1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableTargets
76   ("max-jump-table-targets", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum number of targets to use in a jump table."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 static bool darwinHasSinCos(const Triple &TT) {
92   assert(TT.isOSDarwin() && "should be called with darwin triple");
93   // Don't bother with 32 bit x86.
94   if (TT.getArch() == Triple::x86)
95     return false;
96   // Macos < 10.9 has no sincos_stret.
97   if (TT.isMacOSX())
98     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99   // iOS < 7.0 has no sincos_stret.
100   if (TT.isiOS())
101     return !TT.isOSVersionLT(7, 0);
102   // Any other darwin such as WatchOS/TvOS is new enough.
103   return true;
104 }
105 
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112     "min-predictable-branch", cl::init(99),
113     cl::desc("Minimum percentage (0-100) that a condition must be either true "
114              "or false to assume that the condition is predictable"),
115     cl::Hidden);
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
128     setLibcallName(RTLIB::ADD_F128, "__addkf3");
129     setLibcallName(RTLIB::SUB_F128, "__subkf3");
130     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131     setLibcallName(RTLIB::DIV_F128, "__divkf3");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
139     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
140     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
141     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
142     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
143     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
144     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
145     setLibcallName(RTLIB::UNE_F128, "__nekf2");
146     setLibcallName(RTLIB::OGE_F128, "__gekf2");
147     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
148     setLibcallName(RTLIB::OLE_F128, "__lekf2");
149     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
150     setLibcallName(RTLIB::UO_F128, "__unordkf2");
151     setLibcallName(RTLIB::O_F128, "__unordkf2");
152   }
153 
154   // A few names are different on particular architectures or environments.
155   if (TT.isOSDarwin()) {
156     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
157     // of the gnueabi-style __gnu_*_ieee.
158     // FIXME: What about other targets?
159     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
160     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
161 
162     // Some darwins have an optimized __bzero/bzero function.
163     switch (TT.getArch()) {
164     case Triple::x86:
165     case Triple::x86_64:
166       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
167         setLibcallName(RTLIB::BZERO, "__bzero");
168       break;
169     case Triple::aarch64:
170     case Triple::aarch64_32:
171       setLibcallName(RTLIB::BZERO, "bzero");
172       break;
173     default:
174       break;
175     }
176 
177     if (darwinHasSinCos(TT)) {
178       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
179       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
180       if (TT.isWatchABI()) {
181         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
182                               CallingConv::ARM_AAPCS_VFP);
183         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
184                               CallingConv::ARM_AAPCS_VFP);
185       }
186     }
187   } else {
188     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
189     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
190   }
191 
192   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
193       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
194     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
195     setLibcallName(RTLIB::SINCOS_F64, "sincos");
196     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
197     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
198     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
199   }
200 
201   if (TT.isPS4CPU()) {
202     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
203     setLibcallName(RTLIB::SINCOS_F64, "sincos");
204   }
205 
206   if (TT.isOSOpenBSD()) {
207     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
208   }
209 }
210 
211 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
212 /// UNKNOWN_LIBCALL if there is none.
213 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
214   if (OpVT == MVT::f16) {
215     if (RetVT == MVT::f32)
216       return FPEXT_F16_F32;
217   } else if (OpVT == MVT::f32) {
218     if (RetVT == MVT::f64)
219       return FPEXT_F32_F64;
220     if (RetVT == MVT::f128)
221       return FPEXT_F32_F128;
222     if (RetVT == MVT::ppcf128)
223       return FPEXT_F32_PPCF128;
224   } else if (OpVT == MVT::f64) {
225     if (RetVT == MVT::f128)
226       return FPEXT_F64_F128;
227     else if (RetVT == MVT::ppcf128)
228       return FPEXT_F64_PPCF128;
229   } else if (OpVT == MVT::f80) {
230     if (RetVT == MVT::f128)
231       return FPEXT_F80_F128;
232   }
233 
234   return UNKNOWN_LIBCALL;
235 }
236 
237 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
238 /// UNKNOWN_LIBCALL if there is none.
239 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
240   if (RetVT == MVT::f16) {
241     if (OpVT == MVT::f32)
242       return FPROUND_F32_F16;
243     if (OpVT == MVT::f64)
244       return FPROUND_F64_F16;
245     if (OpVT == MVT::f80)
246       return FPROUND_F80_F16;
247     if (OpVT == MVT::f128)
248       return FPROUND_F128_F16;
249     if (OpVT == MVT::ppcf128)
250       return FPROUND_PPCF128_F16;
251   } else if (RetVT == MVT::f32) {
252     if (OpVT == MVT::f64)
253       return FPROUND_F64_F32;
254     if (OpVT == MVT::f80)
255       return FPROUND_F80_F32;
256     if (OpVT == MVT::f128)
257       return FPROUND_F128_F32;
258     if (OpVT == MVT::ppcf128)
259       return FPROUND_PPCF128_F32;
260   } else if (RetVT == MVT::f64) {
261     if (OpVT == MVT::f80)
262       return FPROUND_F80_F64;
263     if (OpVT == MVT::f128)
264       return FPROUND_F128_F64;
265     if (OpVT == MVT::ppcf128)
266       return FPROUND_PPCF128_F64;
267   } else if (RetVT == MVT::f80) {
268     if (OpVT == MVT::f128)
269       return FPROUND_F128_F80;
270   }
271 
272   return UNKNOWN_LIBCALL;
273 }
274 
275 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
278   if (OpVT == MVT::f32) {
279     if (RetVT == MVT::i32)
280       return FPTOSINT_F32_I32;
281     if (RetVT == MVT::i64)
282       return FPTOSINT_F32_I64;
283     if (RetVT == MVT::i128)
284       return FPTOSINT_F32_I128;
285   } else if (OpVT == MVT::f64) {
286     if (RetVT == MVT::i32)
287       return FPTOSINT_F64_I32;
288     if (RetVT == MVT::i64)
289       return FPTOSINT_F64_I64;
290     if (RetVT == MVT::i128)
291       return FPTOSINT_F64_I128;
292   } else if (OpVT == MVT::f80) {
293     if (RetVT == MVT::i32)
294       return FPTOSINT_F80_I32;
295     if (RetVT == MVT::i64)
296       return FPTOSINT_F80_I64;
297     if (RetVT == MVT::i128)
298       return FPTOSINT_F80_I128;
299   } else if (OpVT == MVT::f128) {
300     if (RetVT == MVT::i32)
301       return FPTOSINT_F128_I32;
302     if (RetVT == MVT::i64)
303       return FPTOSINT_F128_I64;
304     if (RetVT == MVT::i128)
305       return FPTOSINT_F128_I128;
306   } else if (OpVT == MVT::ppcf128) {
307     if (RetVT == MVT::i32)
308       return FPTOSINT_PPCF128_I32;
309     if (RetVT == MVT::i64)
310       return FPTOSINT_PPCF128_I64;
311     if (RetVT == MVT::i128)
312       return FPTOSINT_PPCF128_I128;
313   }
314   return UNKNOWN_LIBCALL;
315 }
316 
317 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
318 /// UNKNOWN_LIBCALL if there is none.
319 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
320   if (OpVT == MVT::f32) {
321     if (RetVT == MVT::i32)
322       return FPTOUINT_F32_I32;
323     if (RetVT == MVT::i64)
324       return FPTOUINT_F32_I64;
325     if (RetVT == MVT::i128)
326       return FPTOUINT_F32_I128;
327   } else if (OpVT == MVT::f64) {
328     if (RetVT == MVT::i32)
329       return FPTOUINT_F64_I32;
330     if (RetVT == MVT::i64)
331       return FPTOUINT_F64_I64;
332     if (RetVT == MVT::i128)
333       return FPTOUINT_F64_I128;
334   } else if (OpVT == MVT::f80) {
335     if (RetVT == MVT::i32)
336       return FPTOUINT_F80_I32;
337     if (RetVT == MVT::i64)
338       return FPTOUINT_F80_I64;
339     if (RetVT == MVT::i128)
340       return FPTOUINT_F80_I128;
341   } else if (OpVT == MVT::f128) {
342     if (RetVT == MVT::i32)
343       return FPTOUINT_F128_I32;
344     if (RetVT == MVT::i64)
345       return FPTOUINT_F128_I64;
346     if (RetVT == MVT::i128)
347       return FPTOUINT_F128_I128;
348   } else if (OpVT == MVT::ppcf128) {
349     if (RetVT == MVT::i32)
350       return FPTOUINT_PPCF128_I32;
351     if (RetVT == MVT::i64)
352       return FPTOUINT_PPCF128_I64;
353     if (RetVT == MVT::i128)
354       return FPTOUINT_PPCF128_I128;
355   }
356   return UNKNOWN_LIBCALL;
357 }
358 
359 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
360 /// UNKNOWN_LIBCALL if there is none.
