1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MachineValueType.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <iterator> 62 #include <string> 63 #include <tuple> 64 #include <utility> 65 66 using namespace llvm; 67 68 static cl::opt<bool> JumpIsExpensiveOverride( 69 "jump-is-expensive", cl::init(false), 70 cl::desc("Do not create extra branches to split comparison logic."), 71 cl::Hidden); 72 73 static cl::opt<unsigned> MinimumJumpTableEntries 74 ("min-jump-table-entries", cl::init(4), cl::Hidden, 75 cl::desc("Set minimum number of entries to use a jump table.")); 76 77 static cl::opt<unsigned> MaximumJumpTableSize 78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 79 cl::desc("Set maximum size of jump tables.")); 80 81 /// Minimum jump table density for normal functions. 82 static cl::opt<unsigned> 83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 84 cl::desc("Minimum density for building a jump table in " 85 "a normal function")); 86 87 /// Minimum jump table density for -Os or -Oz functions. 88 static cl::opt<unsigned> OptsizeJumpTableDensity( 89 "optsize-jump-table-density", cl::init(40), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "an optsize function")); 92 93 // FIXME: This option is only to test if the strict fp operation processed 94 // correctly by preventing mutating strict fp operation to normal fp operation 95 // during development. When the backend supports strict float operation, this 96 // option will be meaningless. 97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98 cl::desc("Don't mutate strict-float node to a legalize node"), 99 cl::init(false), cl::Hidden); 100 101 static bool darwinHasSinCos(const Triple &TT) { 102 assert(TT.isOSDarwin() && "should be called with darwin triple"); 103 // Don't bother with 32 bit x86. 104 if (TT.getArch() == Triple::x86) 105 return false; 106 // Macos < 10.9 has no sincos_stret. 107 if (TT.isMacOSX()) 108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 109 // iOS < 7.0 has no sincos_stret. 110 if (TT.isiOS()) 111 return !TT.isOSVersionLT(7, 0); 112 // Any other darwin such as WatchOS/TvOS is new enough. 113 return true; 114 } 115 116 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 117 #define HANDLE_LIBCALL(code, name) \ 118 setLibcallName(RTLIB::code, name); 119 #include "llvm/IR/RuntimeLibcalls.def" 120 #undef HANDLE_LIBCALL 121 // Initialize calling conventions to their default. 122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 124 125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 126 if (TT.isPPC()) { 127 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 128 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 129 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 130 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 131 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 149 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 150 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 151 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 152 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 153 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 154 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 155 } 156 157 // A few names are different on particular architectures or environments. 158 if (TT.isOSDarwin()) { 159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 160 // of the gnueabi-style __gnu_*_ieee. 161 // FIXME: What about other targets? 162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 164 165 // Some darwins have an optimized __bzero/bzero function. 166 switch (TT.getArch()) { 167 case Triple::x86: 168 case Triple::x86_64: 169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 170 setLibcallName(RTLIB::BZERO, "__bzero"); 171 break; 172 case Triple::aarch64: 173 case Triple::aarch64_32: 174 setLibcallName(RTLIB::BZERO, "bzero"); 175 break; 176 default: 177 break; 178 } 179 180 if (darwinHasSinCos(TT)) { 181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 183 if (TT.isWatchABI()) { 184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 185 CallingConv::ARM_AAPCS_VFP); 186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 187 CallingConv::ARM_AAPCS_VFP); 188 } 189 } 190 } else { 191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 193 } 194 195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 197 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 198 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 199 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 200 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 202 } 203 204 if (TT.isPS4()) { 205 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 206 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 207 } 208 209 if (TT.isOSOpenBSD()) { 210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 211 } 212 } 213 214 /// GetFPLibCall - Helper to return the right libcall for the given floating 215 /// point type, or UNKNOWN_LIBCALL if there is none. 216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 217 RTLIB::Libcall Call_F32, 218 RTLIB::Libcall Call_F64, 219 RTLIB::Libcall Call_F80, 220 RTLIB::Libcall Call_F128, 221 RTLIB::Libcall Call_PPCF128) { 222 return 223 VT == MVT::f32 ? Call_F32 : 224 VT == MVT::f64 ? Call_F64 : 225 VT == MVT::f80 ? Call_F80 : 226 VT == MVT::f128 ? Call_F128 : 227 VT == MVT::ppcf128 ? Call_PPCF128 : 228 RTLIB::UNKNOWN_LIBCALL; 229 } 230 231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 232 /// UNKNOWN_LIBCALL if there is none. 233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 234 if (OpVT == MVT::f16) { 235 if (RetVT == MVT::f32) 236 return FPEXT_F16_F32; 237 if (RetVT == MVT::f64) 238 return FPEXT_F16_F64; 239 if (RetVT == MVT::f80) 240 return FPEXT_F16_F80; 241 if (RetVT == MVT::f128) 242 return FPEXT_F16_F128; 243 } else if (OpVT == MVT::f32) { 244 if (RetVT == MVT::f64) 245 return FPEXT_F32_F64; 246 if (RetVT == MVT::f128) 247 return FPEXT_F32_F128; 248 if (RetVT == MVT::ppcf128) 249 return FPEXT_F32_PPCF128; 250 } else if (OpVT == MVT::f64) { 251 if (RetVT == MVT::f128) 252 return FPEXT_F64_F128; 253 else if (RetVT == MVT::ppcf128) 254 return FPEXT_F64_PPCF128; 255 } else if (OpVT == MVT::f80) { 256 if (RetVT == MVT::f128) 257 return FPEXT_F80_F128; 258 } 259 260 return UNKNOWN_LIBCALL; 261 } 262 263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 264 /// UNKNOWN_LIBCALL if there is none. 265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 266 if (RetVT == MVT::f16) { 267 if (OpVT == MVT::f32) 268 return FPROUND_F32_F16; 269 if (OpVT == MVT::f64) 270 return FPROUND_F64_F16; 271 if (OpVT == MVT::f80) 272 return FPROUND_F80_F16; 273 if (OpVT == MVT::f128) 274 return FPROUND_F128_F16; 275 if (OpVT == MVT::ppcf128) 276 return FPROUND_PPCF128_F16; 277 } else if (RetVT == MVT::f32) { 278 if (OpVT == MVT::f64) 279 return FPROUND_F64_F32; 280 if (OpVT == MVT::f80) 281 return FPROUND_F80_F32; 282 if (OpVT == MVT::f128) 283 return FPROUND_F128_F32; 