1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 // FIXME: This option is only to test if the strict fp operation processed
92 // correctly by preventing mutating strict fp operation to normal fp operation
93 // during development. When the backend supports strict float operation, this
94 // option will be meaningless.
95 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
96        cl::desc("Don't mutate strict-float node to a legalize node"),
97        cl::init(false), cl::Hidden);
98 
99 static bool darwinHasSinCos(const Triple &TT) {
100   assert(TT.isOSDarwin() && "should be called with darwin triple");
101   // Don't bother with 32 bit x86.
102   if (TT.getArch() == Triple::x86)
103     return false;
104   // Macos < 10.9 has no sincos_stret.
105   if (TT.isMacOSX())
106     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
107   // iOS < 7.0 has no sincos_stret.
108   if (TT.isiOS())
109     return !TT.isOSVersionLT(7, 0);
110   // Any other darwin such as WatchOS/TvOS is new enough.
111   return true;
112 }
113 
114 // Although this default value is arbitrary, it is not random. It is assumed
115 // that a condition that evaluates the same way by a higher percentage than this
116 // is best represented as control flow. Therefore, the default value N should be
117 // set such that the win from N% correct executions is greater than the loss
118 // from (100 - N)% mispredicted executions for the majority of intended targets.
119 static cl::opt<int> MinPercentageForPredictableBranch(
120     "min-predictable-branch", cl::init(99),
121     cl::desc("Minimum percentage (0-100) that a condition must be either true "
122              "or false to assume that the condition is predictable"),
123     cl::Hidden);
124 
125 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
126 #define HANDLE_LIBCALL(code, name) \
127   setLibcallName(RTLIB::code, name);
128 #include "llvm/IR/RuntimeLibcalls.def"
129 #undef HANDLE_LIBCALL
130   // Initialize calling conventions to their default.
131   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
132     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
133 
134   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
135   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
136     setLibcallName(RTLIB::ADD_F128, "__addkf3");
137     setLibcallName(RTLIB::SUB_F128, "__subkf3");
138     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
139     setLibcallName(RTLIB::DIV_F128, "__divkf3");
140     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
141     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
142     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
143     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
144     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
145     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
146     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
147     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
148     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
149     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
150     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
151     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
152     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
153     setLibcallName(RTLIB::UNE_F128, "__nekf2");
154     setLibcallName(RTLIB::OGE_F128, "__gekf2");
155     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
156     setLibcallName(RTLIB::OLE_F128, "__lekf2");
157     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
158     setLibcallName(RTLIB::UO_F128, "__unordkf2");
159     setLibcallName(RTLIB::O_F128, "__unordkf2");
160   }
161 
162   // A few names are different on particular architectures or environments.
163   if (TT.isOSDarwin()) {
164     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
165     // of the gnueabi-style __gnu_*_ieee.
166     // FIXME: What about other targets?
167     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
168     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
169 
170     // Some darwins have an optimized __bzero/bzero function.
171     switch (TT.getArch()) {
172     case Triple::x86:
173     case Triple::x86_64:
174       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
175         setLibcallName(RTLIB::BZERO, "__bzero");
176       break;
177     case Triple::aarch64:
178     case Triple::aarch64_32:
179       setLibcallName(RTLIB::BZERO, "bzero");
180       break;
181     default:
182       break;
183     }
184 
185     if (darwinHasSinCos(TT)) {
186       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
187       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
188       if (TT.isWatchABI()) {
189         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
190                               CallingConv::ARM_AAPCS_VFP);
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
192                               CallingConv::ARM_AAPCS_VFP);
193       }
194     }
195   } else {
196     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
197     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
198   }
199 
200   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
201       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
202     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
203     setLibcallName(RTLIB::SINCOS_F64, "sincos");
204     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
205     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
206     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
207   }
208 
209   if (TT.isPS4CPU()) {
210     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
211     setLibcallName(RTLIB::SINCOS_F64, "sincos");
212   }
213 
214   if (TT.isOSOpenBSD()) {
215     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
216   }
217 }
218 
219 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
220 /// UNKNOWN_LIBCALL if there is none.
221 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
222   if (OpVT == MVT::f16) {
223     if (RetVT == MVT::f32)
224       return FPEXT_F16_F32;
225   } else if (OpVT == MVT::f32) {
226     if (RetVT == MVT::f64)
227       return FPEXT_F32_F64;
228     if (RetVT == MVT::f128)
229       return FPEXT_F32_F128;
230     if (RetVT == MVT::ppcf128)
231       return FPEXT_F32_PPCF128;
232   } else if (OpVT == MVT::f64) {
233     if (RetVT == MVT::f128)
234       return FPEXT_F64_F128;
235     else if (RetVT == MVT::ppcf128)
236       return FPEXT_F64_PPCF128;
237   } else if (OpVT == MVT::f80) {
238     if (RetVT == MVT::f128)
239       return FPEXT_F80_F128;
240   }
241 
242   return UNKNOWN_LIBCALL;
243 }
244 
245 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
246 /// UNKNOWN_LIBCALL if there is none.
247 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
248   if (RetVT == MVT::f16) {
249     if (OpVT == MVT::f32)
250       return FPROUND_F32_F16;
251     if (OpVT == MVT::f64)
252       return FPROUND_F64_F16;
253     if (OpVT == MVT::f80)
254       return FPROUND_F80_F16;
255     if (OpVT == MVT::f128)
256       return FPROUND_F128_F16;
257     if (OpVT == MVT::ppcf128)
258       return FPROUND_PPCF128_F16;
259   } else if (RetVT == MVT::f32) {
260     if (OpVT == MVT::f64)
261       return FPROUND_F64_F32;
262     if (OpVT == MVT::f80)
263       return FPROUND_F80_F32;
264     if (OpVT == MVT::f128)
265       return FPROUND_F128_F32;
266     if (OpVT == MVT::ppcf128)
267       return FPROUND_PPCF128_F32;
268   } else if (RetVT == MVT::f64) {
269     if (OpVT == MVT::f80)
270       return FPROUND_F80_F64;
271     if (OpVT == MVT::f128)
272       return FPROUND_F128_F64;
273     if (OpVT == MVT::ppcf128)
274       return FPROUND_PPCF128_F64;
275   } else if (RetVT == MVT::f80) {
276     if (OpVT == MVT::f128)
277       return FPROUND_F128_F80;
278   }
279 
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOSINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOSINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOSINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOSINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOSINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOSINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOSINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOSINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOSINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOSINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOSINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOSINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOSINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOSINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOSINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::f32) {
329     if (RetVT == MVT::i32)
330       return FPTOUINT_F32_I32;
331     if (RetVT == MVT::i64)
332       return FPTOUINT_F32_I64;
333     if (RetVT == MVT::i128)
334       return FPTOUINT_F32_I128;
335   } else if (OpVT == MVT::f64) {
336     if (RetVT == MVT::i32)
337       return FPTOUINT_F64_I32;
338     if (RetVT == MVT::i64)
339       return FPTOUINT_F64_I64;
340     if (RetVT == MVT::i128)
341       return FPTOUINT_F64_I128;
342   } else if (OpVT == MVT::f80) {
343     if (RetVT == MVT::i32)
344       return FPTOUINT_F80_I32;
345     if (RetVT == MVT::i64)
346       return FPTOUINT_F80_I64;
347     if (RetVT == MVT::i128)
348       return FPTOUINT_F80_I128;
349   } else if (OpVT == MVT::f128) {
350     if (RetVT == MVT::i32)
351       return FPTOUINT_F128_I32;
352     if (RetVT == MVT::i64)
353       return FPTOUINT_F128_I64;
354     if (RetVT == MVT::i128)
355       return FPTOUINT_F128_I128;
356   } else if (OpVT == MVT::ppcf128) {
357     if (RetVT == MVT::i32)
358       return FPTOUINT_PPCF128_I32;
359     if (RetVT == MVT::i64)
360       return FPTOUINT_PPCF128_I64;
361     if (RetVT == MVT::i128)
362       return FPTOUINT_PPCF128_I128;
363   }
364   return UNKNOWN_LIBCALL;
365 }
366 
367 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
370   if (OpVT == MVT::i32) {
371     if (RetVT == MVT::f32)
372       return SINTTOFP_I32_F32;
373     if (RetVT == MVT::f64)
374       return SINTTOFP_I32_F64;
375     if (RetVT == MVT::f80)
376       return SINTTOFP_I32_F80;
377     if (RetVT == MVT::f128)
378       return SINTTOFP_I32_F128;
379     if (RetVT == MVT::ppcf128)
380       return SINTTOFP_I32_PPCF128;
381   } else if (OpVT == MVT::i64) {
382     if (RetVT == MVT::f32)
383       return SINTTOFP_I64_F32;
384     if (RetVT == MVT::f64)
385       return SINTTOFP_I64_F64;
386     if (RetVT == MVT::f80)
387       return SINTTOFP_I64_F80;
388     if (RetVT == MVT::f128)
389       return SINTTOFP_I64_F128;
390     if (RetVT == MVT::ppcf128)
391       return SINTTOFP_I64_PPCF128;
392   } else if (OpVT == MVT::i128) {
393     if (RetVT == MVT::f32)
394       return SINTTOFP_I128_F32;
395     if (RetVT == MVT::f64)
396       return SINTTOFP_I128_F64;
397     if (RetVT == MVT::f80)
398       return SINTTOFP_I128_F80;
399     if (RetVT == MVT::f128)
400       return SINTTOFP_I128_F128;
401     if (RetVT == MVT::ppcf128)
402       return SINTTOFP_I128_PPCF128;
403   }
404   return UNKNOWN_LIBCALL;
405 }
406 
407 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
408 /// UNKNOWN_LIBCALL if there is none.
