1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 static bool darwinHasSinCos(const Triple &TT) {
92   assert(TT.isOSDarwin() && "should be called with darwin triple");
93   // Don't bother with 32 bit x86.
94   if (TT.getArch() == Triple::x86)
95     return false;
96   // Macos < 10.9 has no sincos_stret.
97   if (TT.isMacOSX())
98     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99   // iOS < 7.0 has no sincos_stret.
100   if (TT.isiOS())
101     return !TT.isOSVersionLT(7, 0);
102   // Any other darwin such as WatchOS/TvOS is new enough.
103   return true;
104 }
105 
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112     "min-predictable-branch", cl::init(99),
113     cl::desc("Minimum percentage (0-100) that a condition must be either true "
114              "or false to assume that the condition is predictable"),
115     cl::Hidden);
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // A few names are different on particular architectures or environments.
127   if (TT.isOSDarwin()) {
128     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
129     // of the gnueabi-style __gnu_*_ieee.
130     // FIXME: What about other targets?
131     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
132     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
133 
134     // Some darwins have an optimized __bzero/bzero function.
135     switch (TT.getArch()) {
136     case Triple::x86:
137     case Triple::x86_64:
138       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
139         setLibcallName(RTLIB::BZERO, "__bzero");
140       break;
141     case Triple::aarch64:
142       setLibcallName(RTLIB::BZERO, "bzero");
143       break;
144     default:
145       break;
146     }
147 
148     if (darwinHasSinCos(TT)) {
149       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
150       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
151       if (TT.isWatchABI()) {
152         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
153                               CallingConv::ARM_AAPCS_VFP);
154         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
155                               CallingConv::ARM_AAPCS_VFP);
156       }
157     }
158   } else {
159     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
160     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
161   }
162 
163   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
164       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
165     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
166     setLibcallName(RTLIB::SINCOS_F64, "sincos");
167     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
168     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
169     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
170   }
171 
172   if (TT.isOSOpenBSD()) {
173     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
174   }
175 }
176 
177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
178 /// UNKNOWN_LIBCALL if there is none.
179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
180   if (OpVT == MVT::f16) {
181     if (RetVT == MVT::f32)
182       return FPEXT_F16_F32;
183   } else if (OpVT == MVT::f32) {
184     if (RetVT == MVT::f64)
185       return FPEXT_F32_F64;
186     if (RetVT == MVT::f128)
187       return FPEXT_F32_F128;
188     if (RetVT == MVT::ppcf128)
189       return FPEXT_F32_PPCF128;
190   } else if (OpVT == MVT::f64) {
191     if (RetVT == MVT::f128)
192       return FPEXT_F64_F128;
193     else if (RetVT == MVT::ppcf128)
194       return FPEXT_F64_PPCF128;
195   } else if (OpVT == MVT::f80) {
196     if (RetVT == MVT::f128)
197       return FPEXT_F80_F128;
198   }
199 
200   return UNKNOWN_LIBCALL;
201 }
202 
203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
204 /// UNKNOWN_LIBCALL if there is none.
205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
206   if (RetVT == MVT::f16) {
207     if (OpVT == MVT::f32)
208       return FPROUND_F32_F16;
209     if (OpVT == MVT::f64)
210       return FPROUND_F64_F16;
211     if (OpVT == MVT::f80)
212       return FPROUND_F80_F16;
213     if (OpVT == MVT::f128)
214       return FPROUND_F128_F16;
215     if (OpVT == MVT::ppcf128)
216       return FPROUND_PPCF128_F16;
217   } else if (RetVT == MVT::f32) {
218     if (OpVT == MVT::f64)
219       return FPROUND_F64_F32;
220     if (OpVT == MVT::f80)
221       return FPROUND_F80_F32;
222     if (OpVT == MVT::f128)
223       return FPROUND_F128_F32;
224     if (OpVT == MVT::ppcf128)
225       return FPROUND_PPCF128_F32;
226   } else if (RetVT == MVT::f64) {
227     if (OpVT == MVT::f80)
228       return FPROUND_F80_F64;
229     if (OpVT == MVT::f128)
230       return FPROUND_F128_F64;
231     if (OpVT == MVT::ppcf128)
232       return FPROUND_PPCF128_F64;
233   } else if (RetVT == MVT::f80) {
234     if (OpVT == MVT::f128)
235       return FPROUND_F128_F80;
236   }
237 
238   return UNKNOWN_LIBCALL;
239 }
240 
241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
244   if (OpVT == MVT::f32) {
245     if (RetVT == MVT::i32)
246       return FPTOSINT_F32_I32;
247     if (RetVT == MVT::i64)
248       return FPTOSINT_F32_I64;
249     if (RetVT == MVT::i128)
250       return FPTOSINT_F32_I128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::i32)
253       return FPTOSINT_F64_I32;
254     if (RetVT == MVT::i64)
255       return FPTOSINT_F64_I64;
256     if (RetVT == MVT::i128)
257       return FPTOSINT_F64_I128;
258   } else if (OpVT == MVT::f80) {
259     if (RetVT == MVT::i32)
260       return FPTOSINT_F80_I32;
261     if (RetVT == MVT::i64)
262       return FPTOSINT_F80_I64;
263     if (RetVT == MVT::i128)
264       return FPTOSINT_F80_I128;
265   } else if (OpVT == MVT::f128) {
266     if (RetVT == MVT::i32)
267       return FPTOSINT_F128_I32;
268     if (RetVT == MVT::i64)
269       return FPTOSINT_F128_I64;
270     if (RetVT == MVT::i128)
271       return FPTOSINT_F128_I128;
272   } else if (OpVT == MVT::ppcf128) {
273     if (RetVT == MVT::i32)
274       return FPTOSINT_PPCF128_I32;
275     if (RetVT == MVT::i64)
276       return FPTOSINT_PPCF128_I64;
277     if (RetVT == MVT::i128)
278       return FPTOSINT_PPCF128_I128;
279   }
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOUINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOUINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOUINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOUINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOUINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOUINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOUINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOUINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOUINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOUINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOUINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOUINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOUINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOUINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOUINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::i32) {
329     if (RetVT == MVT::f32)
330       return SINTTOFP_I32_F32;
331     if (RetVT == MVT::f64)
332       return SINTTOFP_I32_F64;
333     if (RetVT == MVT::f80)
334       return SINTTOFP_I32_F80;
335     if (RetVT == MVT::f128)
336       return SINTTOFP_I32_F128;
337     if (RetVT == MVT::ppcf128)
338       return SINTTOFP_I32_PPCF128;
339   } else if (OpVT == MVT::i64) {
340     if (RetVT == MVT::f32)
341       return SINTTOFP_I64_F32;
342     if (RetVT == MVT::f64)
343       return SINTTOFP_I64_F64;
344     if (RetVT == MVT::f80)
345       return SINTTOFP_I64_F80;
346     if (RetVT == MVT::f128)
347       return SINTTOFP_I64_F128;
348     if (RetVT == MVT::ppcf128)
349       return SINTTOFP_I64_PPCF128;
350   } else if (OpVT == MVT::i128) {
351     if (RetVT == MVT::f32)
352       return SINTTOFP_I128_F32;
353     if (RetVT == MVT::f64)
354       return SINTTOFP_I128_F64;
355     if (RetVT == MVT::f80)
356       return SINTTOFP_I128_F80;
357     if (RetVT == MVT::f128)
358       return SINTTOFP_I128_F128;
359     if (RetVT == MVT::ppcf128)
360       return SINTTOFP_I128_PPCF128;
361   }
362   return UNKNOWN_LIBCALL;
363 }
364 
365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
368   if (OpVT == MVT::i32) {
