1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstddef>
58 #include <cstdint>
59 #include <cstring>
60 #include <iterator>
61 #include <string>
62 #include <tuple>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 static cl::opt<bool> JumpIsExpensiveOverride(
68     "jump-is-expensive", cl::init(false),
69     cl::desc("Do not create extra branches to split comparison logic."),
70     cl::Hidden);
71 
72 static cl::opt<unsigned> MinimumJumpTableEntries
73   ("min-jump-table-entries", cl::init(4), cl::Hidden,
74    cl::desc("Set minimum number of entries to use a jump table."));
75 
76 static cl::opt<unsigned> MaximumJumpTableSize
77   ("max-jump-table-size", cl::init(0), cl::Hidden,
78    cl::desc("Set maximum size of jump tables; zero for no limit."));
79 
80 /// Minimum jump table density for normal functions.
81 static cl::opt<unsigned>
82     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
83                      cl::desc("Minimum density for building a jump table in "
84                               "a normal function"));
85 
86 /// Minimum jump table density for -Os or -Oz functions.
87 static cl::opt<unsigned> OptsizeJumpTableDensity(
88     "optsize-jump-table-density", cl::init(40), cl::Hidden,
89     cl::desc("Minimum density for building a jump table in "
90              "an optsize function"));
91 
92 static bool darwinHasSinCos(const Triple &TT) {
93   assert(TT.isOSDarwin() && "should be called with darwin triple");
94   // Don't bother with 32 bit x86.
95   if (TT.getArch() == Triple::x86)
96     return false;
97   // Macos < 10.9 has no sincos_stret.
98   if (TT.isMacOSX())
99     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
100   // iOS < 7.0 has no sincos_stret.
101   if (TT.isiOS())
102     return !TT.isOSVersionLT(7, 0);
103   // Any other darwin such as WatchOS/TvOS is new enough.
104   return true;
105 }
106 
107 // Although this default value is arbitrary, it is not random. It is assumed
108 // that a condition that evaluates the same way by a higher percentage than this
109 // is best represented as control flow. Therefore, the default value N should be
110 // set such that the win from N% correct executions is greater than the loss
111 // from (100 - N)% mispredicted executions for the majority of intended targets.
112 static cl::opt<int> MinPercentageForPredictableBranch(
113     "min-predictable-branch", cl::init(99),
114     cl::desc("Minimum percentage (0-100) that a condition must be either true "
115              "or false to assume that the condition is predictable"),
116     cl::Hidden);
117 
118 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
119 #define HANDLE_LIBCALL(code, name) \
120   setLibcallName(RTLIB::code, name);
121 #include "llvm/CodeGen/RuntimeLibcalls.def"
122 #undef HANDLE_LIBCALL
123   // Initialize calling conventions to their default.
124   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
125     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
126 
127   // A few names are different on particular architectures or environments.
128   if (TT.isOSDarwin()) {
129     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
130     // of the gnueabi-style __gnu_*_ieee.
131     // FIXME: What about other targets?
132     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
133     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
134 
135     // Some darwins have an optimized __bzero/bzero function.
136     switch (TT.getArch()) {
137     case Triple::x86:
138     case Triple::x86_64:
139       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
140         setLibcallName(RTLIB::BZERO, "__bzero");
141       break;
142     case Triple::aarch64:
143       setLibcallName(RTLIB::BZERO, "bzero");
144       break;
145     default:
146       break;
147     }
148 
149     if (darwinHasSinCos(TT)) {
150       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
151       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
152       if (TT.isWatchABI()) {
153         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
154                               CallingConv::ARM_AAPCS_VFP);
155         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
156                               CallingConv::ARM_AAPCS_VFP);
157       }
158     }
159   } else {
160     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
161     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
162   }
163 
164   if (TT.isGNUEnvironment() || TT.isOSFuchsia()) {
165     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
166     setLibcallName(RTLIB::SINCOS_F64, "sincos");
167     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
168     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
169     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
170   }
171 
172   if (TT.isOSOpenBSD()) {
173     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
174   }
175 }
176 
177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
178 /// UNKNOWN_LIBCALL if there is none.
179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
180   if (OpVT == MVT::f16) {
181     if (RetVT == MVT::f32)
182       return FPEXT_F16_F32;
183   } else if (OpVT == MVT::f32) {
184     if (RetVT == MVT::f64)
185       return FPEXT_F32_F64;
186     if (RetVT == MVT::f128)
187       return FPEXT_F32_F128;
188     if (RetVT == MVT::ppcf128)
189       return FPEXT_F32_PPCF128;
190   } else if (OpVT == MVT::f64) {
191     if (RetVT == MVT::f128)
192       return FPEXT_F64_F128;
193     else if (RetVT == MVT::ppcf128)
194       return FPEXT_F64_PPCF128;
195   } else if (OpVT == MVT::f80) {
196     if (RetVT == MVT::f128)
197       return FPEXT_F80_F128;
198   }
199 
200   return UNKNOWN_LIBCALL;
201 }
202 
203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
204 /// UNKNOWN_LIBCALL if there is none.
205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
206   if (RetVT == MVT::f16) {
207     if (OpVT == MVT::f32)
208       return FPROUND_F32_F16;
209     if (OpVT == MVT::f64)
210       return FPROUND_F64_F16;
211     if (OpVT == MVT::f80)
212       return FPROUND_F80_F16;
213     if (OpVT == MVT::f128)
214       return FPROUND_F128_F16;
215     if (OpVT == MVT::ppcf128)
216       return FPROUND_PPCF128_F16;
217   } else if (RetVT == MVT::f32) {
218     if (OpVT == MVT::f64)
219       return FPROUND_F64_F32;
220     if (OpVT == MVT::f80)
221       return FPROUND_F80_F32;
222     if (OpVT == MVT::f128)
223       return FPROUND_F128_F32;
224     if (OpVT == MVT::ppcf128)
225       return FPROUND_PPCF128_F32;
226   } else if (RetVT == MVT::f64) {
227     if (OpVT == MVT::f80)
228       return FPROUND_F80_F64;
229     if (OpVT == MVT::f128)
230       return FPROUND_F128_F64;
231     if (OpVT == MVT::ppcf128)
232       return FPROUND_PPCF128_F64;
233   } else if (RetVT == MVT::f80) {
234     if (OpVT == MVT::f128)
235       return FPROUND_F128_F80;
236   }
237 
238   return UNKNOWN_LIBCALL;
239 }
240 
241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
244   if (OpVT == MVT::f32) {
245     if (RetVT == MVT::i32)
246       return FPTOSINT_F32_I32;
247     if (RetVT == MVT::i64)
248       return FPTOSINT_F32_I64;
249     if (RetVT == MVT::i128)
250       return FPTOSINT_F32_I128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::i32)
253       return FPTOSINT_F64_I32;
254     if (RetVT == MVT::i64)
255       return FPTOSINT_F64_I64;
256     if (RetVT == MVT::i128)
257       return FPTOSINT_F64_I128;
258   } else if (OpVT == MVT::f80) {
259     if (RetVT == MVT::i32)
260       return FPTOSINT_F80_I32;
261     if (RetVT == MVT::i64)
262       return FPTOSINT_F80_I64;
263     if (RetVT == MVT::i128)
264       return FPTOSINT_F80_I128;
265   } else if (OpVT == MVT::f128) {
266     if (RetVT == MVT::i32)
267       return FPTOSINT_F128_I32;
268     if (RetVT == MVT::i64)
269       return FPTOSINT_F128_I64;
270     if (RetVT == MVT::i128)
271       return FPTOSINT_F128_I128;
272   } else if (OpVT == MVT::ppcf128) {
273     if (RetVT == MVT::i32)
274       return FPTOSINT_PPCF128_I32;
275     if (RetVT == MVT::i64)
276       return FPTOSINT_PPCF128_I64;
277     if (RetVT == MVT::i128)
278       return FPTOSINT_PPCF128_I128;
279   }
