1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLoweringBase class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Mangler.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetLoweringObjectFile.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include <cctype> 38 using namespace llvm; 39 40 /// InitLibcallNames - Set default libcall names. 41 /// 42 static void InitLibcallNames(const char **Names, const Triple &TT) { 43 Names[RTLIB::SHL_I16] = "__ashlhi3"; 44 Names[RTLIB::SHL_I32] = "__ashlsi3"; 45 Names[RTLIB::SHL_I64] = "__ashldi3"; 46 Names[RTLIB::SHL_I128] = "__ashlti3"; 47 Names[RTLIB::SRL_I16] = "__lshrhi3"; 48 Names[RTLIB::SRL_I32] = "__lshrsi3"; 49 Names[RTLIB::SRL_I64] = "__lshrdi3"; 50 Names[RTLIB::SRL_I128] = "__lshrti3"; 51 Names[RTLIB::SRA_I16] = "__ashrhi3"; 52 Names[RTLIB::SRA_I32] = "__ashrsi3"; 53 Names[RTLIB::SRA_I64] = "__ashrdi3"; 54 Names[RTLIB::SRA_I128] = "__ashrti3"; 55 Names[RTLIB::MUL_I8] = "__mulqi3"; 56 Names[RTLIB::MUL_I16] = "__mulhi3"; 57 Names[RTLIB::MUL_I32] = "__mulsi3"; 58 Names[RTLIB::MUL_I64] = "__muldi3"; 59 Names[RTLIB::MUL_I128] = "__multi3"; 60 Names[RTLIB::MULO_I32] = "__mulosi4"; 61 Names[RTLIB::MULO_I64] = "__mulodi4"; 62 Names[RTLIB::MULO_I128] = "__muloti4"; 63 Names[RTLIB::SDIV_I8] = "__divqi3"; 64 Names[RTLIB::SDIV_I16] = "__divhi3"; 65 Names[RTLIB::SDIV_I32] = "__divsi3"; 66 Names[RTLIB::SDIV_I64] = "__divdi3"; 67 Names[RTLIB::SDIV_I128] = "__divti3"; 68 Names[RTLIB::UDIV_I8] = "__udivqi3"; 69 Names[RTLIB::UDIV_I16] = "__udivhi3"; 70 Names[RTLIB::UDIV_I32] = "__udivsi3"; 71 Names[RTLIB::UDIV_I64] = "__udivdi3"; 72 Names[RTLIB::UDIV_I128] = "__udivti3"; 73 Names[RTLIB::SREM_I8] = "__modqi3"; 74 Names[RTLIB::SREM_I16] = "__modhi3"; 75 Names[RTLIB::SREM_I32] = "__modsi3"; 76 Names[RTLIB::SREM_I64] = "__moddi3"; 77 Names[RTLIB::SREM_I128] = "__modti3"; 78 Names[RTLIB::UREM_I8] = "__umodqi3"; 79 Names[RTLIB::UREM_I16] = "__umodhi3"; 80 Names[RTLIB::UREM_I32] = "__umodsi3"; 81 Names[RTLIB::UREM_I64] = "__umoddi3"; 82 Names[RTLIB::UREM_I128] = "__umodti3"; 83 84 // These are generally not available. 85 Names[RTLIB::SDIVREM_I8] = nullptr; 86 Names[RTLIB::SDIVREM_I16] = nullptr; 87 Names[RTLIB::SDIVREM_I32] = nullptr; 88 Names[RTLIB::SDIVREM_I64] = nullptr; 89 Names[RTLIB::SDIVREM_I128] = nullptr; 90 Names[RTLIB::UDIVREM_I8] = nullptr; 91 Names[RTLIB::UDIVREM_I16] = nullptr; 92 Names[RTLIB::UDIVREM_I32] = nullptr; 93 Names[RTLIB::UDIVREM_I64] = nullptr; 94 Names[RTLIB::UDIVREM_I128] = nullptr; 95 96 Names[RTLIB::NEG_I32] = "__negsi2"; 97 Names[RTLIB::NEG_I64] = "__negdi2"; 98 Names[RTLIB::ADD_F32] = "__addsf3"; 99 Names[RTLIB::ADD_F64] = "__adddf3"; 100 Names[RTLIB::ADD_F80] = "__addxf3"; 101 Names[RTLIB::ADD_F128] = "__addtf3"; 102 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; 103 Names[RTLIB::SUB_F32] = "__subsf3"; 104 Names[RTLIB::SUB_F64] = "__subdf3"; 105 Names[RTLIB::SUB_F80] = "__subxf3"; 106 Names[RTLIB::SUB_F128] = "__subtf3"; 107 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; 108 Names[RTLIB::MUL_F32] = "__mulsf3"; 109 Names[RTLIB::MUL_F64] = "__muldf3"; 110 Names[RTLIB::MUL_F80] = "__mulxf3"; 111 Names[RTLIB::MUL_F128] = "__multf3"; 112 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; 113 Names[RTLIB::DIV_F32] = "__divsf3"; 114 Names[RTLIB::DIV_F64] = "__divdf3"; 115 Names[RTLIB::DIV_F80] = "__divxf3"; 116 Names[RTLIB::DIV_F128] = "__divtf3"; 117 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; 118 Names[RTLIB::REM_F32] = "fmodf"; 119 Names[RTLIB::REM_F64] = "fmod"; 120 Names[RTLIB::REM_F80] = "fmodl"; 121 Names[RTLIB::REM_F128] = "fmodl"; 122 Names[RTLIB::REM_PPCF128] = "fmodl"; 123 Names[RTLIB::FMA_F32] = "fmaf"; 124 Names[RTLIB::FMA_F64] = "fma"; 125 Names[RTLIB::FMA_F80] = "fmal"; 126 Names[RTLIB::FMA_F128] = "fmal"; 127 Names[RTLIB::FMA_PPCF128] = "fmal"; 128 Names[RTLIB::POWI_F32] = "__powisf2"; 129 Names[RTLIB::POWI_F64] = "__powidf2"; 130 Names[RTLIB::POWI_F80] = "__powixf2"; 131 Names[RTLIB::POWI_F128] = "__powitf2"; 132 Names[RTLIB::POWI_PPCF128] = "__powitf2"; 133 Names[RTLIB::SQRT_F32] = "sqrtf"; 134 Names[RTLIB::SQRT_F64] = "sqrt"; 135 Names[RTLIB::SQRT_F80] = "sqrtl"; 136 Names[RTLIB::SQRT_F128] = "sqrtl"; 137 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; 138 Names[RTLIB::LOG_F32] = "logf"; 139 Names[RTLIB::LOG_F64] = "log"; 140 Names[RTLIB::LOG_F80] = "logl"; 141 Names[RTLIB::LOG_F128] = "logl"; 142 Names[RTLIB::LOG_PPCF128] = "logl"; 143 Names[RTLIB::LOG2_F32] = "log2f"; 144 Names[RTLIB::LOG2_F64] = "log2"; 145 Names[RTLIB::LOG2_F80] = "log2l"; 146 Names[RTLIB::LOG2_F128] = "log2l"; 147 Names[RTLIB::LOG2_PPCF128] = "log2l"; 148 Names[RTLIB::LOG10_F32] = "log10f"; 149 Names[RTLIB::LOG10_F64] = "log10"; 150 Names[RTLIB::LOG10_F80] = "log10l"; 151 Names[RTLIB::LOG10_F128] = "log10l"; 152 Names[RTLIB::LOG10_PPCF128] = "log10l"; 153 Names[RTLIB::EXP_F32] = "expf"; 154 Names[RTLIB::EXP_F64] = "exp"; 155 Names[RTLIB::EXP_F80] = "expl"; 156 Names[RTLIB::EXP_F128] = "expl"; 157 Names[RTLIB::EXP_PPCF128] = "expl"; 158 Names[RTLIB::EXP2_F32] = "exp2f"; 159 Names[RTLIB::EXP2_F64] = "exp2"; 160 Names[RTLIB::EXP2_F80] = "exp2l"; 161 Names[RTLIB::EXP2_F128] = "exp2l"; 162 Names[RTLIB::EXP2_PPCF128] = "exp2l"; 163 Names[RTLIB::SIN_F32] = "sinf"; 164 Names[RTLIB::SIN_F64] = "sin"; 165 Names[RTLIB::SIN_F80] = "sinl"; 166 Names[RTLIB::SIN_F128] = "sinl"; 167 Names[RTLIB::SIN_PPCF128] = "sinl"; 168 Names[RTLIB::COS_F32] = "cosf"; 169 Names[RTLIB::COS_F64] = "cos"; 170 Names[RTLIB::COS_F80] = "cosl"; 171 Names[RTLIB::COS_F128] = "cosl"; 172 Names[RTLIB::COS_PPCF128] = "cosl"; 173 Names[RTLIB::POW_F32] = "powf"; 174 Names[RTLIB::POW_F64] = "pow"; 175 Names[RTLIB::POW_F80] = "powl"; 176 Names[RTLIB::POW_F128] = "powl"; 177 Names[RTLIB::POW_PPCF128] = "powl"; 178 Names[RTLIB::CEIL_F32] = "ceilf"; 179 Names[RTLIB::CEIL_F64] = "ceil"; 180 Names[RTLIB::CEIL_F80] = "ceill"; 181 Names[RTLIB::CEIL_F128] = "ceill"; 182 Names[RTLIB::CEIL_PPCF128] = "ceill"; 183 Names[RTLIB::TRUNC_F32] = "truncf"; 184 Names[RTLIB::TRUNC_F64] = "trunc"; 185 Names[RTLIB::TRUNC_F80] = "truncl"; 186 Names[RTLIB::TRUNC_F128] = "truncl"; 187 Names[RTLIB::TRUNC_PPCF128] = "truncl"; 188 Names[RTLIB::RINT_F32] = "rintf"; 189 Names[RTLIB::RINT_F64] = "rint"; 190 Names[RTLIB::RINT_F80] = "rintl"; 191 Names[RTLIB::RINT_F128] = "rintl"; 192 Names[RTLIB::RINT_PPCF128] = "rintl"; 193 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; 194 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; 195 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; 196 Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; 197 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; 198 Names[RTLIB::ROUND_F32] = "roundf"; 199 Names[RTLIB::ROUND_F64] = "round"; 200 Names[RTLIB::ROUND_F80] = "roundl"; 201 Names[RTLIB::ROUND_F128] = "roundl"; 202 Names[RTLIB::ROUND_PPCF128] = "roundl"; 203 Names[RTLIB::FLOOR_F32] = "floorf"; 204 