409 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
410   if (OpVT == MVT::i32) {
411     if (RetVT == MVT::f32)
412       return UINTTOFP_I32_F32;
413     if (RetVT == MVT::f64)
414       return UINTTOFP_I32_F64;
415     if (RetVT == MVT::f80)
416       return UINTTOFP_I32_F80;
417     if (RetVT == MVT::f128)
418       return UINTTOFP_I32_F128;
419     if (RetVT == MVT::ppcf128)
420       return UINTTOFP_I32_PPCF128;
421   } else if (OpVT == MVT::i64) {
422     if (RetVT == MVT::f32)
423       return UINTTOFP_I64_F32;
424     if (RetVT == MVT::f64)
425       return UINTTOFP_I64_F64;
426     if (RetVT == MVT::f80)
427       return UINTTOFP_I64_F80;
428     if (RetVT == MVT::f128)
429       return UINTTOFP_I64_F128;
430     if (RetVT == MVT::ppcf128)
431       return UINTTOFP_I64_PPCF128;
432   } else if (OpVT == MVT::i128) {
433     if (RetVT == MVT::f32)
434       return UINTTOFP_I128_F32;
435     if (RetVT == MVT::f64)
436       return UINTTOFP_I128_F64;
437     if (RetVT == MVT::f80)
438       return UINTTOFP_I128_F80;
439     if (RetVT == MVT::f128)
440       return UINTTOFP_I128_F128;
441     if (RetVT == MVT::ppcf128)
442       return UINTTOFP_I128_PPCF128;
443   }
444   return UNKNOWN_LIBCALL;
445 }
446 
447 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
448 #define OP_TO_LIBCALL(Name, Enum)                                              \
449   case Name:                                                                   \
450     switch (VT.SimpleTy) {                                                     \
451     default:                                                                   \
452       return UNKNOWN_LIBCALL;                                                  \
453     case MVT::i8:                                                              \
454       return Enum##_1;                                                         \
455     case MVT::i16:                                                             \
456       return Enum##_2;                                                         \
457     case MVT::i32:                                                             \
458       return Enum##_4;                                                         \
459     case MVT::i64:                                                             \
460       return Enum##_8;                                                         \
461     case MVT::i128:                                                            \
462       return Enum##_16;                                                        \
463     }
464 
465   switch (Opc) {
466     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
467     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
468     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
477     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
478   }
479 
480 #undef OP_TO_LIBCALL
481 
482   return UNKNOWN_LIBCALL;
483 }
484 
485 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
486   switch (ElementSize) {
487   case 1:
488     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
489   case 2:
490     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
491   case 4:
492     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
493   case 8:
494     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
495   case 16:
496     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
497   default:
498     return UNKNOWN_LIBCALL;
499   }
500 }
501 
502 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
503   switch (ElementSize) {
504   case 1:
505     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
506   case 2:
507     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
508   case 4:
509     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
510   case 8:
511     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
512   case 16:
513     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
514   default:
515     return UNKNOWN_LIBCALL;
516   }
517 }
518 
519 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
520   switch (ElementSize) {
521   case 1:
522     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
523   case 2:
524     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
525   case 4:
526     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
527   case 8:
528     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
529   case 16:
530     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
531   default:
532     return UNKNOWN_LIBCALL;
533   }
534 }
535 
536 /// InitCmpLibcallCCs - Set default comparison libcall CC.
537 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
538   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
539   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
540   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
541   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
542   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
543   CCs[RTLIB::UNE_F32] = ISD::SETNE;
544   CCs[RTLIB::UNE_F64] = ISD::SETNE;
545   CCs[RTLIB::UNE_F128] = ISD::SETNE;
546   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
547   CCs[RTLIB::OGE_F32] = ISD::SETGE;
548   CCs[RTLIB::OGE_F64] = ISD::SETGE;
549   CCs[RTLIB::OGE_F128] = ISD::SETGE;
550   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
551   CCs[RTLIB::OLT_F32] = ISD::SETLT;
552   CCs[RTLIB::OLT_F64] = ISD::SETLT;
553   CCs[RTLIB::OLT_F128] = ISD::SETLT;
554   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
555   CCs[RTLIB::OLE_F32] = ISD::SETLE;
556   CCs[RTLIB::OLE_F64] = ISD::SETLE;
557   CCs[RTLIB::OLE_F128] = ISD::SETLE;
558   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
559   CCs[RTLIB::OGT_F32] = ISD::SETGT;
560   CCs[RTLIB::OGT_F64] = ISD::SETGT;
561   CCs[RTLIB::OGT_F128] = ISD::SETGT;
562   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
563   CCs[RTLIB::UO_F32] = ISD::SETNE;
564   CCs[RTLIB::UO_F64] = ISD::SETNE;
565   CCs[RTLIB::UO_F128] = ISD::SETNE;
566   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
567   CCs[RTLIB::O_F32] = ISD::SETEQ;
568   CCs[RTLIB::O_F64] = ISD::SETEQ;
569   CCs[RTLIB::O_F128] = ISD::SETEQ;
570   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
571 }
572 
573 /// NOTE: The TargetMachine owns TLOF.
574 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
575   initActions();
576 
577   // Perform these initializations only once.
578   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
579       MaxLoadsPerMemcmp = 8;
580   MaxGluedStoresPerMemcpy = 0;
581   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
582       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
583   HasMultipleConditionRegisters = false;
584   HasExtractBitsInsn = false;
585   JumpIsExpensive = JumpIsExpensiveOverride;
586   PredictableSelectIsExpensive = false;
587   EnableExtLdPromotion = false;
588   StackPointerRegisterToSaveRestore = 0;
589   BooleanContents = UndefinedBooleanContent;
590   BooleanFloatContents = UndefinedBooleanContent;
591   BooleanVectorContents = UndefinedBooleanContent;
592   SchedPreferenceInfo = Sched::ILP;
593   GatherAllAliasesMaxDepth = 18;
594   IsStrictFPEnabled = DisableStrictNodeMutation;
595   // TODO: the default will be switched to 0 in the next commit, along
596   // with the Target-specific changes necessary.