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOUINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOUINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOUINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOUINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOUINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOUINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOUINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOUINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOUINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOUINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOUINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOUINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOUINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOUINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOUINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::i32) {
329     if (RetVT == MVT::f32)
330       return SINTTOFP_I32_F32;
331     if (RetVT == MVT::f64)
332       return SINTTOFP_I32_F64;
333     if (RetVT == MVT::f80)
334       return SINTTOFP_I32_F80;
335     if (RetVT == MVT::f128)
336       return SINTTOFP_I32_F128;
337     if (RetVT == MVT::ppcf128)
338       return SINTTOFP_I32_PPCF128;
339   } else if (OpVT == MVT::i64) {
340     if (RetVT == MVT::f32)
341       return SINTTOFP_I64_F32;
342     if (RetVT == MVT::f64)
343       return SINTTOFP_I64_F64;
344     if (RetVT == MVT::f80)
345       return SINTTOFP_I64_F80;
346     if (RetVT == MVT::f128)
347       return SINTTOFP_I64_F128;
348     if (RetVT == MVT::ppcf128)
349       return SINTTOFP_I64_PPCF128;
350   } else if (OpVT == MVT::i128) {
351     if (RetVT == MVT::f32)
352       return SINTTOFP_I128_F32;
353     if (RetVT == MVT::f64)
354       return SINTTOFP_I128_F64;
355     if (RetVT == MVT::f80)
356       return SINTTOFP_I128_F80;
357     if (RetVT == MVT::f128)
358       return SINTTOFP_I128_F128;
359     if (RetVT == MVT::ppcf128)
360       return SINTTOFP_I128_PPCF128;
361   }
362   return UNKNOWN_LIBCALL;
363 }
364 
365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
368   if (OpVT == MVT::i32) {
369     if (RetVT == MVT::f32)
370       return UINTTOFP_I32_F32;
371     if (RetVT == MVT::f64)
372       return UINTTOFP_I32_F64;
373     if (RetVT == MVT::f80)
374       return UINTTOFP_I32_F80;
375     if (RetVT == MVT::f128)
376       return UINTTOFP_I32_F128;
377     if (RetVT == MVT::ppcf128)
378       return UINTTOFP_I32_PPCF128;
379   } else if (OpVT == MVT::i64) {
380     if (RetVT == MVT::f32)
381       return UINTTOFP_I64_F32;
382     if (RetVT == MVT::f64)
383       return UINTTOFP_I64_F64;
384     if (RetVT == MVT::f80)
385       return UINTTOFP_I64_F80;
386     if (RetVT == MVT::f128)
387       return UINTTOFP_I64_F128;
388     if (RetVT == MVT::ppcf128)
389       return UINTTOFP_I64_PPCF128;
390   } else if (OpVT == MVT::i128) {
391     if (RetVT == MVT::f32)
392       return UINTTOFP_I128_F32;
393     if (RetVT == MVT::f64)
394       return UINTTOFP_I128_F64;
395     if (RetVT == MVT::f80)
396       return UINTTOFP_I128_F80;
397     if (RetVT == MVT::f128)
398       return UINTTOFP_I128_F128;
399     if (RetVT == MVT::ppcf128)
400       return UINTTOFP_I128_PPCF128;
401   }
402   return UNKNOWN_LIBCALL;
403 }
404 
405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
406 #define OP_TO_LIBCALL(Name, Enum)                                              \
407   case Name:                                                                   \
408     switch (VT.SimpleTy) {                                                     \
409     default:                                                                   \
410       return UNKNOWN_LIBCALL;                                                  \
411     case MVT::i8:                                                              \
412       return Enum##_1;                                                         \
413     case MVT::i16:                                                             \
414       return Enum##_2;                                                         \
415     case MVT::i32:                                                             \
416       return Enum##_4;                                                         \
417     case MVT::i64:                                                             \
418       return Enum##_8;                                                         \
419     case MVT::i128:                                                            \
420       return Enum##_16;                                                        \
421     }
422 
423   switch (Opc) {
424     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
425     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
426     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
427     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
428     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
429     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
430     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
431     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
432     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
433     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
434     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
435     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
436   }
437 
438 #undef OP_TO_LIBCALL
439 
440   return UNKNOWN_LIBCALL;
441 }
442 
443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
444   switch (ElementSize) {
445   case 1:
446     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
447   case 2:
448     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
449   case 4:
450     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
451   case 8:
452     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
453   case 16:
454     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
455   default:
456     return UNKNOWN_LIBCALL;
457   }
458 }
459 
460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
461   switch (ElementSize) {
462   case 1:
463     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
464   case 2:
465     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
466   case 4:
467     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
468   case 8:
469     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
470   case 16:
471     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
472   default:
473     return UNKNOWN_LIBCALL;
474   }
475 }
476 
477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 /// InitCmpLibcallCCs - Set default comparison libcall CC.
495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
500   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
501   CCs[RTLIB::UNE_F32] = ISD::SETNE;
502   CCs[RTLIB::UNE_F64] = ISD::SETNE;
503   CCs[RTLIB::UNE_F128] = ISD::SETNE;
504   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
505   CCs[RTLIB::OGE_F32] = ISD::SETGE;
506   CCs[RTLIB::OGE_F64] = ISD::SETGE;
507   CCs[RTLIB::OGE_F128] = ISD::SETGE;
508   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
509   CCs[RTLIB::OLT_F32] = ISD::SETLT;
510   CCs[RTLIB::OLT_F64] = ISD::SETLT;
511   CCs[RTLIB::OLT_F128] = ISD::SETLT;
512   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
513   CCs[RTLIB::OLE_F32] = ISD::SETLE;
514   CCs[RTLIB::OLE_F64] = ISD::SETLE;
515   CCs[RTLIB::OLE_F128] = ISD::SETLE;
516   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
517   CCs[RTLIB::OGT_F32] = ISD::SETGT;
518   CCs[RTLIB::OGT_F64] = ISD::SETGT;
519   CCs[RTLIB::OGT_F128] = ISD::SETGT;
520   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
521   CCs[RTLIB::UO_F32] = ISD::SETNE;
522   CCs[RTLIB::UO_F64] = ISD::SETNE;
523   CCs[RTLIB::UO_F128] = ISD::SETNE;
524   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
525   CCs[RTLIB::O_F32] = ISD::SETEQ;
526   CCs[RTLIB::O_F64] = ISD::SETEQ;
527   CCs[RTLIB::O_F128] = ISD::SETEQ;
528   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
529 }
530 
531 /// NOTE: The TargetMachine owns TLOF.
532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
533   initActions();
534 
535   // Perform these initializations only once.