284 if (OpVT == MVT::ppcf128) 285 return FPROUND_PPCF128_F32; 286 } else if (RetVT == MVT::f64) { 287 if (OpVT == MVT::f80) 288 return FPROUND_F80_F64; 289 if (OpVT == MVT::f128) 290 return FPROUND_F128_F64; 291 if (OpVT == MVT::ppcf128) 292 return FPROUND_PPCF128_F64; 293 } else if (RetVT == MVT::f80) { 294 if (OpVT == MVT::f128) 295 return FPROUND_F128_F80; 296 } 297 298 return UNKNOWN_LIBCALL; 299 } 300 301 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 302 /// UNKNOWN_LIBCALL if there is none. 303 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 304 if (OpVT == MVT::f16) { 305 if (RetVT == MVT::i32) 306 return FPTOSINT_F16_I32; 307 if (RetVT == MVT::i64) 308 return FPTOSINT_F16_I64; 309 if (RetVT == MVT::i128) 310 return FPTOSINT_F16_I128; 311 } else if (OpVT == MVT::f32) { 312 if (RetVT == MVT::i32) 313 return FPTOSINT_F32_I32; 314 if (RetVT == MVT::i64) 315 return FPTOSINT_F32_I64; 316 if (RetVT == MVT::i128) 317 return FPTOSINT_F32_I128; 318 } else if (OpVT == MVT::f64) { 319 if (RetVT == MVT::i32) 320 return FPTOSINT_F64_I32; 321 if (RetVT == MVT::i64) 322 return FPTOSINT_F64_I64; 323 if (RetVT == MVT::i128) 324 return FPTOSINT_F64_I128; 325 } else if (OpVT == MVT::f80) { 326 if (RetVT == MVT::i32) 327 return FPTOSINT_F80_I32; 328 if (RetVT == MVT::i64) 329 return FPTOSINT_F80_I64; 330 if (RetVT == MVT::i128) 331 return FPTOSINT_F80_I128; 332 } else if (OpVT == MVT::f128) { 333 if (RetVT == MVT::i32) 334 return FPTOSINT_F128_I32; 335 if (RetVT == MVT::i64) 336 return FPTOSINT_F128_I64; 337 if (RetVT == MVT::i128) 338 return FPTOSINT_F128_I128; 339 } else if (OpVT == MVT::ppcf128) { 340 if (RetVT == MVT::i32) 341 return FPTOSINT_PPCF128_I32; 342 if (RetVT == MVT::i64) 343 return FPTOSINT_PPCF128_I64; 344 if (RetVT == MVT::i128) 345 return FPTOSINT_PPCF128_I128; 346 } 347 return UNKNOWN_LIBCALL; 348 } 349 350 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 351 /// UNKNOWN_LIBCALL if there is none. 352 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 353 if (OpVT == MVT::f16) { 354 if (RetVT == MVT::i32) 355 return FPTOUINT_F16_I32; 356 if (RetVT == MVT::i64) 357 return FPTOUINT_F16_I64; 358 if (RetVT == MVT::i128) 359 return FPTOUINT_F16_I128; 360 } else if (OpVT == MVT::f32) { 361 if (RetVT == MVT::i32) 362 return FPTOUINT_F32_I32; 363 if (RetVT == MVT::i64) 364 return FPTOUINT_F32_I64; 365 if (RetVT == MVT::i128) 366 return FPTOUINT_F32_I128; 367 } else if (OpVT == MVT::f64) { 368 if (RetVT == MVT::i32) 369 return FPTOUINT_F64_I32; 370 if (RetVT == MVT::i64) 371 return FPTOUINT_F64_I64; 372 if (RetVT == MVT::i128) 373 return FPTOUINT_F64_I128; 374 } else if (OpVT == MVT::f80) { 375 if (RetVT == MVT::i32) 376 return FPTOUINT_F80_I32; 377 if (RetVT == MVT::i64) 378 return FPTOUINT_F80_I64; 379 if (RetVT == MVT::i128) 380 return FPTOUINT_F80_I128; 381 } else if (OpVT == MVT::f128) { 382 if (RetVT == MVT::i32) 383 return FPTOUINT_F128_I32; 384 if (RetVT == MVT::i64) 385 return FPTOUINT_F128_I64; 386 if (RetVT == MVT::i128) 387 return FPTOUINT_F128_I128; 388 } else if (OpVT == MVT::ppcf128) { 389 if (RetVT == MVT::i32) 390 return FPTOUINT_PPCF128_I32; 391 if (RetVT == MVT::i64) 392 return FPTOUINT_PPCF128_I64; 393 if (RetVT == MVT::i128) 394 return FPTOUINT_PPCF128_I128; 395 } 396 return UNKNOWN_LIBCALL; 397 } 398 399 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 400 /// UNKNOWN_LIBCALL if there is none. 401 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 402 if (OpVT == MVT::i32) { 403 if (RetVT == MVT::f16) 404 return SINTTOFP_I32_F16; 405 if (RetVT == MVT::f32) 406 return SINTTOFP_I32_F32; 407 if (RetVT == MVT::f64) 408 return SINTTOFP_I32_F64; 409 if (RetVT == MVT::f80) 410 return SINTTOFP_I32_F80; 411 if (RetVT == MVT::f128) 412 return SINTTOFP_I32_F128; 413 if (RetVT == MVT::ppcf128) 414 return SINTTOFP_I32_PPCF128; 415 } else if (OpVT == MVT::i64) { 416 if (RetVT == MVT::f16) 417 return SINTTOFP_I64_F16; 418 if (RetVT == MVT::f32) 419 return SINTTOFP_I64_F32; 420 if (RetVT == MVT::f64) 421 return SINTTOFP_I64_F64; 422 if (RetVT == MVT::f80) 423 return SINTTOFP_I64_F80; 424 if (RetVT == MVT::f128) 425 return SINTTOFP_I64_F128; 426 if (RetVT == MVT::ppcf128) 427 return SINTTOFP_I64_PPCF128; 428 } else if (OpVT == MVT::i128) { 429 if (RetVT == MVT::f16) 430 return SINTTOFP_I128_F16; 431 if (RetVT == MVT::f32) 432 return SINTTOFP_I128_F32; 433 if (RetVT == MVT::f64) 434 return SINTTOFP_I128_F64; 435 if (RetVT == MVT::f80) 436 return SINTTOFP_I128_F80; 437 if (RetVT == MVT::f128) 438 return SINTTOFP_I128_F128; 439 if (RetVT == MVT::ppcf128) 440 return SINTTOFP_I128_PPCF128; 441 } 442 return UNKNOWN_LIBCALL; 443 } 444 445 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 446 /// UNKNOWN_LIBCALL if there is none. 447 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 448 if (OpVT == MVT::i32) { 449 if (RetVT == MVT::f16) 450 return UINTTOFP_I32_F16; 451 if (RetVT == MVT::f32) 452 return UINTTOFP_I32_F32; 453 if (RetVT == MVT::f64) 454 return UINTTOFP_I32_F64; 455 if (RetVT == MVT::f80) 456 return UINTTOFP_I32_F80; 457 if (RetVT == MVT::f128) 458 return UINTTOFP_I32_F128; 459 if (RetVT == MVT::ppcf128) 460 return UINTTOFP_I32_PPCF128; 461 } else if (OpVT == MVT::i64) { 462 if (RetVT == MVT::f16) 463 return UINTTOFP_I64_F16; 464 if (RetVT == MVT::f32) 465 return UINTTOFP_I64_F32; 466 if (RetVT == MVT::f64) 467 return UINTTOFP_I64_F64; 468 if (RetVT == MVT::f80) 469 return UINTTOFP_I64_F80; 470 if (RetVT == MVT::f128) 471 return UINTTOFP_I64_F128; 472 if (RetVT == MVT::ppcf128) 473 return UINTTOFP_I64_PPCF128; 474 } else if (OpVT == MVT::i128) { 475 if (RetVT == MVT::f16) 476 return UINTTOFP_I128_F16; 477 if (RetVT == MVT::f32) 478 return UINTTOFP_I128_F32; 479 if (RetVT == MVT::f64) 480 return UINTTOFP_I128_F64; 481 if (RetVT == MVT::f80) 482 return UINTTOFP_I128_F80; 483 if (RetVT == MVT::f128) 484 return UINTTOFP_I128_F128; 485 if (RetVT == MVT::ppcf128) 486 return UINTTOFP_I128_PPCF128; 487 } 488 return UNKNOWN_LIBCALL; 489 } 490 491 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 492 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 493 POWI_PPCF128); 494 } 495 496 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 497 MVT VT) { 498 unsigned ModeN, ModelN; 499 switch (VT.SimpleTy) { 500 case MVT::i8: 501 ModeN = 0; 502 break; 503 case MVT::i16: 504 ModeN = 1; 505 break; 506 case MVT::i32: 507 ModeN = 2; 508 break; 509 case MVT::i64: 510 ModeN = 3; 511 break; 512 case MVT::i128: 513 ModeN = 4; 514 break; 515 default: 516 return UNKNOWN_LIBCALL; 517 } 518 519 switch (Order) { 520 case AtomicOrdering::Monotonic: 521 ModelN = 0; 522 break; 523 case AtomicOrdering::Acquire: 524 ModelN = 1; 525 break; 526 case AtomicOrdering::Release: 527 ModelN = 2; 528 break; 529 case AtomicOrdering::AcquireRelease: 530 case AtomicOrdering::SequentiallyConsistent: 531 ModelN = 3; 532 break; 533 default: 534 return UNKNOWN_LIBCALL; 535 } 536 537 #define LCALLS(A, B) \ 538 