1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLoweringBase class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/MC/MCAsmInfo.h" 26 #include "llvm/MC/MCExpr.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Target/TargetLoweringObjectFile.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 using namespace llvm; 35 36 /// InitLibcallNames - Set default libcall names. 37 /// 38 static void InitLibcallNames(const char **Names, const TargetMachine &TM) { 39 Names[RTLIB::SHL_I16] = "__ashlhi3"; 40 Names[RTLIB::SHL_I32] = "__ashlsi3"; 41 Names[RTLIB::SHL_I64] = "__ashldi3"; 42 Names[RTLIB::SHL_I128] = "__ashlti3"; 43 Names[RTLIB::SRL_I16] = "__lshrhi3"; 44 Names[RTLIB::SRL_I32] = "__lshrsi3"; 45 Names[RTLIB::SRL_I64] = "__lshrdi3"; 46 Names[RTLIB::SRL_I128] = "__lshrti3"; 47 Names[RTLIB::SRA_I16] = "__ashrhi3"; 48 Names[RTLIB::SRA_I32] = "__ashrsi3"; 49 Names[RTLIB::SRA_I64] = "__ashrdi3"; 50 Names[RTLIB::SRA_I128] = "__ashrti3"; 51 Names[RTLIB::MUL_I8] = "__mulqi3"; 52 Names[RTLIB::MUL_I16] = "__mulhi3"; 53 Names[RTLIB::MUL_I32] = "__mulsi3"; 54 Names[RTLIB::MUL_I64] = "__muldi3"; 55 Names[RTLIB::MUL_I128] = "__multi3"; 56 Names[RTLIB::MULO_I32] = "__mulosi4"; 57 Names[RTLIB::MULO_I64] = "__mulodi4"; 58 Names[RTLIB::MULO_I128] = "__muloti4"; 59 Names[RTLIB::SDIV_I8] = "__divqi3"; 60 Names[RTLIB::SDIV_I16] = "__divhi3"; 61 Names[RTLIB::SDIV_I32] = "__divsi3"; 62 Names[RTLIB::SDIV_I64] = "__divdi3"; 63 Names[RTLIB::SDIV_I128] = "__divti3"; 64 Names[RTLIB::UDIV_I8] = "__udivqi3"; 65 Names[RTLIB::UDIV_I16] = "__udivhi3"; 66 Names[RTLIB::UDIV_I32] = "__udivsi3"; 67 Names[RTLIB::UDIV_I64] = "__udivdi3"; 68 Names[RTLIB::UDIV_I128] = "__udivti3"; 69 Names[RTLIB::SREM_I8] = "__modqi3"; 70 Names[RTLIB::SREM_I16] = "__modhi3"; 71 Names[RTLIB::SREM_I32] = "__modsi3"; 72 Names[RTLIB::SREM_I64] = "__moddi3"; 73 Names[RTLIB::SREM_I128] = "__modti3"; 74 Names[RTLIB::UREM_I8] = "__umodqi3"; 75 Names[RTLIB::UREM_I16] = "__umodhi3"; 76 Names[RTLIB::UREM_I32] = "__umodsi3"; 77 Names[RTLIB::UREM_I64] = "__umoddi3"; 78 Names[RTLIB::UREM_I128] = "__umodti3"; 79 80 // These are generally not available. 81 Names[RTLIB::SDIVREM_I8] = 0; 82 Names[RTLIB::SDIVREM_I16] = 0; 83 Names[RTLIB::SDIVREM_I32] = 0; 84 Names[RTLIB::SDIVREM_I64] = 0; 85 Names[RTLIB::SDIVREM_I128] = 0; 86 Names[RTLIB::UDIVREM_I8] = 0; 87 Names[RTLIB::UDIVREM_I16] = 0; 88 Names[RTLIB::UDIVREM_I32] = 0; 89 Names[RTLIB::UDIVREM_I64] = 0; 90 Names[RTLIB::UDIVREM_I128] = 0; 91 92 Names[RTLIB::NEG_I32] = "__negsi2"; 93 Names[RTLIB::NEG_I64] = "__negdi2"; 94 Names[RTLIB::ADD_F32] = "__addsf3"; 95 Names[RTLIB::ADD_F64] = "__adddf3"; 96 Names[RTLIB::ADD_F80] = "__addxf3"; 97 Names[RTLIB::ADD_F128] = "__addtf3"; 98 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; 99 Names[RTLIB::SUB_F32] = "__subsf3"; 100 Names[RTLIB::SUB_F64] = "__subdf3"; 101 Names[RTLIB::SUB_F80] = "__subxf3"; 102 Names[RTLIB::SUB_F128] = "__subtf3"; 103 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; 104 Names[RTLIB::MUL_F32] = "__mulsf3"; 105 Names[RTLIB::MUL_F64] = "__muldf3"; 106 Names[RTLIB::MUL_F80] = "__mulxf3"; 107 Names[RTLIB::MUL_F128] = "__multf3"; 108 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; 109 Names[RTLIB::DIV_F32] = "__divsf3"; 110 Names[RTLIB::DIV_F64] = "__divdf3"; 111 Names[RTLIB::DIV_F80] = "__divxf3"; 112 Names[RTLIB::DIV_F128] = "__divtf3"; 113 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; 114 Names[RTLIB::REM_F32] = "fmodf"; 115 Names[RTLIB::REM_F64] = "fmod"; 116 Names[RTLIB::REM_F80] = "fmodl"; 117 Names[RTLIB::REM_F128] = "fmodl"; 118 Names[RTLIB::REM_PPCF128] = "fmodl"; 119 Names[RTLIB::FMA_F32] = "fmaf"; 120 Names[RTLIB::FMA_F64] = "fma"; 121 Names[RTLIB::FMA_F80] = "fmal"; 122 Names[RTLIB::FMA_F128] = "fmal"; 123 Names[RTLIB::FMA_PPCF128] = "fmal"; 124 Names[RTLIB::POWI_F32] = "__powisf2"; 125 Names[RTLIB::POWI_F64] = "__powidf2"; 126 Names[RTLIB::POWI_F80] = "__powixf2"; 127 Names[RTLIB::POWI_F128] = "__powitf2"; 128 Names[RTLIB::POWI_PPCF128] = "__powitf2"; 129 Names[RTLIB::SQRT_F32] = "sqrtf"; 130 Names[RTLIB::SQRT_F64] = "sqrt"; 131 Names[RTLIB::SQRT_F80] = "sqrtl"; 132 Names[RTLIB::SQRT_F128] = "sqrtl"; 133 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; 134 Names[RTLIB::LOG_F32] = "logf"; 135 Names[RTLIB::LOG_F64] = "log"; 136 Names[RTLIB::LOG_F80] = "logl"; 137 Names[RTLIB::LOG_F128] = "logl"; 138 Names[RTLIB::LOG_PPCF128] = "logl"; 139 Names[RTLIB::LOG2_F32] = "log2f"; 140 Names[RTLIB::LOG2_F64] = "log2"; 141 Names[RTLIB::LOG2_F80] = "log2l"; 142 Names[RTLIB::LOG2_F128] = "log2l"; 143 Names[RTLIB::LOG2_PPCF128] = "log2l"; 144 Names[RTLIB::LOG10_F32] = "log10f"; 145 Names[RTLIB::LOG10_F64] = "log10"; 146 Names[RTLIB::LOG10_F80] = "log10l"; 147 Names[RTLIB::LOG10_F128] = "log10l"; 148 Names[RTLIB::LOG10_PPCF128] = "log10l"; 149 Names[RTLIB::EXP_F32] = "expf"; 150 Names[RTLIB::EXP_F64] = "exp"; 151 Names[RTLIB::EXP_F80] = "expl"; 152 Names[RTLIB::EXP_F128] = "expl"; 153 Names[RTLIB::EXP_PPCF128] = "expl"; 154 Names[RTLIB::EXP2_F32] = "exp2f"; 155 Names[RTLIB::EXP2_F64] = "exp2"; 156 Names[RTLIB::EXP2_F80] = "exp2l"; 157 Names[RTLIB::EXP2_F128] = "exp2l"; 158 Names[RTLIB::EXP2_PPCF128] = "exp2l"; 159 Names[RTLIB::SIN_F32] = "sinf"; 160 Names[RTLIB::SIN_F64] = "sin"; 161 Names[RTLIB::SIN_F80] = "sinl"; 162 Names[RTLIB::SIN_F128] = "sinl"; 163 Names[RTLIB::SIN_PPCF128] = "sinl"; 164 Names[RTLIB::COS_F32] = "cosf"; 165 Names[RTLIB::COS_F64] = "cos"; 166 Names[RTLIB::COS_F80] = "cosl"; 167 Names[RTLIB::COS_F128] = "cosl"; 168 Names[RTLIB::COS_PPCF128] = "cosl"; 169 Names[RTLIB::POW_F32] = "powf"; 170 Names[RTLIB::POW_F64] = "pow"; 171 Names[RTLIB::POW_F80] = "powl"; 172 Names[RTLIB::POW_F128] = "powl"; 173 Names[RTLIB::POW_PPCF128] = "powl"; 174 Names[RTLIB::CEIL_F32] = "ceilf"; 175 Names[RTLIB::CEIL_F64] = "ceil"; 176 Names[RTLIB::CEIL_F80] = "ceill"; 177 Names[RTLIB::CEIL_F128] = "ceill"; 178 Names[RTLIB::CEIL_PPCF128] = "ceill"; 179 Names[RTLIB::TRUNC_F32] = "truncf"; 180 Names[RTLIB::TRUNC_F64] = "trunc"; 181 Names[RTLIB::TRUNC_F80] = "truncl"; 182 Names[RTLIB::TRUNC_F128] = "truncl"; 183 Names[RTLIB::TRUNC_PPCF128] = "truncl"; 184 Names[RTLIB::RINT_F32] = "rintf"; 185 Names[RTLIB::RINT_F64] = "rint"; 186 Names[RTLIB::RINT_F80] = "rintl"; 187 