361 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
362   if (OpVT == MVT::i32) {
363     if (RetVT == MVT::f32)
364       return SINTTOFP_I32_F32;
365     if (RetVT == MVT::f64)
366       return SINTTOFP_I32_F64;
367     if (RetVT == MVT::f80)
368       return SINTTOFP_I32_F80;
369     if (RetVT == MVT::f128)
370       return SINTTOFP_I32_F128;
371     if (RetVT == MVT::ppcf128)
372       return SINTTOFP_I32_PPCF128;
373   } else if (OpVT == MVT::i64) {
374     if (RetVT == MVT::f32)
375       return SINTTOFP_I64_F32;
376     if (RetVT == MVT::f64)
377       return SINTTOFP_I64_F64;
378     if (RetVT == MVT::f80)
379       return SINTTOFP_I64_F80;
380     if (RetVT == MVT::f128)
381       return SINTTOFP_I64_F128;
382     if (RetVT == MVT::ppcf128)
383       return SINTTOFP_I64_PPCF128;
384   } else if (OpVT == MVT::i128) {
385     if (RetVT == MVT::f32)
386       return SINTTOFP_I128_F32;
387     if (RetVT == MVT::f64)
388       return SINTTOFP_I128_F64;
389     if (RetVT == MVT::f80)
390       return SINTTOFP_I128_F80;
391     if (RetVT == MVT::f128)
392       return SINTTOFP_I128_F128;
393     if (RetVT == MVT::ppcf128)
394       return SINTTOFP_I128_PPCF128;
395   }
396   return UNKNOWN_LIBCALL;
397 }
398 
399 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
400 /// UNKNOWN_LIBCALL if there is none.
401 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
402   if (OpVT == MVT::i32) {
403     if (RetVT == MVT::f32)
404       return UINTTOFP_I32_F32;
405     if (RetVT == MVT::f64)
406       return UINTTOFP_I32_F64;
407     if (RetVT == MVT::f80)
408       return UINTTOFP_I32_F80;
409     if (RetVT == MVT::f128)
410       return UINTTOFP_I32_F128;
411     if (RetVT == MVT::ppcf128)
412       return UINTTOFP_I32_PPCF128;
413   } else if (OpVT == MVT::i64) {
414     if (RetVT == MVT::f32)
415       return UINTTOFP_I64_F32;
416     if (RetVT == MVT::f64)
417       return UINTTOFP_I64_F64;
418     if (RetVT == MVT::f80)
419       return UINTTOFP_I64_F80;
420     if (RetVT == MVT::f128)
421       return UINTTOFP_I64_F128;
422     if (RetVT == MVT::ppcf128)
423       return UINTTOFP_I64_PPCF128;
424   } else if (OpVT == MVT::i128) {
425     if (RetVT == MVT::f32)
426       return UINTTOFP_I128_F32;
427     if (RetVT == MVT::f64)
428       return UINTTOFP_I128_F64;
429     if (RetVT == MVT::f80)
430       return UINTTOFP_I128_F80;
431     if (RetVT == MVT::f128)
432       return UINTTOFP_I128_F128;
433     if (RetVT == MVT::ppcf128)
434       return UINTTOFP_I128_PPCF128;
435   }
436   return UNKNOWN_LIBCALL;
437 }
438 
439 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
440 #define OP_TO_LIBCALL(Name, Enum)                                              \
441   case Name:                                                                   \
442     switch (VT.SimpleTy) {                                                     \
443     default:                                                                   \
444       return UNKNOWN_LIBCALL;                                                  \
445     case MVT::i8:                                                              \
446       return Enum##_1;                                                         \
447     case MVT::i16:                                                             \
448       return Enum##_2;                                                         \
449     case MVT::i32:                                                             \
450       return Enum##_4;                                                         \
451     case MVT::i64:                                                             \
452       return Enum##_8;                                                         \
453     case MVT::i128:                                                            \
454       return Enum##_16;                                                        \
455     }
456 
457   switch (Opc) {
458     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
459     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
460     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
461     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
462     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
463     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
464     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
465     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
466     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
467     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
468     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
470   }
471 
472 #undef OP_TO_LIBCALL
473 
474   return UNKNOWN_LIBCALL;
475 }
476 
477 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
495   switch (ElementSize) {
496   case 1:
497     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
498   case 2:
499     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
500   case 4:
501     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
502   case 8:
503     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
504   case 16:
505     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
506   default:
507     return UNKNOWN_LIBCALL;
508   }
509 }
510 
511 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
512   switch (ElementSize) {
513   case 1:
514     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
515   case 2:
516     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
517   case 4:
518     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
519   case 8:
520     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
521   case 16:
522     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
523   default:
524     return UNKNOWN_LIBCALL;
525   }
526 }
527 
528 /// InitCmpLibcallCCs - Set default comparison libcall CC.
529 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
530   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
531   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
532   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
533   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
534   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
535   CCs[RTLIB::UNE_F32] = ISD::SETNE;
536   CCs[RTLIB::UNE_F64] = ISD::SETNE;
537   CCs[RTLIB::UNE_F128] = ISD::SETNE;
538   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
539   CCs[RTLIB::OGE_F32] = ISD::SETGE;
540   CCs[RTLIB::OGE_F64] = ISD::SETGE;
541   CCs[RTLIB::OGE_F128] = ISD::SETGE;
542   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
543   CCs[RTLIB::OLT_F32] = ISD::SETLT;
544   CCs[RTLIB::OLT_F64] = ISD::SETLT;
545   CCs[RTLIB::OLT_F128] = ISD::SETLT;
546   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
547   CCs[RTLIB::OLE_F32] = ISD::SETLE;
548   CCs[RTLIB::OLE_F64] = ISD::SETLE;
549   CCs[RTLIB::OLE_F128] = ISD::SETLE;
550   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
551   CCs[RTLIB::OGT_F32] = ISD::SETGT;
552   CCs[RTLIB::OGT_F64] = ISD::SETGT;
553   CCs[RTLIB::OGT_F128] = ISD::SETGT;
554   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
555   CCs[RTLIB::UO_F32] = ISD::SETNE;
556   CCs[RTLIB::UO_F64] = ISD::SETNE;
557   CCs[RTLIB::UO_F128] = ISD::SETNE;
558   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
559   CCs[RTLIB::O_F32] = ISD::SETEQ;
560   CCs[RTLIB::O_F64] = ISD::SETEQ;
561   CCs[RTLIB::O_F128] = ISD::SETEQ;
562   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
563 }
564 
565 /// NOTE: The TargetMachine owns TLOF.
566 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
567   initActions();
568 
569   // Perform these initializations only once.
570   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
571       MaxLoadsPerMemcmp = 8;
572   MaxGluedStoresPerMemcpy = 0;
573   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
574       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
575   UseUnderscoreSetJmp = false;
576   UseUnderscoreLongJmp = false;
577   HasMultipleConditionRegisters = false;
578   HasExtractBitsInsn = false;
579   JumpIsExpensive = JumpIsExpensiveOverride;
580   PredictableSelectIsExpensive = false;
581   EnableExtLdPromotion = false;
582   StackPointerRegisterToSaveRestore = 0;
583   BooleanContents = UndefinedBooleanContent;
584   BooleanFloatContents = UndefinedBooleanContent;
585   BooleanVectorContents = UndefinedBooleanContent;
586   SchedPreferenceInfo = Sched::ILP;
587   GatherAllAliasesMaxDepth = 18;
588   // TODO: the default will be switched to 0 in the next commit, along
589   // with the Target-specific changes necessary.