536   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
537       MaxLoadsPerMemcmp = 8;
538   MaxGluedStoresPerMemcpy = 0;
539   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
540       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
541   UseUnderscoreSetJmp = false;
542   UseUnderscoreLongJmp = false;
543   HasMultipleConditionRegisters = false;
544   HasExtractBitsInsn = false;
545   JumpIsExpensive = JumpIsExpensiveOverride;
546   PredictableSelectIsExpensive = false;
547   EnableExtLdPromotion = false;
548   HasFloatingPointExceptions = true;
549   StackPointerRegisterToSaveRestore = 0;
550   BooleanContents = UndefinedBooleanContent;
551   BooleanFloatContents = UndefinedBooleanContent;
552   BooleanVectorContents = UndefinedBooleanContent;
553   SchedPreferenceInfo = Sched::ILP;
554   JumpBufSize = 0;
555   JumpBufAlignment = 0;
556   MinFunctionAlignment = 0;
557   PrefFunctionAlignment = 0;
558   PrefLoopAlignment = 0;
559   GatherAllAliasesMaxDepth = 18;
560   MinStackArgumentAlignment = 1;
561   // TODO: the default will be switched to 0 in the next commit, along
562   // with the Target-specific changes necessary.
563   MaxAtomicSizeInBitsSupported = 1024;
564 
565   MinCmpXchgSizeInBits = 0;
566   SupportsUnalignedAtomics = false;
567 
568   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
569 
570   InitLibcalls(TM.getTargetTriple());
571   InitCmpLibcallCCs(CmpLibcallCCs);
572 }
573 
574 void TargetLoweringBase::initActions() {
575   // All operations default to being supported.
576   memset(OpActions, 0, sizeof(OpActions));
577   memset(LoadExtActions, 0, sizeof(LoadExtActions));
578   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
579   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
580   memset(CondCodeActions, 0, sizeof(CondCodeActions));
581   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
582   std::fill(std::begin(TargetDAGCombineArray),
583             std::end(TargetDAGCombineArray), 0);
584 
585   // Set default actions for various operations.
586   for (MVT VT : MVT::all_valuetypes()) {
587     // Default all indexed load / store to expand.
588     for (unsigned IM = (unsigned)ISD::PRE_INC;
589          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
590       setIndexedLoadAction(IM, VT, Expand);
591       setIndexedStoreAction(IM, VT, Expand);
592     }
593 
594     // Most backends expect to see the node which just returns the value loaded.
595     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
596 
597     // These operations default to expand.
598     setOperationAction(ISD::FGETSIGN, VT, Expand);
599     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
600     setOperationAction(ISD::FMINNUM, VT, Expand);
601     setOperationAction(ISD::FMAXNUM, VT, Expand);
602     setOperationAction(ISD::FMINNAN, VT, Expand);
603     setOperationAction(ISD::FMAXNAN, VT, Expand);
604     setOperationAction(ISD::FMAD, VT, Expand);
605     setOperationAction(ISD::SMIN, VT, Expand);
606     setOperationAction(ISD::SMAX, VT, Expand);
607     setOperationAction(ISD::UMIN, VT, Expand);
608     setOperationAction(ISD::UMAX, VT, Expand);
609     setOperationAction(ISD::ABS, VT, Expand);
610 
611     // Overflow operations default to expand
612     setOperationAction(ISD::SADDO, VT, Expand);
613     setOperationAction(ISD::SSUBO, VT, Expand);
614     setOperationAction(ISD::UADDO, VT, Expand);
615     setOperationAction(ISD::USUBO, VT, Expand);
616     setOperationAction(ISD::SMULO, VT, Expand);
617     setOperationAction(ISD::UMULO, VT, Expand);
618 
619     // ADDCARRY operations default to expand
620     setOperationAction(ISD::ADDCARRY, VT, Expand);
621     setOperationAction(ISD::SUBCARRY, VT, Expand);
622     setOperationAction(ISD::SETCCCARRY, VT, Expand);
623 
624     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
625     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
626     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
627 
628     setOperationAction(ISD::BITREVERSE, VT, Expand);
629 
630     // These library functions default to expand.
631     setOperationAction(ISD::FROUND, VT, Expand);
632     setOperationAction(ISD::FPOWI, VT, Expand);
633 
634     // These operations default to expand for vector types.
635     if (VT.isVector()) {
636       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
637       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
638       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
639       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
640     }
641 
642     // For most targets @llvm.get.dynamic.area.offset just returns 0.
643     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
644   }
645 
646   // Most targets ignore the @llvm.prefetch intrinsic.
647   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
648 
649   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
650   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
651 
652   // ConstantFP nodes default to expand.  Targets can either change this to
653   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
654   // to optimize expansions for certain constants.
655   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
656   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
657   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
658   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
659   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
660 
661   // These library functions default to expand.
662   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
663     setOperationAction(ISD::FLOG ,      VT, Expand);
664     setOperationAction(ISD::FLOG2,      VT, Expand);
665     setOperationAction(ISD::FLOG10,     VT, Expand);
666     setOperationAction(ISD::FEXP ,      VT, Expand);
667     setOperationAction(ISD::FEXP2,      VT, Expand);
668     setOperationAction(ISD::FFLOOR,     VT, Expand);
669     setOperationAction(ISD::FNEARBYINT, VT, Expand);
670     setOperationAction(ISD::FCEIL,      VT, Expand);
671     setOperationAction(ISD::FRINT,      VT, Expand);
672     setOperationAction(ISD::FTRUNC,     VT, Expand);
673     setOperationAction(ISD::FROUND,     VT, Expand);
674   }
675 
676   // Default ISD::TRAP to expand (which turns it into abort).
677   setOperationAction(ISD::TRAP, MVT::Other, Expand);
678 
679   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
680   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
681   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
682 }
683 
684 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
685                                                EVT) const {
686   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
687 }
688 
689 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
690                                          bool LegalTypes) const {
691   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
692   if (LHSTy.isVector())
693     return LHSTy;
694   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
695                     : getPointerTy(DL);
696 }
697 
698 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
699   assert(isTypeLegal(VT));
700   switch (Op) {
701   default:
702     return false;
703   case ISD::SDIV:
704   case ISD::UDIV:
705   case ISD::SREM:
706   case ISD::UREM:
707     return true;
708   }
709 }
710 
711 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
712   // If the command-line option was specified, ignore this request.
713   if (!JumpIsExpensiveOverride.getNumOccurrences())
714     JumpIsExpensive = isExpensive;
715 }
716 
717 TargetLoweringBase::LegalizeKind
718 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
719   // If this is a simple type, use the ComputeRegisterProp mechanism.
720   if (VT.isSimple()) {
721     MVT SVT = VT.getSimpleVT();
722     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
723     MVT NVT = TransformToType[SVT.SimpleTy];
724     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
725 
726     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
727             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
728            "Promote may not follow Expand or Promote");
729 
730     if (LA == TypeSplitVector)
731       return LegalizeKind(LA,
732                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
733                                            SVT.getVectorNumElements() / 2));
734     if (LA == TypeScalarizeVector)
735       return LegalizeKind(LA, SVT.getVectorElementType());
736     return LegalizeKind(LA, NVT);
737   }
738 
739   // Handle Extended Scalar Types.
740   if (!VT.isVector()) {
741     assert(VT.isInteger() && "Float types must be simple");
742     unsigned BitSize = VT.getSizeInBits();
743     // First promote to a power-of-two size, then expand if necessary.
744     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
745       EVT NVT = VT.getRoundIntegerType(Context);
746       assert(NVT != VT && "Unable to round integer VT");
747       LegalizeKind NextStep = getTypeConversion(Context, NVT);
748       // Avoid multi-step promotion.