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 539 #define LCALL5(A) \ 540 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 541 switch (Opc) { 542 case ISD::ATOMIC_CMP_SWAP: { 543 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 544 return LC[ModeN][ModelN]; 545 } 546 case ISD::ATOMIC_SWAP: { 547 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 548 return LC[ModeN][ModelN]; 549 } 550 case ISD::ATOMIC_LOAD_ADD: { 551 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 552 return LC[ModeN][ModelN]; 553 } 554 case ISD::ATOMIC_LOAD_OR: { 555 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 556 return LC[ModeN][ModelN]; 557 } 558 case ISD::ATOMIC_LOAD_CLR: { 559 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 560 return LC[ModeN][ModelN]; 561 } 562 case ISD::ATOMIC_LOAD_XOR: { 563 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 564 return LC[ModeN][ModelN]; 565 } 566 default: 567 return UNKNOWN_LIBCALL; 568 } 569 #undef LCALLS 570 #undef LCALL5 571 } 572 573 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 574 #define OP_TO_LIBCALL(Name, Enum) \ 575 case Name: \ 576 switch (VT.SimpleTy) { \ 577 default: \ 578 return UNKNOWN_LIBCALL; \ 579 case MVT::i8: \ 580 return Enum##_1; \ 581 case MVT::i16: \ 582 return Enum##_2; \ 583 case MVT::i32: \ 584 return Enum##_4; \ 585 case MVT::i64: \ 586 return Enum##_8; \ 587 case MVT::i128: \ 588 return Enum##_16; \ 589 } 590 591 switch (Opc) { 592 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 593 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 594 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 595 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 596 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 597 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 598 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 602 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 603 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 604 } 605 606 #undef OP_TO_LIBCALL 607 608 return UNKNOWN_LIBCALL; 609 } 610 611 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 612 switch (ElementSize) { 613 case 1: 614 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 615 case 2: 616 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 617 case 4: 618 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 619 case 8: 620 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 621 case 16: 622 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 623 default: 624 return UNKNOWN_LIBCALL; 625 } 626 } 627 628 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 629 switch (ElementSize) { 630 case 1: 631 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 632 case 2: 633 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 634 case 4: 635 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 636 case 8: 637 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 638 case 16: 639 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 640 default: 641 return UNKNOWN_LIBCALL; 642 } 643 } 644 645 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 646 switch (ElementSize) { 647 case 1: 648 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 649 case 2: 650 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 651 case 4: 652 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 653 case 8: 654 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 655 case 16: 656 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 657 default: 658 return UNKNOWN_LIBCALL; 659 } 660 } 661 662 /// InitCmpLibcallCCs - Set default comparison libcall CC. 663 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 664 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); 665 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 666 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 667 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 668 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 669 CCs[RTLIB::UNE_F32] = ISD::SETNE; 670 CCs[RTLIB::UNE_F64] = ISD::SETNE; 671 CCs[RTLIB::UNE_F128] = ISD::SETNE; 672 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 673 CCs[RTLIB::OGE_F32] = ISD::SETGE; 674 CCs[RTLIB::OGE_F64] = ISD::SETGE; 675 CCs[RTLIB::OGE_F128] = ISD::SETGE; 676 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 677 CCs[RTLIB::OLT_F32] = ISD::SETLT; 678 CCs[RTLIB::OLT_F64] = ISD::SETLT; 679 CCs[RTLIB::OLT_F128] = ISD::SETLT; 680 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 681 CCs[RTLIB::OLE_F32] = ISD::SETLE; 682 CCs[RTLIB::OLE_F64] = ISD::SETLE; 683 CCs[RTLIB::OLE_F128] = ISD::SETLE; 684 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 685 CCs[RTLIB::OGT_F32] = ISD::SETGT; 686 CCs[RTLIB::OGT_F64] = ISD::SETGT; 687 CCs[RTLIB::OGT_F128] = ISD::SETGT; 688 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 689 CCs[RTLIB::UO_F32] = ISD::SETNE; 690 CCs[RTLIB::UO_F64] = ISD::SETNE; 691 CCs[RTLIB::UO_F128] = ISD::SETNE; 692 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 693 } 694 695 /// NOTE: The TargetMachine owns TLOF. 696 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 697 initActions(); 698 699 // Perform these initializations only once. 700 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 701 MaxLoadsPerMemcmp = 8; 702 MaxGluedStoresPerMemcpy = 0; 703 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 704 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 705 HasMultipleConditionRegisters = false; 706 HasExtractBitsInsn = false; 707 JumpIsExpensive = JumpIsExpensiveOverride; 708 PredictableSelectIsExpensive = false; 709 EnableExtLdPromotion = false; 710 StackPointerRegisterToSaveRestore = 0; 711 BooleanContents = UndefinedBooleanContent; 712 BooleanFloatContents = UndefinedBooleanContent; 713 BooleanVectorContents = UndefinedBooleanContent; 714 SchedPreferenceInfo = Sched::ILP; 715 GatherAllAliasesMaxDepth = 18; 716 IsStrictFPEnabled = DisableStrictNodeMutation; 717 MaxBytesForAlignment = 0; 718 // TODO: the default will be switched to 0 in the next commit, along 719 // with the Target-specific changes necessary. 720 MaxAtomicSizeInBitsSupported = 1024; 721 722 MinCmpXchgSizeInBits = 0; 723 SupportsUnalignedAtomics = false; 724 725 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 726 727 InitLibcalls(TM.getTargetTriple()); 728 InitCmpLibcallCCs(CmpLibcallCCs); 729 } 730 731 void TargetLoweringBase::initActions() { 732 // All operations default to being supported. 733 memset(OpActions, 0, sizeof(OpActions)); 734 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 735 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 736 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 737 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 738 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 739 std::fill(std::begin(TargetDAGCombineArray), 740 std::end(TargetDAGCombineArray), 0); 741 742 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to 743 // remove this and targets should individually set these types if not legal. 