590   MaxAtomicSizeInBitsSupported = 1024;
591 
592   MinCmpXchgSizeInBits = 0;
593   SupportsUnalignedAtomics = false;
594 
595   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
596 
597   InitLibcalls(TM.getTargetTriple());
598   InitCmpLibcallCCs(CmpLibcallCCs);
599 }
600 
601 void TargetLoweringBase::initActions() {
602   // All operations default to being supported.
603   memset(OpActions, 0, sizeof(OpActions));
604   memset(LoadExtActions, 0, sizeof(LoadExtActions));
605   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
606   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
607   memset(CondCodeActions, 0, sizeof(CondCodeActions));
608   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
609   std::fill(std::begin(TargetDAGCombineArray),
610             std::end(TargetDAGCombineArray), 0);
611 
612   for (MVT VT : MVT::fp_valuetypes()) {
613     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
614     if (IntVT.isValid()) {
615       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
616       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
617     }
618   }
619 
620   // Set default actions for various operations.
621   for (MVT VT : MVT::all_valuetypes()) {
622     // Default all indexed load / store to expand.
623     for (unsigned IM = (unsigned)ISD::PRE_INC;
624          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
625       setIndexedLoadAction(IM, VT, Expand);
626       setIndexedStoreAction(IM, VT, Expand);
627     }
628 
629     // Most backends expect to see the node which just returns the value loaded.
630     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
631 
632     // These operations default to expand.
633     setOperationAction(ISD::FGETSIGN, VT, Expand);
634     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
635     setOperationAction(ISD::FMINNUM, VT, Expand);
636     setOperationAction(ISD::FMAXNUM, VT, Expand);
637     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
638     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
639     setOperationAction(ISD::FMINIMUM, VT, Expand);
640     setOperationAction(ISD::FMAXIMUM, VT, Expand);
641     setOperationAction(ISD::FMAD, VT, Expand);
642     setOperationAction(ISD::SMIN, VT, Expand);
643     setOperationAction(ISD::SMAX, VT, Expand);
644     setOperationAction(ISD::UMIN, VT, Expand);
645     setOperationAction(ISD::UMAX, VT, Expand);
646     setOperationAction(ISD::ABS, VT, Expand);
647     setOperationAction(ISD::FSHL, VT, Expand);
648     setOperationAction(ISD::FSHR, VT, Expand);
649     setOperationAction(ISD::SADDSAT, VT, Expand);
650     setOperationAction(ISD::UADDSAT, VT, Expand);
651     setOperationAction(ISD::SSUBSAT, VT, Expand);
652     setOperationAction(ISD::USUBSAT, VT, Expand);
653     setOperationAction(ISD::SMULFIX, VT, Expand);
654     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
655     setOperationAction(ISD::UMULFIX, VT, Expand);
656     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
657 
658     // Overflow operations default to expand
659     setOperationAction(ISD::SADDO, VT, Expand);
660     setOperationAction(ISD::SSUBO, VT, Expand);
661     setOperationAction(ISD::UADDO, VT, Expand);
662     setOperationAction(ISD::USUBO, VT, Expand);
663     setOperationAction(ISD::SMULO, VT, Expand);
664     setOperationAction(ISD::UMULO, VT, Expand);
665 
666     // ADDCARRY operations default to expand
667     setOperationAction(ISD::ADDCARRY, VT, Expand);
668     setOperationAction(ISD::SUBCARRY, VT, Expand);
669     setOperationAction(ISD::SETCCCARRY, VT, Expand);
670 
671     // ADDC/ADDE/SUBC/SUBE default to expand.
672     setOperationAction(ISD::ADDC, VT, Expand);
673     setOperationAction(ISD::ADDE, VT, Expand);
674     setOperationAction(ISD::SUBC, VT, Expand);
675     setOperationAction(ISD::SUBE, VT, Expand);
676 
677     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
678     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
679     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
680 
681     setOperationAction(ISD::BITREVERSE, VT, Expand);
682 
683     // These library functions default to expand.
684     setOperationAction(ISD::FROUND, VT, Expand);
685     setOperationAction(ISD::FPOWI, VT, Expand);
686 
687     // These operations default to expand for vector types.
688     if (VT.isVector()) {
689       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
690       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
691       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
692       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
693     }
694 
695     // Constrained floating-point operations default to expand.
696     setOperationAction(ISD::STRICT_FADD, VT, Expand);
697     setOperationAction(ISD::STRICT_FSUB, VT, Expand);
698     setOperationAction(ISD::STRICT_FMUL, VT, Expand);
699     setOperationAction(ISD::STRICT_FDIV, VT, Expand);
700     setOperationAction(ISD::STRICT_FREM, VT, Expand);
701     setOperationAction(ISD::STRICT_FMA, VT, Expand);
702     setOperationAction(ISD::STRICT_FSQRT, VT, Expand);
703     setOperationAction(ISD::STRICT_FPOW, VT, Expand);
704     setOperationAction(ISD::STRICT_FPOWI, VT, Expand);
705     setOperationAction(ISD::STRICT_FSIN, VT, Expand);
706     setOperationAction(ISD::STRICT_FCOS, VT, Expand);
707     setOperationAction(ISD::STRICT_FEXP, VT, Expand);
708     setOperationAction(ISD::STRICT_FEXP2, VT, Expand);
709     setOperationAction(ISD::STRICT_FLOG, VT, Expand);
710     setOperationAction(ISD::STRICT_FLOG10, VT, Expand);
711     setOperationAction(ISD::STRICT_FLOG2, VT, Expand);
712     setOperationAction(ISD::STRICT_FRINT, VT, Expand);
713     setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand);
714     setOperationAction(ISD::STRICT_FCEIL, VT, Expand);
715     setOperationAction(ISD::STRICT_FFLOOR, VT, Expand);
716     setOperationAction(ISD::STRICT_FROUND, VT, Expand);
717     setOperationAction(ISD::STRICT_FTRUNC, VT, Expand);
718     setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand);
719     setOperationAction(ISD::STRICT_FMINNUM, VT, Expand);
720     setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand);
721     setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand);
722     setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Expand);
723     setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Expand);
724 
725     // For most targets @llvm.get.dynamic.area.offset just returns 0.
726     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
727 
728     // Vector reduction default to expand.
729     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
730     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
731     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
732     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
733     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
734     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
735     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
736     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
737     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
738     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
739     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
740     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
741     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
742   }
743 
744   // Most targets ignore the @llvm.prefetch intrinsic.
745   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
746 
747   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
748   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
749 
750   // ConstantFP nodes default to expand.  Targets can either change this to
751   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
752   // to optimize expansions for certain constants.
753   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
754   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
755   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
756   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
757   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
758 
759   // These library functions default to expand.
760   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
761     setOperationAction(ISD::FCBRT,      VT, Expand);
762     setOperationAction(ISD::FLOG ,      VT, Expand);
763     setOperationAction(ISD::FLOG2,      VT, Expand);
764     setOperationAction(ISD::FLOG10,     VT, Expand);
765     setOperationAction(ISD::FEXP ,      VT, Expand);
766     setOperationAction(ISD::FEXP2,      VT, Expand);
767     setOperationAction(ISD::FFLOOR,     VT, Expand);
768     setOperationAction(ISD::FNEARBYINT, VT, Expand);
769     setOperationAction(ISD::FCEIL,      VT, Expand);
770     setOperationAction(ISD::FRINT,      VT, Expand);
771     setOperationAction(ISD::FTRUNC,     VT, Expand);
772     setOperationAction(ISD::FROUND,     VT, Expand);
773     setOperationAction(ISD::LROUND,     VT, Expand);
774     setOperationAction(ISD::LLROUND,    VT, Expand);
775     setOperationAction(ISD::LRINT,      VT, Expand);
776     setOperationAction(ISD::LLRINT,     VT, Expand);
777   }
778 
779   // Default ISD::TRAP to expand (which turns it into abort).
