1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 static cl::opt<bool> JumpIsExpensiveOverride(
70     "jump-is-expensive", cl::init(false),
71     cl::desc("Do not create extra branches to split comparison logic."),
72     cl::Hidden);
73 
74 static cl::opt<unsigned> MinimumJumpTableEntries
75   ("min-jump-table-entries", cl::init(4), cl::Hidden,
76    cl::desc("Set minimum number of entries to use a jump table."));
77 
78 static cl::opt<unsigned> MaximumJumpTableSize
79   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80    cl::desc("Set maximum size of jump tables."));
81 
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85                      cl::desc("Minimum density for building a jump table in "
86                               "a normal function"));
87 
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90     "optsize-jump-table-density", cl::init(40), cl::Hidden,
91     cl::desc("Minimum density for building a jump table in "
92              "an optsize function"));
93 
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99        cl::desc("Don't mutate strict-float node to a legalize node"),
100        cl::init(false), cl::Hidden);
101 
102 static bool darwinHasSinCos(const Triple &TT) {
103   assert(TT.isOSDarwin() && "should be called with darwin triple");
104   // Don't bother with 32 bit x86.
105   if (TT.getArch() == Triple::x86)
106     return false;
107   // Macos < 10.9 has no sincos_stret.
108   if (TT.isMacOSX())
109     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110   // iOS < 7.0 has no sincos_stret.
111   if (TT.isiOS())
112     return !TT.isOSVersionLT(7, 0);
113   // Any other darwin such as WatchOS/TvOS is new enough.
114   return true;
115 }
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127   if (TT.isPPC()) {
128     setLibcallName(RTLIB::ADD_F128, "__addkf3");
129     setLibcallName(RTLIB::SUB_F128, "__subkf3");
130     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131     setLibcallName(RTLIB::DIV_F128, "__divkf3");
132     setLibcallName(RTLIB::POWI_F128, "__powikf2");
133     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
134     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
135     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
136     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
137     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
138     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
139     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
140     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
141     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
142     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
143     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
144     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
145     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
146     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
147     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
148     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
149     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
150     setLibcallName(RTLIB::UNE_F128, "__nekf2");
151     setLibcallName(RTLIB::OGE_F128, "__gekf2");
152     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
153     setLibcallName(RTLIB::OLE_F128, "__lekf2");
154     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
155     setLibcallName(RTLIB::UO_F128, "__unordkf2");
156   }
157 
158   // A few names are different on particular architectures or environments.
159   if (TT.isOSDarwin()) {
160     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
161     // of the gnueabi-style __gnu_*_ieee.
162     // FIXME: What about other targets?
163     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
164     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
165 
166     // Some darwins have an optimized __bzero/bzero function.
167     switch (TT.getArch()) {
168     case Triple::x86:
169     case Triple::x86_64:
170       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
171         setLibcallName(RTLIB::BZERO, "__bzero");
172       break;
173     case Triple::aarch64:
174     case Triple::aarch64_32:
175       setLibcallName(RTLIB::BZERO, "bzero");
176       break;
177     default:
178       break;
179     }
180 
181     if (darwinHasSinCos(TT)) {
182       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
183       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
184       if (TT.isWatchABI()) {
185         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
186                               CallingConv::ARM_AAPCS_VFP);
187         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
188                               CallingConv::ARM_AAPCS_VFP);
189       }
190     }
191   } else {
192     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
193     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
194   }
195 
196   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
197       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
198     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
199     setLibcallName(RTLIB::SINCOS_F64, "sincos");
200     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
201     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
202     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
203   }
204 
205   if (TT.isPS4CPU()) {
206     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
207     setLibcallName(RTLIB::SINCOS_F64, "sincos");
208   }
209 
210   if (TT.isOSOpenBSD()) {
211     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
212   }
213 }
214 
215 /// GetFPLibCall - Helper to return the right libcall for the given floating
216 /// point type, or UNKNOWN_LIBCALL if there is none.
217 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
218                                    RTLIB::Libcall Call_F32,
219                                    RTLIB::Libcall Call_F64,
220                                    RTLIB::Libcall Call_F80,
221                                    RTLIB::Libcall Call_F128,
222                                    RTLIB::Libcall Call_PPCF128) {
223   return
224     VT == MVT::f32 ? Call_F32 :
225     VT == MVT::f64 ? Call_F64 :
226     VT == MVT::f80 ? Call_F80 :
227     VT == MVT::f128 ? Call_F128 :
228     VT == MVT::ppcf128 ? Call_PPCF128 :
229     RTLIB::UNKNOWN_LIBCALL;
230 }
231 
232 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
233 /// UNKNOWN_LIBCALL if there is none.
234 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
235   if (OpVT == MVT::f16) {
236     if (RetVT == MVT::f32)
237       return FPEXT_F16_F32;
238     if (RetVT == MVT::f64)
239       return FPEXT_F16_F64;
240     if (RetVT == MVT::f80)
241       return FPEXT_F16_F80;
242     if (RetVT == MVT::f128)
243       return FPEXT_F16_F128;
244   } else if (OpVT == MVT::f32) {
245     if (RetVT == MVT::f64)
246       return FPEXT_F32_F64;
247     if (RetVT == MVT::f128)
248       return FPEXT_F32_F128;
249     if (RetVT == MVT::ppcf128)
250       return FPEXT_F32_PPCF128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::f128)
253       return FPEXT_F64_F128;
254     else if (RetVT == MVT::ppcf128)
255       return FPEXT_F64_PPCF128;
256   } else if (OpVT == MVT::f80) {
257     if (RetVT == MVT::f128)
258       return FPEXT_F80_F128;
259   }
260 
261   return UNKNOWN_LIBCALL;
262 }
263 
264 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
265 /// UNKNOWN_LIBCALL if there is none.
266 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
267   if (RetVT == MVT::f16) {
268     if (OpVT == MVT::f32)
269       return FPROUND_F32_F16;
270     if (OpVT == MVT::f64)
271       return FPROUND_F64_F16;
272     if (OpVT == MVT::f80)
273       return FPROUND_F80_F16;
274     if (OpVT == MVT::f128)
275       return FPROUND_F128_F16;
276     if (OpVT == MVT::ppcf128)
277       return FPROUND_PPCF128_F16;
278   } else if (RetVT == MVT::f32) {
279     if (OpVT == MVT::f64)
280       return FPROUND_F64_F32;
281     if (OpVT == MVT::f80)
282       return FPROUND_F80_F32;
283     if (OpVT == MVT::f128)
284       return FPROUND_F128_F32;
285     if (OpVT == MVT::ppcf128)
286       return FPROUND_PPCF128_F32;
287   } else if (RetVT == MVT::f64) {
288     if (OpVT == MVT::f80)
289       return FPROUND_F80_F64;
290     if (OpVT == MVT::f128)
291       return FPROUND_F128_F64;
292     if (OpVT == MVT::ppcf128)
293       return FPROUND_PPCF128_F64;
294   } else if (RetVT == MVT::f80) {
295     if (OpVT == MVT::f128)
296       return FPROUND_F128_F80;
297   }
298 
299   return UNKNOWN_LIBCALL;
300 }
301 
302 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
303 /// UNKNOWN_LIBCALL if there is none.
304 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
305   if (OpVT == MVT::f16) {
306     if (RetVT == MVT::i32)
307       return FPTOSINT_F16_I32;
308     if (RetVT == MVT::i64)
309       return FPTOSINT_F16_I64;
310     if (RetVT == MVT::i128)
311       return FPTOSINT_F16_I128;
312   } else if (OpVT == MVT::f32) {
313     if (RetVT == MVT::i32)
314       return FPTOSINT_F32_I32;
315     if (RetVT == MVT::i64)
316       return FPTOSINT_F32_I64;
317     if (RetVT == MVT::i128)
318       return FPTOSINT_F32_I128;
319   } else if (OpVT == MVT::f64) {
320     if (RetVT == MVT::i32)
321       return FPTOSINT_F64_I32;
322     if (RetVT == MVT::i64)
323       return FPTOSINT_F64_I64;
324     if (RetVT == MVT::i128)
325       return FPTOSINT_F64_I128;
326   } else if (OpVT == MVT::f80) {
327     if (RetVT == MVT::i32)
328       return FPTOSINT_F80_I32;
329     if (RetVT == MVT::i64)
330       return FPTOSINT_F80_I64;
331     if (RetVT == MVT::i128)
332       return FPTOSINT_F80_I128;
333   } else if (OpVT == MVT::f128) {
334     if (RetVT == MVT::i32)
335       return FPTOSINT_F128_I32;
336     if (RetVT == MVT::i64)
337       return FPTOSINT_F128_I64;
338     if (RetVT == MVT::i128)
339       return FPTOSINT_F128_I128;
340   } else if (OpVT == MVT::ppcf128) {
341     if (RetVT == MVT::i32)
342       return FPTOSINT_PPCF128_I32;
343     if (RetVT == MVT::i64)
344       return FPTOSINT_PPCF128_I64;
345     if (RetVT == MVT::i128)
346       return FPTOSINT_PPCF128_I128;
347   }
348   return UNKNOWN_LIBCALL;
349 }
350 
351 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
352 /// UNKNOWN_LIBCALL if there is none.
