI->getOperand(i));
1022     // Add frame index operands recognized by stackmaps.cpp
1023     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1024       // indirect-mem-ref tag, size, #FI, offset.
1025       // Used for spills inserted by StatepointLowering.  This codepath is not
1026       // used for patchpoints/stackmaps at all, for these spilling is done via
1027       // foldMemoryOperand callback only.
1028       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1029       MIB.addImm(StackMaps::IndirectMemRefOp);
1030       MIB.addImm(MFI.getObjectSize(FI));
1031       MIB.add(MI->getOperand(OperIdx));
1032       MIB.addImm(0);
1033     } else {
1034       // direct-mem-ref tag, #FI, offset.
1035       // Used by patchpoint, and direct alloca arguments to statepoints
1036       MIB.addImm(StackMaps::DirectMemRefOp);
1037       MIB.add(MI->getOperand(OperIdx));
1038       MIB.addImm(0);
1039     }
1040     // Copy the operands after the frame index.
1041     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1042       MIB.add(MI->getOperand(i));
1043 
1044     // Inherit previous memory operands.
1045     MIB.cloneMemRefs(*MI);
1046     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1047 
1048     // Add a new memory operand for this FI.
1049     assert(MFI.getObjectOffset(FI) != -1);
1050 
1051     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1052     // PATCHPOINT should be updated to do the same. (TODO)
1053     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1054       auto Flags = MachineMemOperand::MOLoad;
1055       MachineMemOperand *MMO = MF.getMachineMemOperand(
1056           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1057           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1058       MIB->addMemOperand(MF, MMO);
1059     }
1060 
1061     // Replace the instruction and update the operand index.
1062     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1063     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1064     MI->eraseFromParent();
1065     MI = MIB;
1066   }
1067   return MBB;
1068 }
1069 
1070 MachineBasicBlock *
1071 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1072                                         MachineBasicBlock *MBB) const {
1073   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1074          "Called emitXRayCustomEvent on the wrong MI!");
1075   auto &MF = *MI.getMF();
1076   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1077   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1078     MIB.add(MI.getOperand(OpIdx));
1079 
1080   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1081   MI.eraseFromParent();
1082   return MBB;
1083 }
1084 
1085 MachineBasicBlock *
1086 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1087                                        MachineBasicBlock *MBB) const {
1088   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1089          "Called emitXRayTypedEvent on the wrong MI!");
1090   auto &MF = *MI.getMF();
1091   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1092   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1093     MIB.add(MI.getOperand(OpIdx));
1094 
1095   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1096   MI.eraseFromParent();
1097   return MBB;
1098 }
1099 
1100 /// findRepresentativeClass - Return the largest legal super-reg register class
1101 /// of the register class for the specified type and its associated "cost".
1102 // This function is in TargetLowering because it uses RegClassForVT which would
1103 // need to be moved to TargetRegisterInfo and would necessitate moving
1104 // isTypeLegal over as well - a massive change that would just require
1105 // TargetLowering having a TargetRegisterInfo class member that it would use.
1106 std::pair<const TargetRegisterClass *, uint8_t>
1107 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1108                                             MVT VT) const {
1109   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1110   if (!RC)
1111     return std::make_pair(RC, 0);
1112 
1113   // Compute the set of all super-register classes.
1114   BitVector SuperRegRC(TRI->getNumRegClasses());
1115   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1116     SuperRegRC.setBitsInMask(RCI.getMask());
1117 
1118   // Find the first legal register class with the largest spill size.
1119   const TargetRegisterClass *BestRC = RC;
1120   for (unsigned i : SuperRegRC.set_bits()) {
1121     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1122     // We want the largest possible spill size.
1123     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1124       continue;
1125     if (!isLegalRC(*TRI, *SuperRC))
1126       continue;
1127     BestRC = SuperRC;
1128   }
1129   return std::make_pair(BestRC, 1);
1130 }
1131 
1132 /// computeRegisterProperties - Once all of the register classes are added,
1133 /// this allows us to compute derived properties we expose.