780   setOperationAction(ISD::TRAP, MVT::Other, Expand);
781 
782   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
783   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
784   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
785 }
786 
787 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
788                                                EVT) const {
789   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
790 }
791 
792 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
793                                          bool LegalTypes) const {
794   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
795   if (LHSTy.isVector())
796     return LHSTy;
797   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
798                     : getPointerTy(DL);
799 }
800 
801 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
802   assert(isTypeLegal(VT));
803   switch (Op) {
804   default:
805     return false;
806   case ISD::SDIV:
807   case ISD::UDIV:
808   case ISD::SREM:
809   case ISD::UREM:
810     return true;
811   }
812 }
813 
814 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
815   // If the command-line option was specified, ignore this request.
816   if (!JumpIsExpensiveOverride.getNumOccurrences())
817     JumpIsExpensive = isExpensive;
818 }
819 
820 TargetLoweringBase::LegalizeKind
821 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
822   // If this is a simple type, use the ComputeRegisterProp mechanism.
823   if (VT.isSimple()) {
824     MVT SVT = VT.getSimpleVT();
825     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
826     MVT NVT = TransformToType[SVT.SimpleTy];
827     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
828 
829     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
830             (NVT.isVector() ||
831              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
832            "Promote may not follow Expand or Promote");
833 
834     if (LA == TypeSplitVector)
835       return LegalizeKind(LA,
836                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
837                                            SVT.getVectorNumElements() / 2));
838     if (LA == TypeScalarizeVector)
839       return LegalizeKind(LA, SVT.getVectorElementType());
840     return LegalizeKind(LA, NVT);
841   }
842 
843   // Handle Extended Scalar Types.
844   if (!VT.isVector()) {
845     assert(VT.isInteger() && "Float types must be simple");
846     unsigned BitSize = VT.getSizeInBits();
847     // First promote to a power-of-two size, then expand if necessary.
848     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
849       EVT NVT = VT.getRoundIntegerType(Context);
850       assert(NVT != VT && "Unable to round integer VT");
851       LegalizeKind NextStep = getTypeConversion(Context, NVT);
852       // Avoid multi-step promotion.
853       if (NextStep.first == TypePromoteInteger)
854         return NextStep;
855       // Return rounded integer type.
856       return LegalizeKind(TypePromoteInteger, NVT);
857     }
858 
859     return LegalizeKind(TypeExpandInteger,
860                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
861   }
862 
863   // Handle vector types.
864   unsigned NumElts = VT.getVectorNumElements();
865   EVT EltVT = VT.getVectorElementType();
866 
867   // Vectors with only one element are always scalarized.
868   if (NumElts == 1)
869     return LegalizeKind(TypeScalarizeVector, EltVT);
870 
871   // Try to widen vector elements until the element type is a power of two and
872   // promote it to a legal type later on, for example:
873   // <3 x i8> -> <4 x i8> -> <4 x i32>
874   if (EltVT.isInteger()) {
875     // Vectors with a number of elements that is not a power of two are always
876     // widened, for example <3 x i8> -> <4 x i8>.
877     if (!VT.isPow2VectorType()) {
878       NumElts = (unsigned)NextPowerOf2(NumElts);
879       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
880       return LegalizeKind(TypeWidenVector, NVT);
881     }
882 
883     // Examine the element type.
884     LegalizeKind LK = getTypeConversion(Context, EltVT);
885 
886     // If type is to be expanded, split the vector.
887     //  <4 x i140> -> <2 x i140>
888     if (LK.first == TypeExpandInteger)
889       return LegalizeKind(TypeSplitVector,
890                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
891 
892     // Promote the integer element types until a legal vector type is found
893     // or until the element integer type is too big. If a legal type was not
894     // found, fallback to the usual mechanism of widening/splitting the
895     // vector.
896     EVT OldEltVT = EltVT;
897     while (true) {
898       // Increase the bitwidth of the element to the next pow-of-two
899       // (which is greater than 8 bits).
900       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
901                   .getRoundIntegerType(Context);
902 
903       // Stop trying when getting a non-simple element type.
904       // Note that vector elements may be greater than legal vector element
905       // types. Example: X86 XMM registers hold 64bit element on 32bit
906       // systems.
907       if (!EltVT.isSimple())
908         break;
909 
910       // Build a new vector type and check if it is legal.
911       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
912       // Found a legal promoted vector type.
913       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
914         return LegalizeKind(TypePromoteInteger,
915                             EVT::getVectorVT(Context, EltVT, NumElts));
916     }
917 
918     // Reset the type to the unexpanded type if we did not find a legal vector
919     // type with a promoted vector element type.
920     EltVT = OldEltVT;
921   }
922 
923   // Try to widen the vector until a legal type is found.
924   // If there is no wider legal type, split the vector.
925   while (true) {
926     // Round up to the next power of 2.
927     NumElts = (unsigned)NextPowerOf2(NumElts);
928 
929     // If there is no simple vector type with this many elements then there
930     // cannot be a larger legal vector type.  Note that this assumes that
931     // there are no skipped intermediate vector types in the simple types.
932     if (!EltVT.isSimple())
933       break;
934     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
935     if (LargerVector == MVT())
936       break;
937 
938     // If this type is legal then widen the vector.
939     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
940       return LegalizeKind(TypeWidenVector, LargerVector);
941   }
942 
943   // Widen odd vectors to next power of two.
944   if (!VT.isPow2VectorType()) {
945     EVT NVT = VT.getPow2VectorType(Context);
946     return LegalizeKind(TypeWidenVector, NVT);
947   }
948 
949   // Vectors with illegal element types are expanded.
950   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
951   return LegalizeKind(TypeSplitVector, NVT);
952 }
953 
954 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
955                                           unsigned &NumIntermediates,
956                                           MVT &RegisterVT,
957                                           TargetLoweringBase *TLI) {
958   // Figure out the right, legal destination reg to copy into.
959   unsigned NumElts = VT.getVectorNumElements();
960   MVT EltTy = VT.getVectorElementType();
961 
962   unsigned NumVectorRegs = 1;
963 
964   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
965   // could break down into LHS/RHS like LegalizeDAG does.
966   if (!isPowerOf2_32(NumElts)) {
967     NumVectorRegs = NumElts;
968     NumElts = 1;
969   }
970 
971   // Divide the input until we get to a supported size.  This will always
972   // end with a scalar if the target doesn't support vectors.
973   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
974     NumElts >>= 1;
975     NumVectorRegs <<= 1;
976   }
977 
978   NumIntermediates = NumVectorRegs;
979 
980   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
981   if (!TLI->isTypeLegal(NewVT))
982     NewVT = EltTy;
983   IntermediateVT = NewVT;
984 
985   unsigned NewVTSize = NewVT.getSizeInBits();
986 
987   // Convert sizes such as i33 to i64.
988   if (!isPowerOf2_32(NewVTSize))
989     NewVTSize = NextPowerOf2(NewVTSize);
990 
991   MVT DestVT = TLI->getRegisterType(NewVT);
992   RegisterVT = DestVT;
993   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
994     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
995 
996   // Otherwise, promotion or legal types use the same number of registers as
997   // the vector decimated to the appropriate level.
998   return NumVectorRegs;
999 }
1000 
1001 /// isLegalRC - Return true if the value types that can be represented by the
1002 /// specified register class are all legal.
1003 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1004                                    const TargetRegisterClass &RC) const {
1005   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1006     if (isTypeLegal(*I))
1007       return true;
1008   return false;
1009 }
1010 
1011 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1012 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1013 MachineBasicBlock *
1014 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1015                                    MachineBasicBlock *MBB) const {
1016   MachineInstr *MI = &InitialMI;
1017   MachineFunction &MF = *MI->getMF();
1018   MachineFrameInfo &MFI = MF.getFrameInfo();
1019 
1020   // We're handling multiple types of operands here:
1021   // PATCHPOINT MetaArgs - live-in, read only, direct
1022   // STATEPOINT Deopt Spill - live-through, read only, indirect
1023   // STATEPOINT Deopt Alloca - live-through, read only, direct
1024   // (We're currently conservative and mark the deopt slots read/write in
1025   // practice.)