749       if (NextStep.first == TypePromoteInteger)
750         return NextStep;
751       // Return rounded integer type.
752       return LegalizeKind(TypePromoteInteger, NVT);
753     }
754 
755     return LegalizeKind(TypeExpandInteger,
756                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
757   }
758 
759   // Handle vector types.
760   unsigned NumElts = VT.getVectorNumElements();
761   EVT EltVT = VT.getVectorElementType();
762 
763   // Vectors with only one element are always scalarized.
764   if (NumElts == 1)
765     return LegalizeKind(TypeScalarizeVector, EltVT);
766 
767   // Try to widen vector elements until the element type is a power of two and
768   // promote it to a legal type later on, for example:
769   // <3 x i8> -> <4 x i8> -> <4 x i32>
770   if (EltVT.isInteger()) {
771     // Vectors with a number of elements that is not a power of two are always
772     // widened, for example <3 x i8> -> <4 x i8>.
773     if (!VT.isPow2VectorType()) {
774       NumElts = (unsigned)NextPowerOf2(NumElts);
775       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
776       return LegalizeKind(TypeWidenVector, NVT);
777     }
778 
779     // Examine the element type.
780     LegalizeKind LK = getTypeConversion(Context, EltVT);
781 
782     // If type is to be expanded, split the vector.
783     //  <4 x i140> -> <2 x i140>
784     if (LK.first == TypeExpandInteger)
785       return LegalizeKind(TypeSplitVector,
786                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
787 
788     // Promote the integer element types until a legal vector type is found
789     // or until the element integer type is too big. If a legal type was not
790     // found, fallback to the usual mechanism of widening/splitting the
791     // vector.
792     EVT OldEltVT = EltVT;
793     while (true) {
794       // Increase the bitwidth of the element to the next pow-of-two
795       // (which is greater than 8 bits).
796       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
797                   .getRoundIntegerType(Context);
798 
799       // Stop trying when getting a non-simple element type.
800       // Note that vector elements may be greater than legal vector element
801       // types. Example: X86 XMM registers hold 64bit element on 32bit
802       // systems.
803       if (!EltVT.isSimple())
804         break;
805 
806       // Build a new vector type and check if it is legal.
807       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
808       // Found a legal promoted vector type.
809       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
810         return LegalizeKind(TypePromoteInteger,
811                             EVT::getVectorVT(Context, EltVT, NumElts));
812     }
813 
814     // Reset the type to the unexpanded type if we did not find a legal vector
815     // type with a promoted vector element type.
816     EltVT = OldEltVT;
817   }
818 
819   // Try to widen the vector until a legal type is found.
820   // If there is no wider legal type, split the vector.
821   while (true) {
822     // Round up to the next power of 2.
823     NumElts = (unsigned)NextPowerOf2(NumElts);
824 
825     // If there is no simple vector type with this many elements then there
826     // cannot be a larger legal vector type.  Note that this assumes that
827     // there are no skipped intermediate vector types in the simple types.
828     if (!EltVT.isSimple())
829       break;
830     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
831     if (LargerVector == MVT())
832       break;
833 
834     // If this type is legal then widen the vector.
835     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
836       return LegalizeKind(TypeWidenVector, LargerVector);
837   }
838 
839   // Widen odd vectors to next power of two.
840   if (!VT.isPow2VectorType()) {
841     EVT NVT = VT.getPow2VectorType(Context);
842     return LegalizeKind(TypeWidenVector, NVT);
843   }
844 
845   // Vectors with illegal element types are expanded.
846   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
847   return LegalizeKind(TypeSplitVector, NVT);
848 }
849 
850 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
851                                           unsigned &NumIntermediates,
852                                           MVT &RegisterVT,
853                                           TargetLoweringBase *TLI) {
854   // Figure out the right, legal destination reg to copy into.
855   unsigned NumElts = VT.getVectorNumElements();
856   MVT EltTy = VT.getVectorElementType();
857 
858   unsigned NumVectorRegs = 1;
859 
860   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
861   // could break down into LHS/RHS like LegalizeDAG does.
862   if (!isPowerOf2_32(NumElts)) {
863     NumVectorRegs = NumElts;
864     NumElts = 1;
865   }
866 
867   // Divide the input until we get to a supported size.  This will always
868   // end with a scalar if the target doesn't support vectors.
869   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
870     NumElts >>= 1;
871     NumVectorRegs <<= 1;
872   }
873 
874   NumIntermediates = NumVectorRegs;
875 
876   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
877   if (!TLI->isTypeLegal(NewVT))
878     NewVT = EltTy;
879   IntermediateVT = NewVT;
880 
881   unsigned NewVTSize = NewVT.getSizeInBits();
882 
883   // Convert sizes such as i33 to i64.
884   if (!isPowerOf2_32(NewVTSize))
885     NewVTSize = NextPowerOf2(NewVTSize);
886 
887   MVT DestVT = TLI->getRegisterType(NewVT);
888   RegisterVT = DestVT;
889   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
890     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
891 
892   // Otherwise, promotion or legal types use the same number of registers as
893   // the vector decimated to the appropriate level.
894   return NumVectorRegs;
895 }
896 
897 /// isLegalRC - Return true if the value types that can be represented by the
898 /// specified register class are all legal.
899 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
900                                    const TargetRegisterClass &RC) const {
901   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
902     if (isTypeLegal(*I))
903       return true;
904   return false;
905 }
906 
907 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
908 /// sequence of memory operands that is recognized by PrologEpilogInserter.
909 MachineBasicBlock *
910 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
911                                    MachineBasicBlock *MBB) const {
912   MachineInstr *MI = &InitialMI;
913   MachineFunction &MF = *MI->getMF();
914   MachineFrameInfo &MFI = MF.getFrameInfo();
915 
916   // We're handling multiple types of operands here:
917   // PATCHPOINT MetaArgs - live-in, read only, direct
918   // STATEPOINT Deopt Spill - live-through, read only, indirect
919   // STATEPOINT Deopt Alloca - live-through, read only, direct
920   // (We're currently conservative and mark the deopt slots read/write in
921   // practice.)
922   // STATEPOINT GC Spill - live-through, read/write, indirect
923   // STATEPOINT GC Alloca - live-through, read/write, direct
924   // The live-in vs live-through is handled already (the live through ones are
925   // all stack slots), but we need to handle the different type of stackmap
926   // operands and memory effects here.
927 
928   // MI changes inside this loop as we grow operands.
929   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
930     MachineOperand &MO = MI->getOperand(OperIdx);
931     if (!MO.isFI())
932       continue;
933 
934     // foldMemoryOperand builds a new MI after replacing a single FI operand
935     // with the canonical set of five x86 addressing-mode operands.
936     int FI = MO.getIndex();
937     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
938 
939     // Copy operands before the frame-index.
940     for (unsigned i = 0; i < OperIdx; ++i)
941       MIB.add(MI->getOperand(i));
942     // Add frame index operands recognized by stackmaps.cpp
943     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
944       // indirect-mem-ref tag, size, #FI, offset.
945       // Used for spills inserted by StatepointLowering.  This codepath is not
946       // used for patchpoints/stackmaps at all, for these spilling is done via
947       // foldMemoryOperand callback only.