744 for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, 745 force_iteration_on_noniterable_enum)) { 746 for (MVT VT : {MVT::i2, MVT::i4}) 747 OpActions[(unsigned)VT.SimpleTy][NT] = Expand; 748 } 749 for (MVT AVT : MVT::all_valuetypes()) { 750 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { 751 setTruncStoreAction(AVT, VT, Expand); 752 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); 753 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); 754 } 755 } 756 for (unsigned IM = (unsigned)ISD::PRE_INC; 757 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 758 for (MVT VT : {MVT::i2, MVT::i4}) { 759 setIndexedLoadAction(IM, VT, Expand); 760 setIndexedStoreAction(IM, VT, Expand); 761 setIndexedMaskedLoadAction(IM, VT, Expand); 762 setIndexedMaskedStoreAction(IM, VT, Expand); 763 } 764 } 765 766 for (MVT VT : MVT::fp_valuetypes()) { 767 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 768 if (IntVT.isValid()) { 769 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 770 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 771 } 772 } 773 774 // Set default actions for various operations. 775 for (MVT VT : MVT::all_valuetypes()) { 776 // Default all indexed load / store to expand. 777 for (unsigned IM = (unsigned)ISD::PRE_INC; 778 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 779 setIndexedLoadAction(IM, VT, Expand); 780 setIndexedStoreAction(IM, VT, Expand); 781 setIndexedMaskedLoadAction(IM, VT, Expand); 782 setIndexedMaskedStoreAction(IM, VT, Expand); 783 } 784 785 // Most backends expect to see the node which just returns the value loaded. 786 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 787 788 // These operations default to expand. 789 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, 790 ISD::FMINNUM, ISD::FMAXNUM, 791 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, 792 ISD::FMINIMUM, ISD::FMAXIMUM, 793 ISD::FMAD, ISD::SMIN, 794 ISD::SMAX, ISD::UMIN, 795 ISD::UMAX, ISD::ABS, 796 ISD::FSHL, ISD::FSHR, 797 ISD::SADDSAT, ISD::UADDSAT, 798 ISD::SSUBSAT, ISD::USUBSAT, 799 ISD::SSHLSAT, ISD::USHLSAT, 800 ISD::SMULFIX, ISD::SMULFIXSAT, 801 ISD::UMULFIX, ISD::UMULFIXSAT, 802 ISD::SDIVFIX, ISD::SDIVFIXSAT, 803 ISD::UDIVFIX, ISD::UDIVFIXSAT, 804 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 805 ISD::IS_FPCLASS}, 806 VT, Expand); 807 808 // Overflow operations default to expand 809 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, 810 ISD::SMULO, ISD::UMULO}, 811 VT, Expand); 812 813 // ADDCARRY operations default to expand 814 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY, 815 ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, 816 VT, Expand); 817 818 // ADDC/ADDE/SUBC/SUBE default to expand. 819 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, 820 Expand); 821 822 // Halving adds 823 setOperationAction( 824 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, 825 Expand); 826 827 // Absolute difference 828 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); 829 830 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 831 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 832 Expand); 833 834 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); 835 836 // These library functions default to expand. 837 setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand); 838 839 // These operations default to expand for vector types. 840 if (VT.isVector()) 841 setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, 842 ISD::ANY_EXTEND_VECTOR_INREG, 843 ISD::SIGN_EXTEND_VECTOR_INREG, 844 ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR}, 845 VT, Expand); 846 847 // Constrained floating-point operations default to expand. 848 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 849 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 850 #include "llvm/IR/ConstrainedOps.def" 851 852 // For most targets @llvm.get.dynamic.area.offset just returns 0. 853 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 854 855 // Vector reduction default to expand. 856 setOperationAction( 857 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, 858 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 859 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 860 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, 861 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, 862 VT, Expand); 863 864 // Named vector shuffles default to expand. 865 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 866 } 867 868 // Most targets ignore the @llvm.prefetch intrinsic. 869 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 870 871 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 872 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 873 874 // ConstantFP nodes default to expand. Targets can either change this to 875 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 876 // to optimize expansions for certain constants. 877 setOperationAction(ISD::ConstantFP, 878 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, 879 Expand); 880 881 // These library functions default to expand. 882 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, 883 ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, 884 ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND, 885 ISD::LRINT, ISD::LLRINT}, 886 {MVT::f32, MVT::f64, MVT::f128}, Expand); 887 888 // Default ISD::TRAP to expand (which turns it into abort). 889 setOperationAction(ISD::TRAP, MVT::Other, Expand); 890 891 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 892 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 893 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 894 895 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 896 } 897 898 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 899 EVT) const { 900 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 901 } 902 903 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 904 bool LegalTypes) const { 905 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 906 if (LHSTy.isVector()) 907 return LHSTy; 908 MVT ShiftVT = 909 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); 910 // If any possible shift value won't fit in the prefered type, just use 911 // something safe. Assume it will be legalized when the shift is expanded. 912 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) 913 ShiftVT = MVT::i32; 914 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && 915 "ShiftVT is still too small!"); 916 return ShiftVT; 917 } 918 919 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 920 assert(isTypeLegal(VT)); 921 switch (Op) { 922 default: 923 return false; 924 case ISD::SDIV: 925 case ISD::UDIV: 926 case ISD::SREM: 927 case ISD::UREM: 928 return true; 929 } 930 } 931 932 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 933 unsigned DestAS) const { 934 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 935 } 936 937 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 938 // If the command-line option was specified, ignore this request. 