1026   // STATEPOINT GC Spill - live-through, read/write, indirect
1027   // STATEPOINT GC Alloca - live-through, read/write, direct
1028   // The live-in vs live-through is handled already (the live through ones are
1029   // all stack slots), but we need to handle the different type of stackmap
1030   // operands and memory effects here.
1031 
1032   // MI changes inside this loop as we grow operands.
1033   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1034     MachineOperand &MO = MI->getOperand(OperIdx);
1035     if (!MO.isFI())
1036       continue;
1037 
1038     // foldMemoryOperand builds a new MI after replacing a single FI operand
1039     // with the canonical set of five x86 addressing-mode operands.
1040     int FI = MO.getIndex();
1041     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1042 
1043     // Copy operands before the frame-index.
1044     for (unsigned i = 0; i < OperIdx; ++i)
1045       MIB.add(MI->getOperand(i));
1046     // Add frame index operands recognized by stackmaps.cpp
1047     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1048       // indirect-mem-ref tag, size, #FI, offset.
1049       // Used for spills inserted by StatepointLowering.  This codepath is not
1050       // used for patchpoints/stackmaps at all, for these spilling is done via
1051       // foldMemoryOperand callback only.
1052       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1053       MIB.addImm(StackMaps::IndirectMemRefOp);
1054       MIB.addImm(MFI.getObjectSize(FI));
1055       MIB.add(MI->getOperand(OperIdx));
1056       MIB.addImm(0);
1057     } else {
1058       // direct-mem-ref tag, #FI, offset.
1059       // Used by patchpoint, and direct alloca arguments to statepoints
1060       MIB.addImm(StackMaps::DirectMemRefOp);
1061       MIB.add(MI->getOperand(OperIdx));
1062       MIB.addImm(0);
1063     }
1064     // Copy the operands after the frame index.
1065     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1066       MIB.add(MI->getOperand(i));
1067 
1068     // Inherit previous memory operands.
1069     MIB.cloneMemRefs(*MI);
1070     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1071 
1072     // Add a new memory operand for this FI.
1073     assert(MFI.getObjectOffset(FI) != -1);
1074 
1075     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1076     // PATCHPOINT should be updated to do the same. (TODO)
1077     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1078       auto Flags = MachineMemOperand::MOLoad;
1079       MachineMemOperand *MMO = MF.getMachineMemOperand(
1080           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1081           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1082       MIB->addMemOperand(MF, MMO);
1083     }
1084 
1085     // Replace the instruction and update the operand index.
1086     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1087     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1088     MI->eraseFromParent();
1089     MI = MIB;
1090   }
1091   return MBB;
1092 }
1093 
1094 MachineBasicBlock *
1095 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1096                                         MachineBasicBlock *MBB) const {
1097   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1098          "Called emitXRayCustomEvent on the wrong MI!");
1099   auto &MF = *MI.getMF();
1100   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1101   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1102     MIB.add(MI.getOperand(OpIdx));
1103 
1104   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1105   MI.eraseFromParent();
1106   return MBB;
1107 }
1108 
1109 MachineBasicBlock *
1110 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1111                                        MachineBasicBlock *MBB) const {
1112   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1113          "Called emitXRayTypedEvent on the wrong MI!");
1114   auto &MF = *MI.getMF();
1115   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1116   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1117     MIB.add(MI.getOperand(OpIdx));
1118 
1119   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1120   MI.eraseFromParent();
1121   return MBB;
1122 }
1123 
1124 /// findRepresentativeClass - Return the largest legal super-reg register class
1125 /// of the register class for the specified type and its associated "cost".
1126 // This function is in TargetLowering because it uses RegClassForVT which would
1127 // need to be moved to TargetRegisterInfo and would necessitate moving
1128 // isTypeLegal over as well - a massive change that would just require
1129 // TargetLowering having a TargetRegisterInfo class member that it would use.
1130 std::pair<const TargetRegisterClass *, uint8_t>
1131 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1132                                             MVT VT) const {
1133   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1134   if (!RC)
1135     return std::make_pair(RC, 0);
1136 
1137   // Compute the set of all super-register classes.
1138   BitVector SuperRegRC(TRI->getNumRegClasses());
1139   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1140     SuperRegRC.setBitsInMask(RCI.getMask());
1141 
1142   // Find the first legal register class with the largest spill size.
1143   const TargetRegisterClass *BestRC = RC;
1144   for (unsigned i : SuperRegRC.set_bits()) {
1145     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1146     // We want the largest possible spill size.
1147     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1148       continue;
1149     if (!isLegalRC(*TRI, *SuperRC))
1150       continue;
1151     BestRC = SuperRC;
1152   }
1153   return std::make_pair(BestRC, 1);
1154 }
1155 
1156 /// computeRegisterProperties - Once all of the register classes are added,
1157 /// this allows us to compute derived properties we expose.
1158 void TargetLoweringBase::computeRegisterProperties(
1159     const TargetRegisterInfo *TRI) {
1160   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1161                 "Too many value types for ValueTypeActions to hold!");
1162 
1163   // Everything defaults to needing one register.
1164   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1165     NumRegistersForVT[i] = 1;
1166     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1167   }
1168   // ...except isVoid, which doesn't need any registers.
1169   NumRegistersForVT[MVT::isVoid] = 0;
1170 
1171   // Find the largest integer register class.
1172   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1173   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1174     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1175 
1176   // Every integer value type larger than this largest register takes twice as
1177   // many registers to represent as the previous ValueType.
1178   for (unsigned ExpandedReg = LargestIntReg + 1;
1179        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1180     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1181     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1182     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1183     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1184                                    TypeExpandInteger);
1185   }
1186 
1187   // Inspect all of the ValueType's smaller than the largest integer
1188   // register to see which ones need promotion.
1189   unsigned LegalIntReg = LargestIntReg;
1190   for (unsigned IntReg = LargestIntReg - 1;
1191        IntReg >= (unsigned)MVT::i1; --IntReg) {
1192     MVT IVT = (MVT::SimpleValueType)IntReg;
1193     if (isTypeLegal(IVT)) {
1194       LegalIntReg = IntReg;
1195     } else {
1196       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1197         (MVT::SimpleValueType)LegalIntReg;
1198       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1199     }
1200   }
1201 
1202   // ppcf128 type is really two f64's.
1203   if (!isTypeLegal(MVT::ppcf128)) {
1204     if (isTypeLegal(MVT::f64)) {
1205       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1206       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1207       TransformToType[MVT::ppcf128] = MVT::f64;
1208       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1209     } else {
1210       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1211       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1212       TransformToType[MVT::ppcf128] = MVT::i128;
1213       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1214     }
1215   }
1216 
1217   // Decide how to handle f128. If the target does not have native f128 support,
1218   // expand it to i128 and we will be generating soft float library calls.
1219   if (!isTypeLegal(MVT::f128)) {
1220     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1221     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1222     TransformToType[MVT::f128] = MVT::i128;
1223     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1224   }
1225 
1226   // Decide how to handle f64. If the target does not have native f64 support,
1227   // expand it to i64 and we will be generating soft float library calls.
1228   if (!isTypeLegal(MVT::f64)) {
1229     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1230     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1231     TransformToType[MVT::f64] = MVT::i64;
1232     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1233   }
1234 
1235   // Decide how to handle f32. If the target does not have native f32 support,
1236   // expand it to i32 and we will be generating soft float library calls.
1237   if (!isTypeLegal(MVT::f32)) {
1238     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1239     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1240     TransformToType[MVT::f32] = MVT::i32;
1241     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1242   }
1243 
1244   // Decide how to handle f16. If the target does not have native f16 support,
1245   // promote it to f32, because there are no f16 library calls (except for
1246   // conversions).