1134 void TargetLoweringBase::computeRegisterProperties(
1135     const TargetRegisterInfo *TRI) {
1136   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1137                 "Too many value types for ValueTypeActions to hold!");
1138 
1139   // Everything defaults to needing one register.
1140   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1141     NumRegistersForVT[i] = 1;
1142     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1143   }
1144   // ...except isVoid, which doesn't need any registers.
1145   NumRegistersForVT[MVT::isVoid] = 0;
1146 
1147   // Find the largest integer register class.
1148   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1149   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1150     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1151 
1152   // Every integer value type larger than this largest register takes twice as
1153   // many registers to represent as the previous ValueType.
1154   for (unsigned ExpandedReg = LargestIntReg + 1;
1155        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1156     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1157     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1158     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1159     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1160                                    TypeExpandInteger);
1161   }
1162 
1163   // Inspect all of the ValueType's smaller than the largest integer
1164   // register to see which ones need promotion.
1165   unsigned LegalIntReg = LargestIntReg;
1166   for (unsigned IntReg = LargestIntReg - 1;
1167        IntReg >= (unsigned)MVT::i1; --IntReg) {
1168     MVT IVT = (MVT::SimpleValueType)IntReg;
1169     if (isTypeLegal(IVT)) {
1170       LegalIntReg = IntReg;
1171     } else {
1172       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1173         (MVT::SimpleValueType)LegalIntReg;
1174       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1175     }
1176   }
1177 
1178   // ppcf128 type is really two f64's.
1179   if (!isTypeLegal(MVT::ppcf128)) {
1180     if (isTypeLegal(MVT::f64)) {
1181       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1182       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1183       TransformToType[MVT::ppcf128] = MVT::f64;
1184       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1185     } else {
1186       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1187       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1188       TransformToType[MVT::ppcf128] = MVT::i128;
1189       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1190     }
1191   }
1192 
1193   // Decide how to handle f128. If the target does not have native f128 support,
1194   // expand it to i128 and we will be generating soft float library calls.
1195   if (!isTypeLegal(MVT::f128)) {
1196     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1197     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1198     TransformToType[MVT::f128] = MVT::i128;
1199     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1200   }
1201 
1202   // Decide how to handle f64. If the target does not have native f64 support,
1203   // expand it to i64 and we will be generating soft float library calls.
1204   if (!isTypeLegal(MVT::f64)) {
1205     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1206     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1207     TransformToType[MVT::f64] = MVT::i64;
1208     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1209   }
1210 
1211   // Decide how to handle f32. If the target does not have native f32 support,
1212   // expand it to i32 and we will be generating soft float library calls.
1213   if (!isTypeLegal(MVT::f32)) {
1214     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1215     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1216     TransformToType[MVT::f32] = MVT::i32;
1217     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1218   }
1219 
1220   // Decide how to handle f16. If the target does not have native f16 support,
1221   // promote it to f32, because there are no f16 library calls (except for
1222   // conversions).
1223   if (!isTypeLegal(MVT::f16)) {
1224     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1225     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1226     TransformToType[MVT::f16] = MVT::f32;
1227     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1228   }
1229 
1230   // Loop over all of the vector value types to see which need transformations.
1231   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1232        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1233     MVT VT = (MVT::SimpleValueType) i;
1234     if (isTypeLegal(VT))
1235       continue;
1236 
1237     MVT EltVT = VT.getVectorElementType();
1238     unsigned NElts = VT.getVectorNumElements();
1239     bool IsLegalWiderType = false;
1240     bool IsScalable = VT.isScalableVector();
1241     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1242     switch (PreferredAction) {
1243     case TypePromoteInteger: {
1244       MVT::SimpleValueType EndVT = IsScalable ?
1245                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1246                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1247       // Try to promote the elements of integer vectors. If no legal
1248       // promotion was found, fall through to the widen-vector method.
1249       for (unsigned nVT = i + 1;
1250            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1251         MVT SVT = (MVT::SimpleValueType) nVT;
1252         // Promote vectors of integers to vectors with the same number
1253         // of elements, with a wider element type.