Names[RTLIB::FLOOR_F64] = "floor"; 205 Names[RTLIB::FLOOR_F80] = "floorl"; 206 Names[RTLIB::FLOOR_F128] = "floorl"; 207 Names[RTLIB::FLOOR_PPCF128] = "floorl"; 208 Names[RTLIB::ROUND_F32] = "roundf"; 209 Names[RTLIB::ROUND_F64] = "round"; 210 Names[RTLIB::ROUND_F80] = "roundl"; 211 Names[RTLIB::ROUND_F128] = "roundl"; 212 Names[RTLIB::ROUND_PPCF128] = "roundl"; 213 Names[RTLIB::COPYSIGN_F32] = "copysignf"; 214 Names[RTLIB::COPYSIGN_F64] = "copysign"; 215 Names[RTLIB::COPYSIGN_F80] = "copysignl"; 216 Names[RTLIB::COPYSIGN_F128] = "copysignl"; 217 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; 218 Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; 219 Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; 220 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; 221 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 222 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 223 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; 224 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; 225 Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; 226 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; 227 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; 228 Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; 229 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; 230 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; 231 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; 232 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; 233 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; 234 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; 235 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; 236 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; 237 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; 238 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; 239 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; 240 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; 241 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; 242 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; 243 Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; 244 Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; 245 Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; 246 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; 247 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; 248 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; 249 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; 250 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; 251 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; 252 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; 253 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; 254 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; 255 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; 256 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; 257 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; 258 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; 259 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; 260 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; 261 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; 262 Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; 263 Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; 264 Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; 265 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; 266 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; 267 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; 268 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; 269 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; 270 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; 271 Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; 272 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; 273 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; 274 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; 275 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; 276 Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; 277 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; 278 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; 279 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; 280 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; 281 Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; 282 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; 283 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; 284 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; 285 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; 286 Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; 287 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; 288 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; 289 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; 290 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; 291 Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; 292 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; 293 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; 294 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; 295 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; 296 Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; 297 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; 298 Names[RTLIB::OEQ_F32] = "__eqsf2"; 299 Names[RTLIB::OEQ_F64] = "__eqdf2"; 300 Names[RTLIB::OEQ_F128] = "__eqtf2"; 301 Names[RTLIB::UNE_F32] = "__nesf2"; 302 Names[RTLIB::UNE_F64] = "__nedf2"; 303 Names[RTLIB::UNE_F128] = "__netf2"; 304 Names[RTLIB::OGE_F32] = "__gesf2"; 305 Names[RTLIB::OGE_F64] = "__gedf2"; 306 Names[RTLIB::OGE_F128] = "__getf2"; 307 Names[RTLIB::OLT_F32] = "__ltsf2"; 308 Names[RTLIB::OLT_F64] = "__ltdf2"; 309 Names[RTLIB::OLT_F128] = "__lttf2"; 310 Names[RTLIB::OLE_F32] = "__lesf2"; 311 Names[RTLIB::OLE_F64] = "__ledf2"; 312 Names[RTLIB::OLE_F128] = "__letf2"; 313 Names[RTLIB::OGT_F32] = "__gtsf2"; 314 Names[RTLIB::OGT_F64] = "__gtdf2"; 315 Names[RTLIB::OGT_F128] = "__gttf2"; 316 Names[RTLIB::UO_F32] = "__unordsf2"; 317 Names[RTLIB::UO_F64] = "__unorddf2"; 318 Names[RTLIB::UO_F128] = "__unordtf2"; 319 Names[RTLIB::O_F32] = "__unordsf2"; 320 Names[RTLIB::O_F64] = "__unorddf2"; 321 Names[RTLIB::O_F128] = "__unordtf2"; 322 Names[RTLIB::MEMCPY] = "memcpy"; 323 Names[RTLIB::MEMMOVE] = "memmove"; 324 Names[RTLIB::MEMSET] = "memset"; 325 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; 326 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; 327 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; 328 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; 329 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; 330 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; 331 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; 332 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; 333 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; 