1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 // FIXME: This option is only to test if the strict fp operation processed
92 // correctly by preventing mutating strict fp operation to normal fp operation
93 // during development. When the backend supports strict float operation, this
94 // option will be meaningless.
95 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
96        cl::desc("Don't mutate strict-float node to a legalize node"),
97        cl::init(false), cl::Hidden);
98 
99 static bool darwinHasSinCos(const Triple &TT) {
100   assert(TT.isOSDarwin() && "should be called with darwin triple");
101   // Don't bother with 32 bit x86.
102   if (TT.getArch() == Triple::x86)
103     return false;
104   // Macos < 10.9 has no sincos_stret.
105   if (TT.isMacOSX())
106     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
107   // iOS < 7.0 has no sincos_stret.
108   if (TT.isiOS())
109     return !TT.isOSVersionLT(7, 0);
110   // Any other darwin such as WatchOS/TvOS is new enough.
111   return true;
112 }
113 
114 // Although this default value is arbitrary, it is not random. It is assumed
115 // that a condition that evaluates the same way by a higher percentage than this
116 // is best represented as control flow. Therefore, the default value N should be
117 // set such that the win from N% correct executions is greater than the loss
118 // from (100 - N)% mispredicted executions for the majority of intended targets.
119 static cl::opt<int> MinPercentageForPredictableBranch(
120     "min-predictable-branch", cl::init(99),
121     cl::desc("Minimum percentage (0-100) that a condition must be either true "
122              "or false to assume that the condition is predictable"),
123     cl::Hidden);
124 
125 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
126 #define HANDLE_LIBCALL(code, name) \
127   setLibcallName(RTLIB::code, name);
128 #include "llvm/IR/RuntimeLibcalls.def"
129 #undef HANDLE_LIBCALL
130   // Initialize calling conventions to their default.
131   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
132     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
133 
134   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
135   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
136     setLibcallName(RTLIB::ADD_F128, "__addkf3");
137     setLibcallName(RTLIB::SUB_F128, "__subkf3");
138     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
139     setLibcallName(RTLIB::DIV_F128, "__divkf3");
140     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
141     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
142     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
143     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
144     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
145     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
146     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
147     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
148     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
149     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
150     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
151     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
152     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
153     setLibcallName(RTLIB::UNE_F128, "__nekf2");
154     setLibcallName(RTLIB::OGE_F128, "__gekf2");
155     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
156     setLibcallName(RTLIB::OLE_F128, "__lekf2");
157     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
158     setLibcallName(RTLIB::UO_F128, "__unordkf2");
159     setLibcallName(RTLIB::O_F128, "__unordkf2");
160   }
161 
162   // A few names are different on particular architectures or environments.
163   if (TT.isOSDarwin()) {
164     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
165     // of the gnueabi-style __gnu_*_ieee.
166     // FIXME: What about other targets?
167     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
168     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
169 
170     // Some darwins have an optimized __bzero/bzero function.
171     switch (TT.getArch()) {
172     case Triple::x86:
173     case Triple::x86_64:
174       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
175         setLibcallName(RTLIB::BZERO, "__bzero");
176       break;
177     case Triple::aarch64:
178     case Triple::aarch64_32:
179       setLibcallName(RTLIB::BZERO, "bzero");
180       break;
181     default:
182       break;
183     }
184 
185     if (darwinHasSinCos(TT)) {
186       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
187       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
188       if (TT.isWatchABI()) {
189         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
190                               CallingConv::ARM_AAPCS_VFP);
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
192                               CallingConv::ARM_AAPCS_VFP);
193       }
194     }
195   } else {
196     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
197     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
198   }
199 
200   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
201       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
202     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
203     setLibcallName(RTLIB::SINCOS_F64, "sincos");
204     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
205     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
206     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
207   }
208 
209   if (TT.isPS4CPU()) {
210     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
211     setLibcallName(RTLIB::SINCOS_F64, "sincos");
212   }
213 
214   if (TT.isOSOpenBSD()) {
215     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
216   }
217 }
218 
219 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
220 /// UNKNOWN_LIBCALL if there is none.
221 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
222   if (OpVT == MVT::f16) {
223     if (RetVT == MVT::f32)
224       return FPEXT_F16_F32;
225   } else if (OpVT == MVT::f32) {
226     if (RetVT == MVT::f64)
227       return FPEXT_F32_F64;
228     if (RetVT == MVT::f128)
229       return FPEXT_F32_F128;
230     if (RetVT == MVT::ppcf128)
231       return FPEXT_F32_PPCF128;
232   } else if (OpVT == MVT::f64) {
233     if (RetVT == MVT::f128)
234       return FPEXT_F64_F128;
235     else if (RetVT == MVT::ppcf128)
236       return FPEXT_F64_PPCF128;
237   } else if (OpVT == MVT::f80) {
238     if (RetVT == MVT::f128)
239       return FPEXT_F80_F128;
240   }
241 
242   return UNKNOWN_LIBCALL;
243 }
244 
245 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
246 /// UNKNOWN_LIBCALL if there is none.
247 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
248   if (RetVT == MVT::f16) {
249     if (OpVT == MVT::f32)
250       return FPROUND_F32_F16;
251     if (OpVT == MVT::f64)
252       return FPROUND_F64_F16;
253     if (OpVT == MVT::f80)
254       return FPROUND_F80_F16;
255     if (OpVT == MVT::f128)
256       return FPROUND_F128_F16;
257     if (OpVT == MVT::ppcf128)
258       return FPROUND_PPCF128_F16;
259   } else if (RetVT == MVT::f32) {
260     if (OpVT == MVT::f64)
261       return FPROUND_F64_F32;
262     if (OpVT == MVT::f80)
263       return FPROUND_F80_F32;
264     if (OpVT == MVT::f128)
265       return FPROUND_F128_F32;
266     if (OpVT == MVT::ppcf128)
267       return FPROUND_PPCF128_F32;
268   } else if (RetVT == MVT::f64) {
269     if (OpVT == MVT::f80)
270       return FPROUND_F80_F64;
271     if (OpVT == MVT::f128)
272       return FPROUND_F128_F64;
273     if (OpVT == MVT::ppcf128)
274       return FPROUND_PPCF128_F64;
275   } else if (RetVT == MVT::f80) {
276     if (OpVT == MVT::f128)
277       return FPROUND_F128_F80;
278   }
279 
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOSINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOSINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOSINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOSINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOSINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOSINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOSINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOSINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOSINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOSINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOSINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOSINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOSINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOSINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOSINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::f32) {
329     if (RetVT == MVT::i32)
330       return FPTOUINT_F32_I32;
331     if (RetVT == MVT::i64)
332       return FPTOUINT_F32_I64;
333     if (RetVT == MVT::i128)
334       return FPTOUINT_F32_I128;
335   } else if (OpVT == MVT::f64) {
336     if (RetVT == MVT::i32)
337       return FPTOUINT_F64_I32;
338     if (RetVT == MVT::i64)
339       return FPTOUINT_F64_I64;
340     if (RetVT == MVT::i128)
341       return FPTOUINT_F64_I128;
342   } else if (OpVT == MVT::f80) {
343     if (RetVT == MVT::i32)
344       return FPTOUINT_F80_I32;
345     if (RetVT == MVT::i64)
346       return FPTOUINT_F80_I64;
347     if (RetVT == MVT::i128)
348       return FPTOUINT_F80_I128;
349   } else if (OpVT == MVT::f128) {
350     if (RetVT == MVT::i32)
351       return FPTOUINT_F128_I32;
352     if (RetVT == MVT::i64)
353       return FPTOUINT_F128_I64;
354     if (RetVT == MVT::i128)
355       return FPTOUINT_F128_I128;
356   } else if (OpVT == MVT::ppcf128) {
357     if (RetVT == MVT::i32)
358       return FPTOUINT_PPCF128_I32;
359     if (RetVT == MVT::i64)
360       return FPTOUINT_PPCF128_I64;
361     if (RetVT == MVT::i128)
362       return FPTOUINT_PPCF128_I128;
363   }
364   return UNKNOWN_LIBCALL;
365 }
366 
367 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
370   if (OpVT == MVT::i32) {
371     if (RetVT == MVT::f32)
372       return SINTTOFP_I32_F32;
373     if (RetVT == MVT::f64)
374       return SINTTOFP_I32_F64;
375     if (RetVT == MVT::f80)
376       return SINTTOFP_I32_F80;
377     if (RetVT == MVT::f128)
378       return SINTTOFP_I32_F128;
379     if (RetVT == MVT::ppcf128)
380       return SINTTOFP_I32_PPCF128;
381   } else if (OpVT == MVT::i64) {
382     if (RetVT == MVT::f32)
383       return SINTTOFP_I64_F32;
384     if (RetVT == MVT::f64)
385       return SINTTOFP_I64_F64;
386     if (RetVT == MVT::f80)
387       return SINTTOFP_I64_F80;
388     if (RetVT == MVT::f128)
389       return SINTTOFP_I64_F128;
390     if (RetVT == MVT::ppcf128)
391       return SINTTOFP_I64_PPCF128;
392   } else if (OpVT == MVT::i128) {
393     if (RetVT == MVT::f32)
394       return SINTTOFP_I128_F32;
395     if (RetVT == MVT::f64)
396       return SINTTOFP_I128_F64;
397     if (RetVT == MVT::f80)
398       return SINTTOFP_I128_F80;
399     if (RetVT == MVT::f128)
400       return SINTTOFP_I128_F128;
401     if (RetVT == MVT::ppcf128)
402       return SINTTOFP_I128_PPCF128;
403   }
404   return UNKNOWN_LIBCALL;
405 }
406 
407 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
408 /// UNKNOWN_LIBCALL if there is none.