Names[RTLIB::RINT_F128] = "rintl"; 188 Names[RTLIB::RINT_PPCF128] = "rintl"; 189 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; 190 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; 191 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; 192 Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; 193 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; 194 Names[RTLIB::ROUND_F32] = "roundf"; 195 Names[RTLIB::ROUND_F64] = "round"; 196 Names[RTLIB::ROUND_F80] = "roundl"; 197 Names[RTLIB::ROUND_F128] = "roundl"; 198 Names[RTLIB::ROUND_PPCF128] = "roundl"; 199 Names[RTLIB::FLOOR_F32] = "floorf"; 200 Names[RTLIB::FLOOR_F64] = "floor"; 201 Names[RTLIB::FLOOR_F80] = "floorl"; 202 Names[RTLIB::FLOOR_F128] = "floorl"; 203 Names[RTLIB::FLOOR_PPCF128] = "floorl"; 204 Names[RTLIB::COPYSIGN_F32] = "copysignf"; 205 Names[RTLIB::COPYSIGN_F64] = "copysign"; 206 Names[RTLIB::COPYSIGN_F80] = "copysignl"; 207 Names[RTLIB::COPYSIGN_F128] = "copysignl"; 208 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; 209 Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; 210 Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; 211 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; 212 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 213 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 214 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; 215 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; 216 Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; 217 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; 218 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; 219 Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; 220 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; 221 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; 222 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; 223 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; 224 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; 225 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; 226 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; 227 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; 228 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; 229 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; 230 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; 231 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; 232 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; 233 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; 234 Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; 235 Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; 236 Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; 237 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; 238 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; 239 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; 240 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; 241 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; 242 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; 243 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; 244 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; 245 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; 246 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; 247 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; 248 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; 249 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; 250 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; 251 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; 252 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; 253 Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; 254 Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; 255 Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; 256 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; 257 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; 258 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; 259 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; 260 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; 261 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; 262 Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; 263 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; 264 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; 265 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; 266 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; 267 Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; 268 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; 269 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; 270 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; 271 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; 272 Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; 273 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; 274 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; 275 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; 276 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; 277 Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; 278 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; 279 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; 280 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; 281 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; 282 Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; 283 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; 284 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; 285 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; 286 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; 287 Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; 288 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; 289 Names[RTLIB::OEQ_F32] = "__eqsf2"; 290 Names[RTLIB::OEQ_F64] = "__eqdf2"; 291 Names[RTLIB::OEQ_F128] = "__eqtf2"; 292 Names[RTLIB::UNE_F32] = "__nesf2"; 293 Names[RTLIB::UNE_F64] = "__nedf2"; 294 Names[RTLIB::UNE_F128] = "__netf2"; 295 Names[RTLIB::OGE_F32] = "__gesf2"; 296 Names[RTLIB::OGE_F64] = "__gedf2"; 297 Names[RTLIB::OGE_F128] = "__getf2"; 298 Names[RTLIB::OLT_F32] = "__ltsf2"; 299 Names[RTLIB::OLT_F64] = "__ltdf2"; 300 Names[RTLIB::OLT_F128] = "__lttf2"; 301 Names[RTLIB::OLE_F32] = "__lesf2"; 302 