334 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; 335 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; 336 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; 337 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; 338 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; 339 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; 340 Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; 341 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; 342 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; 343 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; 344 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; 345 Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; 346 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; 347 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; 348 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; 349 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; 350 Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; 351 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; 352 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; 353 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; 354 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; 355 Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; 356 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; 357 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; 358 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; 359 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; 360 Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; 361 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; 362 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; 363 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; 364 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; 365 Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; 366 Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; 367 Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; 368 Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; 369 Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; 370 Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; 371 Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; 372 Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; 373 Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; 374 Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; 375 Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; 376 Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; 377 Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; 378 Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; 379 Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; 380 Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; 381 Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; 382 Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; 383 Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; 384 Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; 385 Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; 386 387 if (TT.getEnvironment() == Triple::GNU) { 388 Names[RTLIB::SINCOS_F32] = "sincosf"; 389 Names[RTLIB::SINCOS_F64] = "sincos"; 390 Names[RTLIB::SINCOS_F80] = "sincosl"; 391 Names[RTLIB::SINCOS_F128] = "sincosl"; 392 Names[RTLIB::SINCOS_PPCF128] = "sincosl"; 393 } else { 394 // These are generally not available. 395 Names[RTLIB::SINCOS_F32] = nullptr; 396 Names[RTLIB::SINCOS_F64] = nullptr; 397 Names[RTLIB::SINCOS_F80] = nullptr; 398 Names[RTLIB::SINCOS_F128] = nullptr; 399 Names[RTLIB::SINCOS_PPCF128] = nullptr; 400 } 401 402 if (TT.getOS() != Triple::OpenBSD) { 403 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; 404 } else { 405 // These are generally not available. 406 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr; 407 } 408 } 409 410 /// InitLibcallCallingConvs - Set default libcall CallingConvs. 411 /// 412 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 413 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { 414 CCs[i] = CallingConv::C; 415 } 416 } 417 418 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 419 /// UNKNOWN_LIBCALL if there is none. 420 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 421 if (OpVT == MVT::f32) { 422 if (RetVT == MVT::f64) 423 return FPEXT_F32_F64; 424 if (RetVT == MVT::f128) 425 return FPEXT_F32_F128; 426 } else if (OpVT == MVT::f64) { 427 if (RetVT == MVT::f128) 428 return FPEXT_F64_F128; 429 } 430 431 return UNKNOWN_LIBCALL; 432 } 433 434 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 435 /// UNKNOWN_LIBCALL if there is none. 436 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 437 if (RetVT == MVT::f32) { 438 if (OpVT == MVT::f64) 439 return FPROUND_F64_F32; 440 if (OpVT == MVT::f80) 441 return FPROUND_F80_F32; 442 if (OpVT == MVT::f128) 443 return FPROUND_F128_F32; 444 if (OpVT == MVT::ppcf128) 445 return FPROUND_PPCF128_F32; 446 } else if (RetVT == MVT::f64) { 447 if (OpVT == MVT::f80) 448 return FPROUND_F80_F64; 449 if (OpVT == MVT::f128) 450 return FPROUND_F128_F64; 451 if (OpVT == MVT::ppcf128) 452 return FPROUND_PPCF128_F64; 453 } 454 455 return UNKNOWN_LIBCALL; 456 } 457 458 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 459 /// UNKNOWN_LIBCALL if there is none. 460 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 461 if (OpVT == MVT::f32) { 462 if (RetVT == MVT::i8) 463 return FPTOSINT_F32_I8; 464 if (RetVT == MVT::i16) 465 return FPTOSINT_F32_I16; 466 if (RetVT == MVT::i32) 467 return FPTOSINT_F32_I32; 468 if (RetVT == MVT::i64) 469 return FPTOSINT_F32_I64; 470 if (RetVT == MVT::i128) 471 return FPTOSINT_F32_I128; 472 } else if (OpVT == MVT::f64) { 473 if (RetVT == MVT::i8) 474 return FPTOSINT_F64_I8; 475 if (RetVT == MVT::i16) 476 return FPTOSINT_F64_I16; 477 if (RetVT == MVT::i32) 478 return FPTOSINT_F64_I32; 479 if (RetVT == MVT::i64) 480 return FPTOSINT_F64_I64; 481 if (RetVT == MVT::i128) 482 return FPTOSINT_F64_I128; 483 } else if (OpVT == MVT::f80) { 484 if (RetVT == MVT::i32) 485 return FPTOSINT_F80_I32; 486 if (RetVT == MVT::i64) 487 return FPTOSINT_F80_I64; 488 if (RetVT == MVT::i128) 489 return FPTOSINT_F80_I128; 490 } else if (OpVT == MVT::f128) { 491 if (RetVT == MVT::i32) 492 return FPTOSINT_F128_I32; 493 if (RetVT == MVT::i64) 494 return FPTOSINT_F128_I64; 495 if (RetVT == MVT::i128) 496 return FPTOSINT_F128_I128; 497 } else if (OpVT == MVT::ppcf128) { 498 if (RetVT == MVT::i32) 499 return FPTOSINT_PPCF128_I32; 500 if (RetVT == MVT::i64) 501 return FPTOSINT_PPCF128_I64; 502 if (RetVT == MVT::i128) 503 return FPTOSINT_PPCF128_I128; 504 } 505 return UNKNOWN_LIBCALL; 506 } 507 508 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 509 /// UNKNOWN_LIBCALL if there is none. 510 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 511 if (OpVT == MVT::f32) { 512 if (RetVT == MVT::i8) 513 return FPTOUINT_F32_I8; 514 if (RetVT == MVT::i16) 515 return FPTOUINT_F32_I16; 516 if (RetVT == MVT::i32) 517 return FPTOUINT_F32_I32; 518 if (RetVT == MVT::i64) 519 return FPTOUINT_F32_I64; 520 if (RetVT == MVT::i128) 521 return FPTOUINT_F32_I128; 522 } else if (OpVT == MVT::f64) { 523 if (RetVT == MVT::i8) 524 return FPTOUINT_F64_I8; 525 if (RetVT == MVT::i16) 526 return FPTOUINT_F64_I16; 527 if (RetVT == MVT::i32) 528 return FPTOUINT_F64_I32; 529 if (RetVT == MVT::i64) 530 return FPTOUINT_F64_I64; 531 if (RetVT == MVT::i128) 532 return FPTOUINT_F64_I128; 533 } else if (OpVT == MVT::f80) { 534 if (RetVT == MVT::i32) 535 return FPTOUINT_F80_I32; 536 if (RetVT == MVT::i64) 537 return FPTOUINT_F80_I64; 538 if (RetVT == MVT::i128) 539 return FPTOUINT_F80_I128; 540 } else if (OpVT == MVT::f128) { 541 if (RetVT == MVT::i32) 542 return FPTOUINT_F128_I32; 543 if (RetVT == MVT::i64) 544 return FPTOUINT_F128_I64; 545 if (RetVT == MVT::i128) 546 return FPTOUINT_F128_I128; 547 } else if (OpVT == MVT::ppcf128) { 548 if (RetVT == MVT::i32) 549 return FPTOUINT_PPCF128_I32; 550 if (RetVT == MVT::i64) 551 return FPTOUINT_PPCF128_I64; 552 if (RetVT == MVT::i128) 553 return FPTOUINT_PPCF128_I128; 554 } 555 return UNKNOWN_LIBCALL; 556 } 557 558 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 559 /// UNKNOWN_LIBCALL if there is none. 560 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 561 if (OpVT == MVT::i32) { 562 if (RetVT == MVT::f32) 563 return SINTTOFP_I32_F32; 564 if (RetVT == MVT::f64) 565 return SINTTOFP_I32_F64; 566 if (RetVT == MVT::f80) 567 return SINTTOFP_I32_F80; 568 if (RetVT == MVT::f128) 569 return SINTTOFP_I32_F128; 570 if (RetVT == MVT::ppcf128) 571 return SINTTOFP_I32_PPCF128; 572 } else if (OpVT == MVT::i64) { 573 if (RetVT == MVT::f32) 574 return SINTTOFP_I64_F32; 575 if (RetVT == MVT::f64) 576 return SINTTOFP_I64_F64; 577 if (RetVT == MVT::f80) 578 return SINTTOFP_I64_F80; 579 if (RetVT == MVT::f128) 580 return SINTTOFP_I64_F128; 581 if (RetVT == MVT::ppcf128) 582 return SINTTOFP_I64_PPCF128; 583 } else if (OpVT == MVT::i128) { 584 if (RetVT == MVT::f32) 585 return SINTTOFP_I128_F32; 586 if (RetVT == MVT::f64) 587 return SINTTOFP_I128_F64; 588 if (RetVT == MVT::f80) 589 return SINTTOFP_I128_F80; 590 if (RetVT == MVT::f128) 591 return SINTTOFP_I128_F128; 592 if (RetVT == MVT::ppcf128) 593 return SINTTOFP_I128_PPCF128; 594 } 595 return UNKNOWN_LIBCALL; 596 } 597 598 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 599 /// UNKNOWN_LIBCALL if there is none. 600 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 601 if (OpVT == MVT::i32) { 602 if (RetVT == MVT::f32) 603 return UINTTOFP_I32_F32; 604 if (RetVT == MVT::f64) 605 return UINTTOFP_I32_F64; 606 if (RetVT == MVT::f80) 607 return UINTTOFP_I32_F80; 608 if (RetVT == MVT::f128) 609 return UINTTOFP_I32_F128; 610 if (RetVT == MVT::ppcf128) 611 return UINTTOFP_I32_PPCF128; 612 } else if (OpVT == MVT::i64) { 613 if (RetVT == MVT::f32) 614 return UINTTOFP_I64_F32; 615 if (RetVT == MVT::f64) 616 return UINTTOFP_I64_F64; 617 if (RetVT == MVT::f80) 618 return UINTTOFP_I64_F80; 619 if (RetVT == MVT::f128) 620 return UINTTOFP_I64_F128; 621 if (RetVT == MVT::ppcf128) 622 return UINTTOFP_I64_PPCF128; 623 } else if (OpVT == MVT::i128) { 624 if (RetVT == MVT::f32) 625 return UINTTOFP_I128_F32; 626 if (RetVT == MVT::f64) 627 return UINTTOFP_I128_F64; 628 if (RetVT == MVT::f80) 629 return UINTTOFP_I128_F80; 630 if (RetVT == MVT::f128) 631 return UINTTOFP_I128_F128; 632 if (RetVT == MVT::ppcf128) 633 return UINTTOFP_I128_PPCF128; 634 } 635 return UNKNOWN_LIBCALL; 636 } 637 638 /// InitCmpLibcallCCs - Set default comparison libcall CC. 639 /// 640 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 641 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 642 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 643 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 644 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 645 CCs[RTLIB::UNE_F32] = ISD::SETNE; 646 CCs[RTLIB::UNE_F64] = ISD::SETNE; 647 CCs[RTLIB::UNE_F128] = ISD::SETNE; 648 CCs[RTLIB::OGE_F32] = ISD::SETGE; 649 CCs[RTLIB::OGE_F64] = ISD::SETGE; 650 CCs[RTLIB::OGE_F128] = ISD::SETGE; 651 CCs[RTLIB::OLT_F32] = ISD::SETLT; 652 CCs[RTLIB::OLT_F64] = ISD::SETLT; 653 CCs[RTLIB::OLT_F128] = ISD::SETLT; 654 CCs[RTLIB::OLE_F32] = ISD::SETLE; 655 CCs[RTLIB::OLE_F64] = ISD::SETLE; 656 CCs[RTLIB::OLE_F128] = ISD::SETLE; 657 CCs[RTLIB::OGT_F32] = ISD::SETGT; 658 CCs[RTLIB::OGT_F64] = ISD::SETGT; 659 CCs[RTLIB::OGT_F128] = ISD::SETGT; 660 CCs[RTLIB::UO_F32] = ISD::SETNE; 661 CCs[RTLIB::UO_F64] = ISD::SETNE; 662 CCs[RTLIB::UO_F128] = ISD::SETNE; 663 CCs[RTLIB::O_F32] = ISD::SETEQ; 664 CCs[RTLIB::O_F64] = ISD::SETEQ; 665 CCs[RTLIB::O_F128] = ISD::SETEQ; 666 } 667 668 /// NOTE: The constructor takes ownership of TLOF. 669 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm, 670 const TargetLoweringObjectFile *tlof) 671 : TM(tm), DL(TM.getDataLayout()), TLOF(*tlof) { 672 initActions(); 673 674 // Perform these initializations only once. 675 IsLittleEndian = DL->isLittleEndian(); 676 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; 677 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize 678 = MaxStoresPerMemmoveOptSize = 4; 679 UseUnderscoreSetJmp = false; 680 UseUnderscoreLongJmp = false; 681 SelectIsExpensive = false; 682 HasMultipleConditionRegisters = false; 683 HasExtractBitsInsn = false; 684 IntDivIsCheap = false; 685 Pow2DivIsCheap = false; 686 JumpIsExpensive = false; 687 PredictableSelectIsExpensive = false; 688 MaskAndBranchFoldingIsLegal = false; 689 StackPointerRegisterToSaveRestore = 0; 690 ExceptionPointerRegister = 0; 691 ExceptionSelectorRegister = 0; 692 BooleanContents = UndefinedBooleanContent; 693 BooleanVectorContents = UndefinedBooleanContent; 694 SchedPreferenceInfo = Sched::ILP; 695 JumpBufSize = 0; 696 JumpBufAlignment = 0; 697 MinFunctionAlignment = 0; 698 PrefFunctionAlignment = 0; 699 PrefLoopAlignment = 0; 700 MinStackArgumentAlignment = 1; 701 InsertFencesForAtomic = false; 702 SupportJumpTables = true; 703 MinimumJumpTableEntries = 4; 704 705 InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple())); 706 InitCmpLibcallCCs(CmpLibcallCCs); 707 InitLibcallCallingConvs(LibcallCallingConvs); 708 } 709 710 TargetLoweringBase::~TargetLoweringBase() { 711 delete &TLOF; 712 } 713 714 void TargetLoweringBase::initActions() { 715 // All operations default to being supported. 716 memset(OpActions, 0, sizeof(OpActions)); 717 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 718 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 719 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 720 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 721 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); 722 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); 723 724 // Set default actions for various operations. 