353 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
354   if (OpVT == MVT::f16) {
355     if (RetVT == MVT::i32)
356       return FPTOUINT_F16_I32;
357     if (RetVT == MVT::i64)
358       return FPTOUINT_F16_I64;
359     if (RetVT == MVT::i128)
360       return FPTOUINT_F16_I128;
361   } else if (OpVT == MVT::f32) {
362     if (RetVT == MVT::i32)
363       return FPTOUINT_F32_I32;
364     if (RetVT == MVT::i64)
365       return FPTOUINT_F32_I64;
366     if (RetVT == MVT::i128)
367       return FPTOUINT_F32_I128;
368   } else if (OpVT == MVT::f64) {
369     if (RetVT == MVT::i32)
370       return FPTOUINT_F64_I32;
371     if (RetVT == MVT::i64)
372       return FPTOUINT_F64_I64;
373     if (RetVT == MVT::i128)
374       return FPTOUINT_F64_I128;
375   } else if (OpVT == MVT::f80) {
376     if (RetVT == MVT::i32)
377       return FPTOUINT_F80_I32;
378     if (RetVT == MVT::i64)
379       return FPTOUINT_F80_I64;
380     if (RetVT == MVT::i128)
381       return FPTOUINT_F80_I128;
382   } else if (OpVT == MVT::f128) {
383     if (RetVT == MVT::i32)
384       return FPTOUINT_F128_I32;
385     if (RetVT == MVT::i64)
386       return FPTOUINT_F128_I64;
387     if (RetVT == MVT::i128)
388       return FPTOUINT_F128_I128;
389   } else if (OpVT == MVT::ppcf128) {
390     if (RetVT == MVT::i32)
391       return FPTOUINT_PPCF128_I32;
392     if (RetVT == MVT::i64)
393       return FPTOUINT_PPCF128_I64;
394     if (RetVT == MVT::i128)
395       return FPTOUINT_PPCF128_I128;
396   }
397   return UNKNOWN_LIBCALL;
398 }
399 
400 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
401 /// UNKNOWN_LIBCALL if there is none.
402 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
403   if (OpVT == MVT::i32) {
404     if (RetVT == MVT::f16)
405       return SINTTOFP_I32_F16;
406     if (RetVT == MVT::f32)
407       return SINTTOFP_I32_F32;
408     if (RetVT == MVT::f64)
409       return SINTTOFP_I32_F64;
410     if (RetVT == MVT::f80)
411       return SINTTOFP_I32_F80;
412     if (RetVT == MVT::f128)
413       return SINTTOFP_I32_F128;
414     if (RetVT == MVT::ppcf128)
415       return SINTTOFP_I32_PPCF128;
416   } else if (OpVT == MVT::i64) {
417     if (RetVT == MVT::f16)
418       return SINTTOFP_I64_F16;
419     if (RetVT == MVT::f32)
420       return SINTTOFP_I64_F32;
421     if (RetVT == MVT::f64)
422       return SINTTOFP_I64_F64;
423     if (RetVT == MVT::f80)
424       return SINTTOFP_I64_F80;
425     if (RetVT == MVT::f128)
426       return SINTTOFP_I64_F128;
427     if (RetVT == MVT::ppcf128)
428       return SINTTOFP_I64_PPCF128;
429   } else if (OpVT == MVT::i128) {
430     if (RetVT == MVT::f16)
431       return SINTTOFP_I128_F16;
432     if (RetVT == MVT::f32)
433       return SINTTOFP_I128_F32;
434     if (RetVT == MVT::f64)
435       return SINTTOFP_I128_F64;
436     if (RetVT == MVT::f80)
437       return SINTTOFP_I128_F80;
438     if (RetVT == MVT::f128)
439       return SINTTOFP_I128_F128;
440     if (RetVT == MVT::ppcf128)
441       return SINTTOFP_I128_PPCF128;
442   }
443   return UNKNOWN_LIBCALL;
444 }
445 
446 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
447 /// UNKNOWN_LIBCALL if there is none.
448 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
449   if (OpVT == MVT::i32) {
450     if (RetVT == MVT::f16)
451       return UINTTOFP_I32_F16;
452     if (RetVT == MVT::f32)
453       return UINTTOFP_I32_F32;
454     if (RetVT == MVT::f64)
455       return UINTTOFP_I32_F64;
456     if (RetVT == MVT::f80)
457       return UINTTOFP_I32_F80;
458     if (RetVT == MVT::f128)
459       return UINTTOFP_I32_F128;
460     if (RetVT == MVT::ppcf128)
461       return UINTTOFP_I32_PPCF128;
462   } else if (OpVT == MVT::i64) {
463     if (RetVT == MVT::f16)
464       return UINTTOFP_I64_F16;
465     if (RetVT == MVT::f32)
466       return UINTTOFP_I64_F32;
467     if (RetVT == MVT::f64)
468       return UINTTOFP_I64_F64;
469     if (RetVT == MVT::f80)
470       return UINTTOFP_I64_F80;
471     if (RetVT == MVT::f128)
472       return UINTTOFP_I64_F128;
473     if (RetVT == MVT::ppcf128)
474       return UINTTOFP_I64_PPCF128;
475   } else if (OpVT == MVT::i128) {
476     if (RetVT == MVT::f16)
477       return UINTTOFP_I128_F16;
478     if (RetVT == MVT::f32)
479       return UINTTOFP_I128_F32;
480     if (RetVT == MVT::f64)
481       return UINTTOFP_I128_F64;
482     if (RetVT == MVT::f80)
483       return UINTTOFP_I128_F80;
484     if (RetVT == MVT::f128)
485       return UINTTOFP_I128_F128;
486     if (RetVT == MVT::ppcf128)
487       return UINTTOFP_I128_PPCF128;
488   }
489   return UNKNOWN_LIBCALL;
490 }
491 
492 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
493   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
494                       POWI_PPCF128);
495 }
496 
497 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
498                                         MVT VT) {
499   unsigned ModeN, ModelN;
500   switch (VT.SimpleTy) {
501   case MVT::i8:
502     ModeN = 0;
503     break;
504   case MVT::i16:
505     ModeN = 1;
506     break;
507   case MVT::i32:
508     ModeN = 2;
509     break;
510   case MVT::i64:
511     ModeN = 3;
512     break;
513   case MVT::i128:
514     ModeN = 4;
515     break;
516   default:
517     return UNKNOWN_LIBCALL;
518   }
519 
520   switch (Order) {
521   case AtomicOrdering::Monotonic:
522     ModelN = 0;
523     break;
524   case AtomicOrdering::Acquire:
525     ModelN = 1;
526     break;
527   case AtomicOrdering::Release:
528     ModelN = 2;
529     break;
530   case AtomicOrdering::AcquireRelease:
531   case AtomicOrdering::SequentiallyConsistent:
532     ModelN = 3;
533     break;
534   default:
535     return UNKNOWN_LIBCALL;
536   }
537 
538 #define LCALLS(A, B)                                                           \
539   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
540 #define LCALL5(A)                                                              \
541   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
542   switch (Opc) {
543   case ISD::ATOMIC_CMP_SWAP: {
544     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
545     return LC[ModeN][ModelN];
546   }
547   case ISD::ATOMIC_SWAP: {
548     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
549     return LC[ModeN][ModelN];
550   }
551   case ISD::ATOMIC_LOAD_ADD: {
552     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
553     return LC[ModeN][ModelN];
554   }
555   case ISD::ATOMIC_LOAD_OR: {
556     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
557     return LC[ModeN][ModelN];
558   }
559   case ISD::ATOMIC_LOAD_CLR: {
560     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
561     return LC[ModeN][ModelN];
562   }
563   case ISD::ATOMIC_LOAD_XOR: {
564     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
565     return LC[ModeN][ModelN];
566   }
567   default:
568     return UNKNOWN_LIBCALL;
569   }
570 #undef LCALLS
571 #undef LCALL5
572 }
573 
574 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
575 #define OP_TO_LIBCALL(Name, Enum)                                              \
576   case Name:                                                                   \
577     switch (VT.SimpleTy) {                                                     \
578     default:                                                                   \
579       return UNKNOWN_LIBCALL;                                                  \
580     case MVT::i8:                                                              \
581       return Enum##_1;                                                         \
582     case MVT::i16:                                                             \
583       return Enum##_2;                                                         \
584     case MVT::i32:                                                             \
585       return Enum##_4;                                                         \
586     case MVT::i64:                                                             \
587       return Enum##_8;                                                         \
588     case MVT::i128:                                                            \
589       return Enum##_16;                                                        \
590     }
591 
592   switch (Opc) {
593     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
594     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
595     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
596     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
597     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
598     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
599     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
600     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
601     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
602     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
603     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
604     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
605   }
606 
607 #undef OP_TO_LIBCALL
608 
609   return UNKNOWN_LIBCALL;
610 }
611 
612 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
613   switch (ElementSize) {
614   case 1:
615     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
616   case 2:
617     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
618   case 4:
619     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
620   case 8:
621     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
622   case 16:
623     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
624   default:
625     return UNKNOWN_LIBCALL;
626   }
627 }
628 
629 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
630   switch (ElementSize) {
631   case 1:
632     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
633   case 2:
634     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
635   case 4:
636     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
637   case 8:
638     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
639   case 16:
640     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
641   default:
642     return UNKNOWN_LIBCALL;
643   }
644 }
645 
646 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
647   switch (ElementSize) {
648   case 1:
649     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
650   case 2:
651     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
652   case 4:
653     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
654   case 8:
655     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
656   case 16:
657     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
658   default:
659     return UNKNOWN_LIBCALL;
660   }
661 }
662 
663 /// InitCmpLibcallCCs - Set default comparison libcall CC.