369     if (RetVT == MVT::f32)
370       return UINTTOFP_I32_F32;
371     if (RetVT == MVT::f64)
372       return UINTTOFP_I32_F64;
373     if (RetVT == MVT::f80)
374       return UINTTOFP_I32_F80;
375     if (RetVT == MVT::f128)
376       return UINTTOFP_I32_F128;
377     if (RetVT == MVT::ppcf128)
378       return UINTTOFP_I32_PPCF128;
379   } else if (OpVT == MVT::i64) {
380     if (RetVT == MVT::f32)
381       return UINTTOFP_I64_F32;
382     if (RetVT == MVT::f64)
383       return UINTTOFP_I64_F64;
384     if (RetVT == MVT::f80)
385       return UINTTOFP_I64_F80;
386     if (RetVT == MVT::f128)
387       return UINTTOFP_I64_F128;
388     if (RetVT == MVT::ppcf128)
389       return UINTTOFP_I64_PPCF128;
390   } else if (OpVT == MVT::i128) {
391     if (RetVT == MVT::f32)
392       return UINTTOFP_I128_F32;
393     if (RetVT == MVT::f64)
394       return UINTTOFP_I128_F64;
395     if (RetVT == MVT::f80)
396       return UINTTOFP_I128_F80;
397     if (RetVT == MVT::f128)
398       return UINTTOFP_I128_F128;
399     if (RetVT == MVT::ppcf128)
400       return UINTTOFP_I128_PPCF128;
401   }
402   return UNKNOWN_LIBCALL;
403 }
404 
405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
406 #define OP_TO_LIBCALL(Name, Enum)                                              \
407   case Name:                                                                   \
408     switch (VT.SimpleTy) {                                                     \
409     default:                                                                   \
410       return UNKNOWN_LIBCALL;                                                  \
411     case MVT::i8:                                                              \
412       return Enum##_1;                                                         \
413     case MVT::i16:                                                             \
414       return Enum##_2;                                                         \
415     case MVT::i32:                                                             \
416       return Enum##_4;                                                         \
417     case MVT::i64:                                                             \
418       return Enum##_8;                                                         \
419     case MVT::i128:                                                            \
420       return Enum##_16;                                                        \
421     }
422 
423   switch (Opc) {
424     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
425     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
426     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
427     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
428     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
429     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
430     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
431     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
432     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
433     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
434     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
435     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
436   }
437 
438 #undef OP_TO_LIBCALL
439 
440   return UNKNOWN_LIBCALL;
441 }
442 
443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
444   switch (ElementSize) {
445   case 1:
446     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
447   case 2:
448     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
449   case 4:
450     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
451   case 8:
452     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
453   case 16:
454     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
455   default:
456     return UNKNOWN_LIBCALL;
457   }
458 }
459 
460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
461   switch (ElementSize) {
462   case 1:
463     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
464   case 2:
465     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
466   case 4:
467     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
468   case 8:
469     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
470   case 16:
471     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
472   default:
473     return UNKNOWN_LIBCALL;
474   }
475 }
476 
477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 /// InitCmpLibcallCCs - Set default comparison libcall CC.
495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
500   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
501   CCs[RTLIB::UNE_F32] = ISD::SETNE;
502   CCs[RTLIB::UNE_F64] = ISD::SETNE;
503   CCs[RTLIB::UNE_F128] = ISD::SETNE;
504   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
505   CCs[RTLIB::OGE_F32] = ISD::SETGE;
506   CCs[RTLIB::OGE_F64] = ISD::SETGE;
507   CCs[RTLIB::OGE_F128] = ISD::SETGE;
508   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
509   CCs[RTLIB::OLT_F32] = ISD::SETLT;
510   CCs[RTLIB::OLT_F64] = ISD::SETLT;
511   CCs[RTLIB::OLT_F128] = ISD::SETLT;
512   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
513   CCs[RTLIB::OLE_F32] = ISD::SETLE;
514   CCs[RTLIB::OLE_F64] = ISD::SETLE;
515   CCs[RTLIB::OLE_F128] = ISD::SETLE;
516   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
517   CCs[RTLIB::OGT_F32] = ISD::SETGT;
518   CCs[RTLIB::OGT_F64] = ISD::SETGT;
519   CCs[RTLIB::OGT_F128] = ISD::SETGT;
520   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
521   CCs[RTLIB::UO_F32] = ISD::SETNE;
522   CCs[RTLIB::UO_F64] = ISD::SETNE;
523   CCs[RTLIB::UO_F128] = ISD::SETNE;
524   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
525   CCs[RTLIB::O_F32] = ISD::SETEQ;
526   CCs[RTLIB::O_F64] = ISD::SETEQ;
527   CCs[RTLIB::O_F128] = ISD::SETEQ;
528   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
529 }
530 
531 /// NOTE: The TargetMachine owns TLOF.
532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
533   initActions();
534 
535   // Perform these initializations only once.
536   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
537       MaxLoadsPerMemcmp = 8;
538   MaxGluedStoresPerMemcpy = 0;
539   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
540       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
541   UseUnderscoreSetJmp = false;
542   UseUnderscoreLongJmp = false;
543   HasMultipleConditionRegisters = false;
544   HasExtractBitsInsn = false;
545   JumpIsExpensive = JumpIsExpensiveOverride;
546   PredictableSelectIsExpensive = false;
547   EnableExtLdPromotion = false;
548   StackPointerRegisterToSaveRestore = 0;
549   BooleanContents = UndefinedBooleanContent;
550   BooleanFloatContents = UndefinedBooleanContent;
551   BooleanVectorContents = UndefinedBooleanContent;
552   SchedPreferenceInfo = Sched::ILP;
553   JumpBufSize = 0;
554   JumpBufAlignment = 0;
555   MinFunctionAlignment = 0;
556   PrefFunctionAlignment = 0;
557   PrefLoopAlignment = 0;
558   GatherAllAliasesMaxDepth = 18;
559   MinStackArgumentAlignment = 1;
560   // TODO: the default will be switched to 0 in the next commit, along
561   // with the Target-specific changes necessary.
562   MaxAtomicSizeInBitsSupported = 1024;
563 
564   MinCmpXchgSizeInBits = 0;
565   SupportsUnalignedAtomics = false;
566 
567   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
568 
569   InitLibcalls(TM.getTargetTriple());
570   InitCmpLibcallCCs(CmpLibcallCCs);
571 }
572 
573 void TargetLoweringBase::initActions() {
574   // All operations default to being supported.
575   memset(OpActions, 0, sizeof(OpActions));
576   memset(LoadExtActions, 0, sizeof(LoadExtActions));
577   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
578   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
579   memset(CondCodeActions, 0, sizeof(CondCodeActions));
580   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
581   std::fill(std::begin(TargetDAGCombineArray),
582             std::end(TargetDAGCombineArray), 0);
583 
584   for (MVT VT : MVT::fp_valuetypes()) {
585     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
586     if (IntVT.isValid()) {
587       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
588       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
589     }
590   }
591 
592   // Set default actions for various operations.