409 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
410   if (OpVT == MVT::i32) {
411     if (RetVT == MVT::f32)
412       return UINTTOFP_I32_F32;
413     if (RetVT == MVT::f64)
414       return UINTTOFP_I32_F64;
415     if (RetVT == MVT::f80)
416       return UINTTOFP_I32_F80;
417     if (RetVT == MVT::f128)
418       return UINTTOFP_I32_F128;
419     if (RetVT == MVT::ppcf128)
420       return UINTTOFP_I32_PPCF128;
421   } else if (OpVT == MVT::i64) {
422     if (RetVT == MVT::f32)
423       return UINTTOFP_I64_F32;
424     if (RetVT == MVT::f64)
425       return UINTTOFP_I64_F64;
426     if (RetVT == MVT::f80)
427       return UINTTOFP_I64_F80;
428     if (RetVT == MVT::f128)
429       return UINTTOFP_I64_F128;
430     if (RetVT == MVT::ppcf128)
431       return UINTTOFP_I64_PPCF128;
432   } else if (OpVT == MVT::i128) {
433     if (RetVT == MVT::f32)
434       return UINTTOFP_I128_F32;
435     if (RetVT == MVT::f64)
436       return UINTTOFP_I128_F64;
437     if (RetVT == MVT::f80)
438       return UINTTOFP_I128_F80;
439     if (RetVT == MVT::f128)
440       return UINTTOFP_I128_F128;
441     if (RetVT == MVT::ppcf128)
442       return UINTTOFP_I128_PPCF128;
443   }
444   return UNKNOWN_LIBCALL;
445 }
446 
447 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
448 #define OP_TO_LIBCALL(Name, Enum)                                              \
449   case Name:                                                                   \
450     switch (VT.SimpleTy) {                                                     \
451     default:                                                                   \
452       return UNKNOWN_LIBCALL;                                                  \
453     case MVT::i8:                                                              \
454       return Enum##_1;                                                         \
455     case MVT::i16:                                                             \
456       return Enum##_2;                                                         \
457     case MVT::i32:                                                             \
458       return Enum##_4;                                                         \
459     case MVT::i64:                                                             \
460       return Enum##_8;                                                         \
461     case MVT::i128:                                                            \
462       return Enum##_16;                                                        \
463     }
464 
465   switch (Opc) {
466     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
467     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
468     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
477     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
478   }
479 
480 #undef OP_TO_LIBCALL
481 
482   return UNKNOWN_LIBCALL;
483 }
484 
485 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
486   switch (ElementSize) {
487   case 1:
488     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
489   case 2:
490     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
491   case 4:
492     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
493   case 8:
494     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
495   case 16:
496     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
497   default:
498     return UNKNOWN_LIBCALL;
499   }
500 }
501 
502 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
503   switch (ElementSize) {
504   case 1:
505     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
506   case 2:
507     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
508   case 4:
509     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
510   case 8:
511     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
512   case 16:
513     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
514   default:
515     return UNKNOWN_LIBCALL;
516   }
517 }
518 
519 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
520   switch (ElementSize) {
521   case 1:
522     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
523   case 2:
524     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
525   case 4:
526     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
527   case 8:
528     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
529   case 16:
530     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
531   default:
532     return UNKNOWN_LIBCALL;
533   }
534 }
535 
536 /// InitCmpLibcallCCs - Set default comparison libcall CC.
537 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
538   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
539   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
540   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
541   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
542   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
543   CCs[RTLIB::UNE_F32] = ISD::SETNE;
544   CCs[RTLIB::UNE_F64] = ISD::SETNE;
545   CCs[RTLIB::UNE_F128] = ISD::SETNE;
546   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
547   CCs[RTLIB::OGE_F32] = ISD::SETGE;
548   CCs[RTLIB::OGE_F64] = ISD::SETGE;
549   CCs[RTLIB::OGE_F128] = ISD::SETGE;
550   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
551   CCs[RTLIB::OLT_F32] = ISD::SETLT;
552   CCs[RTLIB::OLT_F64] = ISD::SETLT;
553   CCs[RTLIB::OLT_F128] = ISD::SETLT;
554   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
555   CCs[RTLIB::OLE_F32] = ISD::SETLE;
556   CCs[RTLIB::OLE_F64] = ISD::SETLE;
557   CCs[RTLIB::OLE_F128] = ISD::SETLE;
558   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
559   CCs[RTLIB::OGT_F32] = ISD::SETGT;
560   CCs[RTLIB::OGT_F64] = ISD::SETGT;
561   CCs[RTLIB::OGT_F128] = ISD::SETGT;
562   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
563   CCs[RTLIB::UO_F32] = ISD::SETNE;
564   CCs[RTLIB::UO_F64] = ISD::SETNE;
565   CCs[RTLIB::UO_F128] = ISD::SETNE;
566   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
567   CCs[RTLIB::O_F32] = ISD::SETEQ;
568   CCs[RTLIB::O_F64] = ISD::SETEQ;
569   CCs[RTLIB::O_F128] = ISD::SETEQ;
570   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
571 }
572 
573 /// NOTE: The TargetMachine owns TLOF.
574 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
575   initActions();
576 
577   // Perform these initializations only once.
578   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
579       MaxLoadsPerMemcmp = 8;
580   MaxGluedStoresPerMemcpy = 0;
581   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
582       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
583   UseUnderscoreSetJmp = false;
584   UseUnderscoreLongJmp = false;
585   HasMultipleConditionRegisters = false;
586   HasExtractBitsInsn = false;
587   JumpIsExpensive = JumpIsExpensiveOverride;
588   PredictableSelectIsExpensive = false;
589   EnableExtLdPromotion = false;
590   StackPointerRegisterToSaveRestore = 0;
591   BooleanContents = UndefinedBooleanContent;
592   BooleanFloatContents = UndefinedBooleanContent;
593   BooleanVectorContents = UndefinedBooleanContent;
594   SchedPreferenceInfo = Sched::ILP;
595   GatherAllAliasesMaxDepth = 18;
596   IsStrictFPEnabled = DisableStrictNodeMutation;
597   // TODO: the default will be switched to 0 in the next commit, along
598   // with the Target-specific changes necessary.