597   MaxAtomicSizeInBitsSupported = 1024;
598 
599   MinCmpXchgSizeInBits = 0;
600   SupportsUnalignedAtomics = false;
601 
602   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
603 
604   InitLibcalls(TM.getTargetTriple());
605   InitCmpLibcallCCs(CmpLibcallCCs);
606 }
607 
608 void TargetLoweringBase::initActions() {
609   // All operations default to being supported.
610   memset(OpActions, 0, sizeof(OpActions));
611   memset(LoadExtActions, 0, sizeof(LoadExtActions));
612   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
613   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
614   memset(CondCodeActions, 0, sizeof(CondCodeActions));
615   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
616   std::fill(std::begin(TargetDAGCombineArray),
617             std::end(TargetDAGCombineArray), 0);
618 
619   for (MVT VT : MVT::fp_valuetypes()) {
620     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
621     if (IntVT.isValid()) {
622       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
623       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
624     }
625   }
626 
627   // Set default actions for various operations.
628   for (MVT VT : MVT::all_valuetypes()) {
629     // Default all indexed load / store to expand.
630     for (unsigned IM = (unsigned)ISD::PRE_INC;
631          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
632       setIndexedLoadAction(IM, VT, Expand);
633       setIndexedStoreAction(IM, VT, Expand);
634       setIndexedMaskedLoadAction(IM, VT, Expand);
635       setIndexedMaskedStoreAction(IM, VT, Expand);
636     }
637 
638     // Most backends expect to see the node which just returns the value loaded.
639     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
640 
641     // These operations default to expand.
642     setOperationAction(ISD::FGETSIGN, VT, Expand);
643     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
644     setOperationAction(ISD::FMINNUM, VT, Expand);
645     setOperationAction(ISD::FMAXNUM, VT, Expand);
646     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
647     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
648     setOperationAction(ISD::FMINIMUM, VT, Expand);
649     setOperationAction(ISD::FMAXIMUM, VT, Expand);
650     setOperationAction(ISD::FMAD, VT, Expand);
651     setOperationAction(ISD::SMIN, VT, Expand);
652     setOperationAction(ISD::SMAX, VT, Expand);
653     setOperationAction(ISD::UMIN, VT, Expand);
654     setOperationAction(ISD::UMAX, VT, Expand);
655     setOperationAction(ISD::ABS, VT, Expand);
656     setOperationAction(ISD::FSHL, VT, Expand);
657     setOperationAction(ISD::FSHR, VT, Expand);
658     setOperationAction(ISD::SADDSAT, VT, Expand);
659     setOperationAction(ISD::UADDSAT, VT, Expand);
660     setOperationAction(ISD::SSUBSAT, VT, Expand);
661     setOperationAction(ISD::USUBSAT, VT, Expand);
662     setOperationAction(ISD::SMULFIX, VT, Expand);
663     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
664     setOperationAction(ISD::UMULFIX, VT, Expand);
665     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
666     setOperationAction(ISD::SDIVFIX, VT, Expand);
667     setOperationAction(ISD::UDIVFIX, VT, Expand);
668 
669     // Overflow operations default to expand
670     setOperationAction(ISD::SADDO, VT, Expand);
671     setOperationAction(ISD::SSUBO, VT, Expand);
672     setOperationAction(ISD::UADDO, VT, Expand);
673     setOperationAction(ISD::USUBO, VT, Expand);
674     setOperationAction(ISD::SMULO, VT, Expand);
675     setOperationAction(ISD::UMULO, VT, Expand);
676 
677     // ADDCARRY operations default to expand
678     setOperationAction(ISD::ADDCARRY, VT, Expand);
679     setOperationAction(ISD::SUBCARRY, VT, Expand);
680     setOperationAction(ISD::SETCCCARRY, VT, Expand);
681 
682     // ADDC/ADDE/SUBC/SUBE default to expand.
683     setOperationAction(ISD::ADDC, VT, Expand);
684     setOperationAction(ISD::ADDE, VT, Expand);
685     setOperationAction(ISD::SUBC, VT, Expand);
686     setOperationAction(ISD::SUBE, VT, Expand);
687 
688     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
689     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
691 
692     setOperationAction(ISD::BITREVERSE, VT, Expand);
693 
694     // These library functions default to expand.
695     setOperationAction(ISD::FROUND, VT, Expand);
696     setOperationAction(ISD::FPOWI, VT, Expand);
697 
698     // These operations default to expand for vector types.
699     if (VT.isVector()) {
700       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
701       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
702       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
703       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
704       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
705       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
706     }
707 
708     // Constrained floating-point operations default to expand.
709 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
710     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
711 #include "llvm/IR/ConstrainedOps.def"
712 
713     // For most targets @llvm.get.dynamic.area.offset just returns 0.
714     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
715 
716     // Vector reduction default to expand.
717     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
718     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
719     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
720     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
725     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
726     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
727     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
728     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
729     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
730   }
731 
732   // Most targets ignore the @llvm.prefetch intrinsic.
733   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
734 
735   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
736   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
737 
738   // ConstantFP nodes default to expand.  Targets can either change this to
739   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
740   // to optimize expansions for certain constants.
741   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
742   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
743   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
744   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
745   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
746 
747   // These library functions default to expand.
748   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
749     setOperationAction(ISD::FCBRT,      VT, Expand);
750     setOperationAction(ISD::FLOG ,      VT, Expand);
751     setOperationAction(ISD::FLOG2,      VT, Expand);
752     setOperationAction(ISD::FLOG10,     VT, Expand);
753     setOperationAction(ISD::FEXP ,      VT, Expand);
754     setOperationAction(ISD::FEXP2,      VT, Expand);
755     setOperationAction(ISD::FFLOOR,     VT, Expand);
756     setOperationAction(ISD::FNEARBYINT, VT, Expand);
757     setOperationAction(ISD::FCEIL,      VT, Expand);
758     setOperationAction(ISD::FRINT,      VT, Expand);
759     setOperationAction(ISD::FTRUNC,     VT, Expand);
760     setOperationAction(ISD::FROUND,     VT, Expand);
761     setOperationAction(ISD::LROUND,     VT, Expand);
762     setOperationAction(ISD::LLROUND,    VT, Expand);
763     setOperationAction(ISD::LRINT,      VT, Expand);
764     setOperationAction(ISD::LLRINT,     VT, Expand);
765   }
766 
767   // Default ISD::TRAP to expand (which turns it into abort).
768   setOperationAction(ISD::TRAP, MVT::Other, Expand);
769 
770   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
771   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
772   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
773 }
774 
775 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
776                                                EVT) const {
777   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
778 }
779 
780 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
781                                          bool LegalTypes) const {
782   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
783   if (LHSTy.isVector())
784     return LHSTy;
785   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
786                     : getPointerTy(DL);
787 }
788 
789 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
790   assert(isTypeLegal(VT));
791   switch (Op) {
792   default:
793     return false;
794   case ISD::SDIV:
795   case ISD::UDIV:
796   case ISD::SREM:
797   case ISD::UREM:
798     return true;
799   }
800 }
801 
802 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
803   // If the command-line option was specified, ignore this request.
804   if (!JumpIsExpensiveOverride.getNumOccurrences())
805     JumpIsExpensive = isExpensive;
806 }
807 
808 TargetLoweringBase::LegalizeKind
809 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
810   // If this is a simple type, use the ComputeRegisterProp mechanism.
811   if (VT.isSimple()) {
812     MVT SVT = VT.getSimpleVT();
813     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
814     MVT NVT = TransformToType[SVT.SimpleTy];
815     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
816 
817     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
818             (NVT.isVector() ||
819              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
820            "Promote may not follow Expand or Promote");
821 
822     if (LA == TypeSplitVector)
823       return LegalizeKind(LA,
824                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
825                                            SVT.getVectorNumElements() / 2));
826     if (LA == TypeScalarizeVector)
827       return LegalizeKind(LA, SVT.getVectorElementType());
828     return LegalizeKind(LA, NVT);
829   }
830 
831   // Handle Extended Scalar Types.