593   for (MVT VT : MVT::all_valuetypes()) {
594     // Default all indexed load / store to expand.
595     for (unsigned IM = (unsigned)ISD::PRE_INC;
596          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
597       setIndexedLoadAction(IM, VT, Expand);
598       setIndexedStoreAction(IM, VT, Expand);
599     }
600 
601     // Most backends expect to see the node which just returns the value loaded.
602     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
603 
604     // These operations default to expand.
605     setOperationAction(ISD::FGETSIGN, VT, Expand);
606     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
607     setOperationAction(ISD::FMINNUM, VT, Expand);
608     setOperationAction(ISD::FMAXNUM, VT, Expand);
609     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
610     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
611     setOperationAction(ISD::FMINIMUM, VT, Expand);
612     setOperationAction(ISD::FMAXIMUM, VT, Expand);
613     setOperationAction(ISD::FMAD, VT, Expand);
614     setOperationAction(ISD::SMIN, VT, Expand);
615     setOperationAction(ISD::SMAX, VT, Expand);
616     setOperationAction(ISD::UMIN, VT, Expand);
617     setOperationAction(ISD::UMAX, VT, Expand);
618     setOperationAction(ISD::ABS, VT, Expand);
619     setOperationAction(ISD::FSHL, VT, Expand);
620     setOperationAction(ISD::FSHR, VT, Expand);
621     setOperationAction(ISD::SADDSAT, VT, Expand);
622     setOperationAction(ISD::UADDSAT, VT, Expand);
623     setOperationAction(ISD::SSUBSAT, VT, Expand);
624     setOperationAction(ISD::USUBSAT, VT, Expand);
625     setOperationAction(ISD::SMULFIX, VT, Expand);
626     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
627     setOperationAction(ISD::UMULFIX, VT, Expand);
628 
629     // Overflow operations default to expand
630     setOperationAction(ISD::SADDO, VT, Expand);
631     setOperationAction(ISD::SSUBO, VT, Expand);
632     setOperationAction(ISD::UADDO, VT, Expand);
633     setOperationAction(ISD::USUBO, VT, Expand);
634     setOperationAction(ISD::SMULO, VT, Expand);
635     setOperationAction(ISD::UMULO, VT, Expand);
636 
637     // ADDCARRY operations default to expand
638     setOperationAction(ISD::ADDCARRY, VT, Expand);
639     setOperationAction(ISD::SUBCARRY, VT, Expand);
640     setOperationAction(ISD::SETCCCARRY, VT, Expand);
641 
642     // ADDC/ADDE/SUBC/SUBE default to expand.
643     setOperationAction(ISD::ADDC, VT, Expand);
644     setOperationAction(ISD::ADDE, VT, Expand);
645     setOperationAction(ISD::SUBC, VT, Expand);
646     setOperationAction(ISD::SUBE, VT, Expand);
647 
648     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
649     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
650     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
651 
652     setOperationAction(ISD::BITREVERSE, VT, Expand);
653 
654     // These library functions default to expand.
655     setOperationAction(ISD::FROUND, VT, Expand);
656     setOperationAction(ISD::FPOWI, VT, Expand);
657 
658     // These operations default to expand for vector types.
659     if (VT.isVector()) {
660       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
661       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
662       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
663       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
664     }
665 
666     // For most targets @llvm.get.dynamic.area.offset just returns 0.
667     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
668 
669     // Vector reduction default to expand.
670     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
671     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
672     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
673     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
674     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
675     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
676     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
677     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
678     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
679     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
680     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
681     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
682     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
683   }
684 
685   // Most targets ignore the @llvm.prefetch intrinsic.
686   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
687 
688   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
689   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
690 
691   // ConstantFP nodes default to expand.  Targets can either change this to
692   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
693   // to optimize expansions for certain constants.
694   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
695   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
696   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
697   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
698   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
699 
700   // These library functions default to expand.
701   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
702     setOperationAction(ISD::FCBRT,      VT, Expand);
703     setOperationAction(ISD::FLOG ,      VT, Expand);
704     setOperationAction(ISD::FLOG2,      VT, Expand);
705     setOperationAction(ISD::FLOG10,     VT, Expand);
706     setOperationAction(ISD::FEXP ,      VT, Expand);
707     setOperationAction(ISD::FEXP2,      VT, Expand);
708     setOperationAction(ISD::FFLOOR,     VT, Expand);
709     setOperationAction(ISD::FNEARBYINT, VT, Expand);
710     setOperationAction(ISD::FCEIL,      VT, Expand);
711     setOperationAction(ISD::FRINT,      VT, Expand);
712     setOperationAction(ISD::FTRUNC,     VT, Expand);
713     setOperationAction(ISD::FROUND,     VT, Expand);
714     setOperationAction(ISD::LROUND,     VT, Expand);
715     setOperationAction(ISD::LLROUND,    VT, Expand);
716     setOperationAction(ISD::LRINT,      VT, Expand);
717     setOperationAction(ISD::LLRINT,     VT, Expand);
718   }
719 
720   // Default ISD::TRAP to expand (which turns it into abort).
721   setOperationAction(ISD::TRAP, MVT::Other, Expand);
722 
723   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
724   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
725   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
726 }
727 
728 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
729                                                EVT) const {
730   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
731 }
732 
733 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
734                                          bool LegalTypes) const {
735   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
736   if (LHSTy.isVector())
737     return LHSTy;
738   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
739                     : getPointerTy(DL);
740 }
741 
742 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
743   assert(isTypeLegal(VT));
744   switch (Op) {
745   default:
746     return false;
747   case ISD::SDIV:
748   case ISD::UDIV:
749   case ISD::SREM:
750   case ISD::UREM:
751     return true;
752   }
753 }
754 
755 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
756   // If the command-line option was specified, ignore this request.
757   if (!JumpIsExpensiveOverride.getNumOccurrences())
758     JumpIsExpensive = isExpensive;
759 }
760 
761 TargetLoweringBase::LegalizeKind
762 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
763   // If this is a simple type, use the ComputeRegisterProp mechanism.
764   if (VT.isSimple()) {
765     MVT SVT = VT.getSimpleVT();
766     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
767     MVT NVT = TransformToType[SVT.SimpleTy];
768     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
769 
770     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
771             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
772            "Promote may not follow Expand or Promote");
773 
774     if (LA == TypeSplitVector)
775       return LegalizeKind(LA,
776                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
777                                            SVT.getVectorNumElements() / 2));
778     if (LA == TypeScalarizeVector)
779       return LegalizeKind(LA, SVT.getVectorElementType());
780     return LegalizeKind(LA, NVT);
781   }
782 
783   // Handle Extended Scalar Types.
784   if (!VT.isVector()) {
785     assert(VT.isInteger() && "Float types must be simple");
786     unsigned BitSize = VT.getSizeInBits();
787     // First promote to a power-of-two size, then expand if necessary.
788     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
789       EVT NVT = VT.getRoundIntegerType(Context);
790       assert(NVT != VT && "Unable to round integer VT");
791       LegalizeKind NextStep = getTypeConversion(Context, NVT);
792       // Avoid multi-step promotion.
793       if (NextStep.first == TypePromoteInteger)
794         return NextStep;
795       // Return rounded integer type.
796       return LegalizeKind(TypePromoteInteger, NVT);
797     }
798 
799     return LegalizeKind(TypeExpandInteger,
800                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
801   }
802 
803   // Handle vector types.