599   MaxAtomicSizeInBitsSupported = 1024;
600 
601   MinCmpXchgSizeInBits = 0;
602   SupportsUnalignedAtomics = false;
603 
604   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
605 
606   InitLibcalls(TM.getTargetTriple());
607   InitCmpLibcallCCs(CmpLibcallCCs);
608 }
609 
610 void TargetLoweringBase::initActions() {
611   // All operations default to being supported.
612   memset(OpActions, 0, sizeof(OpActions));
613   memset(LoadExtActions, 0, sizeof(LoadExtActions));
614   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
615   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
616   memset(CondCodeActions, 0, sizeof(CondCodeActions));
617   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
618   std::fill(std::begin(TargetDAGCombineArray),
619             std::end(TargetDAGCombineArray), 0);
620 
621   for (MVT VT : MVT::fp_valuetypes()) {
622     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
623     if (IntVT.isValid()) {
624       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
625       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
626     }
627   }
628 
629   // Set default actions for various operations.
630   for (MVT VT : MVT::all_valuetypes()) {
631     // Default all indexed load / store to expand.
632     for (unsigned IM = (unsigned)ISD::PRE_INC;
633          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
634       setIndexedLoadAction(IM, VT, Expand);
635       setIndexedStoreAction(IM, VT, Expand);
636       setIndexedMaskedLoadAction(IM, VT, Expand);
637       setIndexedMaskedStoreAction(IM, VT, Expand);
638     }
639 
640     // Most backends expect to see the node which just returns the value loaded.
641     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
642 
643     // These operations default to expand.
644     setOperationAction(ISD::FGETSIGN, VT, Expand);
645     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
646     setOperationAction(ISD::FMINNUM, VT, Expand);
647     setOperationAction(ISD::FMAXNUM, VT, Expand);
648     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
649     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
650     setOperationAction(ISD::FMINIMUM, VT, Expand);
651     setOperationAction(ISD::FMAXIMUM, VT, Expand);
652     setOperationAction(ISD::FMAD, VT, Expand);
653     setOperationAction(ISD::SMIN, VT, Expand);
654     setOperationAction(ISD::SMAX, VT, Expand);
655     setOperationAction(ISD::UMIN, VT, Expand);
656     setOperationAction(ISD::UMAX, VT, Expand);
657     setOperationAction(ISD::ABS, VT, Expand);
658     setOperationAction(ISD::FSHL, VT, Expand);
659     setOperationAction(ISD::FSHR, VT, Expand);
660     setOperationAction(ISD::SADDSAT, VT, Expand);
661     setOperationAction(ISD::UADDSAT, VT, Expand);
662     setOperationAction(ISD::SSUBSAT, VT, Expand);
663     setOperationAction(ISD::USUBSAT, VT, Expand);
664     setOperationAction(ISD::SMULFIX, VT, Expand);
665     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
666     setOperationAction(ISD::UMULFIX, VT, Expand);
667     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
668 
669     // Overflow operations default to expand
670     setOperationAction(ISD::SADDO, VT, Expand);
671     setOperationAction(ISD::SSUBO, VT, Expand);
672     setOperationAction(ISD::UADDO, VT, Expand);
673     setOperationAction(ISD::USUBO, VT, Expand);
674     setOperationAction(ISD::SMULO, VT, Expand);
675     setOperationAction(ISD::UMULO, VT, Expand);
676 
677     // ADDCARRY operations default to expand
678     setOperationAction(ISD::ADDCARRY, VT, Expand);
679     setOperationAction(ISD::SUBCARRY, VT, Expand);
680     setOperationAction(ISD::SETCCCARRY, VT, Expand);
681 
682     // ADDC/ADDE/SUBC/SUBE default to expand.
683     setOperationAction(ISD::ADDC, VT, Expand);
684     setOperationAction(ISD::ADDE, VT, Expand);
685     setOperationAction(ISD::SUBC, VT, Expand);
686     setOperationAction(ISD::SUBE, VT, Expand);
687 
688     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
689     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
691 
692     setOperationAction(ISD::BITREVERSE, VT, Expand);
693 
694     // These library functions default to expand.
695     setOperationAction(ISD::FROUND, VT, Expand);
696     setOperationAction(ISD::FPOWI, VT, Expand);
697 
698     // These operations default to expand for vector types.
699     if (VT.isVector()) {
700       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
701       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
702       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
703       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
704       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
705     }
706 
707     // Constrained floating-point operations default to expand.
708 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
709     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
710 #include "llvm/IR/ConstrainedOps.def"
711 
712     // For most targets @llvm.get.dynamic.area.offset just returns 0.
713     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
714 
715     // Vector reduction default to expand.
716     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
717     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
718     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
719     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
720     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
725     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
726     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
727     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
728     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
729   }
730 
731   // Most targets ignore the @llvm.prefetch intrinsic.
732   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
733 
734   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
735   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
736 
737   // ConstantFP nodes default to expand.  Targets can either change this to
738   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
739   // to optimize expansions for certain constants.
740   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
741   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
742   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
743   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
744   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
745 
746   // These library functions default to expand.
747   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
748     setOperationAction(ISD::FCBRT,      VT, Expand);
749     setOperationAction(ISD::FLOG ,      VT, Expand);
750     setOperationAction(ISD::FLOG2,      VT, Expand);
751     setOperationAction(ISD::FLOG10,     VT, Expand);
752     setOperationAction(ISD::FEXP ,      VT, Expand);
753     setOperationAction(ISD::FEXP2,      VT, Expand);
754     setOperationAction(ISD::FFLOOR,     VT, Expand);
755     setOperationAction(ISD::FNEARBYINT, VT, Expand);
756     setOperationAction(ISD::FCEIL,      VT, Expand);
757     setOperationAction(ISD::FRINT,      VT, Expand);
758     setOperationAction(ISD::FTRUNC,     VT, Expand);
759     setOperationAction(ISD::FROUND,     VT, Expand);
760     setOperationAction(ISD::LROUND,     VT, Expand);
761     setOperationAction(ISD::LLROUND,    VT, Expand);
762     setOperationAction(ISD::LRINT,      VT, Expand);
763     setOperationAction(ISD::LLRINT,     VT, Expand);
764   }
765 
766   // Default ISD::TRAP to expand (which turns it into abort).
767   setOperationAction(ISD::TRAP, MVT::Other, Expand);
768 
769   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
770   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
771   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
772 }
773 
774 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
775                                                EVT) const {
776   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
777 }
778 
779 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
780                                          bool LegalTypes) const {
781   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
782   if (LHSTy.isVector())
783     return LHSTy;
784   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
785                     : getPointerTy(DL);
786 }
787 
788 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
789   assert(isTypeLegal(VT));
790   switch (Op) {
791   default:
792     return false;
793   case ISD::SDIV:
794   case ISD::UDIV:
795   case ISD::SREM:
796   case ISD::UREM:
797     return true;
798   }
799 }
800 
801 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
802   // If the command-line option was specified, ignore this request.
803   if (!JumpIsExpensiveOverride.getNumOccurrences())
804     JumpIsExpensive = isExpensive;
805 }
806 
807 TargetLoweringBase::LegalizeKind
808 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
809   // If this is a simple type, use the ComputeRegisterProp mechanism.
810   if (VT.isSimple()) {
811     MVT SVT = VT.getSimpleVT();
812     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
813     MVT NVT = TransformToType[SVT.SimpleTy];
814     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
815 
816     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
817             (NVT.isVector() ||
818              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
819            "Promote may not follow Expand or Promote");
820 
821     if (LA == TypeSplitVector)
822       return LegalizeKind(LA,
823                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
824                                            SVT.getVectorNumElements() / 2));
825     if (LA == TypeScalarizeVector)
826       return LegalizeKind(LA, SVT.getVectorElementType());
827     return LegalizeKind(LA, NVT);
828   }
829 
830   // Handle Extended Scalar Types.