948       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
949       MIB.addImm(StackMaps::IndirectMemRefOp);
950       MIB.addImm(MFI.getObjectSize(FI));
951       MIB.add(MI->getOperand(OperIdx));
952       MIB.addImm(0);
953     } else {
954       // direct-mem-ref tag, #FI, offset.
955       // Used by patchpoint, and direct alloca arguments to statepoints
956       MIB.addImm(StackMaps::DirectMemRefOp);
957       MIB.add(MI->getOperand(OperIdx));
958       MIB.addImm(0);
959     }
960     // Copy the operands after the frame index.
961     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
962       MIB.add(MI->getOperand(i));
963 
964     // Inherit previous memory operands.
965     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
966     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
967 
968     // Add a new memory operand for this FI.
969     assert(MFI.getObjectOffset(FI) != -1);
970 
971     auto Flags = MachineMemOperand::MOLoad;
972     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
973       Flags |= MachineMemOperand::MOStore;
974       Flags |= MachineMemOperand::MOVolatile;
975     }
976     MachineMemOperand *MMO = MF.getMachineMemOperand(
977         MachinePointerInfo::getFixedStack(MF, FI), Flags,
978         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
979     MIB->addMemOperand(MF, MMO);
980 
981     // Replace the instruction and update the operand index.
982     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
983     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
984     MI->eraseFromParent();
985     MI = MIB;
986   }
987   return MBB;
988 }
989 
990 MachineBasicBlock *
991 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
992                                         MachineBasicBlock *MBB) const {
993   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
994          "Called emitXRayCustomEvent on the wrong MI!");
995   auto &MF = *MI.getMF();
996   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
997   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
998     MIB.add(MI.getOperand(OpIdx));
999 
1000   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1001   MI.eraseFromParent();
1002   return MBB;
1003 }
1004 
1005 MachineBasicBlock *
1006 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1007                                        MachineBasicBlock *MBB) const {
1008   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1009          "Called emitXRayTypedEvent on the wrong MI!");
1010   auto &MF = *MI.getMF();
1011   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1012   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1013     MIB.add(MI.getOperand(OpIdx));
1014 
1015   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1016   MI.eraseFromParent();
1017   return MBB;
1018 }
1019 
1020 /// findRepresentativeClass - Return the largest legal super-reg register class
1021 /// of the register class for the specified type and its associated "cost".
1022 // This function is in TargetLowering because it uses RegClassForVT which would
1023 // need to be moved to TargetRegisterInfo and would necessitate moving
1024 // isTypeLegal over as well - a massive change that would just require
1025 // TargetLowering having a TargetRegisterInfo class member that it would use.
1026 std::pair<const TargetRegisterClass *, uint8_t>
1027 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1028                                             MVT VT) const {
1029   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1030   if (!RC)
1031     return std::make_pair(RC, 0);
1032 
1033   // Compute the set of all super-register classes.
1034   BitVector SuperRegRC(TRI->getNumRegClasses());
1035   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1036     SuperRegRC.setBitsInMask(RCI.getMask());
1037 
1038   // Find the first legal register class with the largest spill size.
1039   const TargetRegisterClass *BestRC = RC;
1040   for (unsigned i : SuperRegRC.set_bits()) {
1041     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1042     // We want the largest possible spill size.
1043     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1044       continue;
1045     if (!isLegalRC(*TRI, *SuperRC))
1046       continue;
1047     BestRC = SuperRC;
1048   }
1049   return std::make_pair(BestRC, 1);
1050 }
1051 
1052 /// computeRegisterProperties - Once all of the register classes are added,
1053 /// this allows us to compute derived properties we expose.
1054 void TargetLoweringBase::computeRegisterProperties(
1055     const TargetRegisterInfo *TRI) {
1056   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1057                 "Too many value types for ValueTypeActions to hold!");
1058 
1059   // Everything defaults to needing one register.
1060   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1061     NumRegistersForVT[i] = 1;
1062     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1063   }
1064   // ...except isVoid, which doesn't need any registers.
1065   NumRegistersForVT[MVT::isVoid] = 0;
1066 
1067   // Find the largest integer register class.
1068   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1069   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1070     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1071 
1072   // Every integer value type larger than this largest register takes twice as
1073   // many registers to represent as the previous ValueType.
1074   for (unsigned ExpandedReg = LargestIntReg + 1;
1075        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1076     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1077     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1078     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1079     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1080                                    TypeExpandInteger);
1081   }
1082 
1083   // Inspect all of the ValueType's smaller than the largest integer
1084   // register to see which ones need promotion.
1085   unsigned LegalIntReg = LargestIntReg;
1086   for (unsigned IntReg = LargestIntReg - 1;
1087        IntReg >= (unsigned)MVT::i1; --IntReg) {
1088     MVT IVT = (MVT::SimpleValueType)IntReg;
1089     if (isTypeLegal(IVT)) {
1090       LegalIntReg = IntReg;
1091     } else {
1092       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1093         (const MVT::SimpleValueType)LegalIntReg;
1094       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1095     }
1096   }
1097 
1098   // ppcf128 type is really two f64's.
1099   if (!isTypeLegal(MVT::ppcf128)) {
1100     if (isTypeLegal(MVT::f64)) {
1101       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1102       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1103       TransformToType[MVT::ppcf128] = MVT::f64;
1104       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1105     } else {
1106       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1107       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1108       TransformToType[MVT::ppcf128] = MVT::i128;
1109       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1110     }
1111   }
1112 
1113   // Decide how to handle f128. If the target does not have native f128 support,
1114   // expand it to i128 and we will be generating soft float library calls.
1115   if (!isTypeLegal(MVT::f128)) {
1116     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1117     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1118     TransformToType[MVT::f128] = MVT::i128;
1119     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1120   }
1121 
1122   // Decide how to handle f64. If the target does not have native f64 support,
1123   // expand it to i64 and we will be generating soft float library calls.
1124   if (!isTypeLegal(MVT::f64)) {
1125     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1126     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1127     TransformToType[MVT::f64] = MVT::i64;
1128     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1129   }
1130 
1131   // Decide how to handle f32. If the target does not have native f32 support,
1132   // expand it to i32 and we will be generating soft float library calls.
1133   if (!isTypeLegal(MVT::f32)) {
1134     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1135     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1136     TransformToType[MVT::f32] = MVT::i32;
1137     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1138   }
1139 
1140   // Decide how to handle f16. If the target does not have native f16 support,
1141   // promote it to f32, because there are no f16 library calls (except for
1142   // conversions).
1143   if (!isTypeLegal(MVT::f16)) {
1144     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1145     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1146     TransformToType[MVT::f16] = MVT::f32;
1147     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1148   }
1149 
1150   // Loop over all of the vector value types to see which need transformations.
1151   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1152        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1153     MVT VT = (MVT::SimpleValueType) i;
1154     if (isTypeLegal(VT))
1155       continue;
1156 
1157     MVT EltVT = VT.getVectorElementType();
1158     unsigned NElts = VT.getVectorNumElements();
1159     bool IsLegalWiderType = false;
1160     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1161     switch (PreferredAction) {
1162     case TypePromoteInteger:
1163       // Try to promote the elements of integer vectors. If no legal
1164       // promotion was found, fall through to the widen-vector method.
1165       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1166         MVT SVT = (MVT::SimpleValueType) nVT;
1167         // Promote vectors of integers to vectors with the same number
1168         // of elements, with a wider element type.