939 if (!JumpIsExpensiveOverride.getNumOccurrences()) 940 JumpIsExpensive = isExpensive; 941 } 942 943 TargetLoweringBase::LegalizeKind 944 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 945 // If this is a simple type, use the ComputeRegisterProp mechanism. 946 if (VT.isSimple()) { 947 MVT SVT = VT.getSimpleVT(); 948 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 949 MVT NVT = TransformToType[SVT.SimpleTy]; 950 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 951 952 assert((LA == TypeLegal || LA == TypeSoftenFloat || 953 LA == TypeSoftPromoteHalf || 954 (NVT.isVector() || 955 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 956 "Promote may not follow Expand or Promote"); 957 958 if (LA == TypeSplitVector) 959 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 960 if (LA == TypeScalarizeVector) 961 return LegalizeKind(LA, SVT.getVectorElementType()); 962 return LegalizeKind(LA, NVT); 963 } 964 965 // Handle Extended Scalar Types. 966 if (!VT.isVector()) { 967 assert(VT.isInteger() && "Float types must be simple"); 968 unsigned BitSize = VT.getSizeInBits(); 969 // First promote to a power-of-two size, then expand if necessary. 970 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 971 EVT NVT = VT.getRoundIntegerType(Context); 972 assert(NVT != VT && "Unable to round integer VT"); 973 LegalizeKind NextStep = getTypeConversion(Context, NVT); 974 // Avoid multi-step promotion. 975 if (NextStep.first == TypePromoteInteger) 976 return NextStep; 977 // Return rounded integer type. 978 return LegalizeKind(TypePromoteInteger, NVT); 979 } 980 981 return LegalizeKind(TypeExpandInteger, 982 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 983 } 984 985 // Handle vector types. 986 ElementCount NumElts = VT.getVectorElementCount(); 987 EVT EltVT = VT.getVectorElementType(); 988 989 // Vectors with only one element are always scalarized. 990 if (NumElts.isScalar()) 991 return LegalizeKind(TypeScalarizeVector, EltVT); 992 993 // Try to widen vector elements until the element type is a power of two and 994 // promote it to a legal type later on, for example: 995 // <3 x i8> -> <4 x i8> -> <4 x i32> 996 if (EltVT.isInteger()) { 997 // Vectors with a number of elements that is not a power of two are always 998 // widened, for example <3 x i8> -> <4 x i8>. 999 if (!VT.isPow2VectorType()) { 1000 NumElts = NumElts.coefficientNextPowerOf2(); 1001 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1002 return LegalizeKind(TypeWidenVector, NVT); 1003 } 1004 1005 // Examine the element type. 1006 LegalizeKind LK = getTypeConversion(Context, EltVT); 1007 1008 // If type is to be expanded, split the vector. 1009 // <4 x i140> -> <2 x i140> 1010 if (LK.first == TypeExpandInteger) { 1011 if (VT.getVectorElementCount().isScalable()) 1012 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1013 return LegalizeKind(TypeSplitVector, 1014 VT.getHalfNumVectorElementsVT(Context)); 1015 } 1016 1017 // Promote the integer element types until a legal vector type is found 1018 // or until the element integer type is too big. If a legal type was not 1019 // found, fallback to the usual mechanism of widening/splitting the 1020 // vector. 1021 EVT OldEltVT = EltVT; 1022 while (true) { 1023 // Increase the bitwidth of the element to the next pow-of-two 1024 // (which is greater than 8 bits). 1025 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1026 .getRoundIntegerType(Context); 1027 1028 // Stop trying when getting a non-simple element type. 1029 // Note that vector elements may be greater than legal vector element 1030 // types. Example: X86 XMM registers hold 64bit element on 32bit 1031 // systems. 1032 if (!EltVT.isSimple()) 1033 break; 1034 1035 // Build a new vector type and check if it is legal. 1036 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1037 // Found a legal promoted vector type. 1038 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1039 return LegalizeKind(TypePromoteInteger, 1040 EVT::getVectorVT(Context, EltVT, NumElts)); 1041 } 1042 1043 // Reset the type to the unexpanded type if we did not find a legal vector 1044 // type with a promoted vector element type. 1045 EltVT = OldEltVT; 1046 } 1047 1048 // Try to widen the vector until a legal type is found. 1049 // If there is no wider legal type, split the vector. 1050 while (true) { 1051 // Round up to the next power of 2. 1052 NumElts = NumElts.coefficientNextPowerOf2(); 1053 1054 // If there is no simple vector type with this many elements then there 1055 // cannot be a larger legal vector type. Note that this assumes that 1056 // there are no skipped intermediate vector types in the simple types. 1057 if (!EltVT.isSimple()) 1058 break; 1059 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1060 if (LargerVector == MVT()) 1061 break; 1062 1063 // If this type is legal then widen the vector. 1064 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1065 return LegalizeKind(TypeWidenVector, LargerVector); 1066 } 1067 1068 // Widen odd vectors to next power of two. 1069 if (!VT.isPow2VectorType()) { 1070 EVT NVT = VT.getPow2VectorType(Context); 1071 return LegalizeKind(TypeWidenVector, NVT); 1072 } 1073 1074 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1075 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1076 1077 // Vectors with illegal element types are expanded. 1078 EVT NVT = EVT::getVectorVT(Context, EltVT, 1079 VT.getVectorElementCount().divideCoefficientBy(2)); 1080 return LegalizeKind(TypeSplitVector, NVT); 1081 } 1082 1083 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1084 unsigned &NumIntermediates, 1085 MVT &RegisterVT, 1086 TargetLoweringBase *TLI) { 1087 // Figure out the right, legal destination reg to copy into. 1088 ElementCount EC = VT.getVectorElementCount(); 1089 MVT EltTy = VT.getVectorElementType(); 1090 1091 unsigned NumVectorRegs = 1; 1092 1093 // Scalable vectors cannot be scalarized, so splitting or widening is 1094 // required. 1095 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1096 llvm_unreachable( 1097 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1098 1099 // FIXME: We don't support non-power-of-2-sized vectors for now. 1100 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1101 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1102 // Split EC to unit size (scalable property is preserved). 1103 NumVectorRegs = EC.getKnownMinValue(); 1104 EC = ElementCount::getFixed(1); 1105 } 1106 1107 // Divide the input until we get to a supported size. This will 1108 // always end up with an EC that represent a scalar or a scalable 1109 // scalar. 1110 while (EC.getKnownMinValue() > 1 && 1111 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1112 EC = EC.divideCoefficientBy(2); 1113 NumVectorRegs <<= 1; 1114 } 1115 1116 NumIntermediates = NumVectorRegs; 1117 1118 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1119 if (!TLI->isTypeLegal(NewVT)) 1120 NewVT = EltTy; 1121 IntermediateVT = NewVT; 1122 1123 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1124 1125 // Convert sizes such as i33 to i64. 