1254         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1255             SVT.getVectorNumElements() == NElts &&
1256             SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1257           TransformToType[i] = SVT;
1258           RegisterTypeForVT[i] = SVT;
1259           NumRegistersForVT[i] = 1;
1260           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1261           IsLegalWiderType = true;
1262           break;
1263         }
1264       }
1265       if (IsLegalWiderType)
1266         break;
1267       LLVM_FALLTHROUGH;
1268     }
1269 
1270     case TypeWidenVector:
1271       if (isPowerOf2_32(NElts)) {
1272         // Try to widen the vector.
1273         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1274           MVT SVT = (MVT::SimpleValueType) nVT;
1275           if (SVT.getVectorElementType() == EltVT
1276               && SVT.getVectorNumElements() > NElts
1277               && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1278             TransformToType[i] = SVT;
1279             RegisterTypeForVT[i] = SVT;
1280             NumRegistersForVT[i] = 1;
1281             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1282             IsLegalWiderType = true;
1283             break;
1284           }
1285         }
1286         if (IsLegalWiderType)
1287           break;
1288       } else {
1289         // Only widen to the next power of 2 to keep consistency with EVT.
1290         MVT NVT = VT.getPow2VectorType();
1291         if (isTypeLegal(NVT)) {
1292           TransformToType[i] = NVT;
1293           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1294           RegisterTypeForVT[i] = NVT;
1295           NumRegistersForVT[i] = 1;
1296           break;
1297         }
1298       }
1299       LLVM_FALLTHROUGH;
1300 
1301     case TypeSplitVector:
1302     case TypeScalarizeVector: {
1303       MVT IntermediateVT;
1304       MVT RegisterVT;
1305       unsigned NumIntermediates;
1306       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1307           NumIntermediates, RegisterVT, this);
1308       NumRegistersForVT[i] = NumRegisters;
1309       assert(NumRegistersForVT[i] == NumRegisters &&
1310              "NumRegistersForVT size cannot represent NumRegisters!");
1311       RegisterTypeForVT[i] = RegisterVT;
1312 
1313       MVT NVT = VT.getPow2VectorType();
1314       if (NVT == VT) {
1315         // Type is already a power of 2.  The default action is to split.
1316         TransformToType[i] = MVT::Other;
1317         if (PreferredAction == TypeScalarizeVector)
1318           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1319         else if (PreferredAction == TypeSplitVector)
1320           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1321         else
1322           // Set type action according to the number of elements.
1323           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1324                                                         : TypeSplitVector);
1325       } else {
1326         TransformToType[i] = NVT;
1327         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1328       }
1329       break;
1330     }
1331     default:
1332       llvm_unreachable("Unknown vector legalization action!");
1333     }
1334   }
1335 
1336   // Determine the 'representative' register class for each value type.
1337   // An representative register class is the largest (meaning one which is
1338   // not a sub-register class / subreg register class) legal register class for
1339   // a group of value types. For example, on i386, i8, i16, and i32
1340   // representative would be GR32; while on x86_64 it's GR64.
1341   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1342     const TargetRegisterClass* RRC;
1343     uint8_t Cost;
1344     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1345     RepRegClassForVT[i] = RRC;
1346     RepRegClassCostForVT[i] = Cost;
1347   }
1348 }
1349 
1350 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1351                                            EVT VT) const {
1352   assert(!VT.isVector() && "No default SetCC type for vectors!");
1353   return getPointerTy(DL).SimpleTy;
1354 }
1355 
1356 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1357   return MVT::i32; // return the default value
1358 }
1359 
1360 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1361 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1362 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1363 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1364 ///
1365 /// This method returns the number of registers needed, and the VT for each
1366 /// register.  It also returns the VT and quantity of the intermediate values
1367 /// before they are promoted/expanded.
1368 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1369                                                 EVT &IntermediateVT,
1370                                                 unsigned &NumIntermediates,
1371                                                 MVT &RegisterVT) const {
1372   unsigned NumElts = VT.getVectorNumElements();
1373 
1374   // If there is a wider vector type with the same element type as this one,
1375   // or a promoted vector type that has the same number of elements which
1376   // are wider, then we should convert to that legal vector type.
1377   // This handles things like <2 x float> -> <4 x float> and
1378   // <4 x i1> -> <4 x i32>.