831   if (!VT.isVector()) {
832     assert(VT.isInteger() && "Float types must be simple");
833     unsigned BitSize = VT.getSizeInBits();
834     // First promote to a power-of-two size, then expand if necessary.
835     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
836       EVT NVT = VT.getRoundIntegerType(Context);
837       assert(NVT != VT && "Unable to round integer VT");
838       LegalizeKind NextStep = getTypeConversion(Context, NVT);
839       // Avoid multi-step promotion.
840       if (NextStep.first == TypePromoteInteger)
841         return NextStep;
842       // Return rounded integer type.
843       return LegalizeKind(TypePromoteInteger, NVT);
844     }
845 
846     return LegalizeKind(TypeExpandInteger,
847                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
848   }
849 
850   // Handle vector types.
851   unsigned NumElts = VT.getVectorNumElements();
852   EVT EltVT = VT.getVectorElementType();
853 
854   // Vectors with only one element are always scalarized.
855   if (NumElts == 1)
856     return LegalizeKind(TypeScalarizeVector, EltVT);
857 
858   // Try to widen vector elements until the element type is a power of two and
859   // promote it to a legal type later on, for example:
860   // <3 x i8> -> <4 x i8> -> <4 x i32>
861   if (EltVT.isInteger()) {
862     // Vectors with a number of elements that is not a power of two are always
863     // widened, for example <3 x i8> -> <4 x i8>.
864     if (!VT.isPow2VectorType()) {
865       NumElts = (unsigned)NextPowerOf2(NumElts);
866       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
867       return LegalizeKind(TypeWidenVector, NVT);
868     }
869 
870     // Examine the element type.
871     LegalizeKind LK = getTypeConversion(Context, EltVT);
872 
873     // If type is to be expanded, split the vector.
874     //  <4 x i140> -> <2 x i140>
875     if (LK.first == TypeExpandInteger)
876       return LegalizeKind(TypeSplitVector,
877                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
878 
879     // Promote the integer element types until a legal vector type is found
880     // or until the element integer type is too big. If a legal type was not
881     // found, fallback to the usual mechanism of widening/splitting the
882     // vector.
883     EVT OldEltVT = EltVT;
884     while (true) {
885       // Increase the bitwidth of the element to the next pow-of-two
886       // (which is greater than 8 bits).
887       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
888                   .getRoundIntegerType(Context);
889 
890       // Stop trying when getting a non-simple element type.
891       // Note that vector elements may be greater than legal vector element
892       // types. Example: X86 XMM registers hold 64bit element on 32bit
893       // systems.
894       if (!EltVT.isSimple())
895         break;
896 
897       // Build a new vector type and check if it is legal.
898       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
899       // Found a legal promoted vector type.
900       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
901         return LegalizeKind(TypePromoteInteger,
902                             EVT::getVectorVT(Context, EltVT, NumElts));
903     }
904 
905     // Reset the type to the unexpanded type if we did not find a legal vector
906     // type with a promoted vector element type.
907     EltVT = OldEltVT;
908   }
909 
910   // Try to widen the vector until a legal type is found.
911   // If there is no wider legal type, split the vector.
912   while (true) {
913     // Round up to the next power of 2.
914     NumElts = (unsigned)NextPowerOf2(NumElts);
915 
916     // If there is no simple vector type with this many elements then there
917     // cannot be a larger legal vector type.  Note that this assumes that
918     // there are no skipped intermediate vector types in the simple types.
919     if (!EltVT.isSimple())
920       break;
921     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
922     if (LargerVector == MVT())
923       break;
924 
925     // If this type is legal then widen the vector.
926     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
927       return LegalizeKind(TypeWidenVector, LargerVector);
928   }
929 
930   // Widen odd vectors to next power of two.
931   if (!VT.isPow2VectorType()) {
932     EVT NVT = VT.getPow2VectorType(Context);
933     return LegalizeKind(TypeWidenVector, NVT);
934   }
935 
936   // Vectors with illegal element types are expanded.
937   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
938   return LegalizeKind(TypeSplitVector, NVT);
939 }
940 
941 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
942                                           unsigned &NumIntermediates,
943                                           MVT &RegisterVT,
944                                           TargetLoweringBase *TLI) {
945   // Figure out the right, legal destination reg to copy into.
946   unsigned NumElts = VT.getVectorNumElements();
947   MVT EltTy = VT.getVectorElementType();
948 
949   unsigned NumVectorRegs = 1;
950 
951   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
952   // could break down into LHS/RHS like LegalizeDAG does.
953   if (!isPowerOf2_32(NumElts)) {
954     NumVectorRegs = NumElts;
955     NumElts = 1;
956   }
957 
958   // Divide the input until we get to a supported size.  This will always
959   // end with a scalar if the target doesn't support vectors.
960   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
961     NumElts >>= 1;
962     NumVectorRegs <<= 1;
963   }
964 
965   NumIntermediates = NumVectorRegs;
966 
967   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
968   if (!TLI->isTypeLegal(NewVT))
969     NewVT = EltTy;
970   IntermediateVT = NewVT;
971 
972   unsigned NewVTSize = NewVT.getSizeInBits();
973 
974   // Convert sizes such as i33 to i64.
975   if (!isPowerOf2_32(NewVTSize))
976     NewVTSize = NextPowerOf2(NewVTSize);
977 
978   MVT DestVT = TLI->getRegisterType(NewVT);
979   RegisterVT = DestVT;
980   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
981     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
982 
983   // Otherwise, promotion or legal types use the same number of registers as
984   // the vector decimated to the appropriate level.
985   return NumVectorRegs;
986 }
987 
988 /// isLegalRC - Return true if the value types that can be represented by the
989 /// specified register class are all legal.
990 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
991                                    const TargetRegisterClass &RC) const {
992   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
993     if (isTypeLegal(*I))
994       return true;
995   return false;
996 }
997 
998 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
999 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1000 MachineBasicBlock *
1001 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1002                                    MachineBasicBlock *MBB) const {
1003   MachineInstr *MI = &InitialMI;
1004   MachineFunction &MF = *MI->getMF();
1005   MachineFrameInfo &MFI = MF.getFrameInfo();
1006 
1007   // We're handling multiple types of operands here:
1008   // PATCHPOINT MetaArgs - live-in, read only, direct
1009   // STATEPOINT Deopt Spill - live-through, read only, indirect
1010   // STATEPOINT Deopt Alloca - live-through, read only, direct
1011   // (We're currently conservative and mark the deopt slots read/write in
1012   // practice.)
1013   // STATEPOINT GC Spill - live-through, read/write, indirect
1014   // STATEPOINT GC Alloca - live-through, read/write, direct
1015   // The live-in vs live-through is handled already (the live through ones are
1016   // all stack slots), but we need to handle the different type of stackmap
1017   // operands and memory effects here.
1018 
1019   // MI changes inside this loop as we grow operands.
1020   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1021     MachineOperand &MO = MI->getOperand(OperIdx);
1022     if (!MO.isFI())
1023       continue;
1024 
1025     // foldMemoryOperand builds a new MI after replacing a single FI operand
1026     // with the canonical set of five x86 addressing-mode operands.
1027     int FI = MO.getIndex();
1028     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1029 
1030     // Copy operands before the frame-index.
1031     for (unsigned i = 0; i < OperIdx; ++i)
1032       MIB.add(MI->getOperand(i));
1033     // Add frame index operands recognized by stackmaps.cpp
1034     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1035       // indirect-mem-ref tag, size, #FI, offset.
1036       // Used for spills inserted by StatepointLowering.  This codepath is not
1037       // used for patchpoints/stackmaps at all, for these spilling is done via
1038       // foldMemoryOperand callback only.
1039       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1040       MIB.addImm(StackMaps::IndirectMemRefOp);
1041       MIB.addImm(MFI.getObjectSize(FI));
1042       MIB.add(MI->getOperand(OperIdx));
1043       MIB.addImm(0);
1044     } else {
1045       // direct-mem-ref tag, #FI, offset.