Names[RTLIB::OLE_F64] = "__ledf2"; 303 Names[RTLIB::OLE_F128] = "__letf2"; 304 Names[RTLIB::OGT_F32] = "__gtsf2"; 305 Names[RTLIB::OGT_F64] = "__gtdf2"; 306 Names[RTLIB::OGT_F128] = "__gttf2"; 307 Names[RTLIB::UO_F32] = "__unordsf2"; 308 Names[RTLIB::UO_F64] = "__unorddf2"; 309 Names[RTLIB::UO_F128] = "__unordtf2"; 310 Names[RTLIB::O_F32] = "__unordsf2"; 311 Names[RTLIB::O_F64] = "__unorddf2"; 312 Names[RTLIB::O_F128] = "__unordtf2"; 313 Names[RTLIB::MEMCPY] = "memcpy"; 314 Names[RTLIB::MEMMOVE] = "memmove"; 315 Names[RTLIB::MEMSET] = "memset"; 316 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; 317 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; 318 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; 319 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; 320 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; 321 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; 322 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; 323 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; 324 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; 325 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; 326 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; 327 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; 328 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; 329 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; 330 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; 331 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; 332 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; 333 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; 334 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; 335 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; 336 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; 337 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; 338 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; 339 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; 340 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; 341 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; 342 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; 343 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; 344 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; 345 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; 346 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; 347 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; 348 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; 349 350 if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) { 351 Names[RTLIB::SINCOS_F32] = "sincosf"; 352 Names[RTLIB::SINCOS_F64] = "sincos"; 353 Names[RTLIB::SINCOS_F80] = "sincosl"; 354 Names[RTLIB::SINCOS_F128] = "sincosl"; 355 Names[RTLIB::SINCOS_PPCF128] = "sincosl"; 356 } else { 357 // These are generally not available. 358 Names[RTLIB::SINCOS_F32] = 0; 359 Names[RTLIB::SINCOS_F64] = 0; 360 Names[RTLIB::SINCOS_F80] = 0; 361 Names[RTLIB::SINCOS_F128] = 0; 362 Names[RTLIB::SINCOS_PPCF128] = 0; 363 } 364 365 if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) { 366 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; 367 } else { 368 // These are generally not available. 369 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = 0; 370 } 371 } 372 373 /// InitLibcallCallingConvs - Set default libcall CallingConvs. 374 /// 375 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 376 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { 377 CCs[i] = CallingConv::C; 378 } 379 } 380 381 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 382 /// UNKNOWN_LIBCALL if there is none. 383 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 384 if (OpVT == MVT::f32) { 385 if (RetVT == MVT::f64) 386 return FPEXT_F32_F64; 387 if (RetVT == MVT::f128) 388 return FPEXT_F32_F128; 389 } else if (OpVT == MVT::f64) { 390 if (RetVT == MVT::f128) 391 return FPEXT_F64_F128; 392 } 393 394 return UNKNOWN_LIBCALL; 395 } 396 397 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 398 /// UNKNOWN_LIBCALL if there is none. 399 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 400 if (RetVT == MVT::f32) { 401 if (OpVT == MVT::f64) 402 return FPROUND_F64_F32; 403 if (OpVT == MVT::f80) 404 return FPROUND_F80_F32; 405 if (OpVT == MVT::f128) 406 return FPROUND_F128_F32; 407 if (OpVT == MVT::ppcf128) 408 return FPROUND_PPCF128_F32; 409 } else if (RetVT == MVT::f64) { 410 if (OpVT == MVT::f80) 411 return FPROUND_F80_F64; 412 if (OpVT == MVT::f128) 413 return FPROUND_F128_F64; 414 if (OpVT == MVT::ppcf128) 415 return FPROUND_PPCF128_F64; 416 } 417 418 return UNKNOWN_LIBCALL; 419 } 420 421 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 422 /// UNKNOWN_LIBCALL if there is none. 423 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 424 if (OpVT == MVT::f32) { 425 if (RetVT == MVT::i8) 426 return FPTOSINT_F32_I8; 427 if (RetVT == MVT::i16) 428 return FPTOSINT_F32_I16; 429 if (RetVT == MVT::i32) 430 return FPTOSINT_F32_I32; 431 if (RetVT == MVT::i64) 432 return FPTOSINT_F32_I64; 433 if (RetVT == MVT::i128) 434 return FPTOSINT_F32_I128; 435 } else if (OpVT == MVT::f64) { 436 if (RetVT == MVT::i8) 437 return FPTOSINT_F64_I8; 438 if (RetVT == MVT::i16) 439 return FPTOSINT_F64_I16; 440 if (RetVT == MVT::i32) 441 return FPTOSINT_F64_I32; 442 if (RetVT == MVT::i64) 443 return FPTOSINT_F64_I64; 444 if (RetVT == MVT::i128) 445 return FPTOSINT_F64_I128; 446 } else if (OpVT == MVT::f80) { 447 if (RetVT == MVT::i32) 448 return FPTOSINT_F80_I32; 449 if (RetVT == MVT::i64) 450 return FPTOSINT_F80_I64; 451 if (RetVT == MVT::i128) 452 return FPTOSINT_F80_I128; 453 } else if (OpVT == MVT::f128) { 454 if (RetVT == MVT::i32) 455 return FPTOSINT_F128_I32; 456 if (RetVT == MVT::i64) 457 return FPTOSINT_F128_I64; 458 if (RetVT == MVT::i128) 459 return FPTOSINT_F128_I128; 460 } else if (OpVT == MVT::ppcf128) { 461 if (RetVT == MVT::i32) 462 return FPTOSINT_PPCF128_I32; 463 if (RetVT == MVT::i64) 464 return FPTOSINT_PPCF128_I64; 465 if (RetVT == MVT::i128) 466 return FPTOSINT_PPCF128_I128; 467 } 468 return UNKNOWN_LIBCALL; 469 } 470 471 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 472 /// UNKNOWN_LIBCALL if there is none. 473 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 474 if (OpVT == MVT::f32) { 