1379   LegalizeTypeAction TA = getTypeAction(Context, VT);
1380   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1381     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1382     if (isTypeLegal(RegisterEVT)) {
1383       IntermediateVT = RegisterEVT;
1384       RegisterVT = RegisterEVT.getSimpleVT();
1385       NumIntermediates = 1;
1386       return 1;
1387     }
1388   }
1389 
1390   // Figure out the right, legal destination reg to copy into.
1391   EVT EltTy = VT.getVectorElementType();
1392 
1393   unsigned NumVectorRegs = 1;
1394 
1395   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1396   // could break down into LHS/RHS like LegalizeDAG does.
1397   if (!isPowerOf2_32(NumElts)) {
1398     NumVectorRegs = NumElts;
1399     NumElts = 1;
1400   }
1401 
1402   // Divide the input until we get to a supported size.  This will always
1403   // end with a scalar if the target doesn't support vectors.
1404   while (NumElts > 1 && !isTypeLegal(
1405                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1406     NumElts >>= 1;
1407     NumVectorRegs <<= 1;
1408   }
1409 
1410   NumIntermediates = NumVectorRegs;
1411 
1412   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1413   if (!isTypeLegal(NewVT))
1414     NewVT = EltTy;
1415   IntermediateVT = NewVT;
1416 
1417   MVT DestVT = getRegisterType(Context, NewVT);
1418   RegisterVT = DestVT;
1419   unsigned NewVTSize = NewVT.getSizeInBits();
1420 
1421   // Convert sizes such as i33 to i64.
1422   if (!isPowerOf2_32(NewVTSize))
1423     NewVTSize = NextPowerOf2(NewVTSize);
1424 
1425   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1426     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1427 
1428   // Otherwise, promotion or legal types use the same number of registers as
1429   // the vector decimated to the appropriate level.
1430   return NumVectorRegs;
1431 }
1432 
1433 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1434                                                 uint64_t NumCases,
1435                                                 uint64_t Range,
1436                                                 ProfileSummaryInfo *PSI,
1437                                                 BlockFrequencyInfo *BFI) const {
1438   // FIXME: This function check the maximum table size and density, but the
1439   // minimum size is not checked. It would be nice if the minimum size is
1440   // also combined within this function. Currently, the minimum size check is
1441   // performed in findJumpTable() in SelectionDAGBuiler and
1442   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1443   const bool OptForSize =
1444       SI->getParent()->getParent()->hasOptSize() ||
1445       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1446   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1447   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1448 
1449   // Check whether the number of cases is small enough and
1450   // the range is dense enough for a jump table.
1451   return (OptForSize || Range <= MaxJumpTableSize) &&
1452          (NumCases * 100 >= Range * MinDensity);
1453 }
1454 
1455 /// Get the EVTs and ArgFlags collections that represent the legalized return
1456 /// type of the given function.  This does not require a DAG or a return value,
1457 /// and is suitable for use before any DAGs for the function are constructed.
1458 /// TODO: Move this out of TargetLowering.cpp.
1459 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1460                          AttributeList attr,
1461                          SmallVectorImpl<ISD::OutputArg> &Outs,
1462                          const TargetLowering &TLI, const DataLayout &DL) {
1463   SmallVector<EVT, 4> ValueVTs;
1464   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1465   unsigned NumValues = ValueVTs.size();
1466   if (NumValues == 0) return;
1467 
1468   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1469     EVT VT = ValueVTs[j];
1470     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1471 
1472     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1473       ExtendKind = ISD::SIGN_EXTEND;
1474     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1475       ExtendKind = ISD::ZERO_EXTEND;
1476 
1477     // FIXME: C calling convention requires the return type to be promoted to
1478     // at least 32-bit. But this is not necessary for non-C calling
1479     // conventions. The frontend should mark functions whose return values
1480     // require promoting with signext or zeroext attributes.