1046       // Used by patchpoint, and direct alloca arguments to statepoints
1047       MIB.addImm(StackMaps::DirectMemRefOp);
1048       MIB.add(MI->getOperand(OperIdx));
1049       MIB.addImm(0);
1050     }
1051     // Copy the operands after the frame index.
1052     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1053       MIB.add(MI->getOperand(i));
1054 
1055     // Inherit previous memory operands.
1056     MIB.cloneMemRefs(*MI);
1057     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1058 
1059     // Add a new memory operand for this FI.
1060     assert(MFI.getObjectOffset(FI) != -1);
1061 
1062     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1063     // PATCHPOINT should be updated to do the same. (TODO)
1064     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1065       auto Flags = MachineMemOperand::MOLoad;
1066       MachineMemOperand *MMO = MF.getMachineMemOperand(
1067           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1068           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1069       MIB->addMemOperand(MF, MMO);
1070     }
1071 
1072     // Replace the instruction and update the operand index.
1073     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1074     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1075     MI->eraseFromParent();
1076     MI = MIB;
1077   }
1078   return MBB;
1079 }
1080 
1081 MachineBasicBlock *
1082 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1083                                         MachineBasicBlock *MBB) const {
1084   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1085          "Called emitXRayCustomEvent on the wrong MI!");
1086   auto &MF = *MI.getMF();
1087   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1088   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1089     MIB.add(MI.getOperand(OpIdx));
1090 
1091   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1092   MI.eraseFromParent();
1093   return MBB;
1094 }
1095 
1096 MachineBasicBlock *
1097 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1098                                        MachineBasicBlock *MBB) const {
1099   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1100          "Called emitXRayTypedEvent on the wrong MI!");
1101   auto &MF = *MI.getMF();
1102   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1103   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1104     MIB.add(MI.getOperand(OpIdx));
1105 
1106   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1107   MI.eraseFromParent();
1108   return MBB;
1109 }
1110 
1111 /// findRepresentativeClass - Return the largest legal super-reg register class
1112 /// of the register class for the specified type and its associated "cost".
1113 // This function is in TargetLowering because it uses RegClassForVT which would
1114 // need to be moved to TargetRegisterInfo and would necessitate moving
1115 // isTypeLegal over as well - a massive change that would just require
1116 // TargetLowering having a TargetRegisterInfo class member that it would use.
1117 std::pair<const TargetRegisterClass *, uint8_t>
1118 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1119                                             MVT VT) const {
1120   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1121   if (!RC)
1122     return std::make_pair(RC, 0);
1123 
1124   // Compute the set of all super-register classes.
1125   BitVector SuperRegRC(TRI->getNumRegClasses());
1126   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1127     SuperRegRC.setBitsInMask(RCI.getMask());
1128 
1129   // Find the first legal register class with the largest spill size.
1130   const TargetRegisterClass *BestRC = RC;
1131   for (unsigned i : SuperRegRC.set_bits()) {
1132     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1133     // We want the largest possible spill size.
1134     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1135       continue;
1136     if (!isLegalRC(*TRI, *SuperRC))
1137       continue;
1138     BestRC = SuperRC;
1139   }
1140   return std::make_pair(BestRC, 1);
1141 }
1142 
1143 /// computeRegisterProperties - Once all of the register classes are added,
1144 /// this allows us to compute derived properties we expose.
1145 void TargetLoweringBase::computeRegisterProperties(
1146     const TargetRegisterInfo *TRI) {
1147   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1148                 "Too many value types for ValueTypeActions to hold!");
1149 
1150   // Everything defaults to needing one register.
1151   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1152     NumRegistersForVT[i] = 1;
1153     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1154   }
1155   // ...except isVoid, which doesn't need any registers.
1156   NumRegistersForVT[MVT::isVoid] = 0;
1157 
1158   // Find the largest integer register class.
1159   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1160   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1161     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1162 
1163   // Every integer value type larger than this largest register takes twice as
1164   // many registers to represent as the previous ValueType.
1165   for (unsigned ExpandedReg = LargestIntReg + 1;
1166        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1167     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1168     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1169     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1170     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1171                                    TypeExpandInteger);
1172   }
1173 
1174   // Inspect all of the ValueType's smaller than the largest integer
1175   // register to see which ones need promotion.
1176   unsigned LegalIntReg = LargestIntReg;
1177   for (unsigned IntReg = LargestIntReg - 1;
1178        IntReg >= (unsigned)MVT::i1; --IntReg) {
1179     MVT IVT = (MVT::SimpleValueType)IntReg;
1180     if (isTypeLegal(IVT)) {
1181       LegalIntReg = IntReg;
1182     } else {
1183       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1184         (MVT::SimpleValueType)LegalIntReg;
1185       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1186     }
1187   }
1188 
1189   // ppcf128 type is really two f64's.
1190   if (!isTypeLegal(MVT::ppcf128)) {
1191     if (isTypeLegal(MVT::f64)) {
1192       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1193       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1194       TransformToType[MVT::ppcf128] = MVT::f64;
1195       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1196     } else {
1197       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1198       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1199       TransformToType[MVT::ppcf128] = MVT::i128;
1200       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1201     }
1202   }
1203 
1204   // Decide how to handle f128. If the target does not have native f128 support,
1205   // expand it to i128 and we will be generating soft float library calls.
1206   if (!isTypeLegal(MVT::f128)) {
1207     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1208     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1209     TransformToType[MVT::f128] = MVT::i128;
1210     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1211   }
1212 
1213   // Decide how to handle f64. If the target does not have native f64 support,
1214   // expand it to i64 and we will be generating soft float library calls.
1215   if (!isTypeLegal(MVT::f64)) {
1216     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1217     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1218     TransformToType[MVT::f64] = MVT::i64;
1219     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1220   }
1221 
1222   // Decide how to handle f32. If the target does not have native f32 support,
1223   // expand it to i32 and we will be generating soft float library calls.
1224   if (!isTypeLegal(MVT::f32)) {
1225     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1226     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1227     TransformToType[MVT::f32] = MVT::i32;
1228     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1229   }
1230 
1231   // Decide how to handle f16. If the target does not have native f16 support,
1232   // promote it to f32, because there are no f16 library calls (except for
1233   // conversions).
1234   if (!isTypeLegal(MVT::f16)) {
1235     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1236     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1237     TransformToType[MVT::f16] = MVT::f32;
1238     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1239   }
1240 
1241   // Loop over all of the vector value types to see which need transformations.
1242   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1243        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1244     MVT VT = (MVT::SimpleValueType) i;
1245     if (isTypeLegal(VT))
1246       continue;
1247 
1248     MVT EltVT = VT.getVectorElementType();
1249     unsigned NElts = VT.getVectorNumElements();
1250     bool IsLegalWiderType = false;
1251     bool IsScalable = VT.isScalableVector();
1252     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1253     switch (PreferredAction) {
1254     case TypePromoteInteger: {
1255       MVT::SimpleValueType EndVT = IsScalable ?
1256                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1257                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1258       // Try to promote the elements of integer vectors. If no legal
1259       // promotion was found, fall through to the widen-vector method.
1260       for (unsigned nVT = i + 1;
1261            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1262         MVT SVT = (MVT::SimpleValueType) nVT;
1263         // Promote vectors of integers to vectors with the same number
1264         // of elements, with a wider element type.
1265         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1266             SVT.getVectorNumElements() == NElts &&
1267             SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1268           TransformToType[i] = SVT;
1269           RegisterTypeForVT[i] = SVT;
1270           NumRegistersForVT[i] = 1;
1271           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1272           IsLegalWiderType = true;
1273           break;
1274         }
1275       }
1276       if (IsLegalWiderType)
1277         break;
1278       LLVM_FALLTHROUGH;
1279     }
1280 
1281     case TypeWidenVector:
1282       if (isPowerOf2_32(NElts)) {
1283         // Try to widen the vector.