1126 if (!isPowerOf2_32(LaneSizeInBits)) 1127 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1128 1129 MVT DestVT = TLI->getRegisterType(NewVT); 1130 RegisterVT = DestVT; 1131 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1132 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1133 1134 // Otherwise, promotion or legal types use the same number of registers as 1135 // the vector decimated to the appropriate level. 1136 return NumVectorRegs; 1137 } 1138 1139 /// isLegalRC - Return true if the value types that can be represented by the 1140 /// specified register class are all legal. 1141 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1142 const TargetRegisterClass &RC) const { 1143 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1144 if (isTypeLegal(*I)) 1145 return true; 1146 return false; 1147 } 1148 1149 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1150 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1151 MachineBasicBlock * 1152 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1153 MachineBasicBlock *MBB) const { 1154 MachineInstr *MI = &InitialMI; 1155 MachineFunction &MF = *MI->getMF(); 1156 MachineFrameInfo &MFI = MF.getFrameInfo(); 1157 1158 // We're handling multiple types of operands here: 1159 // PATCHPOINT MetaArgs - live-in, read only, direct 1160 // STATEPOINT Deopt Spill - live-through, read only, indirect 1161 // STATEPOINT Deopt Alloca - live-through, read only, direct 1162 // (We're currently conservative and mark the deopt slots read/write in 1163 // practice.) 1164 // STATEPOINT GC Spill - live-through, read/write, indirect 1165 // STATEPOINT GC Alloca - live-through, read/write, direct 1166 // The live-in vs live-through is handled already (the live through ones are 1167 // all stack slots), but we need to handle the different type of stackmap 1168 // operands and memory effects here. 1169 1170 if (llvm::none_of(MI->operands(), 1171 [](MachineOperand &Operand) { return Operand.isFI(); })) 1172 return MBB; 1173 1174 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1175 1176 // Inherit previous memory operands. 1177 MIB.cloneMemRefs(*MI); 1178 1179 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1180 MachineOperand &MO = MI->getOperand(i); 1181 if (!MO.isFI()) { 1182 // Index of Def operand this Use it tied to. 1183 // Since Defs are coming before Uses, if Use is tied, then 1184 // index of Def must be smaller that index of that Use. 1185 // Also, Defs preserve their position in new MI. 1186 unsigned TiedTo = i; 1187 if (MO.isReg() && MO.isTied()) 1188 TiedTo = MI->findTiedOperandIdx(i); 1189 MIB.add(MO); 1190 if (TiedTo < i) 1191 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1192 continue; 1193 } 1194 1195 // foldMemoryOperand builds a new MI after replacing a single FI operand 1196 // with the canonical set of five x86 addressing-mode operands. 1197 int FI = MO.getIndex(); 1198 1199 // Add frame index operands recognized by stackmaps.cpp 1200 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1201 // indirect-mem-ref tag, size, #FI, offset. 1202 // Used for spills inserted by StatepointLowering. This codepath is not 1203 // used for patchpoints/stackmaps at all, for these spilling is done via 1204 // foldMemoryOperand callback only. 1205 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1206 MIB.addImm(StackMaps::IndirectMemRefOp); 1207 MIB.addImm(MFI.getObjectSize(FI)); 1208 MIB.add(MO); 1209 MIB.addImm(0); 1210 } else { 1211 // direct-mem-ref tag, #FI, offset. 1212 // Used by patchpoint, and direct alloca arguments to statepoints 1213 MIB.addImm(StackMaps::DirectMemRefOp); 1214 MIB.add(MO); 1215 MIB.addImm(0); 1216 } 1217 1218 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1219 1220 // Add a new memory operand for this FI. 1221 assert(MFI.getObjectOffset(FI) != -1); 1222 1223 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1224 // PATCHPOINT should be updated to do the same. (TODO) 1225 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1226 auto Flags = MachineMemOperand::MOLoad; 1227 MachineMemOperand *MMO = MF.getMachineMemOperand( 1228 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1229 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1230 MIB->addMemOperand(MF, MMO); 1231 } 1232 } 1233 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1234 MI->eraseFromParent(); 1235 return MBB; 1236 } 1237 1238 /// findRepresentativeClass - Return the largest legal super-reg register class 1239 /// of the register class for the specified type and its associated "cost". 1240 // This function is in TargetLowering because it uses RegClassForVT which would 1241 // need to be moved to TargetRegisterInfo and would necessitate moving 1242 // isTypeLegal over as well - a massive change that would just require 1243 // TargetLowering having a TargetRegisterInfo class member that it would use. 1244 std::pair<const TargetRegisterClass *, uint8_t> 1245 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1246 MVT VT) const { 1247 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1248 if (!RC) 1249 return std::make_pair(RC, 0); 1250 1251 // Compute the set of all super-register classes. 1252 BitVector SuperRegRC(TRI->getNumRegClasses()); 1253 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1254 SuperRegRC.setBitsInMask(RCI.getMask()); 1255 1256 // Find the first legal register class with the largest spill size. 1257 const TargetRegisterClass *BestRC = RC; 1258 for (unsigned i : SuperRegRC.set_bits()) { 1259 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1260 // We want the largest possible spill size. 1261 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1262 continue; 1263 if (!isLegalRC(*TRI, *SuperRC)) 1264 continue; 1265 BestRC = SuperRC; 1266 } 1267 return std::make_pair(BestRC, 1); 1268 } 1269 1270 /// computeRegisterProperties - Once all of the register classes are added, 1271 /// this allows us to compute derived properties we expose. 1272 void TargetLoweringBase::computeRegisterProperties( 1273 const TargetRegisterInfo *TRI) { 1274 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, 1275 "Too many value types for ValueTypeActions to hold!"); 1276 1277 // Everything defaults to needing one register. 1278 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1279 NumRegistersForVT[i] = 1; 1280 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1281 } 1282 // ...except isVoid, which doesn't need any registers. 1283 NumRegistersForVT[MVT::isVoid] = 0; 1284 1285 // Find the largest integer register class. 1286 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1287 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1288 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1289 1290 // Every integer value type larger than this largest register takes twice as 1291 // many registers to represent as the previous ValueType. 