1247   if (!isTypeLegal(MVT::f16)) {
1248     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1249     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1250     TransformToType[MVT::f16] = MVT::f32;
1251     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1252   }
1253 
1254   // Loop over all of the vector value types to see which need transformations.
1255   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1256        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1257     MVT VT = (MVT::SimpleValueType) i;
1258     if (isTypeLegal(VT))
1259       continue;
1260 
1261     MVT EltVT = VT.getVectorElementType();
1262     unsigned NElts = VT.getVectorNumElements();
1263     bool IsLegalWiderType = false;
1264     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1265     switch (PreferredAction) {
1266     case TypePromoteInteger:
1267       // Try to promote the elements of integer vectors. If no legal
1268       // promotion was found, fall through to the widen-vector method.
1269       for (unsigned nVT = i + 1;
1270            nVT <= MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; ++nVT) {
1271         MVT SVT = (MVT::SimpleValueType) nVT;
1272         // Promote vectors of integers to vectors with the same number
1273         // of elements, with a wider element type.
1274         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1275             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1276           TransformToType[i] = SVT;
1277           RegisterTypeForVT[i] = SVT;
1278           NumRegistersForVT[i] = 1;
1279           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1280           IsLegalWiderType = true;
1281           break;
1282         }
1283       }
1284       if (IsLegalWiderType)
1285         break;
1286       LLVM_FALLTHROUGH;
1287 
1288     case TypeWidenVector:
1289       if (isPowerOf2_32(NElts)) {
1290         // Try to widen the vector.
1291         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1292           MVT SVT = (MVT::SimpleValueType) nVT;
1293           if (SVT.getVectorElementType() == EltVT
1294               && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1295             TransformToType[i] = SVT;
1296             RegisterTypeForVT[i] = SVT;
1297             NumRegistersForVT[i] = 1;
1298             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1299             IsLegalWiderType = true;
1300             break;
1301           }
1302         }
1303         if (IsLegalWiderType)
1304           break;
1305       } else {
1306         // Only widen to the next power of 2 to keep consistency with EVT.
1307         MVT NVT = VT.getPow2VectorType();
1308         if (isTypeLegal(NVT)) {
1309           TransformToType[i] = NVT;
1310           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1311           RegisterTypeForVT[i] = NVT;
1312           NumRegistersForVT[i] = 1;
1313           break;
1314         }
1315       }
1316       LLVM_FALLTHROUGH;
1317 
1318     case TypeSplitVector:
1319     case TypeScalarizeVector: {
1320       MVT IntermediateVT;
1321       MVT RegisterVT;
1322       unsigned NumIntermediates;
1323       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1324           NumIntermediates, RegisterVT, this);
1325       RegisterTypeForVT[i] = RegisterVT;
1326 
1327       MVT NVT = VT.getPow2VectorType();
1328       if (NVT == VT) {
1329         // Type is already a power of 2.  The default action is to split.
1330         TransformToType[i] = MVT::Other;
1331         if (PreferredAction == TypeScalarizeVector)
1332           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1333         else if (PreferredAction == TypeSplitVector)
1334           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1335         else
1336           // Set type action according to the number of elements.
1337           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1338                                                         : TypeSplitVector);
1339       } else {
1340         TransformToType[i] = NVT;
1341         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1342       }
1343       break;
1344     }
1345     default:
1346       llvm_unreachable("Unknown vector legalization action!");
1347     }
1348   }
1349 
1350   // Determine the 'representative' register class for each value type.
1351   // An representative register class is the largest (meaning one which is
1352   // not a sub-register class / subreg register class) legal register class for
1353   // a group of value types. For example, on i386, i8, i16, and i32
1354   // representative would be GR32; while on x86_64 it's GR64.
1355   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1356     const TargetRegisterClass* RRC;
1357     uint8_t Cost;
1358     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1359     RepRegClassForVT[i] = RRC;
1360     RepRegClassCostForVT[i] = Cost;
1361   }
1362 }
1363 
1364 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1365                                            EVT VT) const {
1366   assert(!VT.isVector() && "No default SetCC type for vectors!");
1367   return getPointerTy(DL).SimpleTy;
1368 }
1369 
1370 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1371   return MVT::i32; // return the default value
1372 }
1373 
1374 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1375 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1376 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1377 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1378 ///
1379 /// This method returns the number of registers needed, and the VT for each
1380 /// register.  It also returns the VT and quantity of the intermediate values
1381 /// before they are promoted/expanded.
1382 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1383                                                 EVT &IntermediateVT,
1384                                                 unsigned &NumIntermediates,
1385                                                 MVT &RegisterVT) const {
1386   unsigned NumElts = VT.getVectorNumElements();
1387 
1388   // If there is a wider vector type with the same element type as this one,
1389   // or a promoted vector type that has the same number of elements which
1390   // are wider, then we should convert to that legal vector type.
1391   // This handles things like <2 x float> -> <4 x float> and
1392   // <4 x i1> -> <4 x i32>.
1393   LegalizeTypeAction TA = getTypeAction(Context, VT);
1394   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1395     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1396     if (isTypeLegal(RegisterEVT)) {
1397       IntermediateVT = RegisterEVT;
1398       RegisterVT = RegisterEVT.getSimpleVT();
1399       NumIntermediates = 1;
1400       return 1;
1401     }
1402   }
1403 
1404   // Figure out the right, legal destination reg to copy into.
1405   EVT EltTy = VT.getVectorElementType();
1406 
1407   unsigned NumVectorRegs = 1;
1408 
1409   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1410   // could break down into LHS/RHS like LegalizeDAG does.
1411   if (!isPowerOf2_32(NumElts)) {
1412     NumVectorRegs = NumElts;
1413     NumElts = 1;
1414   }
1415 
1416   // Divide the input until we get to a supported size.  This will always
1417   // end with a scalar if the target doesn't support vectors.
1418   while (NumElts > 1 && !isTypeLegal(
1419                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1420     NumElts >>= 1;
1421     NumVectorRegs <<= 1;
1422   }
1423 
1424   NumIntermediates = NumVectorRegs;
1425 
1426   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1427   if (!isTypeLegal(NewVT))
1428     NewVT = EltTy;
1429   IntermediateVT = NewVT;
1430 
1431   MVT DestVT = getRegisterType(Context, NewVT);
1432   RegisterVT = DestVT;
1433   unsigned NewVTSize = NewVT.getSizeInBits();
1434 
1435   // Convert sizes such as i33 to i64.
1436   if (!isPowerOf2_32(NewVTSize))
1437     NewVTSize = NextPowerOf2(NewVTSize);
1438 
1439   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1440     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1441 
1442   // Otherwise, promotion or legal types use the same number of registers as
1443   // the vector decimated to the appropriate level.
1444   return NumVectorRegs;
1445 }
1446 
1447 /// Get the EVTs and ArgFlags collections that represent the legalized return
1448 /// type of the given function.  This does not require a DAG or a return value,
1449 /// and is suitable for use before any DAGs for the function are constructed.
1450 /// TODO: Move this out of TargetLowering.cpp.
1451 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1452                          AttributeList attr,
1453                          SmallVectorImpl<ISD::OutputArg> &Outs,
1454                          const TargetLowering &TLI, const DataLayout &DL) {
1455   SmallVector<EVT, 4> ValueVTs;
1456   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1457   unsigned NumValues = ValueVTs.size();
1458   if (NumValues == 0) return;
1459 
1460   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1461     EVT VT = ValueVTs[j];
1462     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1463 
1464     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1465       ExtendKind = ISD::SIGN_EXTEND;
1466     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1467       ExtendKind = ISD::ZERO_EXTEND;
1468 
1469     // FIXME: C calling convention requires the return type to be promoted to
1470     // at least 32-bit. But this is not necessary for non-C calling
1471     // conventions. The frontend should mark functions whose return values
1472     // require promoting with signext or zeroext attributes.