1284         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1285           MVT SVT = (MVT::SimpleValueType) nVT;
1286           if (SVT.getVectorElementType() == EltVT
1287               && SVT.getVectorNumElements() > NElts
1288               && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1289             TransformToType[i] = SVT;
1290             RegisterTypeForVT[i] = SVT;
1291             NumRegistersForVT[i] = 1;
1292             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1293             IsLegalWiderType = true;
1294             break;
1295           }
1296         }
1297         if (IsLegalWiderType)
1298           break;
1299       } else {
1300         // Only widen to the next power of 2 to keep consistency with EVT.
1301         MVT NVT = VT.getPow2VectorType();
1302         if (isTypeLegal(NVT)) {
1303           TransformToType[i] = NVT;
1304           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1305           RegisterTypeForVT[i] = NVT;
1306           NumRegistersForVT[i] = 1;
1307           break;
1308         }
1309       }
1310       LLVM_FALLTHROUGH;
1311 
1312     case TypeSplitVector:
1313     case TypeScalarizeVector: {
1314       MVT IntermediateVT;
1315       MVT RegisterVT;
1316       unsigned NumIntermediates;
1317       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1318           NumIntermediates, RegisterVT, this);
1319       NumRegistersForVT[i] = NumRegisters;
1320       assert(NumRegistersForVT[i] == NumRegisters &&
1321              "NumRegistersForVT size cannot represent NumRegisters!");
1322       RegisterTypeForVT[i] = RegisterVT;
1323 
1324       MVT NVT = VT.getPow2VectorType();
1325       if (NVT == VT) {
1326         // Type is already a power of 2.  The default action is to split.
1327         TransformToType[i] = MVT::Other;
1328         if (PreferredAction == TypeScalarizeVector)
1329           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1330         else if (PreferredAction == TypeSplitVector)
1331           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1332         else
1333           // Set type action according to the number of elements.
1334           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1335                                                         : TypeSplitVector);
1336       } else {
1337         TransformToType[i] = NVT;
1338         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1339       }
1340       break;
1341     }
1342     default:
1343       llvm_unreachable("Unknown vector legalization action!");
1344     }
1345   }
1346 
1347   // Determine the 'representative' register class for each value type.
1348   // An representative register class is the largest (meaning one which is
1349   // not a sub-register class / subreg register class) legal register class for
1350   // a group of value types. For example, on i386, i8, i16, and i32
1351   // representative would be GR32; while on x86_64 it's GR64.
1352   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1353     const TargetRegisterClass* RRC;
1354     uint8_t Cost;
1355     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1356     RepRegClassForVT[i] = RRC;
1357     RepRegClassCostForVT[i] = Cost;
1358   }
1359 }
1360 
1361 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1362                                            EVT VT) const {
1363   assert(!VT.isVector() && "No default SetCC type for vectors!");
1364   return getPointerTy(DL).SimpleTy;
1365 }
1366 
1367 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1368   return MVT::i32; // return the default value
1369 }
1370 
1371 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1372 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1373 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1374 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1375 ///
1376 /// This method returns the number of registers needed, and the VT for each
1377 /// register.  It also returns the VT and quantity of the intermediate values
1378 /// before they are promoted/expanded.
1379 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1380                                                 EVT &IntermediateVT,
1381                                                 unsigned &NumIntermediates,
1382                                                 MVT &RegisterVT) const {
1383   unsigned NumElts = VT.getVectorNumElements();
1384 
1385   // If there is a wider vector type with the same element type as this one,
1386   // or a promoted vector type that has the same number of elements which
1387   // are wider, then we should convert to that legal vector type.
1388   // This handles things like <2 x float> -> <4 x float> and
1389   // <4 x i1> -> <4 x i32>.
1390   LegalizeTypeAction TA = getTypeAction(Context, VT);
1391   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1392     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1393     if (isTypeLegal(RegisterEVT)) {
1394       IntermediateVT = RegisterEVT;
1395       RegisterVT = RegisterEVT.getSimpleVT();
1396       NumIntermediates = 1;
1397       return 1;
1398     }
1399   }
1400 
1401   // Figure out the right, legal destination reg to copy into.
1402   EVT EltTy = VT.getVectorElementType();
1403 
1404   unsigned NumVectorRegs = 1;
1405 
1406   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1407   // could break down into LHS/RHS like LegalizeDAG does.
1408   if (!isPowerOf2_32(NumElts)) {
1409     NumVectorRegs = NumElts;
1410     NumElts = 1;
1411   }
1412 
1413   // Divide the input until we get to a supported size.  This will always
1414   // end with a scalar if the target doesn't support vectors.
1415   while (NumElts > 1 && !isTypeLegal(
1416                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1417     NumElts >>= 1;
1418     NumVectorRegs <<= 1;
1419   }
1420 
1421   NumIntermediates = NumVectorRegs;
1422 
1423   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1424   if (!isTypeLegal(NewVT))
1425     NewVT = EltTy;
1426   IntermediateVT = NewVT;
1427 
1428   MVT DestVT = getRegisterType(Context, NewVT);
1429   RegisterVT = DestVT;
1430   unsigned NewVTSize = NewVT.getSizeInBits();
1431 
1432   // Convert sizes such as i33 to i64.
1433   if (!isPowerOf2_32(NewVTSize))
1434     NewVTSize = NextPowerOf2(NewVTSize);
1435 
1436   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1437     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1438 
1439   // Otherwise, promotion or legal types use the same number of registers as
1440   // the vector decimated to the appropriate level.
1441   return NumVectorRegs;
1442 }
1443 
1444 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1445                                                 uint64_t NumCases,
1446                                                 uint64_t Range,
1447                                                 ProfileSummaryInfo *PSI,
1448                                                 BlockFrequencyInfo *BFI) const {
1449   // FIXME: This function check the maximum table size and density, but the
1450   // minimum size is not checked. It would be nice if the minimum size is
1451   // also combined within this function. Currently, the minimum size check is
1452   // performed in findJumpTable() in SelectionDAGBuiler and
1453   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1454   const bool OptForSize =
1455       SI->getParent()->getParent()->hasOptSize() ||
1456       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1457   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1458   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1459 
1460   // Check whether the number of cases is small enough and
1461   // the range is dense enough for a jump table.
1462   return (OptForSize || Range <= MaxJumpTableSize) &&
1463          (NumCases * 100 >= Range * MinDensity);
1464 }
1465 
1466 /// Get the EVTs and ArgFlags collections that represent the legalized return
1467 /// type of the given function.  This does not require a DAG or a return value,
1468 /// and is suitable for use before any DAGs for the function are constructed.
1469 /// TODO: Move this out of TargetLowering.cpp.
1470 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1471                          AttributeList attr,
1472                          SmallVectorImpl<ISD::OutputArg> &Outs,
1473                          const TargetLowering &TLI, const DataLayout &DL) {
1474   SmallVector<EVT, 4> ValueVTs;
1475   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1476   unsigned NumValues = ValueVTs.size();
1477   if (NumValues == 0) return;
1478 
1479   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1480     EVT VT = ValueVTs[j];
1481     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1482 
1483     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1484       ExtendKind = ISD::SIGN_EXTEND;
1485     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1486       ExtendKind = ISD::ZERO_EXTEND;
1487 
1488     // FIXME: C calling convention requires the return type to be promoted to
1489     // at least 32-bit. But this is not necessary for non-C calling
1490     // conventions. The frontend should mark functions whose return values
1491     // require promoting with signext or zeroext attributes.
1492     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1493       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1494       if (VT.bitsLT(MinVT))
1495         VT = MinVT;
1496     }
1497 
1498     unsigned NumParts =
1499         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1500     MVT PartVT =
1501         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1502 
1503     // 'inreg' on function refers to return value
1504     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1505     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1506       Flags.setInReg();
1507 
1508     // Propagate extension type if any
1509     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1510       Flags.setSExt();
1511     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1512       Flags.setZExt();
1513 
1514     for (unsigned i = 0; i < NumParts; ++i)
1515       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1516   }
1517 }
1518 
1519 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1520 /// function arguments in the caller parameter area.  This is the actual
1521 /// alignment, not its logarithm.