804   unsigned NumElts = VT.getVectorNumElements();
805   EVT EltVT = VT.getVectorElementType();
806 
807   // Vectors with only one element are always scalarized.
808   if (NumElts == 1)
809     return LegalizeKind(TypeScalarizeVector, EltVT);
810 
811   // Try to widen vector elements until the element type is a power of two and
812   // promote it to a legal type later on, for example:
813   // <3 x i8> -> <4 x i8> -> <4 x i32>
814   if (EltVT.isInteger()) {
815     // Vectors with a number of elements that is not a power of two are always
816     // widened, for example <3 x i8> -> <4 x i8>.
817     if (!VT.isPow2VectorType()) {
818       NumElts = (unsigned)NextPowerOf2(NumElts);
819       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
820       return LegalizeKind(TypeWidenVector, NVT);
821     }
822 
823     // Examine the element type.
824     LegalizeKind LK = getTypeConversion(Context, EltVT);
825 
826     // If type is to be expanded, split the vector.
827     //  <4 x i140> -> <2 x i140>
828     if (LK.first == TypeExpandInteger)
829       return LegalizeKind(TypeSplitVector,
830                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
831 
832     // Promote the integer element types until a legal vector type is found
833     // or until the element integer type is too big. If a legal type was not
834     // found, fallback to the usual mechanism of widening/splitting the
835     // vector.
836     EVT OldEltVT = EltVT;
837     while (true) {
838       // Increase the bitwidth of the element to the next pow-of-two
839       // (which is greater than 8 bits).
840       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
841                   .getRoundIntegerType(Context);
842 
843       // Stop trying when getting a non-simple element type.
844       // Note that vector elements may be greater than legal vector element
845       // types. Example: X86 XMM registers hold 64bit element on 32bit
846       // systems.
847       if (!EltVT.isSimple())
848         break;
849 
850       // Build a new vector type and check if it is legal.
851       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
852       // Found a legal promoted vector type.
853       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
854         return LegalizeKind(TypePromoteInteger,
855                             EVT::getVectorVT(Context, EltVT, NumElts));
856     }
857 
858     // Reset the type to the unexpanded type if we did not find a legal vector
859     // type with a promoted vector element type.
860     EltVT = OldEltVT;
861   }
862 
863   // Try to widen the vector until a legal type is found.
864   // If there is no wider legal type, split the vector.
865   while (true) {
866     // Round up to the next power of 2.
867     NumElts = (unsigned)NextPowerOf2(NumElts);
868 
869     // If there is no simple vector type with this many elements then there
870     // cannot be a larger legal vector type.  Note that this assumes that
871     // there are no skipped intermediate vector types in the simple types.
872     if (!EltVT.isSimple())
873       break;
874     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
875     if (LargerVector == MVT())
876       break;
877 
878     // If this type is legal then widen the vector.
879     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
880       return LegalizeKind(TypeWidenVector, LargerVector);
881   }
882 
883   // Widen odd vectors to next power of two.
884   if (!VT.isPow2VectorType()) {
885     EVT NVT = VT.getPow2VectorType(Context);
886     return LegalizeKind(TypeWidenVector, NVT);
887   }
888 
889   // Vectors with illegal element types are expanded.
890   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
891   return LegalizeKind(TypeSplitVector, NVT);
892 }
893 
894 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
895                                           unsigned &NumIntermediates,
896                                           MVT &RegisterVT,
897                                           TargetLoweringBase *TLI) {
898   // Figure out the right, legal destination reg to copy into.
899   unsigned NumElts = VT.getVectorNumElements();
900   MVT EltTy = VT.getVectorElementType();
901 
902   unsigned NumVectorRegs = 1;
903 
904   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
905   // could break down into LHS/RHS like LegalizeDAG does.
906   if (!isPowerOf2_32(NumElts)) {
907     NumVectorRegs = NumElts;
908     NumElts = 1;
909   }
910 
911   // Divide the input until we get to a supported size.  This will always
912   // end with a scalar if the target doesn't support vectors.
913   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
914     NumElts >>= 1;
915     NumVectorRegs <<= 1;
916   }
917 
918   NumIntermediates = NumVectorRegs;
919 
920   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
921   if (!TLI->isTypeLegal(NewVT))
922     NewVT = EltTy;
923   IntermediateVT = NewVT;
924 
925   unsigned NewVTSize = NewVT.getSizeInBits();
926 
927   // Convert sizes such as i33 to i64.
928   if (!isPowerOf2_32(NewVTSize))
929     NewVTSize = NextPowerOf2(NewVTSize);
930 
931   MVT DestVT = TLI->getRegisterType(NewVT);
932   RegisterVT = DestVT;
933   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
934     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
935 
936   // Otherwise, promotion or legal types use the same number of registers as
937   // the vector decimated to the appropriate level.
938   return NumVectorRegs;
939 }
940 
941 /// isLegalRC - Return true if the value types that can be represented by the
942 /// specified register class are all legal.
943 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
944                                    const TargetRegisterClass &RC) const {
945   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
946     if (isTypeLegal(*I))
947       return true;
948   return false;
949 }
950 
951 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
952 /// sequence of memory operands that is recognized by PrologEpilogInserter.
953 MachineBasicBlock *
954 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
955                                    MachineBasicBlock *MBB) const {
956   MachineInstr *MI = &InitialMI;
957   MachineFunction &MF = *MI->getMF();
958   MachineFrameInfo &MFI = MF.getFrameInfo();
959 
960   // We're handling multiple types of operands here:
961   // PATCHPOINT MetaArgs - live-in, read only, direct
962   // STATEPOINT Deopt Spill - live-through, read only, indirect
963   // STATEPOINT Deopt Alloca - live-through, read only, direct
964   // (We're currently conservative and mark the deopt slots read/write in
965   // practice.)
966   // STATEPOINT GC Spill - live-through, read/write, indirect
967   // STATEPOINT GC Alloca - live-through, read/write, direct
968   // The live-in vs live-through is handled already (the live through ones are
969   // all stack slots), but we need to handle the different type of stackmap
970   // operands and memory effects here.
971 
972   // MI changes inside this loop as we grow operands.
973   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
974     MachineOperand &MO = MI->getOperand(OperIdx);
975     if (!MO.isFI())
976       continue;
977 
978     // foldMemoryOperand builds a new MI after replacing a single FI operand
979     // with the canonical set of five x86 addressing-mode operands.
980     int FI = MO.getIndex();
981     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
982 
983     // Copy operands before the frame-index.
984     for (unsigned i = 0; i < OperIdx; ++i)
985       MIB.add(MI->getOperand(i));
986     // Add frame index operands recognized by stackmaps.cpp
987     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
988       // indirect-mem-ref tag, size, #FI, offset.
989       // Used for spills inserted by StatepointLowering.  This codepath is not
990       // used for patchpoints/stackmaps at all, for these spilling is done via
991       // foldMemoryOperand callback only.
992       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
993       MIB.addImm(StackMaps::IndirectMemRefOp);
994       MIB.addImm(MFI.getObjectSize(FI));
995       MIB.add(MI->getOperand(OperIdx));
996       MIB.addImm(0);
997     } else {
998       // direct-mem-ref tag, #FI, offset.