664 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
665   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
666   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
667   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
668   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
669   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
670   CCs[RTLIB::UNE_F32] = ISD::SETNE;
671   CCs[RTLIB::UNE_F64] = ISD::SETNE;
672   CCs[RTLIB::UNE_F128] = ISD::SETNE;
673   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
674   CCs[RTLIB::OGE_F32] = ISD::SETGE;
675   CCs[RTLIB::OGE_F64] = ISD::SETGE;
676   CCs[RTLIB::OGE_F128] = ISD::SETGE;
677   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
678   CCs[RTLIB::OLT_F32] = ISD::SETLT;
679   CCs[RTLIB::OLT_F64] = ISD::SETLT;
680   CCs[RTLIB::OLT_F128] = ISD::SETLT;
681   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
682   CCs[RTLIB::OLE_F32] = ISD::SETLE;
683   CCs[RTLIB::OLE_F64] = ISD::SETLE;
684   CCs[RTLIB::OLE_F128] = ISD::SETLE;
685   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
686   CCs[RTLIB::OGT_F32] = ISD::SETGT;
687   CCs[RTLIB::OGT_F64] = ISD::SETGT;
688   CCs[RTLIB::OGT_F128] = ISD::SETGT;
689   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
690   CCs[RTLIB::UO_F32] = ISD::SETNE;
691   CCs[RTLIB::UO_F64] = ISD::SETNE;
692   CCs[RTLIB::UO_F128] = ISD::SETNE;
693   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
694 }
695 
696 /// NOTE: The TargetMachine owns TLOF.
697 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
698   initActions();
699 
700   // Perform these initializations only once.
701   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
702       MaxLoadsPerMemcmp = 8;
703   MaxGluedStoresPerMemcpy = 0;
704   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
705       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
706   HasMultipleConditionRegisters = false;
707   HasExtractBitsInsn = false;
708   JumpIsExpensive = JumpIsExpensiveOverride;
709   PredictableSelectIsExpensive = false;
710   EnableExtLdPromotion = false;
711   StackPointerRegisterToSaveRestore = 0;
712   BooleanContents = UndefinedBooleanContent;
713   BooleanFloatContents = UndefinedBooleanContent;
714   BooleanVectorContents = UndefinedBooleanContent;
715   SchedPreferenceInfo = Sched::ILP;
716   GatherAllAliasesMaxDepth = 18;
717   IsStrictFPEnabled = DisableStrictNodeMutation;
718   MaxBytesForAlignment = 0;
719   // TODO: the default will be switched to 0 in the next commit, along
720   // with the Target-specific changes necessary.
721   MaxAtomicSizeInBitsSupported = 1024;
722 
723   MinCmpXchgSizeInBits = 0;
724   SupportsUnalignedAtomics = false;
725 
726   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
727 
728   InitLibcalls(TM.getTargetTriple());
729   InitCmpLibcallCCs(CmpLibcallCCs);
730 }
731 
732 void TargetLoweringBase::initActions() {
733   // All operations default to being supported.
734   memset(OpActions, 0, sizeof(OpActions));
735   memset(LoadExtActions, 0, sizeof(LoadExtActions));
736   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
737   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
738   memset(CondCodeActions, 0, sizeof(CondCodeActions));
739   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
740   std::fill(std::begin(TargetDAGCombineArray),
741             std::end(TargetDAGCombineArray), 0);
742 
743   for (MVT VT : MVT::fp_valuetypes()) {
744     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
745     if (IntVT.isValid()) {
746       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
747       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
748     }
749   }
750 
751   // Set default actions for various operations.
752   for (MVT VT : MVT::all_valuetypes()) {
753     // Default all indexed load / store to expand.
754     for (unsigned IM = (unsigned)ISD::PRE_INC;
755          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
756       setIndexedLoadAction(IM, VT, Expand);
757       setIndexedStoreAction(IM, VT, Expand);
758       setIndexedMaskedLoadAction(IM, VT, Expand);
759       setIndexedMaskedStoreAction(IM, VT, Expand);
760     }
761 
762     // Most backends expect to see the node which just returns the value loaded.
763     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
764 
765     // These operations default to expand.
766     setOperationAction(ISD::FGETSIGN, VT, Expand);
767     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
768     setOperationAction(ISD::FMINNUM, VT, Expand);
769     setOperationAction(ISD::FMAXNUM, VT, Expand);
770     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
771     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
772     setOperationAction(ISD::FMINIMUM, VT, Expand);
773     setOperationAction(ISD::FMAXIMUM, VT, Expand);
774     setOperationAction(ISD::FMAD, VT, Expand);
775     setOperationAction(ISD::SMIN, VT, Expand);
776     setOperationAction(ISD::SMAX, VT, Expand);
777     setOperationAction(ISD::UMIN, VT, Expand);
778     setOperationAction(ISD::UMAX, VT, Expand);
779     setOperationAction(ISD::ABS, VT, Expand);
780     setOperationAction(ISD::FSHL, VT, Expand);
781     setOperationAction(ISD::FSHR, VT, Expand);
782     setOperationAction(ISD::SADDSAT, VT, Expand);
783     setOperationAction(ISD::UADDSAT, VT, Expand);
784     setOperationAction(ISD::SSUBSAT, VT, Expand);
785     setOperationAction(ISD::USUBSAT, VT, Expand);
786     setOperationAction(ISD::SSHLSAT, VT, Expand);
787     setOperationAction(ISD::USHLSAT, VT, Expand);
788     setOperationAction(ISD::SMULFIX, VT, Expand);
789     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
790     setOperationAction(ISD::UMULFIX, VT, Expand);
791     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
792     setOperationAction(ISD::SDIVFIX, VT, Expand);
793     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
794     setOperationAction(ISD::UDIVFIX, VT, Expand);
795     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
796     setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand);
797     setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand);
798 
799     // Overflow operations default to expand
800     setOperationAction(ISD::SADDO, VT, Expand);
801     setOperationAction(ISD::SSUBO, VT, Expand);
802     setOperationAction(ISD::UADDO, VT, Expand);
803     setOperationAction(ISD::USUBO, VT, Expand);
804     setOperationAction(ISD::SMULO, VT, Expand);
805     setOperationAction(ISD::UMULO, VT, Expand);
806 
807     // ADDCARRY operations default to expand
808     setOperationAction(ISD::ADDCARRY, VT, Expand);
809     setOperationAction(ISD::SUBCARRY, VT, Expand);
810     setOperationAction(ISD::SETCCCARRY, VT, Expand);
811     setOperationAction(ISD::SADDO_CARRY, VT, Expand);
812     setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
813 
814     // ADDC/ADDE/SUBC/SUBE default to expand.
815     setOperationAction(ISD::ADDC, VT, Expand);
816     setOperationAction(ISD::ADDE, VT, Expand);
817     setOperationAction(ISD::SUBC, VT, Expand);
818     setOperationAction(ISD::SUBE, VT, Expand);
819 
820     // Halving adds
821     setOperationAction(ISD::AVGFLOORS, VT, Expand);
822     setOperationAction(ISD::AVGFLOORU, VT, Expand);
823     setOperationAction(ISD::AVGCEILS, VT, Expand);
824     setOperationAction(ISD::AVGCEILU, VT, Expand);
825 
826     // Absolute difference
827     setOperationAction(ISD::ABDS, VT, Expand);
828     setOperationAction(ISD::ABDU, VT, Expand);
829 
830     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
831     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
832     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
833 
834     setOperationAction(ISD::BITREVERSE, VT, Expand);
835     setOperationAction(ISD::PARITY, VT, Expand);
836 
837     // These library functions default to expand.
838     setOperationAction(ISD::FROUND, VT, Expand);
839     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
840     setOperationAction(ISD::FPOWI, VT, Expand);
841 
842     // These operations default to expand for vector types.
843     if (VT.isVector()) {
844       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
845       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
846       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
847       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
848       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
849       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
850     }
851 
852     // Constrained floating-point operations default to expand.
853 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
854     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
855 #include "llvm/IR/ConstrainedOps.def"
856 
857     // For most targets @llvm.get.dynamic.area.offset just returns 0.
858     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
859 
860     // Vector reduction default to expand.
861     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
862     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
863     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
864     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
865     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
866     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
867     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
868     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
869     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
870     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
871     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
872     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
873     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
874     setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
875     setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
876 
877     // Named vector shuffles default to expand.
878     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
879   }
880 
881   // Most targets ignore the @llvm.prefetch intrinsic.
882   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
883 
884   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
885   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
886 
887   // ConstantFP nodes default to expand.  Targets can either change this to
888   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
889   // to optimize expansions for certain constants.
890   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
891   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
892   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
893   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
894   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
895 
896   // These library functions default to expand.
897   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
898     setOperationAction(ISD::FCBRT,      VT, Expand);
899     setOperationAction(ISD::FLOG ,      VT, Expand);
900     setOperationAction(ISD::FLOG2,      VT, Expand);
901     setOperationAction(ISD::FLOG10,     VT, Expand);
902     setOperationAction(ISD::FEXP ,      VT, Expand);
903     setOperationAction(ISD::FEXP2,      VT, Expand);
904     setOperationAction(ISD::FFLOOR,     VT, Expand);
905     setOperationAction(ISD::FNEARBYINT, VT, Expand);
906     setOperationAction(ISD::FCEIL,      VT, Expand);
907     setOperationAction(ISD::FRINT,      VT, Expand);
908     setOperationAction(ISD::FTRUNC,     VT, Expand);
909     setOperationAction(ISD::LROUND,     VT, Expand);
910     setOperationAction(ISD::LLROUND,    VT, Expand);
911     setOperationAction(ISD::LRINT,      VT, Expand);
912     setOperationAction(ISD::LLRINT,     VT, Expand);
913   }
914 
915   // Default ISD::TRAP to expand (which turns it into abort).
916   setOperationAction(ISD::TRAP, MVT::Other, Expand);
917 
918   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
919   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
920   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
921 
922   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
923 }
924 
925 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
926                                                EVT) const {
927   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
928 }
929 
930 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
931                                          bool LegalTypes) const {
932   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
933   if (LHSTy.isVector())
934     return LHSTy;
935   MVT ShiftVT =
936       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
937   // If any possible shift value won't fit in the prefered type, just use
938   // something safe. Assume it will be legalized when the shift is expanded.