832   if (!VT.isVector()) {
833     assert(VT.isInteger() && "Float types must be simple");
834     unsigned BitSize = VT.getSizeInBits();
835     // First promote to a power-of-two size, then expand if necessary.
836     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
837       EVT NVT = VT.getRoundIntegerType(Context);
838       assert(NVT != VT && "Unable to round integer VT");
839       LegalizeKind NextStep = getTypeConversion(Context, NVT);
840       // Avoid multi-step promotion.
841       if (NextStep.first == TypePromoteInteger)
842         return NextStep;
843       // Return rounded integer type.
844       return LegalizeKind(TypePromoteInteger, NVT);
845     }
846 
847     return LegalizeKind(TypeExpandInteger,
848                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
849   }
850 
851   // Handle vector types.
852   unsigned NumElts = VT.getVectorNumElements();
853   EVT EltVT = VT.getVectorElementType();
854 
855   // Vectors with only one element are always scalarized.
856   if (NumElts == 1)
857     return LegalizeKind(TypeScalarizeVector, EltVT);
858 
859   // Try to widen vector elements until the element type is a power of two and
860   // promote it to a legal type later on, for example:
861   // <3 x i8> -> <4 x i8> -> <4 x i32>
862   if (EltVT.isInteger()) {
863     // Vectors with a number of elements that is not a power of two are always
864     // widened, for example <3 x i8> -> <4 x i8>.
865     if (!VT.isPow2VectorType()) {
866       NumElts = (unsigned)NextPowerOf2(NumElts);
867       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
868       return LegalizeKind(TypeWidenVector, NVT);
869     }
870 
871     // Examine the element type.
872     LegalizeKind LK = getTypeConversion(Context, EltVT);
873 
874     // If type is to be expanded, split the vector.
875     //  <4 x i140> -> <2 x i140>
876     if (LK.first == TypeExpandInteger)
877       return LegalizeKind(TypeSplitVector,
878                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
879 
880     // Promote the integer element types until a legal vector type is found
881     // or until the element integer type is too big. If a legal type was not
882     // found, fallback to the usual mechanism of widening/splitting the
883     // vector.
884     EVT OldEltVT = EltVT;
885     while (true) {
886       // Increase the bitwidth of the element to the next pow-of-two
887       // (which is greater than 8 bits).
888       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
889                   .getRoundIntegerType(Context);
890 
891       // Stop trying when getting a non-simple element type.
892       // Note that vector elements may be greater than legal vector element
893       // types. Example: X86 XMM registers hold 64bit element on 32bit
894       // systems.
895       if (!EltVT.isSimple())
896         break;
897 
898       // Build a new vector type and check if it is legal.
899       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
900       // Found a legal promoted vector type.
901       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
902         return LegalizeKind(TypePromoteInteger,
903                             EVT::getVectorVT(Context, EltVT, NumElts));
904     }
905 
906     // Reset the type to the unexpanded type if we did not find a legal vector
907     // type with a promoted vector element type.
908     EltVT = OldEltVT;
909   }
910 
911   // Try to widen the vector until a legal type is found.
912   // If there is no wider legal type, split the vector.
913   while (true) {
914     // Round up to the next power of 2.
915     NumElts = (unsigned)NextPowerOf2(NumElts);
916 
917     // If there is no simple vector type with this many elements then there
918     // cannot be a larger legal vector type.  Note that this assumes that
919     // there are no skipped intermediate vector types in the simple types.
920     if (!EltVT.isSimple())
921       break;
922     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
923     if (LargerVector == MVT())
924       break;
925 
926     // If this type is legal then widen the vector.
927     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
928       return LegalizeKind(TypeWidenVector, LargerVector);
929   }
930 
931   // Widen odd vectors to next power of two.
932   if (!VT.isPow2VectorType()) {
933     EVT NVT = VT.getPow2VectorType(Context);
934     return LegalizeKind(TypeWidenVector, NVT);
935   }
936 
937   // Vectors with illegal element types are expanded.
938   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
939   return LegalizeKind(TypeSplitVector, NVT);
940 }
941 
942 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
943                                           unsigned &NumIntermediates,
944                                           MVT &RegisterVT,
945                                           TargetLoweringBase *TLI) {
946   // Figure out the right, legal destination reg to copy into.
947   unsigned NumElts = VT.getVectorNumElements();
948   MVT EltTy = VT.getVectorElementType();
949 
950   unsigned NumVectorRegs = 1;
951 
952   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
953   // could break down into LHS/RHS like LegalizeDAG does.
954   if (!isPowerOf2_32(NumElts)) {
955     NumVectorRegs = NumElts;
956     NumElts = 1;
957   }
958 
959   // Divide the input until we get to a supported size.  This will always
960   // end with a scalar if the target doesn't support vectors.
961   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
962     NumElts >>= 1;
963     NumVectorRegs <<= 1;
964   }
965 
966   NumIntermediates = NumVectorRegs;
967 
968   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
969   if (!TLI->isTypeLegal(NewVT))
970     NewVT = EltTy;
971   IntermediateVT = NewVT;
972 
973   unsigned NewVTSize = NewVT.getSizeInBits();
974 
975   // Convert sizes such as i33 to i64.
976   if (!isPowerOf2_32(NewVTSize))
977     NewVTSize = NextPowerOf2(NewVTSize);
978 
979   MVT DestVT = TLI->getRegisterType(NewVT);
980   RegisterVT = DestVT;
981   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
982     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
983 
984   // Otherwise, promotion or legal types use the same number of registers as
985   // the vector decimated to the appropriate level.
986   return NumVectorRegs;
987 }
988 
989 /// isLegalRC - Return true if the value types that can be represented by the
990 /// specified register class are all legal.
991 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
992                                    const TargetRegisterClass &RC) const {
993   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
994     if (isTypeLegal(*I))
995       return true;
996   return false;
997 }
998 
999 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1000 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1001 MachineBasicBlock *
1002 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1003                                    MachineBasicBlock *MBB) const {
1004   MachineInstr *MI = &InitialMI;
1005   MachineFunction &MF = *MI->getMF();
1006   MachineFrameInfo &MFI = MF.getFrameInfo();
1007 
1008   // We're handling multiple types of operands here:
1009   // PATCHPOINT MetaArgs - live-in, read only, direct
1010   // STATEPOINT Deopt Spill - live-through, read only, indirect
1011   // STATEPOINT Deopt Alloca - live-through, read only, direct
1012   // (We're currently conservative and mark the deopt slots read/write in
1013   // practice.)
1014   // STATEPOINT GC Spill - live-through, read/write, indirect
1015   // STATEPOINT GC Alloca - live-through, read/write, direct
1016   // The live-in vs live-through is handled already (the live through ones are
1017   // all stack slots), but we need to handle the different type of stackmap
1018   // operands and memory effects here.
1019 
1020   // MI changes inside this loop as we grow operands.
1021   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1022     MachineOperand &MO = MI->getOperand(OperIdx);
1023     if (!MO.isFI())
1024       continue;
1025 
1026     // foldMemoryOperand builds a new MI after replacing a single FI operand
1027     // with the canonical set of five x86 addressing-mode operands.
1028     int FI = MO.getIndex();
1029     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1030 
1031     // Copy operands before the frame-index.
1032     for (unsigned i = 0; i < OperIdx; ++i)
1033       MIB.add(MI->getOperand(i));
1034     // Add frame index operands recognized by stackmaps.cpp
1035     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1036       // indirect-mem-ref tag, size, #FI, offset.
1037       // Used for spills inserted by StatepointLowering.  This codepath is not
1038       // used for patchpoints/stackmaps at all, for these spilling is done via
1039       // foldMemoryOperand callback only.
1040       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1041       MIB.addImm(StackMaps::IndirectMemRefOp);
1042       MIB.addImm(MFI.getObjectSize(FI));
1043       MIB.add(MI->getOperand(OperIdx));
1044       MIB.addImm(0);
1045     } else {
1046       // direct-mem-ref tag, #FI, offset.