1522 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1523                                                    const DataLayout &DL) const {
1524   return DL.getABITypeAlignment(Ty);
1525 }
1526 
1527 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1528     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1529     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1530   // Check if the specified alignment is sufficient based on the data layout.
1531   // TODO: While using the data layout works in practice, a better solution
1532   // would be to implement this check directly (make this a virtual function).
1533   // For example, the ABI alignment may change based on software platform while
1534   // this function should only be affected by hardware implementation.
1535   Type *Ty = VT.getTypeForEVT(Context);
1536   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1537     // Assume that an access that meets the ABI-specified alignment is fast.
1538     if (Fast != nullptr)
1539       *Fast = true;
1540     return true;
1541   }
1542 
1543   // This is a misaligned access.
1544   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1545 }
1546 
1547 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1548     LLVMContext &Context, const DataLayout &DL, EVT VT,
1549     const MachineMemOperand &MMO, bool *Fast) const {
1550   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1551                                         MMO.getAlignment(), MMO.getFlags(),
1552                                         Fast);
1553 }
1554 
1555 bool TargetLoweringBase::allowsMemoryAccess(
1556     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1557     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1558   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1559                                         Flags, Fast);
1560 }
1561 
1562 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1563                                             const DataLayout &DL, EVT VT,
1564                                             const MachineMemOperand &MMO,
1565                                             bool *Fast) const {
1566   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1567                             MMO.getAlignment(), MMO.getFlags(), Fast);
1568 }
1569 
1570 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1571   return BranchProbability(MinPercentageForPredictableBranch, 100);
1572 }
1573 
1574 //===----------------------------------------------------------------------===//
1575 //  TargetTransformInfo Helpers
1576 //===----------------------------------------------------------------------===//
1577 
1578 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1579   enum InstructionOpcodes {
1580 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1581 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1582 #include "llvm/IR/Instruction.def"
1583   };
1584   switch (static_cast<InstructionOpcodes>(Opcode)) {
1585   case Ret:            return 0;
1586   case Br:             return 0;
1587   case Switch:         return 0;
1588   case IndirectBr:     return 0;
1589   case Invoke:         return 0;
1590   case CallBr:         return 0;
1591   case Resume:         return 0;
1592   case Unreachable:    return 0;
1593   case CleanupRet:     return 0;
1594   case CatchRet:       return 0;
1595   case CatchPad:       return 0;
1596   case CatchSwitch:    return 0;
1597   case CleanupPad:     return 0;
1598   case FNeg:           return ISD::FNEG;
1599   case Add:            return ISD::ADD;
1600   case FAdd:           return ISD::FADD;
1601   case Sub:            return ISD::SUB;
1602   case FSub:           return ISD::FSUB;
1603   case Mul:            return ISD::MUL;
1604   case FMul:           return ISD::FMUL;
1605   case UDiv:           return ISD::UDIV;
1606   case SDiv:           return ISD::SDIV;
1607   case FDiv:           return ISD::FDIV;
1608   case URem:           return ISD::UREM;
1609   case SRem:           return ISD::SREM;
1610   case FRem:           return ISD::FREM;
1611   case Shl:            return ISD::SHL;
1612   case LShr:           return ISD::SRL;
1613   case AShr:           return ISD::SRA;
1614   case And:            return ISD::AND;
1615   case Or:             return ISD::OR;
1616   case Xor:            return ISD::XOR;
1617   case Alloca:         return 0;
1618   case Load:           return ISD::LOAD;
1619   case Store:          return ISD::STORE;
1620   case GetElementPtr:  return 0;
1621   case Fence:          return 0;
1622   case AtomicCmpXchg:  return 0;
1623   case AtomicRMW:      return 0;
1624   case Trunc:          return ISD::TRUNCATE;
1625   case ZExt:           return ISD::ZERO_EXTEND;
1626   case SExt:           return ISD::SIGN_EXTEND;
1627   case FPToUI:         return ISD::FP_TO_UINT;
1628   case FPToSI:         return ISD::FP_TO_SINT;
1629   case UIToFP:         return ISD::UINT_TO_FP;
1630   case SIToFP:         return ISD::SINT_TO_FP;
1631   case FPTrunc:        return ISD::FP_ROUND;
1632   case FPExt:          return ISD::FP_EXTEND;
1633   case PtrToInt:       return ISD::BITCAST;
1634   case IntToPtr:       return ISD::BITCAST;
1635   case BitCast:        return ISD::BITCAST;
1636   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1637   case ICmp:           return ISD::SETCC;
1638   case FCmp:           return ISD::SETCC;
1639   case PHI:            return 0;
1640   case Call:           return 0;
1641   case Select:         return ISD::SELECT;
1642   case UserOp1:        return 0;
1643   case UserOp2:        return 0;
1644   case VAArg:          return 0;
1645   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1646   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1647   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1648   case ExtractValue:   return ISD::MERGE_VALUES;
1649   case InsertValue:    return ISD::MERGE_VALUES;
1650   case LandingPad:     return 0;
1651   case Freeze:         return 0;
1652   }
1653 
1654   llvm_unreachable("Unknown instruction type encountered!");
1655 }
1656 
1657 std::pair<int, MVT>
1658 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1659                                             Type *Ty) const {
1660   LLVMContext &C = Ty->getContext();
1661   EVT MTy = getValueType(DL, Ty);
1662 
1663   int Cost = 1;
1664   // We keep legalizing the type until we find a legal kind. We assume that
1665   // the only operation that costs anything is the split. After splitting
1666   // we need to handle two types.
1667   while (true) {
1668     LegalizeKind LK = getTypeConversion(C, MTy);
1669 
1670     if (LK.first == TypeLegal)
1671       return std::make_pair(Cost, MTy.getSimpleVT());
1672 
1673     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1674       Cost *= 2;
1675 
1676     // Do not loop with f128 type.
1677     if (MTy == LK.second)
1678       return std::make_pair(Cost, MTy.getSimpleVT());
1679 
1680     // Keep legalizing the type.
1681     MTy = LK.second;
1682   }
1683 }
1684 
1685 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1686                                                               bool UseTLS) const {
1687   // compiler-rt provides a variable with a magic name.  Targets that do not
1688   // link with compiler-rt may also provide such a variable.
1689   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1690   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1691   auto UnsafeStackPtr =
1692       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1693 
1694   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1695 
1696   if (!UnsafeStackPtr) {
1697     auto TLSModel = UseTLS ?
1698         GlobalValue::InitialExecTLSModel :
1699         GlobalValue::NotThreadLocal;
1700     // The global variable is not defined yet, define it ourselves.
1701     // We use the initial-exec TLS model because we do not support the
1702     // variable living anywhere other than in the main executable.
1703     UnsafeStackPtr = new GlobalVariable(
1704         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1705         UnsafeStackPtrVar, nullptr, TLSModel);
1706   } else {
1707     // The variable exists, check its type and attributes.
1708     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1709       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1710     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1711       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1712                          (UseTLS ? "" : "not ") + "be thread-local");
1713   }
1714   return UnsafeStackPtr;
1715 }
1716 
1717 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1718   if (!TM.getTargetTriple().isAndroid())
1719     return getDefaultSafeStackPointerLocation(IRB, true);
1720 
1721   // Android provides a libc function to retrieve the address of the current
1722   // thread's unsafe stack pointer.
1723   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1724   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1725   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1726                                              StackPtrTy->getPointerTo(0));
1727   return IRB.CreateCall(Fn);
1728 }
1729 
1730 //===----------------------------------------------------------------------===//
1731 //  Loop Strength Reduction hooks
1732 //===----------------------------------------------------------------------===//
1733 
1734 /// isLegalAddressingMode - Return true if the addressing mode represented
1735 /// by AM is legal for this target, for a load/store of the specified type.