939   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
940     ShiftVT = MVT::i32;
941   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
942          "ShiftVT is still too small!");
943   return ShiftVT;
944 }
945 
946 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
947   assert(isTypeLegal(VT));
948   switch (Op) {
949   default:
950     return false;
951   case ISD::SDIV:
952   case ISD::UDIV:
953   case ISD::SREM:
954   case ISD::UREM:
955     return true;
956   }
957 }
958 
959 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
960                                              unsigned DestAS) const {
961   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
962 }
963 
964 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
965   // If the command-line option was specified, ignore this request.
966   if (!JumpIsExpensiveOverride.getNumOccurrences())
967     JumpIsExpensive = isExpensive;
968 }
969 
970 TargetLoweringBase::LegalizeKind
971 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
972   // If this is a simple type, use the ComputeRegisterProp mechanism.
973   if (VT.isSimple()) {
974     MVT SVT = VT.getSimpleVT();
975     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
976     MVT NVT = TransformToType[SVT.SimpleTy];
977     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
978 
979     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
980             LA == TypeSoftPromoteHalf ||
981             (NVT.isVector() ||
982              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
983            "Promote may not follow Expand or Promote");
984 
985     if (LA == TypeSplitVector)
986       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
987     if (LA == TypeScalarizeVector)
988       return LegalizeKind(LA, SVT.getVectorElementType());
989     return LegalizeKind(LA, NVT);
990   }
991 
992   // Handle Extended Scalar Types.
993   if (!VT.isVector()) {
994     assert(VT.isInteger() && "Float types must be simple");
995     unsigned BitSize = VT.getSizeInBits();
996     // First promote to a power-of-two size, then expand if necessary.
997     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
998       EVT NVT = VT.getRoundIntegerType(Context);
999       assert(NVT != VT && "Unable to round integer VT");
1000       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1001       // Avoid multi-step promotion.
1002       if (NextStep.first == TypePromoteInteger)
1003         return NextStep;
1004       // Return rounded integer type.
1005       return LegalizeKind(TypePromoteInteger, NVT);
1006     }
1007 
1008     return LegalizeKind(TypeExpandInteger,
1009                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1010   }
1011 
1012   // Handle vector types.
1013   ElementCount NumElts = VT.getVectorElementCount();
1014   EVT EltVT = VT.getVectorElementType();
1015 
1016   // Vectors with only one element are always scalarized.
1017   if (NumElts.isScalar())
1018     return LegalizeKind(TypeScalarizeVector, EltVT);
1019 
1020   // Try to widen vector elements until the element type is a power of two and
1021   // promote it to a legal type later on, for example:
1022   // <3 x i8> -> <4 x i8> -> <4 x i32>
1023   if (EltVT.isInteger()) {
1024     // Vectors with a number of elements that is not a power of two are always
1025     // widened, for example <3 x i8> -> <4 x i8>.
1026     if (!VT.isPow2VectorType()) {
1027       NumElts = NumElts.coefficientNextPowerOf2();
1028       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1029       return LegalizeKind(TypeWidenVector, NVT);
1030     }
1031 
1032     // Examine the element type.
1033     LegalizeKind LK = getTypeConversion(Context, EltVT);
1034 
1035     // If type is to be expanded, split the vector.
1036     //  <4 x i140> -> <2 x i140>
1037     if (LK.first == TypeExpandInteger) {
1038       if (VT.getVectorElementCount().isScalable())
1039         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1040       return LegalizeKind(TypeSplitVector,
1041                           VT.getHalfNumVectorElementsVT(Context));
1042     }
1043 
1044     // Promote the integer element types until a legal vector type is found
1045     // or until the element integer type is too big. If a legal type was not
1046     // found, fallback to the usual mechanism of widening/splitting the
1047     // vector.
1048     EVT OldEltVT = EltVT;
1049     while (true) {
1050       // Increase the bitwidth of the element to the next pow-of-two
1051       // (which is greater than 8 bits).
1052       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1053                   .getRoundIntegerType(Context);
1054 
1055       // Stop trying when getting a non-simple element type.
1056       // Note that vector elements may be greater than legal vector element
1057       // types. Example: X86 XMM registers hold 64bit element on 32bit
1058       // systems.
1059       if (!EltVT.isSimple())
1060         break;
1061 
1062       // Build a new vector type and check if it is legal.
1063       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1064       // Found a legal promoted vector type.
1065       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1066         return LegalizeKind(TypePromoteInteger,
1067                             EVT::getVectorVT(Context, EltVT, NumElts));
1068     }
1069 
1070     // Reset the type to the unexpanded type if we did not find a legal vector
1071     // type with a promoted vector element type.
1072     EltVT = OldEltVT;
1073   }
1074 
1075   // Try to widen the vector until a legal type is found.
1076   // If there is no wider legal type, split the vector.
1077   while (true) {
1078     // Round up to the next power of 2.
1079     NumElts = NumElts.coefficientNextPowerOf2();
1080 
1081     // If there is no simple vector type with this many elements then there
1082     // cannot be a larger legal vector type.  Note that this assumes that
1083     // there are no skipped intermediate vector types in the simple types.
1084     if (!EltVT.isSimple())
1085       break;
1086     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1087     if (LargerVector == MVT())
1088       break;
1089 
1090     // If this type is legal then widen the vector.
1091     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1092       return LegalizeKind(TypeWidenVector, LargerVector);
1093   }
1094 
1095   // Widen odd vectors to next power of two.
1096   if (!VT.isPow2VectorType()) {
1097     EVT NVT = VT.getPow2VectorType(Context);
1098     return LegalizeKind(TypeWidenVector, NVT);
1099   }
1100 
1101   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1102     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1103 
1104   // Vectors with illegal element types are expanded.
1105   EVT NVT = EVT::getVectorVT(Context, EltVT,
1106                              VT.getVectorElementCount().divideCoefficientBy(2));
1107   return LegalizeKind(TypeSplitVector, NVT);
1108 }
1109 
1110 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1111                                           unsigned &NumIntermediates,
1112                                           MVT &RegisterVT,
1113                                           TargetLoweringBase *TLI) {
1114   // Figure out the right, legal destination reg to copy into.
1115   ElementCount EC = VT.getVectorElementCount();
1116   MVT EltTy = VT.getVectorElementType();
1117 
1118   unsigned NumVectorRegs = 1;
1119 
1120   // Scalable vectors cannot be scalarized, so splitting or widening is
1121   // required.
1122   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1123     llvm_unreachable(
1124         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1125 
1126   // FIXME: We don't support non-power-of-2-sized vectors for now.
1127   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1128   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1129     // Split EC to unit size (scalable property is preserved).
1130     NumVectorRegs = EC.getKnownMinValue();
1131     EC = ElementCount::getFixed(1);
1132   }
1133 
1134   // Divide the input until we get to a supported size. This will
1135   // always end up with an EC that represent a scalar or a scalable
1136   // scalar.
1137   while (EC.getKnownMinValue() > 1 &&
1138          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1139     EC = EC.divideCoefficientBy(2);
1140     NumVectorRegs <<= 1;
1141   }
1142 
1143   NumIntermediates = NumVectorRegs;
1144 
1145   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1146   if (!TLI->isTypeLegal(NewVT))
1147     NewVT = EltTy;
1148   IntermediateVT = NewVT;
1149 
1150   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1151 
1152   // Convert sizes such as i33 to i64.
1153   if (!isPowerOf2_32(LaneSizeInBits))
1154     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1155 
1156   MVT DestVT = TLI->getRegisterType(NewVT);
1157   RegisterVT = DestVT;
1158   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1159     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1160 
1161   // Otherwise, promotion or legal types use the same number of registers as
1162   // the vector decimated to the appropriate level.
1163   return NumVectorRegs;
1164 }
1165 
1166 /// isLegalRC - Return true if the value types that can be represented by the
1167 /// specified register class are all legal.
1168 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1169                                    const TargetRegisterClass &RC) const {
1170   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1171     if (isTypeLegal(*I))
1172       return true;
1173   return false;
1174 }
1175 
1176 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1177 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1178 MachineBasicBlock *
1179 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1180                                    MachineBasicBlock *MBB) const {
1181   MachineInstr *MI = &InitialMI;
1182   MachineFunction &MF = *MI->getMF();
1183   MachineFrameInfo &MFI = MF.getFrameInfo();
1184 
1185   // We're handling multiple types of operands here:
1186   // PATCHPOINT MetaArgs - live-in, read only, direct
1187   // STATEPOINT Deopt Spill - live-through, read only, indirect
1188   // STATEPOINT Deopt Alloca - live-through, read only, direct
1189   // (We're currently conservative and mark the deopt slots read/write in
1190   // practice.)
1191   // STATEPOINT GC Spill - live-through, read/write, indirect
1192   // STATEPOINT GC Alloca - live-through, read/write, direct
1193   // The live-in vs live-through is handled already (the live through ones are
1194   // all stack slots), but we need to handle the different type of stackmap
1195   // operands and memory effects here.
1196 
1197   if (llvm::none_of(MI->operands(),
1198                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1199     return MBB;
1200 
1201   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1202 
1203   // Inherit previous memory operands.
1204   MIB.cloneMemRefs(*MI);
1205 
1206   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1207     MachineOperand &MO = MI->getOperand(i);
1208     if (!MO.isFI()) {
1209       // Index of Def operand this Use it tied to.
1210       // Since Defs are coming before Uses, if Use is tied, then
1211       // index of Def must be smaller that index of that Use.
1212       // Also, Defs preserve their position in new MI.