999       // Used by patchpoint, and direct alloca arguments to statepoints
1000       MIB.addImm(StackMaps::DirectMemRefOp);
1001       MIB.add(MI->getOperand(OperIdx));
1002       MIB.addImm(0);
1003     }
1004     // Copy the operands after the frame index.
1005     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1006       MIB.add(MI->getOperand(i));
1007 
1008     // Inherit previous memory operands.
1009     MIB.cloneMemRefs(*MI);
1010     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1011 
1012     // Add a new memory operand for this FI.
1013     assert(MFI.getObjectOffset(FI) != -1);
1014 
1015     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1016     // PATCHPOINT should be updated to do the same. (TODO)
1017     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1018       auto Flags = MachineMemOperand::MOLoad;
1019       MachineMemOperand *MMO = MF.getMachineMemOperand(
1020           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1021           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1022       MIB->addMemOperand(MF, MMO);
1023     }
1024 
1025     // Replace the instruction and update the operand index.
1026     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1027     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1028     MI->eraseFromParent();
1029     MI = MIB;
1030   }
1031   return MBB;
1032 }
1033 
1034 MachineBasicBlock *
1035 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1036                                         MachineBasicBlock *MBB) const {
1037   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1038          "Called emitXRayCustomEvent on the wrong MI!");
1039   auto &MF = *MI.getMF();
1040   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1041   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1042     MIB.add(MI.getOperand(OpIdx));
1043 
1044   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1045   MI.eraseFromParent();
1046   return MBB;
1047 }
1048 
1049 MachineBasicBlock *
1050 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1051                                        MachineBasicBlock *MBB) const {
1052   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1053          "Called emitXRayTypedEvent on the wrong MI!");
1054   auto &MF = *MI.getMF();
1055   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1056   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1057     MIB.add(MI.getOperand(OpIdx));
1058 
1059   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1060   MI.eraseFromParent();
1061   return MBB;
1062 }
1063 
1064 /// findRepresentativeClass - Return the largest legal super-reg register class
1065 /// of the register class for the specified type and its associated "cost".
1066 // This function is in TargetLowering because it uses RegClassForVT which would
1067 // need to be moved to TargetRegisterInfo and would necessitate moving
1068 // isTypeLegal over as well - a massive change that would just require
1069 // TargetLowering having a TargetRegisterInfo class member that it would use.
1070 std::pair<const TargetRegisterClass *, uint8_t>
1071 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1072                                             MVT VT) const {
1073   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1074   if (!RC)
1075     return std::make_pair(RC, 0);
1076 
1077   // Compute the set of all super-register classes.
1078   BitVector SuperRegRC(TRI->getNumRegClasses());
1079   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1080     SuperRegRC.setBitsInMask(RCI.getMask());
1081 
1082   // Find the first legal register class with the largest spill size.
1083   const TargetRegisterClass *BestRC = RC;
1084   for (unsigned i : SuperRegRC.set_bits()) {
1085     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1086     // We want the largest possible spill size.
1087     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1088       continue;
1089     if (!isLegalRC(*TRI, *SuperRC))
1090       continue;
1091     BestRC = SuperRC;
1092   }
1093   return std::make_pair(BestRC, 1);
1094 }
1095 
1096 /// computeRegisterProperties - Once all of the register classes are added,
1097 /// this allows us to compute derived properties we expose.
1098 void TargetLoweringBase::computeRegisterProperties(
1099     const TargetRegisterInfo *TRI) {
1100   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1101                 "Too many value types for ValueTypeActions to hold!");
1102 
1103   // Everything defaults to needing one register.
1104   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1105     NumRegistersForVT[i] = 1;
1106     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1107   }
1108   // ...except isVoid, which doesn't need any registers.
1109   NumRegistersForVT[MVT::isVoid] = 0;
1110 
1111   // Find the largest integer register class.
1112   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1113   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1114     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1115 
1116   // Every integer value type larger than this largest register takes twice as
1117   // many registers to represent as the previous ValueType.
1118   for (unsigned ExpandedReg = LargestIntReg + 1;
1119        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1120     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1121     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1122     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1123     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1124                                    TypeExpandInteger);
1125   }
1126 
1127   // Inspect all of the ValueType's smaller than the largest integer
1128   // register to see which ones need promotion.
1129   unsigned LegalIntReg = LargestIntReg;
1130   for (unsigned IntReg = LargestIntReg - 1;
1131        IntReg >= (unsigned)MVT::i1; --IntReg) {
1132     MVT IVT = (MVT::SimpleValueType)IntReg;
1133     if (isTypeLegal(IVT)) {
1134       LegalIntReg = IntReg;
1135     } else {
1136       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1137         (MVT::SimpleValueType)LegalIntReg;
1138       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1139     }
1140   }
1141 
1142   // ppcf128 type is really two f64's.
1143   if (!isTypeLegal(MVT::ppcf128)) {
1144     if (isTypeLegal(MVT::f64)) {
1145       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1146       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1147       TransformToType[MVT::ppcf128] = MVT::f64;
1148       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1149     } else {
1150       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1151       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1152       TransformToType[MVT::ppcf128] = MVT::i128;
1153       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1154     }
1155   }
1156 
1157   // Decide how to handle f128. If the target does not have native f128 support,
1158   // expand it to i128 and we will be generating soft float library calls.
1159   if (!isTypeLegal(MVT::f128)) {
1160     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1161     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1162     TransformToType[MVT::f128] = MVT::i128;
1163     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1164   }
1165 
1166   // Decide how to handle f64. If the target does not have native f64 support,
1167   // expand it to i64 and we will be generating soft float library calls.
1168   if (!isTypeLegal(MVT::f64)) {
1169     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1170     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1171     TransformToType[MVT::f64] = MVT::i64;
1172     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1173   }
1174 
1175   // Decide how to handle f32. If the target does not have native f32 support,
1176   // expand it to i32 and we will be generating soft float library calls.
1177   if (!isTypeLegal(MVT::f32)) {
1178     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1179     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1180     TransformToType[MVT::f32] = MVT::i32;
1181     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1182   }
1183 
1184   // Decide how to handle f16. If the target does not have native f16 support,
1185   // promote it to f32, because there are no f16 library calls (except for
1186   // conversions).
1187   if (!isTypeLegal(MVT::f16)) {
1188     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1189     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1190     TransformToType[MVT::f16] = MVT::f32;
1191     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1192   }
1193 
1194   // Loop over all of the vector value types to see which need transformations.
1195   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1196        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1197     MVT VT = (MVT::SimpleValueType) i;
1198     if (isTypeLegal(VT))
1199       continue;
1200 
1201     MVT EltVT = VT.getVectorElementType();
1202     unsigned NElts = VT.getVectorNumElements();
1203     bool IsLegalWiderType = false;
1204     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1205     switch (PreferredAction) {
1206     case TypePromoteInteger:
1207       // Try to promote the elements of integer vectors. If no legal
1208       // promotion was found, fall through to the widen-vector method.
1209       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1210         MVT SVT = (MVT::SimpleValueType) nVT;
1211         // Promote vectors of integers to vectors with the same number
1212         // of elements, with a wider element type.
1213         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1214             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1215           TransformToType[i] = SVT;
1216           RegisterTypeForVT[i] = SVT;
1217           NumRegistersForVT[i] = 1;
1218           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1219           IsLegalWiderType = true;
1220           break;
1221         }
1222       }
1223       if (IsLegalWiderType)
1224         break;
1225       LLVM_FALLTHROUGH;
1226 
1227     case TypeWidenVector:
1228       // Try to widen the vector.