1047       // Used by patchpoint, and direct alloca arguments to statepoints
1048       MIB.addImm(StackMaps::DirectMemRefOp);
1049       MIB.add(MI->getOperand(OperIdx));
1050       MIB.addImm(0);
1051     }
1052     // Copy the operands after the frame index.
1053     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1054       MIB.add(MI->getOperand(i));
1055 
1056     // Inherit previous memory operands.
1057     MIB.cloneMemRefs(*MI);
1058     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1059 
1060     // Add a new memory operand for this FI.
1061     assert(MFI.getObjectOffset(FI) != -1);
1062 
1063     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1064     // PATCHPOINT should be updated to do the same. (TODO)
1065     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1066       auto Flags = MachineMemOperand::MOLoad;
1067       MachineMemOperand *MMO = MF.getMachineMemOperand(
1068           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1069           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1070       MIB->addMemOperand(MF, MMO);
1071     }
1072 
1073     // Replace the instruction and update the operand index.
1074     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1075     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1076     MI->eraseFromParent();
1077     MI = MIB;
1078   }
1079   return MBB;
1080 }
1081 
1082 MachineBasicBlock *
1083 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1084                                         MachineBasicBlock *MBB) const {
1085   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1086          "Called emitXRayCustomEvent on the wrong MI!");
1087   auto &MF = *MI.getMF();
1088   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1089   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1090     MIB.add(MI.getOperand(OpIdx));
1091 
1092   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1093   MI.eraseFromParent();
1094   return MBB;
1095 }
1096 
1097 MachineBasicBlock *
1098 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1099                                        MachineBasicBlock *MBB) const {
1100   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1101          "Called emitXRayTypedEvent on the wrong MI!");
1102   auto &MF = *MI.getMF();
1103   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1104   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1105     MIB.add(MI.getOperand(OpIdx));
1106 
1107   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1108   MI.eraseFromParent();
1109   return MBB;
1110 }
1111 
1112 /// findRepresentativeClass - Return the largest legal super-reg register class
1113 /// of the register class for the specified type and its associated "cost".
1114 // This function is in TargetLowering because it uses RegClassForVT which would
1115 // need to be moved to TargetRegisterInfo and would necessitate moving
1116 // isTypeLegal over as well - a massive change that would just require
1117 // TargetLowering having a TargetRegisterInfo class member that it would use.
1118 std::pair<const TargetRegisterClass *, uint8_t>
1119 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1120                                             MVT VT) const {
1121   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1122   if (!RC)
1123     return std::make_pair(RC, 0);
1124 
1125   // Compute the set of all super-register classes.
1126   BitVector SuperRegRC(TRI->getNumRegClasses());
1127   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1128     SuperRegRC.setBitsInMask(RCI.getMask());
1129 
1130   // Find the first legal register class with the largest spill size.
1131   const TargetRegisterClass *BestRC = RC;
1132   for (unsigned i : SuperRegRC.set_bits()) {
1133     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1134     // We want the largest possible spill size.
1135     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1136       continue;
1137     if (!isLegalRC(*TRI, *SuperRC))
1138       continue;
1139     BestRC = SuperRC;
1140   }
1141   return std::make_pair(BestRC, 1);
1142 }
1143 
1144 /// computeRegisterProperties - Once all of the register classes are added,
1145 /// this allows us to compute derived properties we expose.
1146 void TargetLoweringBase::computeRegisterProperties(
1147     const TargetRegisterInfo *TRI) {
1148   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1149                 "Too many value types for ValueTypeActions to hold!");
1150 
1151   // Everything defaults to needing one register.
1152   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1153     NumRegistersForVT[i] = 1;
1154     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1155   }
1156   // ...except isVoid, which doesn't need any registers.
1157   NumRegistersForVT[MVT::isVoid] = 0;
1158 
1159   // Find the largest integer register class.
1160   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1161   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1162     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1163 
1164   // Every integer value type larger than this largest register takes twice as
1165   // many registers to represent as the previous ValueType.
1166   for (unsigned ExpandedReg = LargestIntReg + 1;
1167        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1168     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1169     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1170     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1171     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1172                                    TypeExpandInteger);
1173   }
1174 
1175   // Inspect all of the ValueType's smaller than the largest integer
1176   // register to see which ones need promotion.
1177   unsigned LegalIntReg = LargestIntReg;
1178   for (unsigned IntReg = LargestIntReg - 1;
1179        IntReg >= (unsigned)MVT::i1; --IntReg) {
1180     MVT IVT = (MVT::SimpleValueType)IntReg;
1181     if (isTypeLegal(IVT)) {
1182       LegalIntReg = IntReg;
1183     } else {
1184       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1185         (MVT::SimpleValueType)LegalIntReg;
1186       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1187     }
1188   }
1189 
1190   // ppcf128 type is really two f64's.
1191   if (!isTypeLegal(MVT::ppcf128)) {
1192     if (isTypeLegal(MVT::f64)) {
1193       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1194       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1195       TransformToType[MVT::ppcf128] = MVT::f64;
1196       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1197     } else {
1198       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1199       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1200       TransformToType[MVT::ppcf128] = MVT::i128;
1201       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1202     }
1203   }
1204 
1205   // Decide how to handle f128. If the target does not have native f128 support,
1206   // expand it to i128 and we will be generating soft float library calls.
1207   if (!isTypeLegal(MVT::f128)) {
1208     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1209     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1210     TransformToType[MVT::f128] = MVT::i128;
1211     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1212   }
1213 
1214   // Decide how to handle f64. If the target does not have native f64 support,
1215   // expand it to i64 and we will be generating soft float library calls.
1216   if (!isTypeLegal(MVT::f64)) {
1217     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1218     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1219     TransformToType[MVT::f64] = MVT::i64;
1220     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1221   }
1222 
1223   // Decide how to handle f32. If the target does not have native f32 support,
1224   // expand it to i32 and we will be generating soft float library calls.
1225   if (!isTypeLegal(MVT::f32)) {
1226     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1227     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1228     TransformToType[MVT::f32] = MVT::i32;
1229     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1230   }
1231 
1232   // Decide how to handle f16. If the target does not have native f16 support,
1233   // promote it to f32, because there are no f16 library calls (except for
1234   // conversions).
1235   if (!isTypeLegal(MVT::f16)) {
1236     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1237     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1238     TransformToType[MVT::f16] = MVT::f32;
1239     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1240   }
1241 
1242   // Loop over all of the vector value types to see which need transformations.
1243   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1244        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1245     MVT VT = (MVT::SimpleValueType) i;
1246     if (isTypeLegal(VT))
1247       continue;
1248 
1249     MVT EltVT = VT.getVectorElementType();
1250     unsigned NElts = VT.getVectorNumElements();
1251     bool IsLegalWiderType = false;
1252     bool IsScalable = VT.isScalableVector();
1253     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1254     switch (PreferredAction) {
1255     case TypePromoteInteger: {
1256       MVT::SimpleValueType EndVT = IsScalable ?
1257                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1258                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1259       // Try to promote the elements of integer vectors. If no legal
1260       // promotion was found, fall through to the widen-vector method.
1261       for (unsigned nVT = i + 1;
1262            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1263         MVT SVT = (MVT::SimpleValueType) nVT;
1264         // Promote vectors of integers to vectors with the same number
1265         // of elements, with a wider element type.
1266         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1267             SVT.getVectorNumElements() == NElts &&
1268             SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1269           TransformToType[i] = SVT;
1270           RegisterTypeForVT[i] = SVT;
1271           NumRegistersForVT[i] = 1;
1272           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1273           IsLegalWiderType = true;
1274           break;
1275         }
1276       }
1277       if (IsLegalWiderType)
1278         break;
1279       LLVM_FALLTHROUGH;
1280     }
1281 
1282     case TypeWidenVector:
1283       if (isPowerOf2_32(NElts)) {
1284         // Try to widen the vector.