1213       unsigned TiedTo = i;
1214       if (MO.isReg() && MO.isTied())
1215         TiedTo = MI->findTiedOperandIdx(i);
1216       MIB.add(MO);
1217       if (TiedTo < i)
1218         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1219       continue;
1220     }
1221 
1222     // foldMemoryOperand builds a new MI after replacing a single FI operand
1223     // with the canonical set of five x86 addressing-mode operands.
1224     int FI = MO.getIndex();
1225 
1226     // Add frame index operands recognized by stackmaps.cpp
1227     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1228       // indirect-mem-ref tag, size, #FI, offset.
1229       // Used for spills inserted by StatepointLowering.  This codepath is not
1230       // used for patchpoints/stackmaps at all, for these spilling is done via
1231       // foldMemoryOperand callback only.
1232       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1233       MIB.addImm(StackMaps::IndirectMemRefOp);
1234       MIB.addImm(MFI.getObjectSize(FI));
1235       MIB.add(MO);
1236       MIB.addImm(0);
1237     } else {
1238       // direct-mem-ref tag, #FI, offset.
1239       // Used by patchpoint, and direct alloca arguments to statepoints
1240       MIB.addImm(StackMaps::DirectMemRefOp);
1241       MIB.add(MO);
1242       MIB.addImm(0);
1243     }
1244 
1245     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1246 
1247     // Add a new memory operand for this FI.
1248     assert(MFI.getObjectOffset(FI) != -1);
1249 
1250     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1251     // PATCHPOINT should be updated to do the same. (TODO)
1252     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1253       auto Flags = MachineMemOperand::MOLoad;
1254       MachineMemOperand *MMO = MF.getMachineMemOperand(
1255           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1256           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1257       MIB->addMemOperand(MF, MMO);
1258     }
1259   }
1260   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1261   MI->eraseFromParent();
1262   return MBB;
1263 }
1264 
1265 /// findRepresentativeClass - Return the largest legal super-reg register class
1266 /// of the register class for the specified type and its associated "cost".
1267 // This function is in TargetLowering because it uses RegClassForVT which would
1268 // need to be moved to TargetRegisterInfo and would necessitate moving
1269 // isTypeLegal over as well - a massive change that would just require
1270 // TargetLowering having a TargetRegisterInfo class member that it would use.
1271 std::pair<const TargetRegisterClass *, uint8_t>
1272 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1273                                             MVT VT) const {
1274   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1275   if (!RC)
1276     return std::make_pair(RC, 0);
1277 
1278   // Compute the set of all super-register classes.
1279   BitVector SuperRegRC(TRI->getNumRegClasses());
1280   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1281     SuperRegRC.setBitsInMask(RCI.getMask());
1282 
1283   // Find the first legal register class with the largest spill size.
1284   const TargetRegisterClass *BestRC = RC;
1285   for (unsigned i : SuperRegRC.set_bits()) {
1286     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1287     // We want the largest possible spill size.
1288     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1289       continue;
1290     if (!isLegalRC(*TRI, *SuperRC))
1291       continue;
1292     BestRC = SuperRC;
1293   }
1294   return std::make_pair(BestRC, 1);
1295 }
1296 
1297 /// computeRegisterProperties - Once all of the register classes are added,
1298 /// this allows us to compute derived properties we expose.
1299 void TargetLoweringBase::computeRegisterProperties(
1300     const TargetRegisterInfo *TRI) {
1301   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1302                 "Too many value types for ValueTypeActions to hold!");
1303 
1304   // Everything defaults to needing one register.
1305   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1306     NumRegistersForVT[i] = 1;
1307     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1308   }
1309   // ...except isVoid, which doesn't need any registers.
1310   NumRegistersForVT[MVT::isVoid] = 0;
1311 
1312   // Find the largest integer register class.
1313   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1314   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1315     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1316 
1317   // Every integer value type larger than this largest register takes twice as
1318   // many registers to represent as the previous ValueType.
1319   for (unsigned ExpandedReg = LargestIntReg + 1;
1320        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1321     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1322     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1323     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1324     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1325                                    TypeExpandInteger);
1326   }
1327 
1328   // Inspect all of the ValueType's smaller than the largest integer
1329   // register to see which ones need promotion.
1330   unsigned LegalIntReg = LargestIntReg;
1331   for (unsigned IntReg = LargestIntReg - 1;
1332        IntReg >= (unsigned)MVT::i1; --IntReg) {
1333     MVT IVT = (MVT::SimpleValueType)IntReg;
1334     if (isTypeLegal(IVT)) {
1335       LegalIntReg = IntReg;
1336     } else {
1337       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1338         (MVT::SimpleValueType)LegalIntReg;
1339       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1340     }
1341   }
1342 
1343   // ppcf128 type is really two f64's.
1344   if (!isTypeLegal(MVT::ppcf128)) {
1345     if (isTypeLegal(MVT::f64)) {
1346       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1347       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1348       TransformToType[MVT::ppcf128] = MVT::f64;
1349       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1350     } else {
1351       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1352       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1353       TransformToType[MVT::ppcf128] = MVT::i128;
1354       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1355     }
1356   }
1357 
1358   // Decide how to handle f128. If the target does not have native f128 support,
1359   // expand it to i128 and we will be generating soft float library calls.
1360   if (!isTypeLegal(MVT::f128)) {
1361     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1362     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1363     TransformToType[MVT::f128] = MVT::i128;
1364     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1365   }
1366 
1367   // Decide how to handle f64. If the target does not have native f64 support,
1368   // expand it to i64 and we will be generating soft float library calls.
1369   if (!isTypeLegal(MVT::f64)) {
1370     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1371     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1372     TransformToType[MVT::f64] = MVT::i64;
1373     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1374   }
1375 
1376   // Decide how to handle f32. If the target does not have native f32 support,
1377   // expand it to i32 and we will be generating soft float library calls.
1378   if (!isTypeLegal(MVT::f32)) {
1379     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1380     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1381     TransformToType[MVT::f32] = MVT::i32;
1382     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1383   }
1384 
1385   // Decide how to handle f16. If the target does not have native f16 support,
1386   // promote it to f32, because there are no f16 library calls (except for
1387   // conversions).
1388   if (!isTypeLegal(MVT::f16)) {
1389     // Allow targets to control how we legalize half.
1390     if (softPromoteHalfType()) {
1391       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1392       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1393       TransformToType[MVT::f16] = MVT::f32;
1394       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1395     } else {
1396       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1397       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1398       TransformToType[MVT::f16] = MVT::f32;
1399       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1400     }
1401   }
1402 
1403   // Loop over all of the vector value types to see which need transformations.
1404   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1405        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1406     MVT VT = (MVT::SimpleValueType) i;
1407     if (isTypeLegal(VT))
1408       continue;
1409 
1410     MVT EltVT = VT.getVectorElementType();
1411     ElementCount EC = VT.getVectorElementCount();
1412     bool IsLegalWiderType = false;
1413     bool IsScalable = VT.isScalableVector();
1414     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1415     switch (PreferredAction) {
1416     case TypePromoteInteger: {
1417       MVT::SimpleValueType EndVT = IsScalable ?
1418                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1419                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1420       // Try to promote the elements of integer vectors. If no legal
1421       // promotion was found, fall through to the widen-vector method.
1422       for (unsigned nVT = i + 1;
1423            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1424         MVT SVT = (MVT::SimpleValueType) nVT;
1425         // Promote vectors of integers to vectors with the same number
1426         // of elements, with a wider element type.
1427         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1428             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1429           TransformToType[i] = SVT;
1430           RegisterTypeForVT[i] = SVT;
1431           NumRegistersForVT[i] = 1;
1432           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1433           IsLegalWiderType = true;
1434           break;
1435         }
1436       }
1437       if (IsLegalWiderType)
1438         break;
1439       LLVM_FALLTHROUGH;
1440     }
1441 
1442     case TypeWidenVector:
1443       if (isPowerOf2_32(EC.getKnownMinValue())) {
1444         // Try to widen the vector.
1445         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1446           MVT SVT = (MVT::SimpleValueType) nVT;
1447           if (SVT.getVectorElementType() == EltVT &&
1448               SVT.isScalableVector() == IsScalable &&
1449               SVT.getVectorElementCount().getKnownMinValue() >
1450                   EC.getKnownMinValue() &&
1451               isTypeLegal(SVT)) {
1452             TransformToType[i] = SVT;
1453             RegisterTypeForVT[i] = SVT;
1454             NumRegistersForVT[i] = 1;
1455             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1456             IsLegalWiderType = true;
1457             break;
1458           }
1459         }
1460         if (IsLegalWiderType)
1461           break;
1462       } else {
1463         // Only widen to the next power of 2 to keep consistency with EVT.
1464         MVT NVT = VT.getPow2VectorType();
1465         if (isTypeLegal(NVT)) {
1466           TransformToType[i] = NVT;
1467           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1468           RegisterTypeForVT[i] = NVT;
1469           NumRegistersForVT[i] = 1;
1470           break;
1471         }
1472       }
1473       LLVM_FALLTHROUGH;
1474 
1475     case TypeSplitVector:
1476     case TypeScalarizeVector: {
1477       MVT IntermediateVT;
1478       MVT RegisterVT;
1479       unsigned NumIntermediates;
1480       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1481           NumIntermediates, RegisterVT, this);
1482       NumRegistersForVT[i] = NumRegisters;
1483       assert(NumRegistersForVT[i] == NumRegisters &&
1484              "NumRegistersForVT size cannot represent NumRegisters!");
1485       RegisterTypeForVT[i] = RegisterVT;
1486 
1487       MVT NVT = VT.getPow2VectorType();
1488       if (NVT == VT) {
1489         // Type is already a power of 2.  The default action is to split.