475 if (RetVT == MVT::i8) 476 return FPTOUINT_F32_I8; 477 if (RetVT == MVT::i16) 478 return FPTOUINT_F32_I16; 479 if (RetVT == MVT::i32) 480 return FPTOUINT_F32_I32; 481 if (RetVT == MVT::i64) 482 return FPTOUINT_F32_I64; 483 if (RetVT == MVT::i128) 484 return FPTOUINT_F32_I128; 485 } else if (OpVT == MVT::f64) { 486 if (RetVT == MVT::i8) 487 return FPTOUINT_F64_I8; 488 if (RetVT == MVT::i16) 489 return FPTOUINT_F64_I16; 490 if (RetVT == MVT::i32) 491 return FPTOUINT_F64_I32; 492 if (RetVT == MVT::i64) 493 return FPTOUINT_F64_I64; 494 if (RetVT == MVT::i128) 495 return FPTOUINT_F64_I128; 496 } else if (OpVT == MVT::f80) { 497 if (RetVT == MVT::i32) 498 return FPTOUINT_F80_I32; 499 if (RetVT == MVT::i64) 500 return FPTOUINT_F80_I64; 501 if (RetVT == MVT::i128) 502 return FPTOUINT_F80_I128; 503 } else if (OpVT == MVT::f128) { 504 if (RetVT == MVT::i32) 505 return FPTOUINT_F128_I32; 506 if (RetVT == MVT::i64) 507 return FPTOUINT_F128_I64; 508 if (RetVT == MVT::i128) 509 return FPTOUINT_F128_I128; 510 } else if (OpVT == MVT::ppcf128) { 511 if (RetVT == MVT::i32) 512 return FPTOUINT_PPCF128_I32; 513 if (RetVT == MVT::i64) 514 return FPTOUINT_PPCF128_I64; 515 if (RetVT == MVT::i128) 516 return FPTOUINT_PPCF128_I128; 517 } 518 return UNKNOWN_LIBCALL; 519 } 520 521 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 522 /// UNKNOWN_LIBCALL if there is none. 523 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 524 if (OpVT == MVT::i32) { 525 if (RetVT == MVT::f32) 526 return SINTTOFP_I32_F32; 527 if (RetVT == MVT::f64) 528 return SINTTOFP_I32_F64; 529 if (RetVT == MVT::f80) 530 return SINTTOFP_I32_F80; 531 if (RetVT == MVT::f128) 532 return SINTTOFP_I32_F128; 533 if (RetVT == MVT::ppcf128) 534 return SINTTOFP_I32_PPCF128; 535 } else if (OpVT == MVT::i64) { 536 if (RetVT == MVT::f32) 537 return SINTTOFP_I64_F32; 538 if (RetVT == MVT::f64) 539 return SINTTOFP_I64_F64; 540 if (RetVT == MVT::f80) 541 return SINTTOFP_I64_F80; 542 if (RetVT == MVT::f128) 543 return SINTTOFP_I64_F128; 544 if (RetVT == MVT::ppcf128) 545 return SINTTOFP_I64_PPCF128; 546 } else if (OpVT == MVT::i128) { 547 if (RetVT == MVT::f32) 548 return SINTTOFP_I128_F32; 549 if (RetVT == MVT::f64) 550 return SINTTOFP_I128_F64; 551 if (RetVT == MVT::f80) 552 return SINTTOFP_I128_F80; 553 if (RetVT == MVT::f128) 554 return SINTTOFP_I128_F128; 555 if (RetVT == MVT::ppcf128) 556 return SINTTOFP_I128_PPCF128; 557 } 558 return UNKNOWN_LIBCALL; 559 } 560 561 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 562 /// UNKNOWN_LIBCALL if there is none. 563 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 564 if (OpVT == MVT::i32) { 565 if (RetVT == MVT::f32) 566 return UINTTOFP_I32_F32; 567 if (RetVT == MVT::f64) 568 return UINTTOFP_I32_F64; 569 if (RetVT == MVT::f80) 570 return UINTTOFP_I32_F80; 571 if (RetVT == MVT::f128) 572 return UINTTOFP_I32_F128; 573 if (RetVT == MVT::ppcf128) 574 return UINTTOFP_I32_PPCF128; 575 } else if (OpVT == MVT::i64) { 576 if (RetVT == MVT::f32) 577 return UINTTOFP_I64_F32; 578 if (RetVT == MVT::f64) 579 return UINTTOFP_I64_F64; 580 if (RetVT == MVT::f80) 581 return UINTTOFP_I64_F80; 582 if (RetVT == MVT::f128) 583 return UINTTOFP_I64_F128; 584 if (RetVT == MVT::ppcf128) 585 return UINTTOFP_I64_PPCF128; 586 } else if (OpVT == MVT::i128) { 587 if (RetVT == MVT::f32) 588 return UINTTOFP_I128_F32; 589 if (RetVT == MVT::f64) 590 return UINTTOFP_I128_F64; 591 if (RetVT == MVT::f80) 592 return UINTTOFP_I128_F80; 593 if (RetVT == MVT::f128) 594 return UINTTOFP_I128_F128; 595 if (RetVT == MVT::ppcf128) 596 return UINTTOFP_I128_PPCF128; 597 } 598 return UNKNOWN_LIBCALL; 599 } 600 601 /// InitCmpLibcallCCs - Set default comparison libcall CC. 602 /// 603 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 604 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 605 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 606 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 607 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 608 CCs[RTLIB::UNE_F32] = ISD::SETNE; 609 CCs[RTLIB::UNE_F64] = ISD::SETNE; 610 CCs[RTLIB::UNE_F128] = ISD::SETNE; 611 CCs[RTLIB::OGE_F32] = ISD::SETGE; 612 CCs[RTLIB::OGE_F64] = ISD::SETGE; 613 CCs[RTLIB::OGE_F128] = ISD::SETGE; 614 CCs[RTLIB::OLT_F32] = ISD::SETLT; 615 CCs[RTLIB::OLT_F64] = ISD::SETLT; 616 CCs[RTLIB::OLT_F128] = ISD::SETLT; 617 CCs[RTLIB::OLE_F32] = ISD::SETLE; 618 CCs[RTLIB::OLE_F64] = ISD::SETLE; 619 CCs[RTLIB::OLE_F128] = ISD::SETLE; 620 CCs[RTLIB::OGT_F32] = ISD::SETGT; 621 CCs[RTLIB::OGT_F64] = ISD::SETGT; 622 CCs[RTLIB::OGT_F128] = ISD::SETGT; 623 CCs[RTLIB::UO_F32] = ISD::SETNE; 624 CCs[RTLIB::UO_F64] = ISD::SETNE; 625 CCs[RTLIB::UO_F128] = ISD::SETNE; 626 CCs[RTLIB::O_F32] = ISD::SETEQ; 627 CCs[RTLIB::O_F64] = ISD::SETEQ; 628 CCs[RTLIB::O_F128] = ISD::SETEQ; 629 } 630 631 /// NOTE: The constructor takes ownership of TLOF. 632 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm, 633 const TargetLoweringObjectFile *tlof) 634 : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) { 635 initActions(); 636 637 // Perform these initializations only once. 638 IsLittleEndian = TD->isLittleEndian(); 639 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0)); 640 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; 641 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize 642 = MaxStoresPerMemmoveOptSize = 4; 643 UseUnderscoreSetJmp = false; 644 UseUnderscoreLongJmp = false; 645 SelectIsExpensive = false; 646 IntDivIsCheap = false; 647 Pow2DivIsCheap = false; 648 JumpIsExpensive = false; 649 PredictableSelectIsExpensive = false; 650 StackPointerRegisterToSaveRestore = 0; 651 ExceptionPointerRegister = 0; 652 ExceptionSelectorRegister = 0; 653 BooleanContents = UndefinedBooleanContent; 654 BooleanVectorContents = UndefinedBooleanContent; 655 SchedPreferenceInfo = Sched::ILP; 656 JumpBufSize = 0; 657 JumpBufAlignment = 0; 658 MinFunctionAlignment = 0; 659 PrefFunctionAlignment = 0; 660 PrefLoopAlignment = 0; 661 MinStackArgumentAlignment = 1; 662 InsertFencesForAtomic = false; 663 SupportJumpTables = true; 664 MinimumJumpTableEntries = 4; 665 666 InitLibcallNames(LibcallRoutineNames, TM); 667 InitCmpLibcallCCs(CmpLibcallCCs); 668 InitLibcallCallingConvs(LibcallCallingConvs); 669 } 670 671 TargetLoweringBase::~TargetLoweringBase() { 672 delete &TLOF; 673 } 674 675 void TargetLoweringBase::initActions() { 676 // All operations default to being supported. 