1229       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1230         MVT SVT = (MVT::SimpleValueType) nVT;
1231         if (SVT.getVectorElementType() == EltVT
1232             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1233           TransformToType[i] = SVT;
1234           RegisterTypeForVT[i] = SVT;
1235           NumRegistersForVT[i] = 1;
1236           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1237           IsLegalWiderType = true;
1238           break;
1239         }
1240       }
1241       if (IsLegalWiderType)
1242         break;
1243       LLVM_FALLTHROUGH;
1244 
1245     case TypeSplitVector:
1246     case TypeScalarizeVector: {
1247       MVT IntermediateVT;
1248       MVT RegisterVT;
1249       unsigned NumIntermediates;
1250       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1251           NumIntermediates, RegisterVT, this);
1252       RegisterTypeForVT[i] = RegisterVT;
1253 
1254       MVT NVT = VT.getPow2VectorType();
1255       if (NVT == VT) {
1256         // Type is already a power of 2.  The default action is to split.
1257         TransformToType[i] = MVT::Other;
1258         if (PreferredAction == TypeScalarizeVector)
1259           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1260         else if (PreferredAction == TypeSplitVector)
1261           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1262         else
1263           // Set type action according to the number of elements.
1264           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1265                                                         : TypeSplitVector);
1266       } else {
1267         TransformToType[i] = NVT;
1268         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1269       }
1270       break;
1271     }
1272     default:
1273       llvm_unreachable("Unknown vector legalization action!");
1274     }
1275   }
1276 
1277   // Determine the 'representative' register class for each value type.
1278   // An representative register class is the largest (meaning one which is
1279   // not a sub-register class / subreg register class) legal register class for
1280   // a group of value types. For example, on i386, i8, i16, and i32
1281   // representative would be GR32; while on x86_64 it's GR64.
1282   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1283     const TargetRegisterClass* RRC;
1284     uint8_t Cost;
1285     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1286     RepRegClassForVT[i] = RRC;
1287     RepRegClassCostForVT[i] = Cost;
1288   }
1289 }
1290 
1291 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1292                                            EVT VT) const {
1293   assert(!VT.isVector() && "No default SetCC type for vectors!");
1294   return getPointerTy(DL).SimpleTy;
1295 }
1296 
1297 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1298   return MVT::i32; // return the default value
1299 }
1300 
1301 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1302 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1303 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1304 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1305 ///
1306 /// This method returns the number of registers needed, and the VT for each
1307 /// register.  It also returns the VT and quantity of the intermediate values
1308 /// before they are promoted/expanded.
1309 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1310                                                 EVT &IntermediateVT,
1311                                                 unsigned &NumIntermediates,
1312                                                 MVT &RegisterVT) const {
1313   unsigned NumElts = VT.getVectorNumElements();
1314 
1315   // If there is a wider vector type with the same element type as this one,
1316   // or a promoted vector type that has the same number of elements which
1317   // are wider, then we should convert to that legal vector type.
1318   // This handles things like <2 x float> -> <4 x float> and
1319   // <4 x i1> -> <4 x i32>.
1320   LegalizeTypeAction TA = getTypeAction(Context, VT);
1321   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1322     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1323     if (isTypeLegal(RegisterEVT)) {
1324       IntermediateVT = RegisterEVT;
1325       RegisterVT = RegisterEVT.getSimpleVT();
1326       NumIntermediates = 1;
1327       return 1;
1328     }
1329   }
1330 
1331   // Figure out the right, legal destination reg to copy into.
1332   EVT EltTy = VT.getVectorElementType();
1333 
1334   unsigned NumVectorRegs = 1;
1335 
1336   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1337   // could break down into LHS/RHS like LegalizeDAG does.
1338   if (!isPowerOf2_32(NumElts)) {
1339     NumVectorRegs = NumElts;
1340     NumElts = 1;
1341   }
1342 
1343   // Divide the input until we get to a supported size.  This will always
1344   // end with a scalar if the target doesn't support vectors.
1345   while (NumElts > 1 && !isTypeLegal(
1346                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1347     NumElts >>= 1;
1348     NumVectorRegs <<= 1;
1349   }
1350 
1351   NumIntermediates = NumVectorRegs;
1352 
1353   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1354   if (!isTypeLegal(NewVT))
1355     NewVT = EltTy;
1356   IntermediateVT = NewVT;
1357 
1358   MVT DestVT = getRegisterType(Context, NewVT);
1359   RegisterVT = DestVT;
1360   unsigned NewVTSize = NewVT.getSizeInBits();
1361 
1362   // Convert sizes such as i33 to i64.
1363   if (!isPowerOf2_32(NewVTSize))
1364     NewVTSize = NextPowerOf2(NewVTSize);
1365 
1366   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1367     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1368 
1369   // Otherwise, promotion or legal types use the same number of registers as
1370   // the vector decimated to the appropriate level.
1371   return NumVectorRegs;
1372 }
1373 
1374 /// Get the EVTs and ArgFlags collections that represent the legalized return
1375 /// type of the given function.  This does not require a DAG or a return value,
1376 /// and is suitable for use before any DAGs for the function are constructed.
1377 /// TODO: Move this out of TargetLowering.cpp.
1378 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1379                          AttributeList attr,
1380                          SmallVectorImpl<ISD::OutputArg> &Outs,
1381                          const TargetLowering &TLI, const DataLayout &DL) {
1382   SmallVector<EVT, 4> ValueVTs;
1383   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1384   unsigned NumValues = ValueVTs.size();
1385   if (NumValues == 0) return;
1386 
1387   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1388     EVT VT = ValueVTs[j];
1389     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1390 
1391     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1392       ExtendKind = ISD::SIGN_EXTEND;
1393     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1394       ExtendKind = ISD::ZERO_EXTEND;
1395 
1396     // FIXME: C calling convention requires the return type to be promoted to
1397     // at least 32-bit. But this is not necessary for non-C calling
1398     // conventions. The frontend should mark functions whose return values
1399     // require promoting with signext or zeroext attributes.
1400     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1401       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1402       if (VT.bitsLT(MinVT))
1403         VT = MinVT;
1404     }
1405 
1406     unsigned NumParts =
1407         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1408     MVT PartVT =
1409         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1410 
1411     // 'inreg' on function refers to return value
1412     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1413     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1414       Flags.setInReg();
1415 
1416     // Propagate extension type if any
1417     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1418       Flags.setSExt();
1419     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1420       Flags.setZExt();
1421 
1422     for (unsigned i = 0; i < NumParts; ++i)
1423       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1424   }
1425 }
1426 
1427 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1428 /// function arguments in the caller parameter area.  This is the actual
1429 /// alignment, not its logarithm.
1430 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1431                                                    const DataLayout &DL) const {
1432   return DL.getABITypeAlignment(Ty);
1433 }
1434 
1435 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1436                                             const DataLayout &DL, EVT VT,
1437                                             unsigned AddrSpace,
1438                                             unsigned Alignment,
1439                                             bool *Fast) const {
1440   // Check if the specified alignment is sufficient based on the data layout.
1441   // TODO: While using the data layout works in practice, a better solution
1442   // would be to implement this check directly (make this a virtual function).