1285         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1286           MVT SVT = (MVT::SimpleValueType) nVT;
1287           if (SVT.getVectorElementType() == EltVT
1288               && SVT.getVectorNumElements() > NElts
1289               && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1290             TransformToType[i] = SVT;
1291             RegisterTypeForVT[i] = SVT;
1292             NumRegistersForVT[i] = 1;
1293             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1294             IsLegalWiderType = true;
1295             break;
1296           }
1297         }
1298         if (IsLegalWiderType)
1299           break;
1300       } else {
1301         // Only widen to the next power of 2 to keep consistency with EVT.
1302         MVT NVT = VT.getPow2VectorType();
1303         if (isTypeLegal(NVT)) {
1304           TransformToType[i] = NVT;
1305           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1306           RegisterTypeForVT[i] = NVT;
1307           NumRegistersForVT[i] = 1;
1308           break;
1309         }
1310       }
1311       LLVM_FALLTHROUGH;
1312 
1313     case TypeSplitVector:
1314     case TypeScalarizeVector: {
1315       MVT IntermediateVT;
1316       MVT RegisterVT;
1317       unsigned NumIntermediates;
1318       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1319           NumIntermediates, RegisterVT, this);
1320       NumRegistersForVT[i] = NumRegisters;
1321       assert(NumRegistersForVT[i] == NumRegisters &&
1322              "NumRegistersForVT size cannot represent NumRegisters!");
1323       RegisterTypeForVT[i] = RegisterVT;
1324 
1325       MVT NVT = VT.getPow2VectorType();
1326       if (NVT == VT) {
1327         // Type is already a power of 2.  The default action is to split.
1328         TransformToType[i] = MVT::Other;
1329         if (PreferredAction == TypeScalarizeVector)
1330           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1331         else if (PreferredAction == TypeSplitVector)
1332           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1333         else
1334           // Set type action according to the number of elements.
1335           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1336                                                         : TypeSplitVector);
1337       } else {
1338         TransformToType[i] = NVT;
1339         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1340       }
1341       break;
1342     }
1343     default:
1344       llvm_unreachable("Unknown vector legalization action!");
1345     }
1346   }
1347 
1348   // Determine the 'representative' register class for each value type.
1349   // An representative register class is the largest (meaning one which is
1350   // not a sub-register class / subreg register class) legal register class for
1351   // a group of value types. For example, on i386, i8, i16, and i32
1352   // representative would be GR32; while on x86_64 it's GR64.
1353   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1354     const TargetRegisterClass* RRC;
1355     uint8_t Cost;
1356     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1357     RepRegClassForVT[i] = RRC;
1358     RepRegClassCostForVT[i] = Cost;
1359   }
1360 }
1361 
1362 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1363                                            EVT VT) const {
1364   assert(!VT.isVector() && "No default SetCC type for vectors!");
1365   return getPointerTy(DL).SimpleTy;
1366 }
1367 
1368 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1369   return MVT::i32; // return the default value
1370 }
1371 
1372 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1373 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1374 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1375 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1376 ///
1377 /// This method returns the number of registers needed, and the VT for each
1378 /// register.  It also returns the VT and quantity of the intermediate values
1379 /// before they are promoted/expanded.
1380 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1381                                                 EVT &IntermediateVT,
1382                                                 unsigned &NumIntermediates,
1383                                                 MVT &RegisterVT) const {
1384   unsigned NumElts = VT.getVectorNumElements();
1385 
1386   // If there is a wider vector type with the same element type as this one,
1387   // or a promoted vector type that has the same number of elements which
1388   // are wider, then we should convert to that legal vector type.
1389   // This handles things like <2 x float> -> <4 x float> and
1390   // <4 x i1> -> <4 x i32>.
1391   LegalizeTypeAction TA = getTypeAction(Context, VT);
1392   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1393     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1394     if (isTypeLegal(RegisterEVT)) {
1395       IntermediateVT = RegisterEVT;
1396       RegisterVT = RegisterEVT.getSimpleVT();
1397       NumIntermediates = 1;
1398       return 1;
1399     }
1400   }
1401 
1402   // Figure out the right, legal destination reg to copy into.
1403   EVT EltTy = VT.getVectorElementType();
1404 
1405   unsigned NumVectorRegs = 1;
1406 
1407   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1408   // could break down into LHS/RHS like LegalizeDAG does.
1409   if (!isPowerOf2_32(NumElts)) {
1410     NumVectorRegs = NumElts;
1411     NumElts = 1;
1412   }
1413 
1414   // Divide the input until we get to a supported size.  This will always
1415   // end with a scalar if the target doesn't support vectors.
1416   while (NumElts > 1 && !isTypeLegal(
1417                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1418     NumElts >>= 1;
1419     NumVectorRegs <<= 1;
1420   }
1421 
1422   NumIntermediates = NumVectorRegs;
1423 
1424   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1425   if (!isTypeLegal(NewVT))
1426     NewVT = EltTy;
1427   IntermediateVT = NewVT;
1428 
1429   MVT DestVT = getRegisterType(Context, NewVT);
1430   RegisterVT = DestVT;
1431   unsigned NewVTSize = NewVT.getSizeInBits();
1432 
1433   // Convert sizes such as i33 to i64.
1434   if (!isPowerOf2_32(NewVTSize))
1435     NewVTSize = NextPowerOf2(NewVTSize);
1436 
1437   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1438     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1439 
1440   // Otherwise, promotion or legal types use the same number of registers as
1441   // the vector decimated to the appropriate level.
1442   return NumVectorRegs;
1443 }
1444 
1445 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1446                                                 uint64_t NumCases,
1447                                                 uint64_t Range,
1448                                                 ProfileSummaryInfo *PSI,
1449                                                 BlockFrequencyInfo *BFI) const {
1450   // FIXME: This function check the maximum table size and density, but the
1451   // minimum size is not checked. It would be nice if the minimum size is
1452   // also combined within this function. Currently, the minimum size check is
1453   // performed in findJumpTable() in SelectionDAGBuiler and
1454   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1455   const bool OptForSize =
1456       SI->getParent()->getParent()->hasOptSize() ||
1457       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1458   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1459   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1460 
1461   // Check whether the number of cases is small enough and
1462   // the range is dense enough for a jump table.
1463   return (OptForSize || Range <= MaxJumpTableSize) &&
1464          (NumCases * 100 >= Range * MinDensity);
1465 }
1466 
1467 /// Get the EVTs and ArgFlags collections that represent the legalized return
1468 /// type of the given function.  This does not require a DAG or a return value,
1469 /// and is suitable for use before any DAGs for the function are constructed.
1470 /// TODO: Move this out of TargetLowering.cpp.
1471 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1472                          AttributeList attr,
1473                          SmallVectorImpl<ISD::OutputArg> &Outs,
1474                          const TargetLowering &TLI, const DataLayout &DL) {
1475   SmallVector<EVT, 4> ValueVTs;
1476   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1477   unsigned NumValues = ValueVTs.size();
1478   if (NumValues == 0) return;
1479 
1480   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1481     EVT VT = ValueVTs[j];
1482     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1483 
1484     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1485       ExtendKind = ISD::SIGN_EXTEND;
1486     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1487       ExtendKind = ISD::ZERO_EXTEND;
1488 
1489     // FIXME: C calling convention requires the return type to be promoted to
1490     // at least 32-bit. But this is not necessary for non-C calling
1491     // conventions. The frontend should mark functions whose return values
1492     // require promoting with signext or zeroext attributes.
1493     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1494       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1495       if (VT.bitsLT(MinVT))
1496         VT = MinVT;
1497     }
1498 
1499     unsigned NumParts =
1500         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1501     MVT PartVT =
1502         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1503 
1504     // 'inreg' on function refers to return value
1505     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1506     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1507       Flags.setInReg();
1508 
1509     // Propagate extension type if any
1510     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1511       Flags.setSExt();
1512     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1513       Flags.setZExt();
1514 
1515     for (unsigned i = 0; i < NumParts; ++i)
1516       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1517   }
1518 }
1519 
1520 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1521 /// function arguments in the caller parameter area.  This is the actual
1522 /// alignment, not its logarithm.