677 memset(OpActions, 0, sizeof(OpActions)); 678 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 679 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 680 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 681 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 682 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); 683 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); 684 685 // Set default actions for various operations. 686 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { 687 // Default all indexed load / store to expand. 688 for (unsigned IM = (unsigned)ISD::PRE_INC; 689 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 690 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); 691 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); 692 } 693 694 // These operations default to expand. 695 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); 696 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); 697 698 // These library functions default to expand. 699 setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand); 700 } 701 702 // Most targets ignore the @llvm.prefetch intrinsic. 703 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 704 705 // ConstantFP nodes default to expand. Targets can either change this to 706 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 707 // to optimize expansions for certain constants. 708 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 709 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 710 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 711 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 712 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 713 714 // These library functions default to expand. 715 setOperationAction(ISD::FLOG , MVT::f16, Expand); 716 setOperationAction(ISD::FLOG2, MVT::f16, Expand); 717 setOperationAction(ISD::FLOG10, MVT::f16, Expand); 718 setOperationAction(ISD::FEXP , MVT::f16, Expand); 719 setOperationAction(ISD::FEXP2, MVT::f16, Expand); 720 setOperationAction(ISD::FFLOOR, MVT::f16, Expand); 721 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); 722 setOperationAction(ISD::FCEIL, MVT::f16, Expand); 723 setOperationAction(ISD::FRINT, MVT::f16, Expand); 724 setOperationAction(ISD::FTRUNC, MVT::f16, Expand); 725 setOperationAction(ISD::FLOG , MVT::f32, Expand); 726 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 727 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 728 setOperationAction(ISD::FEXP , MVT::f32, Expand); 729 setOperationAction(ISD::FEXP2, MVT::f32, Expand); 730 setOperationAction(ISD::FFLOOR, MVT::f32, Expand); 731 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); 732 setOperationAction(ISD::FCEIL, MVT::f32, Expand); 733 setOperationAction(ISD::FRINT, MVT::f32, Expand); 734 setOperationAction(ISD::FTRUNC, MVT::f32, Expand); 735 setOperationAction(ISD::FLOG , MVT::f64, Expand); 736 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 737 setOperationAction(ISD::FLOG10, MVT::f64, Expand); 738 setOperationAction(ISD::FEXP , MVT::f64, Expand); 739 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 740 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); 741 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); 742 setOperationAction(ISD::FCEIL, MVT::f64, Expand); 743 setOperationAction(ISD::FRINT, MVT::f64, Expand); 744 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); 745 setOperationAction(ISD::FLOG , MVT::f128, Expand); 746 setOperationAction(ISD::FLOG2, MVT::f128, Expand); 747 setOperationAction(ISD::FLOG10, MVT::f128, Expand); 748 setOperationAction(ISD::FEXP , MVT::f128, Expand); 749 setOperationAction(ISD::FEXP2, MVT::f128, Expand); 750 setOperationAction(ISD::FFLOOR, MVT::f128, Expand); 751 setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand); 752 setOperationAction(ISD::FCEIL, MVT::f128, Expand); 753 setOperationAction(ISD::FRINT, MVT::f128, Expand); 754 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); 755 756 // Default ISD::TRAP to expand (which turns it into abort). 757 setOperationAction(ISD::TRAP, MVT::Other, Expand); 758 759 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 760 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 761 // 762 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 763 } 764 765 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const { 766 return MVT::getIntegerVT(8*TD->getPointerSize(0)); 767 } 768 769 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { 770 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 771 if (LHSTy.isVector()) 772 return LHSTy; 773 return getScalarShiftAmountTy(LHSTy); 774 } 775 776 /// canOpTrap - Returns true if the operation can trap for the value type. 777 /// VT must be a legal type. 778 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 779 assert(isTypeLegal(VT)); 780 switch (Op) { 781 default: 782 return false; 783 case ISD::FDIV: 784 case ISD::FREM: 785 case ISD::SDIV: 786 case ISD::UDIV: 787 case ISD::SREM: 788 case ISD::UREM: 789 return true; 790 } 791 } 792 793 794 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 795 unsigned &NumIntermediates, 796 MVT &RegisterVT, 797 TargetLoweringBase *TLI) { 798 // Figure out the right, legal destination reg to copy into. 799 unsigned NumElts = VT.getVectorNumElements(); 800 MVT EltTy = VT.getVectorElementType(); 801 802 unsigned NumVectorRegs = 1; 803 804 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 805 // could break down into LHS/RHS like LegalizeDAG does. 806 if (!isPowerOf2_32(NumElts)) { 807 NumVectorRegs = NumElts; 808 NumElts = 1; 809 } 810 811 // Divide the input until we get to a supported size. This will always 812 // end with a scalar if the target doesn't support vectors. 813 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 814 NumElts >>= 1; 815 NumVectorRegs <<= 1; 816 } 817 818 NumIntermediates = NumVectorRegs; 819 820 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 821 if (!TLI->isTypeLegal(NewVT)) 822 NewVT = EltTy; 823 IntermediateVT = NewVT; 824 825 unsigned NewVTSize = NewVT.getSizeInBits(); 826 827 // Convert sizes such as i33 to i64. 