725 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { 726 // Default all indexed load / store to expand. 727 for (unsigned IM = (unsigned)ISD::PRE_INC; 728 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 729 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); 730 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); 731 } 732 733 // Most backends expect to see the node which just returns the value loaded. 734 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 735 (MVT::SimpleValueType)VT, Expand); 736 737 // These operations default to expand. 738 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); 739 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); 740 741 // These library functions default to expand. 742 setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand); 743 744 // These operations default to expand for vector types. 745 if (VT >= MVT::FIRST_VECTOR_VALUETYPE && 746 VT <= MVT::LAST_VECTOR_VALUETYPE) 747 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); 748 } 749 750 // Most targets ignore the @llvm.prefetch intrinsic. 751 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 752 753 // ConstantFP nodes default to expand. Targets can either change this to 754 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 755 // to optimize expansions for certain constants. 756 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 757 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 758 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 759 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 760 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 761 762 // These library functions default to expand. 763 setOperationAction(ISD::FLOG , MVT::f16, Expand); 764 setOperationAction(ISD::FLOG2, MVT::f16, Expand); 765 setOperationAction(ISD::FLOG10, MVT::f16, Expand); 766 setOperationAction(ISD::FEXP , MVT::f16, Expand); 767 setOperationAction(ISD::FEXP2, MVT::f16, Expand); 768 setOperationAction(ISD::FFLOOR, MVT::f16, Expand); 769 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); 770 setOperationAction(ISD::FCEIL, MVT::f16, Expand); 771 setOperationAction(ISD::FRINT, MVT::f16, Expand); 772 setOperationAction(ISD::FTRUNC, MVT::f16, Expand); 773 setOperationAction(ISD::FROUND, MVT::f16, Expand); 774 setOperationAction(ISD::FLOG , MVT::f32, Expand); 775 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 776 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 777 setOperationAction(ISD::FEXP , MVT::f32, Expand); 778 setOperationAction(ISD::FEXP2, MVT::f32, Expand); 779 setOperationAction(ISD::FFLOOR, MVT::f32, Expand); 780 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); 781 setOperationAction(ISD::FCEIL, MVT::f32, Expand); 782 setOperationAction(ISD::FRINT, MVT::f32, Expand); 783 setOperationAction(ISD::FTRUNC, MVT::f32, Expand); 784 setOperationAction(ISD::FROUND, MVT::f32, Expand); 785 setOperationAction(ISD::FLOG , MVT::f64, Expand); 786 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 787 setOperationAction(ISD::FLOG10, MVT::f64, Expand); 788 setOperationAction(ISD::FEXP , MVT::f64, Expand); 789 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 790 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); 791 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); 792 setOperationAction(ISD::FCEIL, MVT::f64, Expand); 793 setOperationAction(ISD::FRINT, MVT::f64, Expand); 794 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); 795 setOperationAction(ISD::FROUND, MVT::f64, Expand); 796 setOperationAction(ISD::FLOG , MVT::f128, Expand); 797 setOperationAction(ISD::FLOG2, MVT::f128, Expand); 798 setOperationAction(ISD::FLOG10, MVT::f128, Expand); 799 setOperationAction(ISD::FEXP , MVT::f128, Expand); 800 setOperationAction(ISD::FEXP2, MVT::f128, Expand); 801 setOperationAction(ISD::FFLOOR, MVT::f128, Expand); 802 setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand); 803 setOperationAction(ISD::FCEIL, MVT::f128, Expand); 804 setOperationAction(ISD::FRINT, MVT::f128, Expand); 805 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); 806 setOperationAction(ISD::FROUND, MVT::f128, Expand); 807 808 // Default ISD::TRAP to expand (which turns it into abort). 809 setOperationAction(ISD::TRAP, MVT::Other, Expand); 810 811 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 812 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 813 // 814 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 815 } 816 817 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const { 818 return MVT::getIntegerVT(getPointerSizeInBits(AS)); 819 } 820 821 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const { 822 return DL->getPointerSizeInBits(AS); 823 } 824 825 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const { 826 assert(Ty->isPointerTy()); 827 return getPointerSizeInBits(Ty->getPointerAddressSpace()); 828 } 829 830 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const { 831 return MVT::getIntegerVT(8*DL->getPointerSize(0)); 832 } 833 834 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { 835 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 836 if (LHSTy.isVector()) 837 return LHSTy; 838 return getScalarShiftAmountTy(LHSTy); 839 } 840 841 /// canOpTrap - Returns true if the operation can trap for the value type. 842 /// VT must be a legal type. 843 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 844 assert(isTypeLegal(VT)); 845 switch (Op) { 846 default: 847 return false; 848 case ISD::FDIV: 849 case ISD::FREM: 850 case ISD::SDIV: 851 case ISD::UDIV: 852 case ISD::SREM: 853 case ISD::UREM: 854 return true; 855 } 856 } 857 858 859 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 860 unsigned &NumIntermediates, 861 MVT &RegisterVT, 862 TargetLoweringBase *TLI) { 863 // Figure out the right, legal destination reg to copy into. 864 unsigned NumElts = VT.getVectorNumElements(); 865 MVT EltTy = VT.getVectorElementType(); 866 867 unsigned NumVectorRegs = 1; 868 869 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 870 // could break down into LHS/RHS like LegalizeDAG does. 871 if (!isPowerOf2_32(NumElts)) { 872 NumVectorRegs = NumElts; 873 NumElts = 1; 874 } 875 876 // Divide the input until we get to a supported size. This will always 877 // end with a scalar if the target doesn't support vectors. 878 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 879 NumElts >>= 1; 880 NumVectorRegs <<= 1; 881 } 882 883 NumIntermediates = NumVectorRegs; 884 885 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 886 if (!TLI->isTypeLegal(NewVT)) 887 NewVT = EltTy; 888 IntermediateVT = NewVT; 889 890 unsigned NewVTSize = NewVT.getSizeInBits(); 891 892 // Convert sizes such as i33 to i64. 893 if (!isPowerOf2_32(NewVTSize)) 894 NewVTSize = NextPowerOf2(NewVTSize); 895 896 MVT DestVT = TLI->getRegisterType(NewVT); 897 RegisterVT = DestVT; 898 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 899 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 900 901 // Otherwise, promotion or legal types use the same number of registers as 902 // the vector decimated to the appropriate level. 