1490         TransformToType[i] = MVT::Other;
1491         if (PreferredAction == TypeScalarizeVector)
1492           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1493         else if (PreferredAction == TypeSplitVector)
1494           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1495         else if (EC.getKnownMinValue() > 1)
1496           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1497         else
1498           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1499                                                  ? TypeScalarizeScalableVector
1500                                                  : TypeScalarizeVector);
1501       } else {
1502         TransformToType[i] = NVT;
1503         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1504       }
1505       break;
1506     }
1507     default:
1508       llvm_unreachable("Unknown vector legalization action!");
1509     }
1510   }
1511 
1512   // Determine the 'representative' register class for each value type.
1513   // An representative register class is the largest (meaning one which is
1514   // not a sub-register class / subreg register class) legal register class for
1515   // a group of value types. For example, on i386, i8, i16, and i32
1516   // representative would be GR32; while on x86_64 it's GR64.
1517   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1518     const TargetRegisterClass* RRC;
1519     uint8_t Cost;
1520     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1521     RepRegClassForVT[i] = RRC;
1522     RepRegClassCostForVT[i] = Cost;
1523   }
1524 }
1525 
1526 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1527                                            EVT VT) const {
1528   assert(!VT.isVector() && "No default SetCC type for vectors!");
1529   return getPointerTy(DL).SimpleTy;
1530 }
1531 
1532 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1533   return MVT::i32; // return the default value
1534 }
1535 
1536 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1537 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1538 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1539 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1540 ///
1541 /// This method returns the number of registers needed, and the VT for each
1542 /// register.  It also returns the VT and quantity of the intermediate values
1543 /// before they are promoted/expanded.
1544 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1545                                                     EVT VT, EVT &IntermediateVT,
1546                                                     unsigned &NumIntermediates,
1547                                                     MVT &RegisterVT) const {
1548   ElementCount EltCnt = VT.getVectorElementCount();
1549 
1550   // If there is a wider vector type with the same element type as this one,
1551   // or a promoted vector type that has the same number of elements which
1552   // are wider, then we should convert to that legal vector type.
1553   // This handles things like <2 x float> -> <4 x float> and
1554   // <4 x i1> -> <4 x i32>.
1555   LegalizeTypeAction TA = getTypeAction(Context, VT);
1556   if (!EltCnt.isScalar() &&
1557       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1558     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1559     if (isTypeLegal(RegisterEVT)) {
1560       IntermediateVT = RegisterEVT;
1561       RegisterVT = RegisterEVT.getSimpleVT();
1562       NumIntermediates = 1;
1563       return 1;
1564     }
1565   }
1566 
1567   // Figure out the right, legal destination reg to copy into.
1568   EVT EltTy = VT.getVectorElementType();
1569 
1570   unsigned NumVectorRegs = 1;
1571 
1572   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1573   // types like done elsewhere in SelectionDAG.
1574   if (EltCnt.isScalable()) {
1575     LegalizeKind LK;
1576     EVT PartVT = VT;
1577     do {
1578       // Iterate until we've found a legal (part) type to hold VT.
1579       LK = getTypeConversion(Context, PartVT);
1580       PartVT = LK.second;
1581     } while (LK.first != TypeLegal);
1582 
1583     if (!PartVT.isVector()) {
1584       report_fatal_error(
1585           "Don't know how to legalize this scalable vector type");
1586     }
1587 
1588     NumIntermediates =
1589         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1590                    PartVT.getVectorElementCount().getKnownMinValue());
1591     IntermediateVT = PartVT;
1592     RegisterVT = getRegisterType(Context, IntermediateVT);
1593     return NumIntermediates;
1594   }
1595 
1596   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1597   // we could break down into LHS/RHS like LegalizeDAG does.
1598   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1599     NumVectorRegs = EltCnt.getKnownMinValue();
1600     EltCnt = ElementCount::getFixed(1);
1601   }
1602 
1603   // Divide the input until we get to a supported size.  This will always
1604   // end with a scalar if the target doesn't support vectors.
1605   while (EltCnt.getKnownMinValue() > 1 &&
1606          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1607     EltCnt = EltCnt.divideCoefficientBy(2);
1608     NumVectorRegs <<= 1;
1609   }
1610 
1611   NumIntermediates = NumVectorRegs;
1612 
1613   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1614   if (!isTypeLegal(NewVT))
1615     NewVT = EltTy;
1616   IntermediateVT = NewVT;
1617 
1618   MVT DestVT = getRegisterType(Context, NewVT);
1619   RegisterVT = DestVT;
1620 
1621   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1622     TypeSize NewVTSize = NewVT.getSizeInBits();
1623     // Convert sizes such as i33 to i64.
1624     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1625       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1626     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1627   }
1628 
1629   // Otherwise, promotion or legal types use the same number of registers as
1630   // the vector decimated to the appropriate level.
1631   return NumVectorRegs;
1632 }
1633 
1634 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1635                                                 uint64_t NumCases,
1636                                                 uint64_t Range,
1637                                                 ProfileSummaryInfo *PSI,
1638                                                 BlockFrequencyInfo *BFI) const {
1639   // FIXME: This function check the maximum table size and density, but the
1640   // minimum size is not checked. It would be nice if the minimum size is
1641   // also combined within this function. Currently, the minimum size check is
1642   // performed in findJumpTable() in SelectionDAGBuiler and
1643   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1644   const bool OptForSize =
1645       SI->getParent()->getParent()->hasOptSize() ||
1646       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1647   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1648   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1649 
1650   // Check whether the number of cases is small enough and
1651   // the range is dense enough for a jump table.
1652   return (OptForSize || Range <= MaxJumpTableSize) &&
1653          (NumCases * 100 >= Range * MinDensity);
1654 }
1655 
1656 /// Get the EVTs and ArgFlags collections that represent the legalized return
1657 /// type of the given function.  This does not require a DAG or a return value,
1658 /// and is suitable for use before any DAGs for the function are constructed.
1659 /// TODO: Move this out of TargetLowering.cpp.
1660 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1661                          AttributeList attr,
1662                          SmallVectorImpl<ISD::OutputArg> &Outs,
1663                          const TargetLowering &TLI, const DataLayout &DL) {
1664   SmallVector<EVT, 4> ValueVTs;
1665   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1666   unsigned NumValues = ValueVTs.size();
1667   if (NumValues == 0) return;
1668 
1669   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1670     EVT VT = ValueVTs[j];
1671     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1672 
1673     if (attr.hasRetAttr(Attribute::SExt))
1674       ExtendKind = ISD::SIGN_EXTEND;
1675     else if (attr.hasRetAttr(Attribute::ZExt))
1676       ExtendKind = ISD::ZERO_EXTEND;
1677 
1678     // FIXME: C calling convention requires the return type to be promoted to
1679     // at least 32-bit. But this is not necessary for non-C calling
1680     // conventions. The frontend should mark functions whose return values
1681     // require promoting with signext or zeroext attributes.
1682     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1683       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1684       if (VT.bitsLT(MinVT))
1685         VT = MinVT;
1686     }
1687 
1688     unsigned NumParts =
1689         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1690     MVT PartVT =
1691         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1692 
1693     // 'inreg' on function refers to return value
1694     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1695     if (attr.hasRetAttr(Attribute::InReg))
1696       Flags.setInReg();
1697 
1698     // Propagate extension type if any
1699     if (attr.hasRetAttr(Attribute::SExt))
1700       Flags.setSExt();
1701     else if (attr.hasRetAttr(Attribute::ZExt))
1702       Flags.setZExt();
1703 
1704     for (unsigned i = 0; i < NumParts; ++i)
1705       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1706   }
1707 }
1708 
1709 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1710 /// function arguments in the caller parameter area.  This is the actual
1711 /// alignment, not its logarithm.
1712 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1713                                                    const DataLayout &DL) const {
1714   return DL.getABITypeAlign(Ty).value();
1715 }
1716 
1717 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1718     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1719     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1720   // Check if the specified alignment is sufficient based on the data layout.
1721   // TODO: While using the data layout works in practice, a better solution
1722   // would be to implement this check directly (make this a virtual function).
1723   // For example, the ABI alignment may change based on software platform while
1724   // this function should only be affected by hardware implementation.
1725   Type *Ty = VT.getTypeForEVT(Context);
1726   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1727     // Assume that an access that meets the ABI-specified alignment is fast.
1728     if (Fast != nullptr)
1729       *Fast = true;
1730     return true;
1731   }
1732 
1733   // This is a misaligned access.