1443   // For example, the ABI alignment may change based on software platform while
1444   // this function should only be affected by hardware implementation.
1445   Type *Ty = VT.getTypeForEVT(Context);
1446   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1447     // Assume that an access that meets the ABI-specified alignment is fast.
1448     if (Fast != nullptr)
1449       *Fast = true;
1450     return true;
1451   }
1452 
1453   // This is a misaligned access.
1454   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1455 }
1456 
1457 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1458   return BranchProbability(MinPercentageForPredictableBranch, 100);
1459 }
1460 
1461 //===----------------------------------------------------------------------===//
1462 //  TargetTransformInfo Helpers
1463 //===----------------------------------------------------------------------===//
1464 
1465 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1466   enum InstructionOpcodes {
1467 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1468 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1469 #include "llvm/IR/Instruction.def"
1470   };
1471   switch (static_cast<InstructionOpcodes>(Opcode)) {
1472   case Ret:            return 0;
1473   case Br:             return 0;
1474   case Switch:         return 0;
1475   case IndirectBr:     return 0;
1476   case Invoke:         return 0;
1477   case CallBr:         return 0;
1478   case Resume:         return 0;
1479   case Unreachable:    return 0;
1480   case CleanupRet:     return 0;
1481   case CatchRet:       return 0;
1482   case CatchPad:       return 0;
1483   case CatchSwitch:    return 0;
1484   case CleanupPad:     return 0;
1485   case FNeg:           return ISD::FNEG;
1486   case Add:            return ISD::ADD;
1487   case FAdd:           return ISD::FADD;
1488   case Sub:            return ISD::SUB;
1489   case FSub:           return ISD::FSUB;
1490   case Mul:            return ISD::MUL;
1491   case FMul:           return ISD::FMUL;
1492   case UDiv:           return ISD::UDIV;
1493   case SDiv:           return ISD::SDIV;
1494   case FDiv:           return ISD::FDIV;
1495   case URem:           return ISD::UREM;
1496   case SRem:           return ISD::SREM;
1497   case FRem:           return ISD::FREM;
1498   case Shl:            return ISD::SHL;
1499   case LShr:           return ISD::SRL;
1500   case AShr:           return ISD::SRA;
1501   case And:            return ISD::AND;
1502   case Or:             return ISD::OR;
1503   case Xor:            return ISD::XOR;
1504   case Alloca:         return 0;
1505   case Load:           return ISD::LOAD;
1506   case Store:          return ISD::STORE;
1507   case GetElementPtr:  return 0;
1508   case Fence:          return 0;
1509   case AtomicCmpXchg:  return 0;
1510   case AtomicRMW:      return 0;
1511   case Trunc:          return ISD::TRUNCATE;
1512   case ZExt:           return ISD::ZERO_EXTEND;
1513   case SExt:           return ISD::SIGN_EXTEND;
1514   case FPToUI:         return ISD::FP_TO_UINT;
1515   case FPToSI:         return ISD::FP_TO_SINT;
1516   case UIToFP:         return ISD::UINT_TO_FP;
1517   case SIToFP:         return ISD::SINT_TO_FP;
1518   case FPTrunc:        return ISD::FP_ROUND;
1519   case FPExt:          return ISD::FP_EXTEND;
1520   case PtrToInt:       return ISD::BITCAST;
1521   case IntToPtr:       return ISD::BITCAST;
1522   case BitCast:        return ISD::BITCAST;
1523   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1524   case ICmp:           return ISD::SETCC;
1525   case FCmp:           return ISD::SETCC;
1526   case PHI:            return 0;
1527   case Call:           return 0;
1528   case Select:         return ISD::SELECT;
1529   case UserOp1:        return 0;
1530   case UserOp2:        return 0;
1531   case VAArg:          return 0;
1532   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1533   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1534   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1535   case ExtractValue:   return ISD::MERGE_VALUES;
1536   case InsertValue:    return ISD::MERGE_VALUES;
1537   case LandingPad:     return 0;
1538   }
1539 
1540   llvm_unreachable("Unknown instruction type encountered!");
1541 }
1542 
1543 std::pair<int, MVT>
1544 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1545                                             Type *Ty) const {
1546   LLVMContext &C = Ty->getContext();
1547   EVT MTy = getValueType(DL, Ty);
1548 
1549   int Cost = 1;
1550   // We keep legalizing the type until we find a legal kind. We assume that
1551   // the only operation that costs anything is the split. After splitting
1552   // we need to handle two types.
1553   while (true) {
1554     LegalizeKind LK = getTypeConversion(C, MTy);
1555 
1556     if (LK.first == TypeLegal)
1557       return std::make_pair(Cost, MTy.getSimpleVT());
1558 
1559     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1560       Cost *= 2;
1561 
1562     // Do not loop with f128 type.
1563     if (MTy == LK.second)
1564       return std::make_pair(Cost, MTy.getSimpleVT());
1565 
1566     // Keep legalizing the type.
1567     MTy = LK.second;
1568   }
1569 }
1570 
1571 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1572                                                               bool UseTLS) const {
1573   // compiler-rt provides a variable with a magic name.  Targets that do not
1574   // link with compiler-rt may also provide such a variable.
1575   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1576   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1577   auto UnsafeStackPtr =
1578       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1579 
1580   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1581 
1582   if (!UnsafeStackPtr) {
1583     auto TLSModel = UseTLS ?
1584         GlobalValue::InitialExecTLSModel :
1585         GlobalValue::NotThreadLocal;
1586     // The global variable is not defined yet, define it ourselves.
1587     // We use the initial-exec TLS model because we do not support the
1588     // variable living anywhere other than in the main executable.
1589     UnsafeStackPtr = new GlobalVariable(
1590         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1591         UnsafeStackPtrVar, nullptr, TLSModel);
1592   } else {
1593     // The variable exists, check its type and attributes.
1594     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1595       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1596     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1597       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1598                          (UseTLS ? "" : "not ") + "be thread-local");
1599   }
1600   return UnsafeStackPtr;
1601 }
1602 
1603 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1604   if (!TM.getTargetTriple().isAndroid())
1605     return getDefaultSafeStackPointerLocation(IRB, true);
1606 
1607   // Android provides a libc function to retrieve the address of the current
1608   // thread's unsafe stack pointer.
1609   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1610   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1611   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1612                                              StackPtrTy->getPointerTo(0));
1613   return IRB.CreateCall(Fn);
1614 }
1615 
1616 //===----------------------------------------------------------------------===//
1617 //  Loop Strength Reduction hooks
1618 //===----------------------------------------------------------------------===//
1619 
1620 /// isLegalAddressingMode - Return true if the addressing mode represented
1621 /// by AM is legal for this target, for a load/store of the specified type.
1622 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1623                                                const AddrMode &AM, Type *Ty,
1624                                                unsigned AS, Instruction *I) const {
1625   // The default implementation of this implements a conservative RISCy, r+r and
1626   // r+i addr mode.
1627 
1628   // Allows a sign-extended 16-bit immediate field.
1629   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1630     return false;
1631 
1632   // No global is ever allowed as a base.
1633   if (AM.BaseGV)
1634     return false;
1635 
1636   // Only support r+r,
1637   switch (AM.Scale) {
1638   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1639     break;
1640   case 1:
1641     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1642       return false;
1643     // Otherwise we have r+r or r+i.
1644     break;
1645   case 2:
1646     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1647       return false;
1648     // Allow 2*r as r+r.