1292 for (unsigned ExpandedReg = LargestIntReg + 1; 1293 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1294 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1295 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1296 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1297 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1298 TypeExpandInteger); 1299 } 1300 1301 // Inspect all of the ValueType's smaller than the largest integer 1302 // register to see which ones need promotion. 1303 unsigned LegalIntReg = LargestIntReg; 1304 for (unsigned IntReg = LargestIntReg - 1; 1305 IntReg >= (unsigned)MVT::i1; --IntReg) { 1306 MVT IVT = (MVT::SimpleValueType)IntReg; 1307 if (isTypeLegal(IVT)) { 1308 LegalIntReg = IntReg; 1309 } else { 1310 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1311 (MVT::SimpleValueType)LegalIntReg; 1312 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1313 } 1314 } 1315 1316 // ppcf128 type is really two f64's. 1317 if (!isTypeLegal(MVT::ppcf128)) { 1318 if (isTypeLegal(MVT::f64)) { 1319 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1320 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1321 TransformToType[MVT::ppcf128] = MVT::f64; 1322 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1323 } else { 1324 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1325 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1326 TransformToType[MVT::ppcf128] = MVT::i128; 1327 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1328 } 1329 } 1330 1331 // Decide how to handle f128. If the target does not have native f128 support, 1332 // expand it to i128 and we will be generating soft float library calls. 1333 if (!isTypeLegal(MVT::f128)) { 1334 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1335 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1336 TransformToType[MVT::f128] = MVT::i128; 1337 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1338 } 1339 1340 // Decide how to handle f64. If the target does not have native f64 support, 1341 // expand it to i64 and we will be generating soft float library calls. 1342 if (!isTypeLegal(MVT::f64)) { 1343 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1344 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1345 TransformToType[MVT::f64] = MVT::i64; 1346 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1347 } 1348 1349 // Decide how to handle f32. If the target does not have native f32 support, 1350 // expand it to i32 and we will be generating soft float library calls. 1351 if (!isTypeLegal(MVT::f32)) { 1352 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1353 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1354 TransformToType[MVT::f32] = MVT::i32; 1355 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1356 } 1357 1358 // Decide how to handle f16. If the target does not have native f16 support, 1359 // promote it to f32, because there are no f16 library calls (except for 1360 // conversions). 1361 if (!isTypeLegal(MVT::f16)) { 1362 // Allow targets to control how we legalize half. 1363 if (softPromoteHalfType()) { 1364 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1365 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1366 TransformToType[MVT::f16] = MVT::f32; 1367 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1368 } else { 1369 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1370 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1371 TransformToType[MVT::f16] = MVT::f32; 1372 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1373 } 1374 } 1375 1376 // Loop over all of the vector value types to see which need transformations. 1377 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1378 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1379 MVT VT = (MVT::SimpleValueType) i; 1380 if (isTypeLegal(VT)) 1381 continue; 1382 1383 MVT EltVT = VT.getVectorElementType(); 1384 ElementCount EC = VT.getVectorElementCount(); 1385 bool IsLegalWiderType = false; 1386 bool IsScalable = VT.isScalableVector(); 1387 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1388 switch (PreferredAction) { 1389 case TypePromoteInteger: { 1390 MVT::SimpleValueType EndVT = IsScalable ? 1391 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1392 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1393 // Try to promote the elements of integer vectors. If no legal 1394 // promotion was found, fall through to the widen-vector method. 1395 for (unsigned nVT = i + 1; 1396 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1397 MVT SVT = (MVT::SimpleValueType) nVT; 1398 // Promote vectors of integers to vectors with the same number 1399 // of elements, with a wider element type. 1400 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1401 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1402 TransformToType[i] = SVT; 1403 RegisterTypeForVT[i] = SVT; 1404 NumRegistersForVT[i] = 1; 1405 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1406 IsLegalWiderType = true; 1407 break; 1408 } 1409 } 1410 if (IsLegalWiderType) 1411 break; 1412 LLVM_FALLTHROUGH; 1413 } 1414 1415 case TypeWidenVector: 1416 if (isPowerOf2_32(EC.getKnownMinValue())) { 1417 // Try to widen the vector. 1418 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1419 MVT SVT = (MVT::SimpleValueType) nVT; 1420 if (SVT.getVectorElementType() == EltVT && 1421 SVT.isScalableVector() == IsScalable && 1422 SVT.getVectorElementCount().getKnownMinValue() > 1423 EC.getKnownMinValue() && 1424 isTypeLegal(SVT)) { 1425 TransformToType[i] = SVT; 1426 RegisterTypeForVT[i] = SVT; 1427 NumRegistersForVT[i] = 1; 1428 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1429 IsLegalWiderType = true; 1430 break; 1431 } 1432 } 1433 if (IsLegalWiderType) 1434 break; 1435 } else { 1436 // Only widen to the next power of 2 to keep consistency with EVT. 1437 MVT NVT = VT.getPow2VectorType(); 1438 if (isTypeLegal(NVT)) { 1439 TransformToType[i] = NVT; 1440 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1441 RegisterTypeForVT[i] = NVT; 1442 NumRegistersForVT[i] = 1; 1443 break; 1444 } 1445 } 1446 LLVM_FALLTHROUGH; 1447 1448 case TypeSplitVector: 1449 case TypeScalarizeVector: { 1450 MVT IntermediateVT; 1451 MVT RegisterVT; 1452 unsigned NumIntermediates; 1453 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1454 NumIntermediates, RegisterVT, this); 1455 NumRegistersForVT[i] = NumRegisters; 1456 assert(NumRegistersForVT[i] == NumRegisters && 1457 "NumRegistersForVT size cannot represent NumRegisters!"); 1458 RegisterTypeForVT[i] = RegisterVT; 1459 1460 MVT NVT = VT.getPow2VectorType(); 1461 if (NVT == VT) { 1462 // Type is already a power of 2. The default action is to split. 