903 return NumVectorRegs; 904 } 905 906 /// isLegalRC - Return true if the value types that can be represented by the 907 /// specified register class are all legal. 908 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { 909 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 910 I != E; ++I) { 911 if (isTypeLegal(*I)) 912 return true; 913 } 914 return false; 915 } 916 917 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 918 /// sequence of memory operands that is recognized by PrologEpilogInserter. 919 MachineBasicBlock* 920 TargetLoweringBase::emitPatchPoint(MachineInstr *MI, 921 MachineBasicBlock *MBB) const { 922 MachineFunction &MF = *MI->getParent()->getParent(); 923 924 // MI changes inside this loop as we grow operands. 925 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 926 MachineOperand &MO = MI->getOperand(OperIdx); 927 if (!MO.isFI()) 928 continue; 929 930 // foldMemoryOperand builds a new MI after replacing a single FI operand 931 // with the canonical set of five x86 addressing-mode operands. 932 int FI = MO.getIndex(); 933 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 934 935 // Copy operands before the frame-index. 936 for (unsigned i = 0; i < OperIdx; ++i) 937 MIB.addOperand(MI->getOperand(i)); 938 // Add frame index operands: direct-mem-ref tag, #FI, offset. 939 MIB.addImm(StackMaps::DirectMemRefOp); 940 MIB.addOperand(MI->getOperand(OperIdx)); 941 MIB.addImm(0); 942 // Copy the operands after the frame index. 943 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 944 MIB.addOperand(MI->getOperand(i)); 945 946 // Inherit previous memory operands. 947 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 948 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 949 950 // Add a new memory operand for this FI. 951 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 952 assert(MFI.getObjectOffset(FI) != -1); 953 MachineMemOperand *MMO = 954 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 955 MachineMemOperand::MOLoad, 956 TM.getDataLayout()->getPointerSize(), 957 MFI.getObjectAlignment(FI)); 958 MIB->addMemOperand(MF, MMO); 959 960 // Replace the instruction and update the operand index. 961 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 962 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 963 MI->eraseFromParent(); 964 MI = MIB; 965 } 966 return MBB; 967 } 968 969 /// findRepresentativeClass - Return the largest legal super-reg register class 970 /// of the register class for the specified type and its associated "cost". 971 std::pair<const TargetRegisterClass*, uint8_t> 972 TargetLoweringBase::findRepresentativeClass(MVT VT) const { 973 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 974 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 975 if (!RC) 976 return std::make_pair(RC, 0); 977 978 // Compute the set of all super-register classes. 979 BitVector SuperRegRC(TRI->getNumRegClasses()); 980 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 981 SuperRegRC.setBitsInMask(RCI.getMask()); 982 983 // Find the first legal register class with the largest spill size. 984 const TargetRegisterClass *BestRC = RC; 985 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { 986 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 987 // We want the largest possible spill size. 988 if (SuperRC->getSize() <= BestRC->getSize()) 989 continue; 990 if (!isLegalRC(SuperRC)) 991 continue; 992 BestRC = SuperRC; 993 } 994 return std::make_pair(BestRC, 1); 995 } 996 997 /// computeRegisterProperties - Once all of the register classes are added, 998 /// this allows us to compute derived properties we expose. 999 void TargetLoweringBase::computeRegisterProperties() { 1000 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && 1001 "Too many value types for ValueTypeActions to hold!"); 1002 1003 // Everything defaults to needing one register. 1004 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1005 NumRegistersForVT[i] = 1; 1006 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1007 } 1008 // ...except isVoid, which doesn't need any registers. 1009 NumRegistersForVT[MVT::isVoid] = 0; 1010 1011 // Find the largest integer register class. 1012 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1013 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1014 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1015 1016 // Every integer value type larger than this largest register takes twice as 1017 // many registers to represent as the previous ValueType. 1018 for (unsigned ExpandedReg = LargestIntReg + 1; 1019 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1020 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1021 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1022 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1023 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1024 TypeExpandInteger); 1025 } 1026 1027 // Inspect all of the ValueType's smaller than the largest integer 1028 // register to see which ones need promotion. 1029 unsigned LegalIntReg = LargestIntReg; 1030 for (unsigned IntReg = LargestIntReg - 1; 1031 IntReg >= (unsigned)MVT::i1; --IntReg) { 1032 MVT IVT = (MVT::SimpleValueType)IntReg; 1033 if (isTypeLegal(IVT)) { 1034 LegalIntReg = IntReg; 1035 } else { 1036 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1037 (const MVT::SimpleValueType)LegalIntReg; 1038 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1039 } 1040 } 1041 1042 // ppcf128 type is really two f64's. 1043 if (!isTypeLegal(MVT::ppcf128)) { 1044 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1045 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1046 TransformToType[MVT::ppcf128] = MVT::f64; 1047 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1048 } 1049 1050 // Decide how to handle f128. If the target does not have native f128 support, 1051 // expand it to i128 and we will be generating soft float library calls. 1052 if (!isTypeLegal(MVT::f128)) { 1053 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1054 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1055 TransformToType[MVT::f128] = MVT::i128; 1056 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1057 } 1058 1059 // Decide how to handle f64. If the target does not have native f64 support, 1060 // expand it to i64 and we will be generating soft float library calls. 1061 if (!isTypeLegal(MVT::f64)) { 1062 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1063 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1064 TransformToType[MVT::f64] = MVT::i64; 1065 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1066 } 1067 1068 // Decide how to handle f32. If the target does not have native support for 1069 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. 