1481     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1482       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1483       if (VT.bitsLT(MinVT))
1484         VT = MinVT;
1485     }
1486 
1487     unsigned NumParts =
1488         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1489     MVT PartVT =
1490         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1491 
1492     // 'inreg' on function refers to return value
1493     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1494     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1495       Flags.setInReg();
1496 
1497     // Propagate extension type if any
1498     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1499       Flags.setSExt();
1500     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1501       Flags.setZExt();
1502 
1503     for (unsigned i = 0; i < NumParts; ++i)
1504       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1505   }
1506 }
1507 
1508 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1509 /// function arguments in the caller parameter area.  This is the actual
1510 /// alignment, not its logarithm.
1511 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1512                                                    const DataLayout &DL) const {
1513   return DL.getABITypeAlignment(Ty);
1514 }
1515 
1516 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1517     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1518     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1519   // Check if the specified alignment is sufficient based on the data layout.
1520   // TODO: While using the data layout works in practice, a better solution
1521   // would be to implement this check directly (make this a virtual function).
1522   // For example, the ABI alignment may change based on software platform while
1523   // this function should only be affected by hardware implementation.
1524   Type *Ty = VT.getTypeForEVT(Context);
1525   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1526     // Assume that an access that meets the ABI-specified alignment is fast.
1527     if (Fast != nullptr)
1528       *Fast = true;
1529     return true;
1530   }
1531 
1532   // This is a misaligned access.
1533   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1534 }
1535 
1536 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1537     LLVMContext &Context, const DataLayout &DL, EVT VT,
1538     const MachineMemOperand &MMO, bool *Fast) const {
1539   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1540                                         MMO.getAlignment(), MMO.getFlags(),
1541                                         Fast);
1542 }
1543 
1544 bool TargetLoweringBase::allowsMemoryAccess(
1545     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1546     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1547   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1548                                         Flags, Fast);
1549 }
1550 
1551 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1552                                             const DataLayout &DL, EVT VT,
1553                                             const MachineMemOperand &MMO,
1554                                             bool *Fast) const {
1555   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1556                             MMO.getAlignment(), MMO.getFlags(), Fast);
1557 }
1558 
1559 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1560   return BranchProbability(MinPercentageForPredictableBranch, 100);
1561 }
1562 
1563 //===----------------------------------------------------------------------===//
1564 //  TargetTransformInfo Helpers
1565 //===----------------------------------------------------------------------===//
1566 
1567 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1568   enum InstructionOpcodes {
1569 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1570 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1571 #include "llvm/IR/Instruction.def"
1572   };
1573   switch (static_cast<InstructionOpcodes>(Opcode)) {
1574   case Ret:            return 0;
1575   case Br:             return 0;
1576   case Switch:         return 0;
1577   case IndirectBr:     return 0;
1578   case Invoke:         return 0;
1579   case CallBr:         return 0;
1580   case Resume:         return 0;
1581   case Unreachable:    return 0;
1582   case CleanupRet:     return 0;
1583   case CatchRet:       return 0;
1584   case CatchPad:       return 0;
1585   case CatchSwitch:    return 0;
1586   case CleanupPad:     return 0;
1587   case FNeg:           return ISD::FNEG;
1588   case Add:            return ISD::ADD;
1589   case FAdd:           return ISD::FADD;
1590   case Sub:            return ISD::SUB;
1591   case FSub:           return ISD::FSUB;
1592   case Mul:            return ISD::MUL;
1593   case FMul:           return ISD::FMUL;
1594   case UDiv:           return ISD::UDIV;
1595   case SDiv:           return ISD::SDIV;
1596   case FDiv:           return ISD::FDIV;
1597   case URem:           return ISD::UREM;
1598   case SRem:           return ISD::SREM;
1599   case FRem:           return ISD::FREM;
1600   case Shl:            return ISD::SHL;
1601   case LShr:           return ISD::SRL;
1602   case AShr:           return ISD::SRA;