1523 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1524                                                    const DataLayout &DL) const {
1525   return DL.getABITypeAlignment(Ty);
1526 }
1527 
1528 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1529     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1530     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1531   // Check if the specified alignment is sufficient based on the data layout.
1532   // TODO: While using the data layout works in practice, a better solution
1533   // would be to implement this check directly (make this a virtual function).
1534   // For example, the ABI alignment may change based on software platform while
1535   // this function should only be affected by hardware implementation.
1536   Type *Ty = VT.getTypeForEVT(Context);
1537   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1538     // Assume that an access that meets the ABI-specified alignment is fast.
1539     if (Fast != nullptr)
1540       *Fast = true;
1541     return true;
1542   }
1543 
1544   // This is a misaligned access.
1545   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1546 }
1547 
1548 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1549     LLVMContext &Context, const DataLayout &DL, EVT VT,
1550     const MachineMemOperand &MMO, bool *Fast) const {
1551   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1552                                         MMO.getAlignment(), MMO.getFlags(),
1553                                         Fast);
1554 }
1555 
1556 bool TargetLoweringBase::allowsMemoryAccess(
1557     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1558     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1559   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1560                                         Flags, Fast);
1561 }
1562 
1563 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1564                                             const DataLayout &DL, EVT VT,
1565                                             const MachineMemOperand &MMO,
1566                                             bool *Fast) const {
1567   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1568                             MMO.getAlignment(), MMO.getFlags(), Fast);
1569 }
1570 
1571 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1572   return BranchProbability(MinPercentageForPredictableBranch, 100);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 //  TargetTransformInfo Helpers
1577 //===----------------------------------------------------------------------===//
1578 
1579 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1580   enum InstructionOpcodes {
1581 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1582 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1583 #include "llvm/IR/Instruction.def"
1584   };
1585   switch (static_cast<InstructionOpcodes>(Opcode)) {
1586   case Ret:            return 0;
1587   case Br:             return 0;
1588   case Switch:         return 0;
1589   case IndirectBr:     return 0;
1590   case Invoke:         return 0;
1591   case CallBr:         return 0;
1592   case Resume:         return 0;
1593   case Unreachable:    return 0;
1594   case CleanupRet:     return 0;
1595   case CatchRet:       return 0;
1596   case CatchPad:       return 0;
1597   case CatchSwitch:    return 0;
1598   case CleanupPad:     return 0;
1599   case FNeg:           return ISD::FNEG;
1600   case Add:            return ISD::ADD;
1601   case FAdd:           return ISD::FADD;
1602   case Sub:            return ISD::SUB;
1603   case FSub:           return ISD::FSUB;
1604   case Mul:            return ISD::MUL;
1605   case FMul:           return ISD::FMUL;
1606   case UDiv:           return ISD::UDIV;
1607   case SDiv:           return ISD::SDIV;
1608   case FDiv:           return ISD::FDIV;
1609   case URem:           return ISD::UREM;
1610   case SRem:           return ISD::SREM;
1611   case FRem:           return ISD::FREM;
1612   case Shl:            return ISD::SHL;
1613   case LShr:           return ISD::SRL;
1614   case AShr:           return ISD::SRA;
1615   case And:            return ISD::AND;
1616   case Or:             return ISD::OR;
1617   case Xor:            return ISD::XOR;
1618   case Alloca:         return 0;
1619   case Load:           return ISD::LOAD;
1620   case Store:          return ISD::STORE;
1621   case GetElementPtr:  return 0;
1622   case Fence:          return 0;
1623   case AtomicCmpXchg:  return 0;
1624   case AtomicRMW:      return 0;
1625   case Trunc:          return ISD::TRUNCATE;
1626   case ZExt:           return ISD::ZERO_EXTEND;
1627   case SExt:           return ISD::SIGN_EXTEND;
1628   case FPToUI:         return ISD::FP_TO_UINT;
1629   case FPToSI:         return ISD::FP_TO_SINT;
1630   case UIToFP:         return ISD::UINT_TO_FP;
1631   case SIToFP:         return ISD::SINT_TO_FP;
1632   case FPTrunc:        return ISD::FP_ROUND;
1633   case FPExt:          return ISD::FP_EXTEND;
1634   case PtrToInt:       return ISD::BITCAST;
1635   case IntToPtr:       return ISD::BITCAST;
1636   case BitCast:        return ISD::BITCAST;
1637   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1638   case ICmp:           return ISD::SETCC;
1639   case FCmp:           return ISD::SETCC;
1640   case PHI:            return 0;
1641   case Call:           return 0;
1642   case Select:         return ISD::SELECT;
1643   case UserOp1:        return 0;
1644   case UserOp2:        return 0;
1645   case VAArg:          return 0;
1646   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1647   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1648   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1649   case ExtractValue:   return ISD::MERGE_VALUES;
1650   case InsertValue:    return ISD::MERGE_VALUES;
1651   case LandingPad:     return 0;
1652   case Freeze:         return 0;
1653   }
1654 
1655   llvm_unreachable("Unknown instruction type encountered!");
1656 }
1657 
1658 std::pair<int, MVT>
1659 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1660                                             Type *Ty) const {
1661   LLVMContext &C = Ty->getContext();
1662   EVT MTy = getValueType(DL, Ty);
1663 
1664   int Cost = 1;
1665   // We keep legalizing the type until we find a legal kind. We assume that
1666   // the only operation that costs anything is the split. After splitting
1667   // we need to handle two types.
1668   while (true) {
1669     LegalizeKind LK = getTypeConversion(C, MTy);
1670 
1671     if (LK.first == TypeLegal)
1672       return std::make_pair(Cost, MTy.getSimpleVT());
1673 
1674     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1675       Cost *= 2;
1676 
1677     // Do not loop with f128 type.
1678     if (MTy == LK.second)
1679       return std::make_pair(Cost, MTy.getSimpleVT());
1680 
1681     // Keep legalizing the type.
1682     MTy = LK.second;
1683   }
1684 }
1685 
1686 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1687                                                               bool UseTLS) const {
1688   // compiler-rt provides a variable with a magic name.  Targets that do not
1689   // link with compiler-rt may also provide such a variable.
1690   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1691   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1692   auto UnsafeStackPtr =
1693       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1694 
1695   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1696 
1697   if (!UnsafeStackPtr) {
1698     auto TLSModel = UseTLS ?
1699         GlobalValue::InitialExecTLSModel :
1700         GlobalValue::NotThreadLocal;
1701     // The global variable is not defined yet, define it ourselves.
1702     // We use the initial-exec TLS model because we do not support the
1703     // variable living anywhere other than in the main executable.
1704     UnsafeStackPtr = new GlobalVariable(
1705         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1706         UnsafeStackPtrVar, nullptr, TLSModel);
1707   } else {
1708     // The variable exists, check its type and attributes.
1709     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1710       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1711     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1712       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1713                          (UseTLS ? "" : "not ") + "be thread-local");
1714   }
1715   return UnsafeStackPtr;
1716 }
1717 
1718 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1719   if (!TM.getTargetTriple().isAndroid())
1720     return getDefaultSafeStackPointerLocation(IRB, true);
1721 
1722   // Android provides a libc function to retrieve the address of the current
1723   // thread's unsafe stack pointer.
1724   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1725   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1726   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1727                                              StackPtrTy->getPointerTo(0));
1728   return IRB.CreateCall(Fn);
1729 }
1730 
1731 //===----------------------------------------------------------------------===//
1732 //  Loop Strength Reduction hooks
1733 //===----------------------------------------------------------------------===//
1734 
1735 /// isLegalAddressingMode - Return true if the addressing mode represented
1736 /// by AM is legal for this target, for a load/store of the specified type.