1169         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1170             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1171           TransformToType[i] = SVT;
1172           RegisterTypeForVT[i] = SVT;
1173           NumRegistersForVT[i] = 1;
1174           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1175           IsLegalWiderType = true;
1176           break;
1177         }
1178       }
1179       if (IsLegalWiderType)
1180         break;
1181       LLVM_FALLTHROUGH;
1182 
1183     case TypeWidenVector:
1184       // Try to widen the vector.
1185       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1186         MVT SVT = (MVT::SimpleValueType) nVT;
1187         if (SVT.getVectorElementType() == EltVT
1188             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1189           TransformToType[i] = SVT;
1190           RegisterTypeForVT[i] = SVT;
1191           NumRegistersForVT[i] = 1;
1192           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1193           IsLegalWiderType = true;
1194           break;
1195         }
1196       }
1197       if (IsLegalWiderType)
1198         break;
1199       LLVM_FALLTHROUGH;
1200 
1201     case TypeSplitVector:
1202     case TypeScalarizeVector: {
1203       MVT IntermediateVT;
1204       MVT RegisterVT;
1205       unsigned NumIntermediates;
1206       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1207           NumIntermediates, RegisterVT, this);
1208       RegisterTypeForVT[i] = RegisterVT;
1209 
1210       MVT NVT = VT.getPow2VectorType();
1211       if (NVT == VT) {
1212         // Type is already a power of 2.  The default action is to split.
1213         TransformToType[i] = MVT::Other;
1214         if (PreferredAction == TypeScalarizeVector)
1215           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1216         else if (PreferredAction == TypeSplitVector)
1217           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1218         else
1219           // Set type action according to the number of elements.
1220           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1221                                                         : TypeSplitVector);
1222       } else {
1223         TransformToType[i] = NVT;
1224         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1225       }
1226       break;
1227     }
1228     default:
1229       llvm_unreachable("Unknown vector legalization action!");
1230     }
1231   }
1232 
1233   // Determine the 'representative' register class for each value type.
1234   // An representative register class is the largest (meaning one which is
1235   // not a sub-register class / subreg register class) legal register class for
1236   // a group of value types. For example, on i386, i8, i16, and i32
1237   // representative would be GR32; while on x86_64 it's GR64.
1238   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1239     const TargetRegisterClass* RRC;
1240     uint8_t Cost;
1241     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1242     RepRegClassForVT[i] = RRC;
1243     RepRegClassCostForVT[i] = Cost;
1244   }
1245 }
1246 
1247 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1248                                            EVT VT) const {
1249   assert(!VT.isVector() && "No default SetCC type for vectors!");
1250   return getPointerTy(DL).SimpleTy;
1251 }
1252 
1253 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1254   return MVT::i32; // return the default value
1255 }
1256 
1257 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1258 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1259 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1260 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1261 ///
1262 /// This method returns the number of registers needed, and the VT for each
1263 /// register.  It also returns the VT and quantity of the intermediate values
1264 /// before they are promoted/expanded.
1265 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1266                                                 EVT &IntermediateVT,
1267                                                 unsigned &NumIntermediates,
1268                                                 MVT &RegisterVT) const {
1269   unsigned NumElts = VT.getVectorNumElements();
1270 
1271   // If there is a wider vector type with the same element type as this one,
1272   // or a promoted vector type that has the same number of elements which
1273   // are wider, then we should convert to that legal vector type.
1274   // This handles things like <2 x float> -> <4 x float> and
1275   // <4 x i1> -> <4 x i32>.
1276   LegalizeTypeAction TA = getTypeAction(Context, VT);
1277   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1278     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1279     if (isTypeLegal(RegisterEVT)) {
1280       IntermediateVT = RegisterEVT;
1281       RegisterVT = RegisterEVT.getSimpleVT();
1282       NumIntermediates = 1;
1283       return 1;
1284     }
1285   }
1286 
1287   // Figure out the right, legal destination reg to copy into.
1288   EVT EltTy = VT.getVectorElementType();
1289 
1290   unsigned NumVectorRegs = 1;
1291 
1292   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1293   // could break down into LHS/RHS like LegalizeDAG does.
1294   if (!isPowerOf2_32(NumElts)) {
1295     NumVectorRegs = NumElts;
1296     NumElts = 1;
1297   }
1298 
1299   // Divide the input until we get to a supported size.  This will always
1300   // end with a scalar if the target doesn't support vectors.
1301   while (NumElts > 1 && !isTypeLegal(
1302                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1303     NumElts >>= 1;
1304     NumVectorRegs <<= 1;
1305   }
1306 
1307   NumIntermediates = NumVectorRegs;
1308 
1309   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1310   if (!isTypeLegal(NewVT))
1311     NewVT = EltTy;
1312   IntermediateVT = NewVT;
1313 
1314   MVT DestVT = getRegisterType(Context, NewVT);
1315   RegisterVT = DestVT;
1316   unsigned NewVTSize = NewVT.getSizeInBits();
1317 
1318   // Convert sizes such as i33 to i64.
1319   if (!isPowerOf2_32(NewVTSize))
1320     NewVTSize = NextPowerOf2(NewVTSize);
1321 
1322   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1323     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1324 
1325   // Otherwise, promotion or legal types use the same number of registers as
1326   // the vector decimated to the appropriate level.
1327   return NumVectorRegs;
1328 }
1329 
1330 /// Get the EVTs and ArgFlags collections that represent the legalized return
1331 /// type of the given function.  This does not require a DAG or a return value,
1332 /// and is suitable for use before any DAGs for the function are constructed.
1333 /// TODO: Move this out of TargetLowering.cpp.
1334 void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr,
1335                          SmallVectorImpl<ISD::OutputArg> &Outs,
1336                          const TargetLowering &TLI, const DataLayout &DL) {
1337   SmallVector<EVT, 4> ValueVTs;
1338   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1339   unsigned NumValues = ValueVTs.size();
1340   if (NumValues == 0) return;
1341 
1342   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1343     EVT VT = ValueVTs[j];
1344     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1345 
1346     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1347       ExtendKind = ISD::SIGN_EXTEND;
1348     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1349       ExtendKind = ISD::ZERO_EXTEND;
1350 
1351     // FIXME: C calling convention requires the return type to be promoted to
1352     // at least 32-bit. But this is not necessary for non-C calling
1353     // conventions. The frontend should mark functions whose return values
1354     // require promoting with signext or zeroext attributes.
1355     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1356       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1357       if (VT.bitsLT(MinVT))
1358         VT = MinVT;
1359     }
1360 
1361     unsigned NumParts =
1362         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), VT);
1363     MVT PartVT =
1364         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), VT);
1365 
1366     // 'inreg' on function refers to return value
1367     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1368     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1369       Flags.setInReg();
1370 
1371     // Propagate extension type if any
1372     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1373       Flags.setSExt();
1374     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1375       Flags.setZExt();
1376 
1377     for (unsigned i = 0; i < NumParts; ++i)
1378       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1379   }
1380 }
1381 
1382 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1383 /// function arguments in the caller parameter area.  This is the actual
1384 /// alignment, not its logarithm.
1385 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1386                                                    const DataLayout &DL) const {
1387   return DL.getABITypeAlignment(Ty);
1388 }
1389 
1390 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1391                                             const DataLayout &DL, EVT VT,
1392                                             unsigned AddrSpace,
1393                                             unsigned Alignment,
1394                                             bool *Fast) const {
1395   // Check if the specified alignment is sufficient based on the data layout.