1734   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1735 }
1736 
1737 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1738     LLVMContext &Context, const DataLayout &DL, EVT VT,
1739     const MachineMemOperand &MMO, bool *Fast) const {
1740   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1741                                         MMO.getAlign(), MMO.getFlags(), Fast);
1742 }
1743 
1744 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1745                                             const DataLayout &DL, EVT VT,
1746                                             unsigned AddrSpace, Align Alignment,
1747                                             MachineMemOperand::Flags Flags,
1748                                             bool *Fast) const {
1749   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1750                                         Flags, Fast);
1751 }
1752 
1753 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1754                                             const DataLayout &DL, EVT VT,
1755                                             const MachineMemOperand &MMO,
1756                                             bool *Fast) const {
1757   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1758                             MMO.getFlags(), Fast);
1759 }
1760 
1761 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1762                                             const DataLayout &DL, LLT Ty,
1763                                             const MachineMemOperand &MMO,
1764                                             bool *Fast) const {
1765   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1766   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1767                             MMO.getFlags(), Fast);
1768 }
1769 
1770 //===----------------------------------------------------------------------===//
1771 //  TargetTransformInfo Helpers
1772 //===----------------------------------------------------------------------===//
1773 
1774 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1775   enum InstructionOpcodes {
1776 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1777 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1778 #include "llvm/IR/Instruction.def"
1779   };
1780   switch (static_cast<InstructionOpcodes>(Opcode)) {
1781   case Ret:            return 0;
1782   case Br:             return 0;
1783   case Switch:         return 0;
1784   case IndirectBr:     return 0;
1785   case Invoke:         return 0;
1786   case CallBr:         return 0;
1787   case Resume:         return 0;
1788   case Unreachable:    return 0;
1789   case CleanupRet:     return 0;
1790   case CatchRet:       return 0;
1791   case CatchPad:       return 0;
1792   case CatchSwitch:    return 0;
1793   case CleanupPad:     return 0;
1794   case FNeg:           return ISD::FNEG;
1795   case Add:            return ISD::ADD;
1796   case FAdd:           return ISD::FADD;
1797   case Sub:            return ISD::SUB;
1798   case FSub:           return ISD::FSUB;
1799   case Mul:            return ISD::MUL;
1800   case FMul:           return ISD::FMUL;
1801   case UDiv:           return ISD::UDIV;
1802   case SDiv:           return ISD::SDIV;
1803   case FDiv:           return ISD::FDIV;
1804   case URem:           return ISD::UREM;
1805   case SRem:           return ISD::SREM;
1806   case FRem:           return ISD::FREM;
1807   case Shl:            return ISD::SHL;
1808   case LShr:           return ISD::SRL;
1809   case AShr:           return ISD::SRA;
1810   case And:            return ISD::AND;
1811   case Or:             return ISD::OR;
1812   case Xor:            return ISD::XOR;
1813   case Alloca:         return 0;
1814   case Load:           return ISD::LOAD;
1815   case Store:          return ISD::STORE;
1816   case GetElementPtr:  return 0;
1817   case Fence:          return 0;
1818   case AtomicCmpXchg:  return 0;
1819   case AtomicRMW:      return 0;
1820   case Trunc:          return ISD::TRUNCATE;
1821   case ZExt:           return ISD::ZERO_EXTEND;
1822   case SExt:           return ISD::SIGN_EXTEND;
1823   case FPToUI:         return ISD::FP_TO_UINT;
1824   case FPToSI:         return ISD::FP_TO_SINT;
1825   case UIToFP:         return ISD::UINT_TO_FP;
1826   case SIToFP:         return ISD::SINT_TO_FP;
1827   case FPTrunc:        return ISD::FP_ROUND;
1828   case FPExt:          return ISD::FP_EXTEND;
1829   case PtrToInt:       return ISD::BITCAST;
1830   case IntToPtr:       return ISD::BITCAST;
1831   case BitCast:        return ISD::BITCAST;
1832   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1833   case ICmp:           return ISD::SETCC;
1834   case FCmp:           return ISD::SETCC;
1835   case PHI:            return 0;
1836   case Call:           return 0;
1837   case Select:         return ISD::SELECT;
1838   case UserOp1:        return 0;
1839   case UserOp2:        return 0;
1840   case VAArg:          return 0;
1841   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1842   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1843   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1844   case ExtractValue:   return ISD::MERGE_VALUES;
1845   case InsertValue:    return ISD::MERGE_VALUES;
1846   case LandingPad:     return 0;
1847   case Freeze:         return ISD::FREEZE;
1848   }
1849 
1850   llvm_unreachable("Unknown instruction type encountered!");
1851 }
1852 
1853 std::pair<InstructionCost, MVT>
1854 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1855                                             Type *Ty) const {
1856   LLVMContext &C = Ty->getContext();
1857   EVT MTy = getValueType(DL, Ty);
1858 
1859   InstructionCost Cost = 1;
1860   // We keep legalizing the type until we find a legal kind. We assume that
1861   // the only operation that costs anything is the split. After splitting
1862   // we need to handle two types.
1863   while (true) {
1864     LegalizeKind LK = getTypeConversion(C, MTy);
1865 
1866     if (LK.first == TypeScalarizeScalableVector) {
1867       // Ensure we return a sensible simple VT here, since many callers of this
1868       // function require it.
1869       MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
1870       return std::make_pair(InstructionCost::getInvalid(), VT);
1871     }
1872 
1873     if (LK.first == TypeLegal)
1874       return std::make_pair(Cost, MTy.getSimpleVT());
1875 
1876     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1877       Cost *= 2;
1878 
1879     // Do not loop with f128 type.
1880     if (MTy == LK.second)
1881       return std::make_pair(Cost, MTy.getSimpleVT());
1882 
1883     // Keep legalizing the type.
1884     MTy = LK.second;
1885   }
1886 }
1887 
1888 Value *
1889 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1890                                                        bool UseTLS) const {
1891   // compiler-rt provides a variable with a magic name.  Targets that do not
1892   // link with compiler-rt may also provide such a variable.
1893   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1894   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1895   auto UnsafeStackPtr =
1896       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1897 
1898   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1899 
1900   if (!UnsafeStackPtr) {
1901     auto TLSModel = UseTLS ?
1902         GlobalValue::InitialExecTLSModel :
1903         GlobalValue::NotThreadLocal;
1904     // The global variable is not defined yet, define it ourselves.
1905     // We use the initial-exec TLS model because we do not support the
1906     // variable living anywhere other than in the main executable.
1907     UnsafeStackPtr = new GlobalVariable(
1908         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1909         UnsafeStackPtrVar, nullptr, TLSModel);
1910   } else {
1911     // The variable exists, check its type and attributes.
1912     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1913       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1914     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1915       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1916                          (UseTLS ? "" : "not ") + "be thread-local");
1917   }
1918   return UnsafeStackPtr;
1919 }
1920 
1921 Value *
1922 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1923   if (!TM.getTargetTriple().isAndroid())
1924     return getDefaultSafeStackPointerLocation(IRB, true);
1925 
1926   // Android provides a libc function to retrieve the address of the current
1927   // thread's unsafe stack pointer.
1928   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1929   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1930   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1931                                              StackPtrTy->getPointerTo(0));
1932   return IRB.CreateCall(Fn);
1933 }
1934 
1935 //===----------------------------------------------------------------------===//
1936 //  Loop Strength Reduction hooks
1937 //===----------------------------------------------------------------------===//
1938 
1939 /// isLegalAddressingMode - Return true if the addressing mode represented
1940 /// by AM is legal for this target, for a load/store of the specified type.
1941 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1942                                                const AddrMode &AM, Type *Ty,
1943                                                unsigned AS, Instruction *I) const {
1944   // The default implementation of this implements a conservative RISCy, r+r and
1945   // r+i addr mode.
1946 
1947   // Allows a sign-extended 16-bit immediate field.
1948   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1949     return false;
1950 
1951   // No global is ever allowed as a base.
1952   if (AM.BaseGV)
1953     return false;
1954 
1955   // Only support r+r,
1956   switch (AM.Scale) {
1957   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1958     break;
1959   case 1:
1960     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1961       return false;
1962     // Otherwise we have r+r or r+i.
1963     break;
1964   case 2:
1965     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1966       return false;
1967     // Allow 2*r as r+r.
1968     break;
1969   default: // Don't allow n * r
1970     return false;
1971   }
1972 
1973   return true;
1974 }
1975 
1976 //===----------------------------------------------------------------------===//
1977 //  Stack Protector
1978 //===----------------------------------------------------------------------===//
1979 
1980 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1981 // so that SelectionDAG handle SSP.
1982 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1983   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1984     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1985     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1986     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1987     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1988       G->setVisibility(GlobalValue::HiddenVisibility);
1989     return C;
1990   }
1991   return nullptr;
1992 }
1993 
1994 // Currently only support "standard" __stack_chk_guard.
1995 // TODO: add LOAD_STACK_GUARD support.
1996 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1997   if (!M.getNamedValue("__stack_chk_guard")) {
1998     auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1999                                   GlobalVariable::ExternalLinkage, nullptr,
2000                                   "__stack_chk_guard");
2001 
2002     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2003     if (TM.getRelocationModel() == Reloc::Static &&
2004         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2005         !TM.getTargetTriple().isOSFreeBSD())
2006       GV->setDSOLocal(true);
2007   }
2008 }
2009 
2010 // Currently only support "standard" __stack_chk_guard.
2011 // TODO: add LOAD_STACK_GUARD support.
2012 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2013   return M.getNamedValue("__stack_chk_guard");
2014 }
2015 
2016 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2017   return nullptr;
2018 }
2019 
2020 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2021   return MinimumJumpTableEntries;
2022 }
2023 
2024 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2025   MinimumJumpTableEntries = Val;
2026 }
2027 
2028 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2029   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2030 }
2031 
2032 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2033   return MaximumJumpTableSize;
2034 }
2035 
2036 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2037   MaximumJumpTableSize = Val;
2038 }
2039 
2040 bool TargetLoweringBase::isJumpTableRelative() const {
2041   return getTargetMachine().isPositionIndependent();
2042 }
2043 
2044 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2045   if (TM.Options.LoopAlignment)
2046     return Align(TM.Options.LoopAlignment);
2047   return PrefLoopAlignment;
2048 }
2049 
2050 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2051     MachineBasicBlock *MBB) const {
2052   return MaxBytesForAlignment;
2053 }
2054 
2055 //===----------------------------------------------------------------------===//
2056 //  Reciprocal Estimates
2057 //===----------------------------------------------------------------------===//
2058 
2059 /// Get the reciprocal estimate attribute string for a function that will
2060 /// override the target defaults.
2061 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2062   const Function &F = MF.getFunction();
2063   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2064 }
2065 
2066 /// Construct a string for the given reciprocal operation of the given type.