1649     break;
1650   default: // Don't allow n * r
1651     return false;
1652   }
1653 
1654   return true;
1655 }
1656 
1657 //===----------------------------------------------------------------------===//
1658 //  Stack Protector
1659 //===----------------------------------------------------------------------===//
1660 
1661 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1662 // so that SelectionDAG handle SSP.
1663 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1664   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1665     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1666     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1667     return M.getOrInsertGlobal("__guard_local", PtrTy);
1668   }
1669   return nullptr;
1670 }
1671 
1672 // Currently only support "standard" __stack_chk_guard.
1673 // TODO: add LOAD_STACK_GUARD support.
1674 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1675   if (!M.getNamedValue("__stack_chk_guard"))
1676     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1677                        GlobalVariable::ExternalLinkage,
1678                        nullptr, "__stack_chk_guard");
1679 }
1680 
1681 // Currently only support "standard" __stack_chk_guard.
1682 // TODO: add LOAD_STACK_GUARD support.
1683 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1684   return M.getNamedValue("__stack_chk_guard");
1685 }
1686 
1687 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1688   return nullptr;
1689 }
1690 
1691 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1692   return MinimumJumpTableEntries;
1693 }
1694 
1695 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1696   MinimumJumpTableEntries = Val;
1697 }
1698 
1699 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1700   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1701 }
1702 
1703 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1704   return MaximumJumpTableSize;
1705 }
1706 
1707 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1708   MaximumJumpTableSize = Val;
1709 }
1710 
1711 //===----------------------------------------------------------------------===//
1712 //  Reciprocal Estimates
1713 //===----------------------------------------------------------------------===//
1714 
1715 /// Get the reciprocal estimate attribute string for a function that will
1716 /// override the target defaults.
1717 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1718   const Function &F = MF.getFunction();
1719   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1720 }
1721 
1722 /// Construct a string for the given reciprocal operation of the given type.
1723 /// This string should match the corresponding option to the front-end's
1724 /// "-mrecip" flag assuming those strings have been passed through in an
1725 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1726 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1727   std::string Name = VT.isVector() ? "vec-" : "";
1728 
1729   Name += IsSqrt ? "sqrt" : "div";
1730 
1731   // TODO: Handle "half" or other float types?
1732   if (VT.getScalarType() == MVT::f64) {
1733     Name += "d";
1734   } else {
1735     assert(VT.getScalarType() == MVT::f32 &&
1736            "Unexpected FP type for reciprocal estimate");
1737     Name += "f";
1738   }
1739 
1740   return Name;
1741 }
1742 
1743 /// Return the character position and value (a single numeric character) of a
1744 /// customized refinement operation in the input string if it exists. Return
1745 /// false if there is no customized refinement step count.
1746 static bool parseRefinementStep(StringRef In, size_t &Position,
1747                                 uint8_t &Value) {
1748   const char RefStepToken = ':';
1749   Position = In.find(RefStepToken);
1750   if (Position == StringRef::npos)
1751     return false;
1752 
1753   StringRef RefStepString = In.substr(Position + 1);
1754   // Allow exactly one numeric character for the additional refinement
1755   // step parameter.
1756   if (RefStepString.size() == 1) {
1757     char RefStepChar = RefStepString[0];
1758     if (RefStepChar >= '0' && RefStepChar <= '9') {
1759       Value = RefStepChar - '0';
1760       return true;
1761     }
1762   }
1763   report_fatal_error("Invalid refinement step for -recip.");
1764 }
1765 
1766 /// For the input attribute string, return one of the ReciprocalEstimate enum
1767 /// status values (enabled, disabled, or not specified) for this operation on
1768 /// the specified data type.
1769 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1770   if (Override.empty())
1771     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1772 
1773   SmallVector<StringRef, 4> OverrideVector;
1774   Override.split(OverrideVector, ',');
1775   unsigned NumArgs = OverrideVector.size();
1776 
1777   // Check if "all", "none", or "default" was specified.
1778   if (NumArgs == 1) {
1779     // Look for an optional setting of the number of refinement steps needed
1780     // for this type of reciprocal operation.
1781     size_t RefPos;
1782     uint8_t RefSteps;
1783     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1784       // Split the string for further processing.
1785       Override = Override.substr(0, RefPos);
1786     }
1787 
1788     // All reciprocal types are enabled.
1789     if (Override == "all")
1790       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1791 
1792     // All reciprocal types are disabled.
1793     if (Override == "none")
1794       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1795 
1796     // Target defaults for enablement are used.
1797     if (Override == "default")
1798       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1799   }
1800 
1801   // The attribute string may omit the size suffix ('f'/'d').
1802   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1803   std::string VTNameNoSize = VTName;
1804   VTNameNoSize.pop_back();
1805   static const char DisabledPrefix = '!';
1806 
1807   for (StringRef RecipType : OverrideVector) {
1808     size_t RefPos;
1809     uint8_t RefSteps;
1810     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1811       RecipType = RecipType.substr(0, RefPos);
1812 
1813     // Ignore the disablement token for string matching.
1814     bool IsDisabled = RecipType[0] == DisabledPrefix;
1815     if (IsDisabled)
1816       RecipType = RecipType.substr(1);
1817 
1818     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1819       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1820                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1821   }
1822 
1823   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1824 }
1825 
1826 /// For the input attribute string, return the customized refinement step count
1827 /// for this operation on the specified data type. If the step count does not
1828 /// exist, return the ReciprocalEstimate enum value for unspecified.
1829 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1830   if (Override.empty())
1831     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1832 
1833   SmallVector<StringRef, 4> OverrideVector;
1834   Override.split(OverrideVector, ',');
1835   unsigned NumArgs = OverrideVector.size();
1836 
1837   // Check if "all", "default", or "none" was specified.
1838   if (NumArgs == 1) {
1839     // Look for an optional setting of the number of refinement steps needed
1840     // for this type of reciprocal operation.
1841     size_t RefPos;
1842     uint8_t RefSteps;
1843     if (!parseRefinementStep(Override, RefPos, RefSteps))
1844       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1845 
1846     // Split the string for further processing.
1847     Override = Override.substr(0, RefPos);
1848     assert(Override != "none" &&
1849            "Disabled reciprocals, but specifed refinement steps?");
1850 
1851     // If this is a general override, return the specified number of steps.
1852     if (Override == "all" || Override == "default")
1853       return RefSteps;
1854   }
1855 
1856   // The attribute string may omit the size suffix ('f'/'d').
1857   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1858   std::string VTNameNoSize = VTName;
1859   VTNameNoSize.pop_back();
1860 
1861   for (StringRef RecipType : OverrideVector) {
1862     size_t RefPos;
1863     uint8_t RefSteps;
1864     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1865       continue;
1866 
1867     RecipType = RecipType.substr(0, RefPos);
1868     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1869       return RefSteps;
1870   }
1871 
1872   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1873 }
1874 
1875 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1876                                                     MachineFunction &MF) const {
1877   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1878 }
1879 
1880 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1881                                                    MachineFunction &MF) const {
1882   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1883 }
1884 
1885 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1886                                                MachineFunction &MF) const {
1887   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1888 }
1889 
1890 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1891                                               MachineFunction &MF) const {
1892   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1893 }
1894 
1895 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1896   MF.getRegInfo().freezeReservedRegs(MF);
1897 }
1898