1603   case And:            return ISD::AND;
1604   case Or:             return ISD::OR;
1605   case Xor:            return ISD::XOR;
1606   case Alloca:         return 0;
1607   case Load:           return ISD::LOAD;
1608   case Store:          return ISD::STORE;
1609   case GetElementPtr:  return 0;
1610   case Fence:          return 0;
1611   case AtomicCmpXchg:  return 0;
1612   case AtomicRMW:      return 0;
1613   case Trunc:          return ISD::TRUNCATE;
1614   case ZExt:           return ISD::ZERO_EXTEND;
1615   case SExt:           return ISD::SIGN_EXTEND;
1616   case FPToUI:         return ISD::FP_TO_UINT;
1617   case FPToSI:         return ISD::FP_TO_SINT;
1618   case UIToFP:         return ISD::UINT_TO_FP;
1619   case SIToFP:         return ISD::SINT_TO_FP;
1620   case FPTrunc:        return ISD::FP_ROUND;
1621   case FPExt:          return ISD::FP_EXTEND;
1622   case PtrToInt:       return ISD::BITCAST;
1623   case IntToPtr:       return ISD::BITCAST;
1624   case BitCast:        return ISD::BITCAST;
1625   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1626   case ICmp:           return ISD::SETCC;
1627   case FCmp:           return ISD::SETCC;
1628   case PHI:            return 0;
1629   case Call:           return 0;
1630   case Select:         return ISD::SELECT;
1631   case UserOp1:        return 0;
1632   case UserOp2:        return 0;
1633   case VAArg:          return 0;
1634   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1635   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1636   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1637   case ExtractValue:   return ISD::MERGE_VALUES;
1638   case InsertValue:    return ISD::MERGE_VALUES;
1639   case LandingPad:     return 0;
1640   case Freeze:         return 0;
1641   }
1642 
1643   llvm_unreachable("Unknown instruction type encountered!");
1644 }
1645 
1646 std::pair<int, MVT>
1647 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1648                                             Type *Ty) const {
1649   LLVMContext &C = Ty->getContext();
1650   EVT MTy = getValueType(DL, Ty);
1651 
1652   int Cost = 1;
1653   // We keep legalizing the type until we find a legal kind. We assume that
1654   // the only operation that costs anything is the split. After splitting
1655   // we need to handle two types.
1656   while (true) {
1657     LegalizeKind LK = getTypeConversion(C, MTy);
1658 
1659     if (LK.first == TypeLegal)
1660       return std::make_pair(Cost, MTy.getSimpleVT());
1661 
1662     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1663       Cost *= 2;
1664 
1665     // Do not loop with f128 type.
1666     if (MTy == LK.second)
1667       return std::make_pair(Cost, MTy.getSimpleVT());
1668 
1669     // Keep legalizing the type.
1670     MTy = LK.second;
1671   }
1672 }
1673 
1674 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1675                                                               bool UseTLS) const {
1676   // compiler-rt provides a variable with a magic name.  Targets that do not
1677   // link with compiler-rt may also provide such a variable.
1678   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1679   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1680   auto UnsafeStackPtr =
1681       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1682 
1683   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1684 
1685   if (!UnsafeStackPtr) {
1686     auto TLSModel = UseTLS ?
1687         GlobalValue::InitialExecTLSModel :
1688         GlobalValue::NotThreadLocal;
1689     // The global variable is not defined yet, define it ourselves.
1690     // We use the initial-exec TLS model because we do not support the
1691     // variable living anywhere other than in the main executable.
1692     UnsafeStackPtr = new GlobalVariable(
1693         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1694         UnsafeStackPtrVar, nullptr, TLSModel);
1695   } else {
1696     // The variable exists, check its type and attributes.
1697     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1698       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1699     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1700       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1701                          (UseTLS ? "" : "not ") + "be thread-local");
1702   }
1703   return UnsafeStackPtr;
1704 }
1705 
1706 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1707   if (!TM.getTargetTriple().isAndroid())
1708     return getDefaultSafeStackPointerLocation(IRB, true);
1709 
1710   // Android provides a libc function to retrieve the address of the current
1711   // thread's unsafe stack pointer.
1712   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1713   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1714   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1715                                              StackPtrTy->getPointerTo(0));
1716   return IRB.CreateCall(Fn);
1717 }
1718 
1719 //===----------------------------------------------------------------------===//
1720 //  Loop Strength Reduction hooks
1721 //===----------------------------------------------------------------------===//
1722 
1723 /// isLegalAddressingMode - Return true if the addressing mode represented
1724 /// by AM is legal for this target, for a load/store of the specified type.