1473     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1474       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1475       if (VT.bitsLT(MinVT))
1476         VT = MinVT;
1477     }
1478 
1479     unsigned NumParts =
1480         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1481     MVT PartVT =
1482         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1483 
1484     // 'inreg' on function refers to return value
1485     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1486     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1487       Flags.setInReg();
1488 
1489     // Propagate extension type if any
1490     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1491       Flags.setSExt();
1492     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1493       Flags.setZExt();
1494 
1495     for (unsigned i = 0; i < NumParts; ++i)
1496       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1497   }
1498 }
1499 
1500 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1501 /// function arguments in the caller parameter area.  This is the actual
1502 /// alignment, not its logarithm.
1503 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1504                                                    const DataLayout &DL) const {
1505   return DL.getABITypeAlignment(Ty);
1506 }
1507 
1508 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1509                                             const DataLayout &DL, EVT VT,
1510                                             unsigned AddrSpace,
1511                                             unsigned Alignment,
1512                                             MachineMemOperand::Flags Flags,
1513                                             bool *Fast) const {
1514   // Check if the specified alignment is sufficient based on the data layout.
1515   // TODO: While using the data layout works in practice, a better solution
1516   // would be to implement this check directly (make this a virtual function).
1517   // For example, the ABI alignment may change based on software platform while
1518   // this function should only be affected by hardware implementation.
1519   Type *Ty = VT.getTypeForEVT(Context);
1520   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1521     // Assume that an access that meets the ABI-specified alignment is fast.
1522     if (Fast != nullptr)
1523       *Fast = true;
1524     return true;
1525   }
1526 
1527   // This is a misaligned access.
1528   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1529 }
1530 
1531 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1532                                             const DataLayout &DL, EVT VT,
1533                                             const MachineMemOperand &MMO,
1534                                             bool *Fast) const {
1535   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1536                             MMO.getAlignment(), MMO.getFlags(), Fast);
1537 }
1538 
1539 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1540   return BranchProbability(MinPercentageForPredictableBranch, 100);
1541 }
1542 
1543 //===----------------------------------------------------------------------===//
1544 //  TargetTransformInfo Helpers
1545 //===----------------------------------------------------------------------===//
1546 
1547 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1548   enum InstructionOpcodes {
1549 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1550 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1551 #include "llvm/IR/Instruction.def"
1552   };
1553   switch (static_cast<InstructionOpcodes>(Opcode)) {
1554   case Ret:            return 0;
1555   case Br:             return 0;
1556   case Switch:         return 0;
1557   case IndirectBr:     return 0;
1558   case Invoke:         return 0;
1559   case CallBr:         return 0;
1560   case Resume:         return 0;
1561   case Unreachable:    return 0;
1562   case CleanupRet:     return 0;
1563   case CatchRet:       return 0;
1564   case CatchPad:       return 0;
1565   case CatchSwitch:    return 0;
1566   case CleanupPad:     return 0;
1567   case FNeg:           return ISD::FNEG;
1568   case Add:            return ISD::ADD;
1569   case FAdd:           return ISD::FADD;
1570   case Sub:            return ISD::SUB;
1571   case FSub:           return ISD::FSUB;
1572   case Mul:            return ISD::MUL;
1573   case FMul:           return ISD::FMUL;
1574   case UDiv:           return ISD::UDIV;
1575   case SDiv:           return ISD::SDIV;
1576   case FDiv:           return ISD::FDIV;
1577   case URem:           return ISD::UREM;
1578   case SRem:           return ISD::SREM;
1579   case FRem:           return ISD::FREM;
1580   case Shl:            return ISD::SHL;
1581   case LShr:           return ISD::SRL;
1582   case AShr:           return ISD::SRA;
1583   case And:            return ISD::AND;
1584   case Or:             return ISD::OR;
1585   case Xor:            return ISD::XOR;
1586   case Alloca:         return 0;
1587   case Load:           return ISD::LOAD;
1588   case Store:          return ISD::STORE;
1589   case GetElementPtr:  return 0;
1590   case Fence:          return 0;
1591   case AtomicCmpXchg:  return 0;
1592   case AtomicRMW:      return 0;
1593   case Trunc:          return ISD::TRUNCATE;
1594   case ZExt:           return ISD::ZERO_EXTEND;
1595   case SExt:           return ISD::SIGN_EXTEND;
1596   case FPToUI:         return ISD::FP_TO_UINT;
1597   case FPToSI:         return ISD::FP_TO_SINT;
1598   case UIToFP:         return ISD::UINT_TO_FP;
1599   case SIToFP:         return ISD::SINT_TO_FP;
1600   case FPTrunc:        return ISD::FP_ROUND;
1601   case FPExt:          return ISD::FP_EXTEND;
1602   case PtrToInt:       return ISD::BITCAST;
1603   case IntToPtr:       return ISD::BITCAST;
1604   case BitCast:        return ISD::BITCAST;
1605   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1606   case ICmp:           return ISD::SETCC;
1607   case FCmp:           return ISD::SETCC;
1608   case PHI:            return 0;
1609   case Call:           return 0;
1610   case Select:         return ISD::SELECT;
1611   case UserOp1:        return 0;
1612   case UserOp2:        return 0;
1613   case VAArg:          return 0;
1614   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1615   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1616   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1617   case ExtractValue:   return ISD::MERGE_VALUES;
1618   case InsertValue:    return ISD::MERGE_VALUES;
1619   case LandingPad:     return 0;
1620   }
1621 
1622   llvm_unreachable("Unknown instruction type encountered!");
1623 }
1624 
1625 std::pair<int, MVT>
1626 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1627                                             Type *Ty) const {
1628   LLVMContext &C = Ty->getContext();
1629   EVT MTy = getValueType(DL, Ty);
1630 
1631   int Cost = 1;
1632   // We keep legalizing the type until we find a legal kind. We assume that
1633   // the only operation that costs anything is the split. After splitting
1634   // we need to handle two types.
1635   while (true) {
1636     LegalizeKind LK = getTypeConversion(C, MTy);
1637 
1638     if (LK.first == TypeLegal)
1639       return std::make_pair(Cost, MTy.getSimpleVT());
1640 
1641     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1642       Cost *= 2;
1643 
1644     // Do not loop with f128 type.
1645     if (MTy == LK.second)
1646       return std::make_pair(Cost, MTy.getSimpleVT());
1647 
1648     // Keep legalizing the type.
1649     MTy = LK.second;
1650   }
1651 }
1652 
1653 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1654                                                               bool UseTLS) const {
1655   // compiler-rt provides a variable with a magic name.  Targets that do not
1656   // link with compiler-rt may also provide such a variable.
1657   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1658   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1659   auto UnsafeStackPtr =
1660       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1661 
1662   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1663 
1664   if (!UnsafeStackPtr) {
1665     auto TLSModel = UseTLS ?
1666         GlobalValue::InitialExecTLSModel :
1667         GlobalValue::NotThreadLocal;
1668     // The global variable is not defined yet, define it ourselves.
1669     // We use the initial-exec TLS model because we do not support the
1670     // variable living anywhere other than in the main executable.
1671     UnsafeStackPtr = new GlobalVariable(
1672         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1673         UnsafeStackPtrVar, nullptr, TLSModel);
1674   } else {
1675     // The variable exists, check its type and attributes.
1676     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1677       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1678     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1679       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1680                          (UseTLS ? "" : "not ") + "be thread-local");
1681   }
1682   return UnsafeStackPtr;
1683 }
1684 
1685 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1686   if (!TM.getTargetTriple().isAndroid())
1687     return getDefaultSafeStackPointerLocation(IRB, true);
1688 
1689   // Android provides a libc function to retrieve the address of the current
1690   // thread's unsafe stack pointer.
1691   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1692   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1693   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1694                                              StackPtrTy->getPointerTo(0));
1695   return IRB.CreateCall(Fn);
1696 }
1697 
1698 //===----------------------------------------------------------------------===//
1699 //  Loop Strength Reduction hooks
1700 //===----------------------------------------------------------------------===//
1701 
1702 /// isLegalAddressingMode - Return true if the addressing mode represented
1703 /// by AM is legal for this target, for a load/store of the specified type.
1704 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1705                                                const AddrMode &AM, Type *Ty,
1706                                                unsigned AS, Instruction *I) const {
1707   // The default implementation of this implements a conservative RISCy, r+r and
1708   // r+i addr mode.