828 if (!isPowerOf2_32(NewVTSize)) 829 NewVTSize = NextPowerOf2(NewVTSize); 830 831 MVT DestVT = TLI->getRegisterType(NewVT); 832 RegisterVT = DestVT; 833 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 834 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 835 836 // Otherwise, promotion or legal types use the same number of registers as 837 // the vector decimated to the appropriate level. 838 return NumVectorRegs; 839 } 840 841 /// isLegalRC - Return true if the value types that can be represented by the 842 /// specified register class are all legal. 843 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { 844 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 845 I != E; ++I) { 846 if (isTypeLegal(*I)) 847 return true; 848 } 849 return false; 850 } 851 852 /// findRepresentativeClass - Return the largest legal super-reg register class 853 /// of the register class for the specified type and its associated "cost". 854 std::pair<const TargetRegisterClass*, uint8_t> 855 TargetLoweringBase::findRepresentativeClass(MVT VT) const { 856 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 857 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 858 if (!RC) 859 return std::make_pair(RC, 0); 860 861 // Compute the set of all super-register classes. 862 BitVector SuperRegRC(TRI->getNumRegClasses()); 863 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 864 SuperRegRC.setBitsInMask(RCI.getMask()); 865 866 // Find the first legal register class with the largest spill size. 867 const TargetRegisterClass *BestRC = RC; 868 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { 869 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 870 // We want the largest possible spill size. 871 if (SuperRC->getSize() <= BestRC->getSize()) 872 continue; 873 if (!isLegalRC(SuperRC)) 874 continue; 875 BestRC = SuperRC; 876 } 877 return std::make_pair(BestRC, 1); 878 } 879 880 /// computeRegisterProperties - Once all of the register classes are added, 881 /// this allows us to compute derived properties we expose. 882 void TargetLoweringBase::computeRegisterProperties() { 883 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && 884 "Too many value types for ValueTypeActions to hold!"); 885 886 // Everything defaults to needing one register. 887 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 888 NumRegistersForVT[i] = 1; 889 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 890 } 891 // ...except isVoid, which doesn't need any registers. 892 NumRegistersForVT[MVT::isVoid] = 0; 893 894 // Find the largest integer register class. 895 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 896 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) 897 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 898 899 // Every integer value type larger than this largest register takes twice as 900 // many registers to represent as the previous ValueType. 901 for (unsigned ExpandedReg = LargestIntReg + 1; 902 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 903 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 904 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 905 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 906 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 907 TypeExpandInteger); 908 } 909 910 // Inspect all of the ValueType's smaller than the largest integer 911 // register to see which ones need promotion. 912 unsigned LegalIntReg = LargestIntReg; 913 for (unsigned IntReg = LargestIntReg - 1; 914 IntReg >= (unsigned)MVT::i1; --IntReg) { 915 MVT IVT = (MVT::SimpleValueType)IntReg; 916 if (isTypeLegal(IVT)) { 917 LegalIntReg = IntReg; 918 } else { 919 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 920 (const MVT::SimpleValueType)LegalIntReg; 921 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 922 } 923 } 924 925 // ppcf128 type is really two f64's. 926 if (!isTypeLegal(MVT::ppcf128)) { 927 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 928 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 929 TransformToType[MVT::ppcf128] = MVT::f64; 930 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 931 } 932 933 // Decide how to handle f128. If the target does not have native f128 support, 934 // expand it to i128 and we will be generating soft float library calls. 935 if (!isTypeLegal(MVT::f128)) { 936 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 937 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 938 TransformToType[MVT::f128] = MVT::i128; 939 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 940 } 941 942 // Decide how to handle f64. If the target does not have native f64 support, 943 // expand it to i64 and we will be generating soft float library calls. 944 if (!isTypeLegal(MVT::f64)) { 945 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 946 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 947 TransformToType[MVT::f64] = MVT::i64; 948 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 949 } 950 951 // Decide how to handle f32. If the target does not have native support for 952 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. 953 if (!isTypeLegal(MVT::f32)) { 954 if (isTypeLegal(MVT::f64)) { 955 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; 956 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; 957 TransformToType[MVT::f32] = MVT::f64; 958 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); 959 } else { 960 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 961 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 962 TransformToType[MVT::f32] = MVT::i32; 963 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 964 } 965 } 966 967 // Loop over all of the vector value types to see which need transformations. 968 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 969 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 970 MVT VT = (MVT::SimpleValueType)i; 971 if (isTypeLegal(VT)) continue; 972 973 // Determine if there is a legal wider type. If so, we should promote to 974 // that wider vector type. 975 MVT EltVT = VT.getVectorElementType(); 976 unsigned NElts = VT.getVectorNumElements(); 977 if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) { 978 bool IsLegalWiderType = false; 979 // First try to promote the elements of integer vectors. If no legal 980 // promotion was found, fallback to the widen-vector method. 