1396   // TODO: While using the data layout works in practice, a better solution
1397   // would be to implement this check directly (make this a virtual function).
1398   // For example, the ABI alignment may change based on software platform while
1399   // this function should only be affected by hardware implementation.
1400   Type *Ty = VT.getTypeForEVT(Context);
1401   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1402     // Assume that an access that meets the ABI-specified alignment is fast.
1403     if (Fast != nullptr)
1404       *Fast = true;
1405     return true;
1406   }
1407 
1408   // This is a misaligned access.
1409   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1410 }
1411 
1412 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1413   return BranchProbability(MinPercentageForPredictableBranch, 100);
1414 }
1415 
1416 //===----------------------------------------------------------------------===//
1417 //  TargetTransformInfo Helpers
1418 //===----------------------------------------------------------------------===//
1419 
1420 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1421   enum InstructionOpcodes {
1422 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1423 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1424 #include "llvm/IR/Instruction.def"
1425   };
1426   switch (static_cast<InstructionOpcodes>(Opcode)) {
1427   case Ret:            return 0;
1428   case Br:             return 0;
1429   case Switch:         return 0;
1430   case IndirectBr:     return 0;
1431   case Invoke:         return 0;
1432   case Resume:         return 0;
1433   case Unreachable:    return 0;
1434   case CleanupRet:     return 0;
1435   case CatchRet:       return 0;
1436   case CatchPad:       return 0;
1437   case CatchSwitch:    return 0;
1438   case CleanupPad:     return 0;
1439   case Add:            return ISD::ADD;
1440   case FAdd:           return ISD::FADD;
1441   case Sub:            return ISD::SUB;
1442   case FSub:           return ISD::FSUB;
1443   case Mul:            return ISD::MUL;
1444   case FMul:           return ISD::FMUL;
1445   case UDiv:           return ISD::UDIV;
1446   case SDiv:           return ISD::SDIV;
1447   case FDiv:           return ISD::FDIV;
1448   case URem:           return ISD::UREM;
1449   case SRem:           return ISD::SREM;
1450   case FRem:           return ISD::FREM;
1451   case Shl:            return ISD::SHL;
1452   case LShr:           return ISD::SRL;
1453   case AShr:           return ISD::SRA;
1454   case And:            return ISD::AND;
1455   case Or:             return ISD::OR;
1456   case Xor:            return ISD::XOR;
1457   case Alloca:         return 0;
1458   case Load:           return ISD::LOAD;
1459   case Store:          return ISD::STORE;
1460   case GetElementPtr:  return 0;
1461   case Fence:          return 0;
1462   case AtomicCmpXchg:  return 0;
1463   case AtomicRMW:      return 0;
1464   case Trunc:          return ISD::TRUNCATE;
1465   case ZExt:           return ISD::ZERO_EXTEND;
1466   case SExt:           return ISD::SIGN_EXTEND;
1467   case FPToUI:         return ISD::FP_TO_UINT;
1468   case FPToSI:         return ISD::FP_TO_SINT;
1469   case UIToFP:         return ISD::UINT_TO_FP;
1470   case SIToFP:         return ISD::SINT_TO_FP;
1471   case FPTrunc:        return ISD::FP_ROUND;
1472   case FPExt:          return ISD::FP_EXTEND;
1473   case PtrToInt:       return ISD::BITCAST;
1474   case IntToPtr:       return ISD::BITCAST;
1475   case BitCast:        return ISD::BITCAST;
1476   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1477   case ICmp:           return ISD::SETCC;
1478   case FCmp:           return ISD::SETCC;
1479   case PHI:            return 0;
1480   case Call:           return 0;
1481   case Select:         return ISD::SELECT;
1482   case UserOp1:        return 0;
1483   case UserOp2:        return 0;
1484   case VAArg:          return 0;
1485   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1486   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1487   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1488   case ExtractValue:   return ISD::MERGE_VALUES;
1489   case InsertValue:    return ISD::MERGE_VALUES;
1490   case LandingPad:     return 0;
1491   }
1492 
1493   llvm_unreachable("Unknown instruction type encountered!");
1494 }
1495 
1496 std::pair<int, MVT>
1497 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1498                                             Type *Ty) const {
1499   LLVMContext &C = Ty->getContext();
1500   EVT MTy = getValueType(DL, Ty);
1501 
1502   int Cost = 1;
1503   // We keep legalizing the type until we find a legal kind. We assume that
1504   // the only operation that costs anything is the split. After splitting
1505   // we need to handle two types.
1506   while (true) {
1507     LegalizeKind LK = getTypeConversion(C, MTy);
1508 
1509     if (LK.first == TypeLegal)
1510       return std::make_pair(Cost, MTy.getSimpleVT());
1511 
1512     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1513       Cost *= 2;
1514 
1515     // Do not loop with f128 type.
1516     if (MTy == LK.second)
1517       return std::make_pair(Cost, MTy.getSimpleVT());
1518 
1519     // Keep legalizing the type.
1520     MTy = LK.second;
1521   }
1522 }
1523 
1524 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1525                                                               bool UseTLS) const {
1526   // compiler-rt provides a variable with a magic name.  Targets that do not
1527   // link with compiler-rt may also provide such a variable.
1528   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1529   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1530   auto UnsafeStackPtr =
1531       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1532 
1533   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1534 
1535   if (!UnsafeStackPtr) {
1536     auto TLSModel = UseTLS ?
1537         GlobalValue::InitialExecTLSModel :
1538         GlobalValue::NotThreadLocal;
1539     // The global variable is not defined yet, define it ourselves.
1540     // We use the initial-exec TLS model because we do not support the
1541     // variable living anywhere other than in the main executable.
1542     UnsafeStackPtr = new GlobalVariable(
1543         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1544         UnsafeStackPtrVar, nullptr, TLSModel);
1545   } else {
1546     // The variable exists, check its type and attributes.
1547     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1548       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1549     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1550       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1551                          (UseTLS ? "" : "not ") + "be thread-local");
1552   }
1553   return UnsafeStackPtr;
1554 }
1555 
1556 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1557   if (!TM.getTargetTriple().isAndroid())
1558     return getDefaultSafeStackPointerLocation(IRB, true);
1559 
1560   // Android provides a libc function to retrieve the address of the current
1561   // thread's unsafe stack pointer.
1562   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1563   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1564   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1565                                      StackPtrTy->getPointerTo(0));
1566   return IRB.CreateCall(Fn);
1567 }
1568 
1569 //===----------------------------------------------------------------------===//
1570 //  Loop Strength Reduction hooks
1571 //===----------------------------------------------------------------------===//
1572 
1573 /// isLegalAddressingMode - Return true if the addressing mode represented
1574 /// by AM is legal for this target, for a load/store of the specified type.
1575 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1576                                                const AddrMode &AM, Type *Ty,
1577                                                unsigned AS, Instruction *I) const {
1578   // The default implementation of this implements a conservative RISCy, r+r and
1579   // r+i addr mode.
1580 
1581   // Allows a sign-extended 16-bit immediate field.
1582   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1583     return false;
1584 
1585   // No global is ever allowed as a base.
1586   if (AM.BaseGV)
1587     return false;
1588 
1589   // Only support r+r,
1590   switch (AM.Scale) {
1591   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1592     break;
1593   case 1:
1594     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1595       return false;
1596     // Otherwise we have r+r or r+i.