1736 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1737                                                const AddrMode &AM, Type *Ty,
1738                                                unsigned AS, Instruction *I) const {
1739   // The default implementation of this implements a conservative RISCy, r+r and
1740   // r+i addr mode.
1741 
1742   // Allows a sign-extended 16-bit immediate field.
1743   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1744     return false;
1745 
1746   // No global is ever allowed as a base.
1747   if (AM.BaseGV)
1748     return false;
1749 
1750   // Only support r+r,
1751   switch (AM.Scale) {
1752   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1753     break;
1754   case 1:
1755     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1756       return false;
1757     // Otherwise we have r+r or r+i.
1758     break;
1759   case 2:
1760     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1761       return false;
1762     // Allow 2*r as r+r.
1763     break;
1764   default: // Don't allow n * r
1765     return false;
1766   }
1767 
1768   return true;
1769 }
1770 
1771 //===----------------------------------------------------------------------===//
1772 //  Stack Protector
1773 //===----------------------------------------------------------------------===//
1774 
1775 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1776 // so that SelectionDAG handle SSP.
1777 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1778   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1779     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1780     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1781     return M.getOrInsertGlobal("__guard_local", PtrTy);
1782   }
1783   return nullptr;
1784 }
1785 
1786 // Currently only support "standard" __stack_chk_guard.
1787 // TODO: add LOAD_STACK_GUARD support.
1788 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1789   if (!M.getNamedValue("__stack_chk_guard"))
1790     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1791                        GlobalVariable::ExternalLinkage,
1792                        nullptr, "__stack_chk_guard");
1793 }
1794 
1795 // Currently only support "standard" __stack_chk_guard.
1796 // TODO: add LOAD_STACK_GUARD support.
1797 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1798   return M.getNamedValue("__stack_chk_guard");
1799 }
1800 
1801 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1802   return nullptr;
1803 }
1804 
1805 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1806   return MinimumJumpTableEntries;
1807 }
1808 
1809 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1810   MinimumJumpTableEntries = Val;
1811 }
1812 
1813 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1814   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1815 }
1816 
1817 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1818   return MaximumJumpTableSize;
1819 }
1820 
1821 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1822   MaximumJumpTableSize = Val;
1823 }
1824 
1825 //===----------------------------------------------------------------------===//
1826 //  Reciprocal Estimates
1827 //===----------------------------------------------------------------------===//
1828 
1829 /// Get the reciprocal estimate attribute string for a function that will
1830 /// override the target defaults.
1831 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1832   const Function &F = MF.getFunction();
1833   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1834 }
1835 
1836 /// Construct a string for the given reciprocal operation of the given type.
1837 /// This string should match the corresponding option to the front-end's
1838 /// "-mrecip" flag assuming those strings have been passed through in an
1839 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1840 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1841   std::string Name = VT.isVector() ? "vec-" : "";
1842 
1843   Name += IsSqrt ? "sqrt" : "div";
1844 
1845   // TODO: Handle "half" or other float types?
1846   if (VT.getScalarType() == MVT::f64) {
1847     Name += "d";
1848   } else {
1849     assert(VT.getScalarType() == MVT::f32 &&
1850            "Unexpected FP type for reciprocal estimate");
1851     Name += "f";
1852   }
1853 
1854   return Name;
1855 }
1856 
1857 /// Return the character position and value (a single numeric character) of a
1858 /// customized refinement operation in the input string if it exists. Return
1859 /// false if there is no customized refinement step count.
1860 static bool parseRefinementStep(StringRef In, size_t &Position,
1861                                 uint8_t &Value) {
1862   const char RefStepToken = ':';
1863   Position = In.find(RefStepToken);
1864   if (Position == StringRef::npos)
1865     return false;
1866 
1867   StringRef RefStepString = In.substr(Position + 1);
1868   // Allow exactly one numeric character for the additional refinement
1869   // step parameter.
1870   if (RefStepString.size() == 1) {
1871     char RefStepChar = RefStepString[0];
1872     if (RefStepChar >= '0' && RefStepChar <= '9') {
1873       Value = RefStepChar - '0';
1874       return true;
1875     }
1876   }
1877   report_fatal_error("Invalid refinement step for -recip.");
1878 }
1879 
1880 /// For the input attribute string, return one of the ReciprocalEstimate enum
1881 /// status values (enabled, disabled, or not specified) for this operation on
1882 /// the specified data type.
1883 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1884   if (Override.empty())
1885     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1886 
1887   SmallVector<StringRef, 4> OverrideVector;
1888   Override.split(OverrideVector, ',');
1889   unsigned NumArgs = OverrideVector.size();
1890 
1891   // Check if "all", "none", or "default" was specified.
1892   if (NumArgs == 1) {
1893     // Look for an optional setting of the number of refinement steps needed
1894     // for this type of reciprocal operation.
1895     size_t RefPos;
1896     uint8_t RefSteps;
1897     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1898       // Split the string for further processing.
1899       Override = Override.substr(0, RefPos);
1900     }
1901 
1902     // All reciprocal types are enabled.
1903     if (Override == "all")
1904       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1905 
1906     // All reciprocal types are disabled.
1907     if (Override == "none")
1908       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1909 
1910     // Target defaults for enablement are used.
1911     if (Override == "default")
1912       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1913   }
1914 
1915   // The attribute string may omit the size suffix ('f'/'d').
1916   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1917   std::string VTNameNoSize = VTName;
1918   VTNameNoSize.pop_back();
1919   static const char DisabledPrefix = '!';
1920 
1921   for (StringRef RecipType : OverrideVector) {
1922     size_t RefPos;
1923     uint8_t RefSteps;
1924     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1925       RecipType = RecipType.substr(0, RefPos);
1926 
1927     // Ignore the disablement token for string matching.
1928     bool IsDisabled = RecipType[0] == DisabledPrefix;
1929     if (IsDisabled)
1930       RecipType = RecipType.substr(1);
1931 
1932     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1933       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1934                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1935   }
1936 
1937   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1938 }
1939 
1940 /// For the input attribute string, return the customized refinement step count
1941 /// for this operation on the specified data type. If the step count does not
1942 /// exist, return the ReciprocalEstimate enum value for unspecified.
1943 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1944   if (Override.empty())
1945     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1946 
1947   SmallVector<StringRef, 4> OverrideVector;
1948   Override.split(OverrideVector, ',');
1949   unsigned NumArgs = OverrideVector.size();
1950 
1951   // Check if "all", "default", or "none" was specified.
1952   if (NumArgs == 1) {
1953     // Look for an optional setting of the number of refinement steps needed
1954     // for this type of reciprocal operation.
1955     size_t RefPos;
1956     uint8_t RefSteps;
1957     if (!parseRefinementStep(Override, RefPos, RefSteps))
1958       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1959 
1960     // Split the string for further processing.
1961     Override = Override.substr(0, RefPos);
1962     assert(Override != "none" &&
1963            "Disabled reciprocals, but specifed refinement steps?");
1964 
1965     // If this is a general override, return the specified number of steps.
1966     if (Override == "all" || Override == "default")
1967       return RefSteps;
1968   }
1969 
1970   // The attribute string may omit the size suffix ('f'/'d').
1971   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1972   std::string VTNameNoSize = VTName;
1973   VTNameNoSize.pop_back();
1974 
1975   for (StringRef RecipType : OverrideVector) {
1976     size_t RefPos;
1977     uint8_t RefSteps;
1978     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1979       continue;
1980 
1981     RecipType = RecipType.substr(0, RefPos);
1982     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1983       return RefSteps;
1984   }
1985 
1986   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1987 }
1988 
1989 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1990                                                     MachineFunction &MF) const {
1991   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1992 }
1993 
1994 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1995                                                    MachineFunction &MF) const {
1996   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1997 }
1998 
1999 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2000                                                MachineFunction &MF) const {
2001   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2002 }
2003 
2004 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2005                                               MachineFunction &MF) const {
2006   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2007 }
2008 
2009 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2010   MF.getRegInfo().freezeReservedRegs(MF);
2011 }
2012