1725 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1726                                                const AddrMode &AM, Type *Ty,
1727                                                unsigned AS, Instruction *I) const {
1728   // The default implementation of this implements a conservative RISCy, r+r and
1729   // r+i addr mode.
1730 
1731   // Allows a sign-extended 16-bit immediate field.
1732   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1733     return false;
1734 
1735   // No global is ever allowed as a base.
1736   if (AM.BaseGV)
1737     return false;
1738 
1739   // Only support r+r,
1740   switch (AM.Scale) {
1741   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1742     break;
1743   case 1:
1744     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1745       return false;
1746     // Otherwise we have r+r or r+i.
1747     break;
1748   case 2:
1749     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1750       return false;
1751     // Allow 2*r as r+r.
1752     break;
1753   default: // Don't allow n * r
1754     return false;
1755   }
1756 
1757   return true;
1758 }
1759 
1760 //===----------------------------------------------------------------------===//
1761 //  Stack Protector
1762 //===----------------------------------------------------------------------===//
1763 
1764 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1765 // so that SelectionDAG handle SSP.
1766 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1767   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1768     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1769     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1770     return M.getOrInsertGlobal("__guard_local", PtrTy);
1771   }
1772   return nullptr;
1773 }
1774 
1775 // Currently only support "standard" __stack_chk_guard.
1776 // TODO: add LOAD_STACK_GUARD support.
1777 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1778   if (!M.getNamedValue("__stack_chk_guard"))
1779     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1780                        GlobalVariable::ExternalLinkage,
1781                        nullptr, "__stack_chk_guard");
1782 }
1783 
1784 // Currently only support "standard" __stack_chk_guard.
1785 // TODO: add LOAD_STACK_GUARD support.
1786 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1787   return M.getNamedValue("__stack_chk_guard");
1788 }
1789 
1790 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1791   return nullptr;
1792 }
1793 
1794 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1795   return MinimumJumpTableEntries;
1796 }
1797 
1798 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1799   MinimumJumpTableEntries = Val;
1800 }
1801 
1802 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1803   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1804 }
1805 
1806 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1807   return MaximumJumpTableSize;
1808 }
1809 
1810 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1811   MaximumJumpTableSize = Val;
1812 }
1813 
1814 //===----------------------------------------------------------------------===//
1815 //  Reciprocal Estimates
1816 //===----------------------------------------------------------------------===//
1817 
1818 /// Get the reciprocal estimate attribute string for a function that will
1819 /// override the target defaults.
1820 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1821   const Function &F = MF.getFunction();
1822   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1823 }
1824 
1825 /// Construct a string for the given reciprocal operation of the given type.
1826 /// This string should match the corresponding option to the front-end's
1827 /// "-mrecip" flag assuming those strings have been passed through in an
1828 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1829 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1830   std::string Name = VT.isVector() ? "vec-" : "";
1831 
1832   Name += IsSqrt ? "sqrt" : "div";
1833 
1834   // TODO: Handle "half" or other float types?
1835   if (VT.getScalarType() == MVT::f64) {
1836     Name += "d";
1837   } else {
1838     assert(VT.getScalarType() == MVT::f32 &&
1839            "Unexpected FP type for reciprocal estimate");
1840     Name += "f";
1841   }
1842 
1843   return Name;
1844 }
1845 
1846 /// Return the character position and value (a single numeric character) of a
1847 /// customized refinement operation in the input string if it exists. Return
1848 /// false if there is no customized refinement step count.
1849 static bool parseRefinementStep(StringRef In, size_t &Position,
1850                                 uint8_t &Value) {
1851   const char RefStepToken = ':';
1852   Position = In.find(RefStepToken);
1853   if (Position == StringRef::npos)
1854     return false;
1855 
1856   StringRef RefStepString = In.substr(Position + 1);
1857   // Allow exactly one numeric character for the additional refinement
1858   // step parameter.