1070 if (!isTypeLegal(MVT::f32)) { 1071 if (isTypeLegal(MVT::f64)) { 1072 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; 1073 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; 1074 TransformToType[MVT::f32] = MVT::f64; 1075 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); 1076 } else { 1077 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1078 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1079 TransformToType[MVT::f32] = MVT::i32; 1080 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1081 } 1082 } 1083 1084 // Loop over all of the vector value types to see which need transformations. 1085 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1086 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1087 MVT VT = (MVT::SimpleValueType)i; 1088 if (isTypeLegal(VT)) continue; 1089 1090 // Determine if there is a legal wider type. If so, we should promote to 1091 // that wider vector type. 1092 MVT EltVT = VT.getVectorElementType(); 1093 unsigned NElts = VT.getVectorNumElements(); 1094 if (NElts != 1 && !shouldSplitVectorType(VT)) { 1095 bool IsLegalWiderType = false; 1096 // First try to promote the elements of integer vectors. If no legal 1097 // promotion was found, fallback to the widen-vector method. 1098 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1099 MVT SVT = (MVT::SimpleValueType)nVT; 1100 // Promote vectors of integers to vectors with the same number 1101 // of elements, with a wider element type. 1102 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() 1103 && SVT.getVectorNumElements() == NElts && 1104 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { 1105 TransformToType[i] = SVT; 1106 RegisterTypeForVT[i] = SVT; 1107 NumRegistersForVT[i] = 1; 1108 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1109 IsLegalWiderType = true; 1110 break; 1111 } 1112 } 1113 1114 if (IsLegalWiderType) continue; 1115 1116 // Try to widen the vector. 1117 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1118 MVT SVT = (MVT::SimpleValueType)nVT; 1119 if (SVT.getVectorElementType() == EltVT && 1120 SVT.getVectorNumElements() > NElts && 1121 isTypeLegal(SVT)) { 1122 TransformToType[i] = SVT; 1123 RegisterTypeForVT[i] = SVT; 1124 NumRegistersForVT[i] = 1; 1125 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1126 IsLegalWiderType = true; 1127 break; 1128 } 1129 } 1130 if (IsLegalWiderType) continue; 1131 } 1132 1133 MVT IntermediateVT; 1134 MVT RegisterVT; 1135 unsigned NumIntermediates; 1136 NumRegistersForVT[i] = 1137 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, 1138 RegisterVT, this); 1139 RegisterTypeForVT[i] = RegisterVT; 1140 1141 MVT NVT = VT.getPow2VectorType(); 1142 if (NVT == VT) { 1143 // Type is already a power of 2. The default action is to split. 1144 TransformToType[i] = MVT::Other; 1145 unsigned NumElts = VT.getVectorNumElements(); 1146 ValueTypeActions.setTypeAction(VT, 1147 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); 1148 } else { 1149 TransformToType[i] = NVT; 1150 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1151 } 1152 } 1153 1154 // Determine the 'representative' register class for each value type. 1155 // An representative register class is the largest (meaning one which is 1156 // not a sub-register class / subreg register class) legal register class for 1157 // a group of value types. For example, on i386, i8, i16, and i32 1158 // representative would be GR32; while on x86_64 it's GR64. 1159 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1160 const TargetRegisterClass* RRC; 1161 uint8_t Cost; 1162 std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); 1163 RepRegClassForVT[i] = RRC; 1164 RepRegClassCostForVT[i] = Cost; 1165 } 1166 } 1167 1168 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const { 1169 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1170 return getPointerTy(0).SimpleTy; 1171 } 1172 1173 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1174 return MVT::i32; // return the default value 1175 } 1176 1177 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1178 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1179 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1180 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1181 /// 1182 /// This method returns the number of registers needed, and the VT for each 1183 /// register. It also returns the VT and quantity of the intermediate values 1184 /// before they are promoted/expanded. 1185 /// 1186 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1187 EVT &IntermediateVT, 1188 unsigned &NumIntermediates, 1189 MVT &RegisterVT) const { 1190 unsigned NumElts = VT.getVectorNumElements(); 1191 1192 // If there is a wider vector type with the same element type as this one, 1193 // or a promoted vector type that has the same number of elements which 1194 // are wider, then we should convert to that legal vector type. 1195 // This handles things like <2 x float> -> <4 x float> and 1196 // <4 x i1> -> <4 x i32>. 1197 LegalizeTypeAction TA = getTypeAction(Context, VT); 1198 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1199 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1200 if (isTypeLegal(RegisterEVT)) { 1201 IntermediateVT = RegisterEVT; 1202 RegisterVT = RegisterEVT.getSimpleVT(); 1203 NumIntermediates = 1; 1204 return 1; 1205 } 1206 } 1207 1208 // Figure out the right, legal destination reg to copy into. 1209 EVT EltTy = VT.getVectorElementType(); 1210 1211 unsigned NumVectorRegs = 1; 1212 1213 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1214 // could break down into LHS/RHS like LegalizeDAG does. 1215 if (!isPowerOf2_32(NumElts)) { 1216 NumVectorRegs = NumElts; 1217 NumElts = 1; 1218 } 1219 1220 // Divide the input until we get to a supported size. This will always 1221 // end with a scalar if the target doesn't support vectors. 1222 while (NumElts > 1 && !isTypeLegal( 1223 EVT::getVectorVT(Context, EltTy, NumElts))) { 1224 NumElts >>= 1; 1225 NumVectorRegs <<= 1; 1226 } 1227 1228 NumIntermediates = NumVectorRegs; 1229 1230 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1231 if (!isTypeLegal(NewVT)) 1232 NewVT = EltTy; 1233 IntermediateVT = NewVT; 1234 1235 MVT DestVT = getRegisterType(Context, NewVT); 1236 RegisterVT = DestVT; 1237 unsigned NewVTSize = NewVT.getSizeInBits(); 1238 1239 // Convert sizes such as i33 to i64. 1240 if (!isPowerOf2_32(NewVTSize)) 1241 NewVTSize = NextPowerOf2(NewVTSize); 1242 1243 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1244 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1245 1246 // Otherwise, promotion or legal types use the same number of registers as 1247 // the vector decimated to the appropriate level. 1248 return NumVectorRegs; 1249 } 1250 1251 /// Get the EVTs and ArgFlags collections that represent the legalized return 1252 /// type of the given function. This does not require a DAG or a return value, 1253 /// and is suitable for use before any DAGs for the function are constructed. 