981 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 982 MVT SVT = (MVT::SimpleValueType)nVT; 983 // Promote vectors of integers to vectors with the same number 984 // of elements, with a wider element type. 985 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() 986 && SVT.getVectorNumElements() == NElts && 987 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { 988 TransformToType[i] = SVT; 989 RegisterTypeForVT[i] = SVT; 990 NumRegistersForVT[i] = 1; 991 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 992 IsLegalWiderType = true; 993 break; 994 } 995 } 996 997 if (IsLegalWiderType) continue; 998 999 // Try to widen the vector. 1000 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1001 MVT SVT = (MVT::SimpleValueType)nVT; 1002 if (SVT.getVectorElementType() == EltVT && 1003 SVT.getVectorNumElements() > NElts && 1004 isTypeLegal(SVT)) { 1005 TransformToType[i] = SVT; 1006 RegisterTypeForVT[i] = SVT; 1007 NumRegistersForVT[i] = 1; 1008 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1009 IsLegalWiderType = true; 1010 break; 1011 } 1012 } 1013 if (IsLegalWiderType) continue; 1014 } 1015 1016 MVT IntermediateVT; 1017 MVT RegisterVT; 1018 unsigned NumIntermediates; 1019 NumRegistersForVT[i] = 1020 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, 1021 RegisterVT, this); 1022 RegisterTypeForVT[i] = RegisterVT; 1023 1024 MVT NVT = VT.getPow2VectorType(); 1025 if (NVT == VT) { 1026 // Type is already a power of 2. The default action is to split. 1027 TransformToType[i] = MVT::Other; 1028 unsigned NumElts = VT.getVectorNumElements(); 1029 ValueTypeActions.setTypeAction(VT, 1030 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); 1031 } else { 1032 TransformToType[i] = NVT; 1033 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1034 } 1035 } 1036 1037 // Determine the 'representative' register class for each value type. 1038 // An representative register class is the largest (meaning one which is 1039 // not a sub-register class / subreg register class) legal register class for 1040 // a group of value types. For example, on i386, i8, i16, and i32 1041 // representative would be GR32; while on x86_64 it's GR64. 1042 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1043 const TargetRegisterClass* RRC; 1044 uint8_t Cost; 1045 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); 1046 RepRegClassForVT[i] = RRC; 1047 RepRegClassCostForVT[i] = Cost; 1048 } 1049 } 1050 1051 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const { 1052 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1053 return getPointerTy(0).SimpleTy; 1054 } 1055 1056 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1057 return MVT::i32; // return the default value 1058 } 1059 1060 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1061 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1062 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1063 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1064 /// 1065 /// This method returns the number of registers needed, and the VT for each 1066 /// register. It also returns the VT and quantity of the intermediate values 1067 /// before they are promoted/expanded. 1068 /// 1069 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1070 EVT &IntermediateVT, 1071 unsigned &NumIntermediates, 1072 MVT &RegisterVT) const { 1073 unsigned NumElts = VT.getVectorNumElements(); 1074 1075 // If there is a wider vector type with the same element type as this one, 1076 // or a promoted vector type that has the same number of elements which 1077 // are wider, then we should convert to that legal vector type. 1078 // This handles things like <2 x float> -> <4 x float> and 1079 // <4 x i1> -> <4 x i32>. 1080 LegalizeTypeAction TA = getTypeAction(Context, VT); 1081 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1082 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1083 if (isTypeLegal(RegisterEVT)) { 1084 IntermediateVT = RegisterEVT; 1085 RegisterVT = RegisterEVT.getSimpleVT(); 1086 NumIntermediates = 1; 1087 return 1; 1088 } 1089 } 1090 1091 // Figure out the right, legal destination reg to copy into. 1092 EVT EltTy = VT.getVectorElementType(); 1093 1094 unsigned NumVectorRegs = 1; 1095 1096 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1097 // could break down into LHS/RHS like LegalizeDAG does. 1098 if (!isPowerOf2_32(NumElts)) { 1099 NumVectorRegs = NumElts; 1100 NumElts = 1; 1101 } 1102 1103 // Divide the input until we get to a supported size. This will always 1104 // end with a scalar if the target doesn't support vectors. 1105 while (NumElts > 1 && !isTypeLegal( 1106 EVT::getVectorVT(Context, EltTy, NumElts))) { 1107 NumElts >>= 1; 1108 NumVectorRegs <<= 1; 1109 } 1110 1111 NumIntermediates = NumVectorRegs; 1112 1113 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1114 if (!isTypeLegal(NewVT)) 1115 NewVT = EltTy; 1116 IntermediateVT = NewVT; 1117 1118 MVT DestVT = getRegisterType(Context, NewVT); 1119 RegisterVT = DestVT; 1120 unsigned NewVTSize = NewVT.getSizeInBits(); 1121 1122 // Convert sizes such as i33 to i64. 1123 if (!isPowerOf2_32(NewVTSize)) 1124 NewVTSize = NextPowerOf2(NewVTSize); 1125 1126 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1127 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1128 1129 // Otherwise, promotion or legal types use the same number of registers as 1130 // the vector decimated to the appropriate level. 1131 return NumVectorRegs; 1132 } 1133 1134 /// Get the EVTs and ArgFlags collections that represent the legalized return 1135 /// type of the given function. This does not require a DAG or a return value, 1136 /// and is suitable for use before any DAGs for the function are constructed. 