1737 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1738                                                const AddrMode &AM, Type *Ty,
1739                                                unsigned AS, Instruction *I) const {
1740   // The default implementation of this implements a conservative RISCy, r+r and
1741   // r+i addr mode.
1742 
1743   // Allows a sign-extended 16-bit immediate field.
1744   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1745     return false;
1746 
1747   // No global is ever allowed as a base.
1748   if (AM.BaseGV)
1749     return false;
1750 
1751   // Only support r+r,
1752   switch (AM.Scale) {
1753   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1754     break;
1755   case 1:
1756     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1757       return false;
1758     // Otherwise we have r+r or r+i.
1759     break;
1760   case 2:
1761     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1762       return false;
1763     // Allow 2*r as r+r.
1764     break;
1765   default: // Don't allow n * r
1766     return false;
1767   }
1768 
1769   return true;
1770 }
1771 
1772 //===----------------------------------------------------------------------===//
1773 //  Stack Protector
1774 //===----------------------------------------------------------------------===//
1775 
1776 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1777 // so that SelectionDAG handle SSP.
1778 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1779   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1780     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1781     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1782     return M.getOrInsertGlobal("__guard_local", PtrTy);
1783   }
1784   return nullptr;
1785 }
1786 
1787 // Currently only support "standard" __stack_chk_guard.
1788 // TODO: add LOAD_STACK_GUARD support.
1789 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1790   if (!M.getNamedValue("__stack_chk_guard"))
1791     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1792                        GlobalVariable::ExternalLinkage,
1793                        nullptr, "__stack_chk_guard");
1794 }
1795 
1796 // Currently only support "standard" __stack_chk_guard.
1797 // TODO: add LOAD_STACK_GUARD support.
1798 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1799   return M.getNamedValue("__stack_chk_guard");
1800 }
1801 
1802 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1803   return nullptr;
1804 }
1805 
1806 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1807   return MinimumJumpTableEntries;
1808 }
1809 
1810 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1811   MinimumJumpTableEntries = Val;
1812 }
1813 
1814 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1815   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1816 }
1817 
1818 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1819   return MaximumJumpTableSize;
1820 }
1821 
1822 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1823   MaximumJumpTableSize = Val;
1824 }
1825 
1826 //===----------------------------------------------------------------------===//
1827 //  Reciprocal Estimates
1828 //===----------------------------------------------------------------------===//
1829 
1830 /// Get the reciprocal estimate attribute string for a function that will
1831 /// override the target defaults.
1832 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1833   const Function &F = MF.getFunction();
1834   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1835 }
1836 
1837 /// Construct a string for the given reciprocal operation of the given type.
1838 /// This string should match the corresponding option to the front-end's
1839 /// "-mrecip" flag assuming those strings have been passed through in an
1840 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1841 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1842   std::string Name = VT.isVector() ? "vec-" : "";
1843 
1844   Name += IsSqrt ? "sqrt" : "div";
1845 
1846   // TODO: Handle "half" or other float types?
1847   if (VT.getScalarType() == MVT::f64) {
1848     Name += "d";
1849   } else {
1850     assert(VT.getScalarType() == MVT::f32 &&
1851            "Unexpected FP type for reciprocal estimate");
1852     Name += "f";
1853   }
1854 
1855   return Name;
1856 }
1857 
1858 /// Return the character position and value (a single numeric character) of a
1859 /// customized refinement operation in the input string if it exists. Return
1860 /// false if there is no customized refinement step count.
1861 static bool parseRefinementStep(StringRef In, size_t &Position,
1862                                 uint8_t &Value) {
1863   const char RefStepToken = ':';
1864   Position = In.find(RefStepToken);
1865   if (Position == StringRef::npos)
1866     return false;
1867 
1868   StringRef RefStepString = In.substr(Position + 1);
1869   // Allow exactly one numeric character for the additional refinement
1870   // step parameter.
1871   if (RefStepString.size() == 1) {
1872     char RefStepChar = RefStepString[0];
1873     if (RefStepChar >= '0' && RefStepChar <= '9') {
1874       Value = RefStepChar - '0';
1875       return true;
1876     }
1877   }
1878   report_fatal_error("Invalid refinement step for -recip.");
1879 }
1880 
1881 /// For the input attribute string, return one of the ReciprocalEstimate enum
1882 /// status values (enabled, disabled, or not specified) for this operation on
1883 /// the specified data type.
1884 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1885   if (Override.empty())
1886     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1887 
1888   SmallVector<StringRef, 4> OverrideVector;
1889   Override.split(OverrideVector, ',');
1890   unsigned NumArgs = OverrideVector.size();
1891 
1892   // Check if "all", "none", or "default" was specified.
1893   if (NumArgs == 1) {
1894     // Look for an optional setting of the number of refinement steps needed
1895     // for this type of reciprocal operation.
1896     size_t RefPos;
1897     uint8_t RefSteps;
1898     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1899       // Split the string for further processing.
1900       Override = Override.substr(0, RefPos);
1901     }
1902 
1903     // All reciprocal types are enabled.
1904     if (Override == "all")
1905       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1906 
1907     // All reciprocal types are disabled.
1908     if (Override == "none")
1909       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1910 
1911     // Target defaults for enablement are used.
1912     if (Override == "default")
1913       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1914   }
1915 
1916   // The attribute string may omit the size suffix ('f'/'d').
1917   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1918   std::string VTNameNoSize = VTName;
1919   VTNameNoSize.pop_back();
1920   static const char DisabledPrefix = '!';
1921 
1922   for (StringRef RecipType : OverrideVector) {
1923     size_t RefPos;
1924     uint8_t RefSteps;
1925     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1926       RecipType = RecipType.substr(0, RefPos);
1927 
1928     // Ignore the disablement token for string matching.
1929     bool IsDisabled = RecipType[0] == DisabledPrefix;
1930     if (IsDisabled)
1931       RecipType = RecipType.substr(1);
1932 
1933     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1934       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1935                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1936   }
1937 
1938   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1939 }
1940 
1941 /// For the input attribute string, return the customized refinement step count
1942 /// for this operation on the specified data type. If the step count does not
1943 /// exist, return the ReciprocalEstimate enum value for unspecified.
1944 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1945   if (Override.empty())
1946     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1947 
1948   SmallVector<StringRef, 4> OverrideVector;
1949   Override.split(OverrideVector, ',');
1950   unsigned NumArgs = OverrideVector.size();
1951 
1952   // Check if "all", "default", or "none" was specified.
1953   if (NumArgs == 1) {
1954     // Look for an optional setting of the number of refinement steps needed
1955     // for this type of reciprocal operation.
1956     size_t RefPos;
1957     uint8_t RefSteps;
1958     if (!parseRefinementStep(Override, RefPos, RefSteps))
1959       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1960 
1961     // Split the string for further processing.
1962     Override = Override.substr(0, RefPos);
1963     assert(Override != "none" &&
1964            "Disabled reciprocals, but specifed refinement steps?");
1965 
1966     // If this is a general override, return the specified number of steps.
1967     if (Override == "all" || Override == "default")
1968       return RefSteps;
1969   }
1970 
1971   // The attribute string may omit the size suffix ('f'/'d').
1972   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1973   std::string VTNameNoSize = VTName;
1974   VTNameNoSize.pop_back();
1975 
1976   for (StringRef RecipType : OverrideVector) {
1977     size_t RefPos;
1978     uint8_t RefSteps;
1979     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1980       continue;
1981 
1982     RecipType = RecipType.substr(0, RefPos);
1983     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1984       return RefSteps;
1985   }
1986 
1987   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1988 }
1989 
1990 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1991                                                     MachineFunction &MF) const {
1992   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1993 }
1994 
1995 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1996                                                    MachineFunction &MF) const {
1997   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1998 }
1999 
2000 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2001                                                MachineFunction &MF) const {
2002   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2003 }
2004 
2005 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2006                                               MachineFunction &MF) const {
2007   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2008 }
2009 
2010 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2011   MF.getRegInfo().freezeReservedRegs(MF);
2012 }
2013