1597     break;
1598   case 2:
1599     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1600       return false;
1601     // Allow 2*r as r+r.
1602     break;
1603   default: // Don't allow n * r
1604     return false;
1605   }
1606 
1607   return true;
1608 }
1609 
1610 //===----------------------------------------------------------------------===//
1611 //  Stack Protector
1612 //===----------------------------------------------------------------------===//
1613 
1614 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1615 // so that SelectionDAG handle SSP.
1616 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1617   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1618     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1619     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1620     return M.getOrInsertGlobal("__guard_local", PtrTy);
1621   }
1622   return nullptr;
1623 }
1624 
1625 // Currently only support "standard" __stack_chk_guard.
1626 // TODO: add LOAD_STACK_GUARD support.
1627 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1628   if (!M.getNamedValue("__stack_chk_guard"))
1629     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1630                        GlobalVariable::ExternalLinkage,
1631                        nullptr, "__stack_chk_guard");
1632 }
1633 
1634 // Currently only support "standard" __stack_chk_guard.
1635 // TODO: add LOAD_STACK_GUARD support.
1636 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1637   return M.getNamedValue("__stack_chk_guard");
1638 }
1639 
1640 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1641   return nullptr;
1642 }
1643 
1644 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1645   return MinimumJumpTableEntries;
1646 }
1647 
1648 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1649   MinimumJumpTableEntries = Val;
1650 }
1651 
1652 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1653   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1654 }
1655 
1656 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1657   return MaximumJumpTableSize;
1658 }
1659 
1660 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1661   MaximumJumpTableSize = Val;
1662 }
1663 
1664 //===----------------------------------------------------------------------===//
1665 //  Reciprocal Estimates
1666 //===----------------------------------------------------------------------===//
1667 
1668 /// Get the reciprocal estimate attribute string for a function that will
1669 /// override the target defaults.
1670 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1671   const Function &F = MF.getFunction();
1672   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1673 }
1674 
1675 /// Construct a string for the given reciprocal operation of the given type.
1676 /// This string should match the corresponding option to the front-end's
1677 /// "-mrecip" flag assuming those strings have been passed through in an
1678 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1679 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1680   std::string Name = VT.isVector() ? "vec-" : "";
1681 
1682   Name += IsSqrt ? "sqrt" : "div";
1683 
1684   // TODO: Handle "half" or other float types?
1685   if (VT.getScalarType() == MVT::f64) {
1686     Name += "d";
1687   } else {
1688     assert(VT.getScalarType() == MVT::f32 &&
1689            "Unexpected FP type for reciprocal estimate");
1690     Name += "f";
1691   }
1692 
1693   return Name;
1694 }
1695 
1696 /// Return the character position and value (a single numeric character) of a
1697 /// customized refinement operation in the input string if it exists. Return
1698 /// false if there is no customized refinement step count.
1699 static bool parseRefinementStep(StringRef In, size_t &Position,
1700                                 uint8_t &Value) {
1701   const char RefStepToken = ':';
1702   Position = In.find(RefStepToken);
1703   if (Position == StringRef::npos)
1704     return false;
1705 
1706   StringRef RefStepString = In.substr(Position + 1);
1707   // Allow exactly one numeric character for the additional refinement
1708   // step parameter.
1709   if (RefStepString.size() == 1) {
1710     char RefStepChar = RefStepString[0];
1711     if (RefStepChar >= '0' && RefStepChar <= '9') {
1712       Value = RefStepChar - '0';
1713       return true;
1714     }
1715   }
1716   report_fatal_error("Invalid refinement step for -recip.");
1717 }
1718 
1719 /// For the input attribute string, return one of the ReciprocalEstimate enum
1720 /// status values (enabled, disabled, or not specified) for this operation on
1721 /// the specified data type.
1722 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1723   if (Override.empty())
1724     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1725 
1726   SmallVector<StringRef, 4> OverrideVector;
1727   Override.split(OverrideVector, ',');
1728   unsigned NumArgs = OverrideVector.size();
1729 
1730   // Check if "all", "none", or "default" was specified.
1731   if (NumArgs == 1) {
1732     // Look for an optional setting of the number of refinement steps needed
1733     // for this type of reciprocal operation.
1734     size_t RefPos;
1735     uint8_t RefSteps;
1736     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1737       // Split the string for further processing.
1738       Override = Override.substr(0, RefPos);
1739     }
1740 
1741     // All reciprocal types are enabled.
1742     if (Override == "all")
1743       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1744 
1745     // All reciprocal types are disabled.
1746     if (Override == "none")
1747       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1748 
1749     // Target defaults for enablement are used.
1750     if (Override == "default")
1751       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1752   }
1753 
1754   // The attribute string may omit the size suffix ('f'/'d').
1755   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1756   std::string VTNameNoSize = VTName;
1757   VTNameNoSize.pop_back();
1758   static const char DisabledPrefix = '!';
1759 
1760   for (StringRef RecipType : OverrideVector) {
1761     size_t RefPos;
1762     uint8_t RefSteps;
1763     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1764       RecipType = RecipType.substr(0, RefPos);
1765 
1766     // Ignore the disablement token for string matching.
1767     bool IsDisabled = RecipType[0] == DisabledPrefix;
1768     if (IsDisabled)
1769       RecipType = RecipType.substr(1);
1770 
1771     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1772       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1773                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1774   }
1775 
1776   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1777 }
1778 
1779 /// For the input attribute string, return the customized refinement step count
1780 /// for this operation on the specified data type. If the step count does not
1781 /// exist, return the ReciprocalEstimate enum value for unspecified.
1782 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1783   if (Override.empty())
1784     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1785 
1786   SmallVector<StringRef, 4> OverrideVector;
1787   Override.split(OverrideVector, ',');
1788   unsigned NumArgs = OverrideVector.size();
1789 
1790   // Check if "all", "default", or "none" was specified.
1791   if (NumArgs == 1) {
1792     // Look for an optional setting of the number of refinement steps needed
1793     // for this type of reciprocal operation.
1794     size_t RefPos;
1795     uint8_t RefSteps;
1796     if (!parseRefinementStep(Override, RefPos, RefSteps))
1797       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1798 
1799     // Split the string for further processing.
1800     Override = Override.substr(0, RefPos);
1801     assert(Override != "none" &&
1802            "Disabled reciprocals, but specifed refinement steps?");
1803 
1804     // If this is a general override, return the specified number of steps.
1805     if (Override == "all" || Override == "default")
1806       return RefSteps;
1807   }
1808 
1809   // The attribute string may omit the size suffix ('f'/'d').
1810   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1811   std::string VTNameNoSize = VTName;
1812   VTNameNoSize.pop_back();
1813 
1814   for (StringRef RecipType : OverrideVector) {
1815     size_t RefPos;
1816     uint8_t RefSteps;
1817     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1818       continue;
1819 
1820     RecipType = RecipType.substr(0, RefPos);
1821     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1822       return RefSteps;
1823   }
1824 
1825   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1826 }
1827 
1828 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1829                                                     MachineFunction &MF) const {
1830   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1831 }
1832 
1833 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1834                                                    MachineFunction &MF) const {
1835   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1836 }
1837 
1838 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1839                                                MachineFunction &MF) const {
1840   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1841 }
1842 
1843 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1844                                               MachineFunction &MF) const {
1845   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1846 }
1847 
1848 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1849   MF.getRegInfo().freezeReservedRegs(MF);
1850 }
1851