2067 /// This string should match the corresponding option to the front-end's
2068 /// "-mrecip" flag assuming those strings have been passed through in an
2069 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2070 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2071   std::string Name = VT.isVector() ? "vec-" : "";
2072 
2073   Name += IsSqrt ? "sqrt" : "div";
2074 
2075   // TODO: Handle "half" or other float types?
2076   if (VT.getScalarType() == MVT::f64) {
2077     Name += "d";
2078   } else {
2079     assert(VT.getScalarType() == MVT::f32 &&
2080            "Unexpected FP type for reciprocal estimate");
2081     Name += "f";
2082   }
2083 
2084   return Name;
2085 }
2086 
2087 /// Return the character position and value (a single numeric character) of a
2088 /// customized refinement operation in the input string if it exists. Return
2089 /// false if there is no customized refinement step count.
2090 static bool parseRefinementStep(StringRef In, size_t &Position,
2091                                 uint8_t &Value) {
2092   const char RefStepToken = ':';
2093   Position = In.find(RefStepToken);
2094   if (Position == StringRef::npos)
2095     return false;
2096 
2097   StringRef RefStepString = In.substr(Position + 1);
2098   // Allow exactly one numeric character for the additional refinement
2099   // step parameter.
2100   if (RefStepString.size() == 1) {
2101     char RefStepChar = RefStepString[0];
2102     if (isDigit(RefStepChar)) {
2103       Value = RefStepChar - '0';
2104       return true;
2105     }
2106   }
2107   report_fatal_error("Invalid refinement step for -recip.");
2108 }
2109 
2110 /// For the input attribute string, return one of the ReciprocalEstimate enum
2111 /// status values (enabled, disabled, or not specified) for this operation on
2112 /// the specified data type.
2113 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2114   if (Override.empty())
2115     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2116 
2117   SmallVector<StringRef, 4> OverrideVector;
2118   Override.split(OverrideVector, ',');
2119   unsigned NumArgs = OverrideVector.size();
2120 
2121   // Check if "all", "none", or "default" was specified.
2122   if (NumArgs == 1) {
2123     // Look for an optional setting of the number of refinement steps needed
2124     // for this type of reciprocal operation.
2125     size_t RefPos;
2126     uint8_t RefSteps;
2127     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2128       // Split the string for further processing.
2129       Override = Override.substr(0, RefPos);
2130     }
2131 
2132     // All reciprocal types are enabled.
2133     if (Override == "all")
2134       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2135 
2136     // All reciprocal types are disabled.
2137     if (Override == "none")
2138       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2139 
2140     // Target defaults for enablement are used.
2141     if (Override == "default")
2142       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2143   }
2144 
2145   // The attribute string may omit the size suffix ('f'/'d').
2146   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2147   std::string VTNameNoSize = VTName;
2148   VTNameNoSize.pop_back();
2149   static const char DisabledPrefix = '!';
2150 
2151   for (StringRef RecipType : OverrideVector) {
2152     size_t RefPos;
2153     uint8_t RefSteps;
2154     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2155       RecipType = RecipType.substr(0, RefPos);
2156 
2157     // Ignore the disablement token for string matching.
2158     bool IsDisabled = RecipType[0] == DisabledPrefix;
2159     if (IsDisabled)
2160       RecipType = RecipType.substr(1);
2161 
2162     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2163       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2164                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2165   }
2166 
2167   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2168 }
2169 
2170 /// For the input attribute string, return the customized refinement step count
2171 /// for this operation on the specified data type. If the step count does not
2172 /// exist, return the ReciprocalEstimate enum value for unspecified.
2173 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2174   if (Override.empty())
2175     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2176 
2177   SmallVector<StringRef, 4> OverrideVector;
2178   Override.split(OverrideVector, ',');
2179   unsigned NumArgs = OverrideVector.size();
2180 
2181   // Check if "all", "default", or "none" was specified.
2182   if (NumArgs == 1) {
2183     // Look for an optional setting of the number of refinement steps needed
2184     // for this type of reciprocal operation.
2185     size_t RefPos;
2186     uint8_t RefSteps;
2187     if (!parseRefinementStep(Override, RefPos, RefSteps))
2188       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2189 
2190     // Split the string for further processing.
2191     Override = Override.substr(0, RefPos);
2192     assert(Override != "none" &&
2193            "Disabled reciprocals, but specifed refinement steps?");
2194 
2195     // If this is a general override, return the specified number of steps.
2196     if (Override == "all" || Override == "default")
2197       return RefSteps;
2198   }
2199 
2200   // The attribute string may omit the size suffix ('f'/'d').
2201   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2202   std::string VTNameNoSize = VTName;
2203   VTNameNoSize.pop_back();
2204 
2205   for (StringRef RecipType : OverrideVector) {
2206     size_t RefPos;
2207     uint8_t RefSteps;
2208     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2209       continue;
2210 
2211     RecipType = RecipType.substr(0, RefPos);
2212     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2213       return RefSteps;
2214   }
2215 
2216   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2217 }
2218 
2219 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2220                                                     MachineFunction &MF) const {
2221   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2222 }
2223 
2224 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2225                                                    MachineFunction &MF) const {
2226   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2227 }
2228 
2229 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2230                                                MachineFunction &MF) const {
2231   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2232 }
2233 
2234 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2235                                               MachineFunction &MF) const {
2236   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2237 }
2238 
2239 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2240   MF.getRegInfo().freezeReservedRegs(MF);
2241 }
2242 
2243 MachineMemOperand::Flags
2244 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2245                                            const DataLayout &DL) const {
2246   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2247   if (LI.isVolatile())
2248     Flags |= MachineMemOperand::MOVolatile;
2249 
2250   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2251     Flags |= MachineMemOperand::MONonTemporal;
2252 
2253   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2254     Flags |= MachineMemOperand::MOInvariant;
2255 
2256   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2257     Flags |= MachineMemOperand::MODereferenceable;
2258 
2259   Flags |= getTargetMMOFlags(LI);
2260   return Flags;
2261 }
2262 
2263 MachineMemOperand::Flags
2264 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2265                                             const DataLayout &DL) const {
2266   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2267 
2268   if (SI.isVolatile())
2269     Flags |= MachineMemOperand::MOVolatile;
2270 
2271   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2272     Flags |= MachineMemOperand::MONonTemporal;
2273 
2274   // FIXME: Not preserving dereferenceable
2275   Flags |= getTargetMMOFlags(SI);
2276   return Flags;
2277 }
2278 
2279 MachineMemOperand::Flags
2280 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2281                                              const DataLayout &DL) const {
2282   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2283 
2284   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2285     if (RMW->isVolatile())
2286       Flags |= MachineMemOperand::MOVolatile;
2287   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2288     if (CmpX->isVolatile())
2289       Flags |= MachineMemOperand::MOVolatile;
2290   } else
2291     llvm_unreachable("not an atomic instruction");
2292 
2293   // FIXME: Not preserving dereferenceable
2294   Flags |= getTargetMMOFlags(AI);
2295   return Flags;
2296 }
2297 
2298 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2299                                                   Instruction *Inst,
2300                                                   AtomicOrdering Ord) const {
2301   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2302     return Builder.CreateFence(Ord);
2303   else
2304     return nullptr;
2305 }
2306 
2307 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2308                                                    Instruction *Inst,
2309                                                    AtomicOrdering Ord) const {
2310   if (isAcquireOrStronger(Ord))
2311     return Builder.CreateFence(Ord);
2312   else
2313     return nullptr;
2314 }
2315 
2316 //===----------------------------------------------------------------------===//
2317 //  GlobalISel Hooks
2318 //===----------------------------------------------------------------------===//
2319 
2320 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2321                                         const TargetTransformInfo *TTI) const {
2322   auto &MF = *MI.getMF();
2323   auto &MRI = MF.getRegInfo();
2324   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2325   // this helper function computes the maximum number of uses we should consider
2326   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2327   // break even in terms of code size when the original MI has 2 users vs
2328   // choosing to potentially spill. Any more than 2 users we we have a net code
2329   // size increase. This doesn't take into account register pressure though.
2330   auto maxUses = [](unsigned RematCost) {
2331     // A cost of 1 means remats are basically free.
2332     if (RematCost == 1)
2333       return UINT_MAX;
2334     if (RematCost == 2)
2335       return 2U;
2336 
2337     // Remat is too expensive, only sink if there's one user.
2338     if (RematCost > 2)
2339       return 1U;
2340     llvm_unreachable("Unexpected remat cost");
2341   };
2342 
2343   // Helper to walk through uses and terminate if we've reached a limit. Saves
2344   // us spending time traversing uses if all we want to know is if it's >= min.
2345   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2346     unsigned NumUses = 0;
2347     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2348     for (; UI != UE && NumUses < MaxUses; ++UI) {
2349       NumUses++;
2350     }
2351     // If we haven't reached the end yet then there are more than MaxUses users.
2352     return UI == UE;
2353   };
2354 
2355   switch (MI.getOpcode()) {
2356   default:
2357     return false;
2358   // Constants-like instructions should be close to their users.
2359   // We don't want long live-ranges for them.
2360   case TargetOpcode::G_CONSTANT:
2361   case TargetOpcode::G_FCONSTANT:
2362   case TargetOpcode::G_FRAME_INDEX:
2363   case TargetOpcode::G_INTTOPTR:
2364     return true;
2365   case TargetOpcode::G_GLOBAL_VALUE: {
2366     unsigned RematCost = TTI->getGISelRematGlobalCost();
2367     Register Reg = MI.getOperand(0).getReg();
2368     unsigned MaxUses = maxUses(RematCost);
2369     if (MaxUses == UINT_MAX)
2370       return true; // Remats are "free" so always localize.
2371     bool B = isUsesAtMost(Reg, MaxUses);
2372     return B;
2373   }
2374   }
2375 }
2376