1859   if (RefStepString.size() == 1) {
1860     char RefStepChar = RefStepString[0];
1861     if (RefStepChar >= '0' && RefStepChar <= '9') {
1862       Value = RefStepChar - '0';
1863       return true;
1864     }
1865   }
1866   report_fatal_error("Invalid refinement step for -recip.");
1867 }
1868 
1869 /// For the input attribute string, return one of the ReciprocalEstimate enum
1870 /// status values (enabled, disabled, or not specified) for this operation on
1871 /// the specified data type.
1872 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1873   if (Override.empty())
1874     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1875 
1876   SmallVector<StringRef, 4> OverrideVector;
1877   Override.split(OverrideVector, ',');
1878   unsigned NumArgs = OverrideVector.size();
1879 
1880   // Check if "all", "none", or "default" was specified.
1881   if (NumArgs == 1) {
1882     // Look for an optional setting of the number of refinement steps needed
1883     // for this type of reciprocal operation.
1884     size_t RefPos;
1885     uint8_t RefSteps;
1886     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1887       // Split the string for further processing.
1888       Override = Override.substr(0, RefPos);
1889     }
1890 
1891     // All reciprocal types are enabled.
1892     if (Override == "all")
1893       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1894 
1895     // All reciprocal types are disabled.
1896     if (Override == "none")
1897       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1898 
1899     // Target defaults for enablement are used.
1900     if (Override == "default")
1901       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1902   }
1903 
1904   // The attribute string may omit the size suffix ('f'/'d').
1905   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1906   std::string VTNameNoSize = VTName;
1907   VTNameNoSize.pop_back();
1908   static const char DisabledPrefix = '!';
1909 
1910   for (StringRef RecipType : OverrideVector) {
1911     size_t RefPos;
1912     uint8_t RefSteps;
1913     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1914       RecipType = RecipType.substr(0, RefPos);
1915 
1916     // Ignore the disablement token for string matching.
1917     bool IsDisabled = RecipType[0] == DisabledPrefix;
1918     if (IsDisabled)
1919       RecipType = RecipType.substr(1);
1920 
1921     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1922       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1923                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1924   }
1925 
1926   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1927 }
1928 
1929 /// For the input attribute string, return the customized refinement step count
1930 /// for this operation on the specified data type. If the step count does not
1931 /// exist, return the ReciprocalEstimate enum value for unspecified.
1932 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1933   if (Override.empty())
1934     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1935 
1936   SmallVector<StringRef, 4> OverrideVector;
1937   Override.split(OverrideVector, ',');
1938   unsigned NumArgs = OverrideVector.size();
1939 
1940   // Check if "all", "default", or "none" was specified.
1941   if (NumArgs == 1) {
1942     // Look for an optional setting of the number of refinement steps needed
1943     // for this type of reciprocal operation.
1944     size_t RefPos;
1945     uint8_t RefSteps;
1946     if (!parseRefinementStep(Override, RefPos, RefSteps))
1947       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1948 
1949     // Split the string for further processing.
1950     Override = Override.substr(0, RefPos);
1951     assert(Override != "none" &&
1952            "Disabled reciprocals, but specifed refinement steps?");
1953 
1954     // If this is a general override, return the specified number of steps.
1955     if (Override == "all" || Override == "default")
1956       return RefSteps;
1957   }
1958 
1959   // The attribute string may omit the size suffix ('f'/'d').
1960   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1961   std::string VTNameNoSize = VTName;
1962   VTNameNoSize.pop_back();
1963 
1964   for (StringRef RecipType : OverrideVector) {
1965     size_t RefPos;
1966     uint8_t RefSteps;
1967     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1968       continue;
1969 
1970     RecipType = RecipType.substr(0, RefPos);
1971     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1972       return RefSteps;
1973   }
1974 
1975   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1976 }
1977 
1978 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1979                                                     MachineFunction &MF) const {
1980   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1981 }
1982 
1983 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1984                                                    MachineFunction &MF) const {
1985   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1986 }
1987 
1988 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1989                                                MachineFunction &MF) const {
1990   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1991 }
1992 
1993 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1994                                               MachineFunction &MF) const {
1995   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1996 }
1997 
1998 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1999   MF.getRegInfo().freezeReservedRegs(MF);
2000 }
2001