1137 /// TODO: Move this out of TargetLowering.cpp. 1138 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, 1139 SmallVectorImpl<ISD::OutputArg> &Outs, 1140 const TargetLowering &TLI) { 1141 SmallVector<EVT, 4> ValueVTs; 1142 ComputeValueVTs(TLI, ReturnType, ValueVTs); 1143 unsigned NumValues = ValueVTs.size(); 1144 if (NumValues == 0) return; 1145 1146 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1147 EVT VT = ValueVTs[j]; 1148 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1149 1150 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1151 ExtendKind = ISD::SIGN_EXTEND; 1152 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) 1153 ExtendKind = ISD::ZERO_EXTEND; 1154 1155 // FIXME: C calling convention requires the return type to be promoted to 1156 // at least 32-bit. But this is not necessary for non-C calling 1157 // conventions. The frontend should mark functions whose return values 1158 // require promoting with signext or zeroext attributes. 1159 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1160 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1161 if (VT.bitsLT(MinVT)) 1162 VT = MinVT; 1163 } 1164 1165 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 1166 MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 1167 1168 // 'inreg' on function refers to return value 1169 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1170 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) 1171 Flags.setInReg(); 1172 1173 // Propagate extension type if any 1174 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1175 Flags.setSExt(); 1176 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) 1177 Flags.setZExt(); 1178 1179 for (unsigned i = 0; i < NumParts; ++i) 1180 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0)); 1181 } 1182 } 1183 1184 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1185 /// function arguments in the caller parameter area. This is the actual 1186 /// alignment, not its logarithm. 1187 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const { 1188 return TD->getCallFrameTypeAlignment(Ty); 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // TargetTransformInfo Helpers 1193 //===----------------------------------------------------------------------===// 1194 1195 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1196 enum InstructionOpcodes { 1197 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1198 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1199 #include "llvm/IR/Instruction.def" 1200 }; 1201 switch (static_cast<InstructionOpcodes>(Opcode)) { 1202 case Ret: return 0; 1203 case Br: return 0; 1204 case Switch: return 0; 1205 case IndirectBr: return 0; 1206 case Invoke: return 0; 1207 case Resume: return 0; 1208 case Unreachable: return 0; 1209 case Add: return ISD::ADD; 1210 case FAdd: return ISD::FADD; 1211 case Sub: return ISD::SUB; 1212 case FSub: return ISD::FSUB; 1213 case Mul: return ISD::MUL; 1214 case FMul: return ISD::FMUL; 1215 case UDiv: return ISD::UDIV; 1216 case SDiv: return ISD::UDIV; 1217 case FDiv: return ISD::FDIV; 1218 case URem: return ISD::UREM; 1219 case SRem: return ISD::SREM; 1220 case FRem: return ISD::FREM; 1221 case Shl: return ISD::SHL; 1222 case LShr: return ISD::SRL; 1223 case AShr: return ISD::SRA; 1224 case And: return ISD::AND; 1225 case Or: return ISD::OR; 1226 case Xor: return ISD::XOR; 1227 case Alloca: return 0; 1228 case Load: return ISD::LOAD; 1229 case Store: return ISD::STORE; 1230 case GetElementPtr: return 0; 1231 case Fence: return 0; 1232 case AtomicCmpXchg: return 0; 1233 case AtomicRMW: return 0; 1234 case Trunc: return ISD::TRUNCATE; 1235 case ZExt: return ISD::ZERO_EXTEND; 1236 case SExt: return ISD::SIGN_EXTEND; 1237 case FPToUI: return ISD::FP_TO_UINT; 1238 case FPToSI: return ISD::FP_TO_SINT; 1239 case UIToFP: return ISD::UINT_TO_FP; 1240 case SIToFP: return ISD::SINT_TO_FP; 1241 case FPTrunc: return ISD::FP_ROUND; 1242 case FPExt: return ISD::FP_EXTEND; 1243 case PtrToInt: return ISD::BITCAST; 1244 case IntToPtr: return ISD::BITCAST; 1245 case BitCast: return ISD::BITCAST; 1246 case ICmp: return ISD::SETCC; 1247 case FCmp: return ISD::SETCC; 1248 case PHI: return 0; 1249 case Call: return 0; 1250 case Select: return ISD::SELECT; 1251 case UserOp1: return 0; 1252 case UserOp2: return 0; 1253 case VAArg: return 0; 1254 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1255 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1256 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1257 case ExtractValue: return ISD::MERGE_VALUES; 1258 case InsertValue: return ISD::MERGE_VALUES; 1259 case LandingPad: return 0; 1260 } 1261 1262 llvm_unreachable("Unknown instruction type encountered!"); 1263 } 1264 1265 std::pair<unsigned, MVT> 1266 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const { 1267 LLVMContext &C = Ty->getContext(); 1268 EVT MTy = getValueType(Ty); 1269 1270 unsigned Cost = 1; 1271 // We keep legalizing the type until we find a legal kind. We assume that 1272 // the only operation that costs anything is the split. After splitting 1273 // we need to handle two types. 1274 while (true) { 1275 LegalizeKind LK = getTypeConversion(C, MTy); 1276 1277 if (LK.first == TypeLegal) 1278 return std::make_pair(Cost, MTy.getSimpleVT()); 1279 1280 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1281 Cost *= 2; 1282 1283 // Keep legalizing the type. 1284 MTy = LK.second; 1285 } 1286 } 1287 1288 //===----------------------------------------------------------------------===// 1289 // Loop Strength Reduction hooks 1290 //===----------------------------------------------------------------------===// 1291 1292 /// isLegalAddressingMode - Return true if the addressing mode represented 1293 /// by AM is legal for this target, for a load/store of the specified type. 1294 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM, 1295 Type *Ty) const { 1296 // The default implementation of this implements a conservative RISCy, r+r and 1297 // r+i addr mode. 1298 1299 // Allows a sign-extended 16-bit immediate field. 1300 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1301 return false; 1302 1303 // No global is ever allowed as a base. 1304 if (AM.BaseGV) 1305 return false; 1306 1307 // Only support r+r, 1308 switch (AM.Scale) { 1309 case 0: // "r+i" or just "i", depending on HasBaseReg. 1310 break; 1311 case 1: 1312 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1313 return false; 1314 // Otherwise we have r+r or r+i. 1315 break; 1316 case 2: 1317 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1318 return false; 1319 // Allow 2*r as r+r. 1320 break; 1321 } 1322 1323 return true; 1324 } 1325