1254 /// TODO: Move this out of TargetLowering.cpp. 1255 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, 1256 SmallVectorImpl<ISD::OutputArg> &Outs, 1257 const TargetLowering &TLI) { 1258 SmallVector<EVT, 4> ValueVTs; 1259 ComputeValueVTs(TLI, ReturnType, ValueVTs); 1260 unsigned NumValues = ValueVTs.size(); 1261 if (NumValues == 0) return; 1262 1263 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1264 EVT VT = ValueVTs[j]; 1265 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1266 1267 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1268 ExtendKind = ISD::SIGN_EXTEND; 1269 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) 1270 ExtendKind = ISD::ZERO_EXTEND; 1271 1272 // FIXME: C calling convention requires the return type to be promoted to 1273 // at least 32-bit. But this is not necessary for non-C calling 1274 // conventions. The frontend should mark functions whose return values 1275 // require promoting with signext or zeroext attributes. 1276 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1277 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1278 if (VT.bitsLT(MinVT)) 1279 VT = MinVT; 1280 } 1281 1282 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 1283 MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 1284 1285 // 'inreg' on function refers to return value 1286 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1287 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) 1288 Flags.setInReg(); 1289 1290 // Propagate extension type if any 1291 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1292 Flags.setSExt(); 1293 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) 1294 Flags.setZExt(); 1295 1296 for (unsigned i = 0; i < NumParts; ++i) 1297 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); 1298 } 1299 } 1300 1301 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1302 /// function arguments in the caller parameter area. This is the actual 1303 /// alignment, not its logarithm. 1304 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const { 1305 return DL->getABITypeAlignment(Ty); 1306 } 1307 1308 //===----------------------------------------------------------------------===// 1309 // TargetTransformInfo Helpers 1310 //===----------------------------------------------------------------------===// 1311 1312 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1313 enum InstructionOpcodes { 1314 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1315 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1316 #include "llvm/IR/Instruction.def" 1317 }; 1318 switch (static_cast<InstructionOpcodes>(Opcode)) { 1319 case Ret: return 0; 1320 case Br: return 0; 1321 case Switch: return 0; 1322 case IndirectBr: return 0; 1323 case Invoke: return 0; 1324 case Resume: return 0; 1325 case Unreachable: return 0; 1326 case Add: return ISD::ADD; 1327 case FAdd: return ISD::FADD; 1328 case Sub: return ISD::SUB; 1329 case FSub: return ISD::FSUB; 1330 case Mul: return ISD::MUL; 1331 case FMul: return ISD::FMUL; 1332 case UDiv: return ISD::UDIV; 1333 case SDiv: return ISD::SDIV; 1334 case FDiv: return ISD::FDIV; 1335 case URem: return ISD::UREM; 1336 case SRem: return ISD::SREM; 1337 case FRem: return ISD::FREM; 1338 case Shl: return ISD::SHL; 1339 case LShr: return ISD::SRL; 1340 case AShr: return ISD::SRA; 1341 case And: return ISD::AND; 1342 case Or: return ISD::OR; 1343 case Xor: return ISD::XOR; 1344 case Alloca: return 0; 1345 case Load: return ISD::LOAD; 1346 case Store: return ISD::STORE; 1347 case GetElementPtr: return 0; 1348 case Fence: return 0; 1349 case AtomicCmpXchg: return 0; 1350 case AtomicRMW: return 0; 1351 case Trunc: return ISD::TRUNCATE; 1352 case ZExt: return ISD::ZERO_EXTEND; 1353 case SExt: return ISD::SIGN_EXTEND; 1354 case FPToUI: return ISD::FP_TO_UINT; 1355 case FPToSI: return ISD::FP_TO_SINT; 1356 case UIToFP: return ISD::UINT_TO_FP; 1357 case SIToFP: return ISD::SINT_TO_FP; 1358 case FPTrunc: return ISD::FP_ROUND; 1359 case FPExt: return ISD::FP_EXTEND; 1360 case PtrToInt: return ISD::BITCAST; 1361 case IntToPtr: return ISD::BITCAST; 1362 case BitCast: return ISD::BITCAST; 1363 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1364 case ICmp: return ISD::SETCC; 1365 case FCmp: return ISD::SETCC; 1366 case PHI: return 0; 1367 case Call: return 0; 1368 case Select: return ISD::SELECT; 1369 case UserOp1: return 0; 1370 case UserOp2: return 0; 1371 case VAArg: return 0; 1372 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1373 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1374 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1375 case ExtractValue: return ISD::MERGE_VALUES; 1376 case InsertValue: return ISD::MERGE_VALUES; 1377 case LandingPad: return 0; 1378 } 1379 1380 llvm_unreachable("Unknown instruction type encountered!"); 1381 } 1382 1383 std::pair<unsigned, MVT> 1384 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const { 1385 LLVMContext &C = Ty->getContext(); 1386 EVT MTy = getValueType(Ty); 1387 1388 unsigned Cost = 1; 1389 // We keep legalizing the type until we find a legal kind. We assume that 1390 // the only operation that costs anything is the split. After splitting 1391 // we need to handle two types. 1392 while (true) { 1393 LegalizeKind LK = getTypeConversion(C, MTy); 1394 1395 if (LK.first == TypeLegal) 1396 return std::make_pair(Cost, MTy.getSimpleVT()); 1397 1398 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1399 Cost *= 2; 1400 1401 // Keep legalizing the type. 1402 MTy = LK.second; 1403 } 1404 } 1405 1406 //===----------------------------------------------------------------------===// 1407 // Loop Strength Reduction hooks 1408 //===----------------------------------------------------------------------===// 1409 1410 /// isLegalAddressingMode - Return true if the addressing mode represented 1411 /// by AM is legal for this target, for a load/store of the specified type. 1412 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM, 1413 Type *Ty) const { 1414 // The default implementation of this implements a conservative RISCy, r+r and 1415 // r+i addr mode. 1416 1417 // Allows a sign-extended 16-bit immediate field. 1418 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1419 return false; 1420 1421 // No global is ever allowed as a base. 1422 if (AM.BaseGV) 1423 return false; 1424 1425 // Only support r+r, 1426 switch (AM.Scale) { 1427 case 0: // "r+i" or just "i", depending on HasBaseReg. 1428 break; 1429 case 1: 1430 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1431 return false; 1432 // Otherwise we have r+r or r+i. 1433 break; 1434 case 2: 1435 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1436 return false; 1437 // Allow 2*r as r+r. 1438 break; 1439 default: // Don't allow n * r 1440 return false; 1441 } 1442 1443 return true; 1444 } 1445