1709 
1710   // Allows a sign-extended 16-bit immediate field.
1711   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1712     return false;
1713 
1714   // No global is ever allowed as a base.
1715   if (AM.BaseGV)
1716     return false;
1717 
1718   // Only support r+r,
1719   switch (AM.Scale) {
1720   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1721     break;
1722   case 1:
1723     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1724       return false;
1725     // Otherwise we have r+r or r+i.
1726     break;
1727   case 2:
1728     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1729       return false;
1730     // Allow 2*r as r+r.
1731     break;
1732   default: // Don't allow n * r
1733     return false;
1734   }
1735 
1736   return true;
1737 }
1738 
1739 //===----------------------------------------------------------------------===//
1740 //  Stack Protector
1741 //===----------------------------------------------------------------------===//
1742 
1743 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1744 // so that SelectionDAG handle SSP.
1745 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1746   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1747     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1748     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1749     return M.getOrInsertGlobal("__guard_local", PtrTy);
1750   }
1751   return nullptr;
1752 }
1753 
1754 // Currently only support "standard" __stack_chk_guard.
1755 // TODO: add LOAD_STACK_GUARD support.
1756 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1757   if (!M.getNamedValue("__stack_chk_guard"))
1758     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1759                        GlobalVariable::ExternalLinkage,
1760                        nullptr, "__stack_chk_guard");
1761 }
1762 
1763 // Currently only support "standard" __stack_chk_guard.
1764 // TODO: add LOAD_STACK_GUARD support.
1765 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1766   return M.getNamedValue("__stack_chk_guard");
1767 }
1768 
1769 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1770   return nullptr;
1771 }
1772 
1773 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1774   return MinimumJumpTableEntries;
1775 }
1776 
1777 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1778   MinimumJumpTableEntries = Val;
1779 }
1780 
1781 unsigned TargetLoweringBase::getMaximumJumpTableTargets() const {
1782   return MaximumJumpTableTargets;
1783 }
1784 
1785 void TargetLoweringBase::setMaximumJumpTableTargets(unsigned Val) {
1786   MaximumJumpTableTargets = Val;
1787 }
1788 
1789 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1790   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1791 }
1792 
1793 //===----------------------------------------------------------------------===//
1794 //  Reciprocal Estimates
1795 //===----------------------------------------------------------------------===//
1796 
1797 /// Get the reciprocal estimate attribute string for a function that will
1798 /// override the target defaults.
1799 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1800   const Function &F = MF.getFunction();
1801   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1802 }
1803 
1804 /// Construct a string for the given reciprocal operation of the given type.
1805 /// This string should match the corresponding option to the front-end's
1806 /// "-mrecip" flag assuming those strings have been passed through in an
1807 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1808 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1809   std::string Name = VT.isVector() ? "vec-" : "";
1810 
1811   Name += IsSqrt ? "sqrt" : "div";
1812 
1813   // TODO: Handle "half" or other float types?
1814   if (VT.getScalarType() == MVT::f64) {
1815     Name += "d";
1816   } else {
1817     assert(VT.getScalarType() == MVT::f32 &&
1818            "Unexpected FP type for reciprocal estimate");
1819     Name += "f";
1820   }
1821 
1822   return Name;
1823 }
1824 
1825 /// Return the character position and value (a single numeric character) of a
1826 /// customized refinement operation in the input string if it exists. Return
1827 /// false if there is no customized refinement step count.
1828 static bool parseRefinementStep(StringRef In, size_t &Position,
1829                                 uint8_t &Value) {
1830   const char RefStepToken = ':';
1831   Position = In.find(RefStepToken);
1832   if (Position == StringRef::npos)
1833     return false;
1834 
1835   StringRef RefStepString = In.substr(Position + 1);
1836   // Allow exactly one numeric character for the additional refinement
1837   // step parameter.
1838   if (RefStepString.size() == 1) {
1839     char RefStepChar = RefStepString[0];
1840     if (RefStepChar >= '0' && RefStepChar <= '9') {
1841       Value = RefStepChar - '0';
1842       return true;
1843     }
1844   }
1845   report_fatal_error("Invalid refinement step for -recip.");
1846 }
1847 
1848 /// For the input attribute string, return one of the ReciprocalEstimate enum
1849 /// status values (enabled, disabled, or not specified) for this operation on
1850 /// the specified data type.
1851 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1852   if (Override.empty())
1853     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1854 
1855   SmallVector<StringRef, 4> OverrideVector;
1856   Override.split(OverrideVector, ',');
1857   unsigned NumArgs = OverrideVector.size();
1858 
1859   // Check if "all", "none", or "default" was specified.
1860   if (NumArgs == 1) {
1861     // Look for an optional setting of the number of refinement steps needed
1862     // for this type of reciprocal operation.
1863     size_t RefPos;
1864     uint8_t RefSteps;
1865     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1866       // Split the string for further processing.
1867       Override = Override.substr(0, RefPos);
1868     }
1869 
1870     // All reciprocal types are enabled.
1871     if (Override == "all")
1872       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1873 
1874     // All reciprocal types are disabled.
1875     if (Override == "none")
1876       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1877 
1878     // Target defaults for enablement are used.
1879     if (Override == "default")
1880       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1881   }
1882 
1883   // The attribute string may omit the size suffix ('f'/'d').
1884   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1885   std::string VTNameNoSize = VTName;
1886   VTNameNoSize.pop_back();
1887   static const char DisabledPrefix = '!';
1888 
1889   for (StringRef RecipType : OverrideVector) {
1890     size_t RefPos;
1891     uint8_t RefSteps;
1892     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1893       RecipType = RecipType.substr(0, RefPos);
1894 
1895     // Ignore the disablement token for string matching.
1896     bool IsDisabled = RecipType[0] == DisabledPrefix;
1897     if (IsDisabled)
1898       RecipType = RecipType.substr(1);
1899 
1900     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1901       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1902                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1903   }
1904 
1905   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1906 }
1907 
1908 /// For the input attribute string, return the customized refinement step count
1909 /// for this operation on the specified data type. If the step count does not
1910 /// exist, return the ReciprocalEstimate enum value for unspecified.
1911 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1912   if (Override.empty())
1913     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1914 
1915   SmallVector<StringRef, 4> OverrideVector;
1916   Override.split(OverrideVector, ',');
1917   unsigned NumArgs = OverrideVector.size();
1918 
1919   // Check if "all", "default", or "none" was specified.
1920   if (NumArgs == 1) {
1921     // Look for an optional setting of the number of refinement steps needed
1922     // for this type of reciprocal operation.
1923     size_t RefPos;
1924     uint8_t RefSteps;
1925     if (!parseRefinementStep(Override, RefPos, RefSteps))
1926       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1927 
1928     // Split the string for further processing.
1929     Override = Override.substr(0, RefPos);
1930     assert(Override != "none" &&
1931            "Disabled reciprocals, but specifed refinement steps?");
1932 
1933     // If this is a general override, return the specified number of steps.
1934     if (Override == "all" || Override == "default")
1935       return RefSteps;
1936   }
1937 
1938   // The attribute string may omit the size suffix ('f'/'d').
1939   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1940   std::string VTNameNoSize = VTName;
1941   VTNameNoSize.pop_back();
1942 
1943   for (StringRef RecipType : OverrideVector) {
1944     size_t RefPos;
1945     uint8_t RefSteps;
1946     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1947       continue;
1948 
1949     RecipType = RecipType.substr(0, RefPos);
1950     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1951       return RefSteps;
1952   }
1953 
1954   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1955 }
1956 
1957 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1958                                                     MachineFunction &MF) const {
1959   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1960 }
1961 
1962 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1963                                                    MachineFunction &MF) const {
1964   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1965 }
1966 
1967 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1968                                                MachineFunction &MF) const {
1969   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1970 }
1971 
1972 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1973                                               MachineFunction &MF) const {
1974   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1975 }
1976 
1977 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1978   MF.getRegInfo().freezeReservedRegs(MF);
1979 }
1980