1463 TransformToType[i] = MVT::Other; 1464 if (PreferredAction == TypeScalarizeVector) 1465 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1466 else if (PreferredAction == TypeSplitVector) 1467 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1468 else if (EC.getKnownMinValue() > 1) 1469 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1470 else 1471 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1472 ? TypeScalarizeScalableVector 1473 : TypeScalarizeVector); 1474 } else { 1475 TransformToType[i] = NVT; 1476 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1477 } 1478 break; 1479 } 1480 default: 1481 llvm_unreachable("Unknown vector legalization action!"); 1482 } 1483 } 1484 1485 // Determine the 'representative' register class for each value type. 1486 // An representative register class is the largest (meaning one which is 1487 // not a sub-register class / subreg register class) legal register class for 1488 // a group of value types. For example, on i386, i8, i16, and i32 1489 // representative would be GR32; while on x86_64 it's GR64. 1490 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1491 const TargetRegisterClass* RRC; 1492 uint8_t Cost; 1493 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1494 RepRegClassForVT[i] = RRC; 1495 RepRegClassCostForVT[i] = Cost; 1496 } 1497 } 1498 1499 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1500 EVT VT) const { 1501 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1502 return getPointerTy(DL).SimpleTy; 1503 } 1504 1505 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1506 return MVT::i32; // return the default value 1507 } 1508 1509 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1510 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1511 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1512 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1513 /// 1514 /// This method returns the number of registers needed, and the VT for each 1515 /// register. It also returns the VT and quantity of the intermediate values 1516 /// before they are promoted/expanded. 1517 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1518 EVT VT, EVT &IntermediateVT, 1519 unsigned &NumIntermediates, 1520 MVT &RegisterVT) const { 1521 ElementCount EltCnt = VT.getVectorElementCount(); 1522 1523 // If there is a wider vector type with the same element type as this one, 1524 // or a promoted vector type that has the same number of elements which 1525 // are wider, then we should convert to that legal vector type. 1526 // This handles things like <2 x float> -> <4 x float> and 1527 // <4 x i1> -> <4 x i32>. 1528 LegalizeTypeAction TA = getTypeAction(Context, VT); 1529 if (!EltCnt.isScalar() && 1530 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1531 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1532 if (isTypeLegal(RegisterEVT)) { 1533 IntermediateVT = RegisterEVT; 1534 RegisterVT = RegisterEVT.getSimpleVT(); 1535 NumIntermediates = 1; 1536 return 1; 1537 } 1538 } 1539 1540 // Figure out the right, legal destination reg to copy into. 1541 EVT EltTy = VT.getVectorElementType(); 1542 1543 unsigned NumVectorRegs = 1; 1544 1545 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1546 // types like done elsewhere in SelectionDAG. 1547 if (EltCnt.isScalable()) { 1548 LegalizeKind LK; 1549 EVT PartVT = VT; 1550 do { 1551 // Iterate until we've found a legal (part) type to hold VT. 1552 LK = getTypeConversion(Context, PartVT); 1553 PartVT = LK.second; 1554 } while (LK.first != TypeLegal); 1555 1556 if (!PartVT.isVector()) { 1557 report_fatal_error( 1558 "Don't know how to legalize this scalable vector type"); 1559 } 1560 1561 NumIntermediates = 1562 divideCeil(VT.getVectorElementCount().getKnownMinValue(), 1563 PartVT.getVectorElementCount().getKnownMinValue()); 1564 IntermediateVT = PartVT; 1565 RegisterVT = getRegisterType(Context, IntermediateVT); 1566 return NumIntermediates; 1567 } 1568 1569 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1570 // we could break down into LHS/RHS like LegalizeDAG does. 1571 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1572 NumVectorRegs = EltCnt.getKnownMinValue(); 1573 EltCnt = ElementCount::getFixed(1); 1574 } 1575 1576 // Divide the input until we get to a supported size. This will always 1577 // end with a scalar if the target doesn't support vectors. 1578 while (EltCnt.getKnownMinValue() > 1 && 1579 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1580 EltCnt = EltCnt.divideCoefficientBy(2); 1581 NumVectorRegs <<= 1; 1582 } 1583 1584 NumIntermediates = NumVectorRegs; 1585 1586 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1587 if (!isTypeLegal(NewVT)) 1588 NewVT = EltTy; 1589 IntermediateVT = NewVT; 1590 1591 MVT DestVT = getRegisterType(Context, NewVT); 1592 RegisterVT = DestVT; 1593 1594 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1595 TypeSize NewVTSize = NewVT.getSizeInBits(); 1596 // Convert sizes such as i33 to i64. 1597 if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) 1598 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1599 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1600 } 1601 1602 // Otherwise, promotion or legal types use the same number of registers as 1603 // the vector decimated to the appropriate level. 1604 return NumVectorRegs; 1605 } 1606 1607 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1608 uint64_t NumCases, 1609 uint64_t Range, 1610 ProfileSummaryInfo *PSI, 1611 BlockFrequencyInfo *BFI) const { 1612 // FIXME: This function check the maximum table size and density, but the 1613 // minimum size is not checked. It would be nice if the minimum size is 1614 // also combined within this function. Currently, the minimum size check is 1615 // performed in findJumpTable() in SelectionDAGBuiler and 1616 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1617 const bool OptForSize = 1618 SI->getParent()->getParent()->hasOptSize() || 1619 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1620 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1621 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1622 1623 // Check whether the number of cases is small enough and 1624 // the range is dense enough for a jump table. 1625 return (OptForSize || Range <= MaxJumpTableSize) && 1626 (NumCases * 100 >= Range * MinDensity); 1627 } 1628 1629 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, 1630 EVT ConditionVT) const { 1631 return getRegisterType(Context, ConditionVT); 1632 } 1633 1634 /// Get the EVTs and ArgFlags collections that represent the legalized return 1635 /// type of the given function. This does not require a DAG or a return value, 1636 /// and is suitable for use before any DAGs for the function are constructed. 1637 /// TODO: Move this out of TargetLowering.cpp. 1638 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1639 AttributeList attr, 1640 SmallVectorImpl<ISD::OutputArg> &Outs, 1641 const TargetLowering &TLI, const DataLayout &DL) { 1642 SmallVector<EVT, 4> ValueVTs; 1643 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1644 unsigned NumValues = ValueVTs.size(); 1645 if (NumValues == 0) return; 1646 1647 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1648 EVT VT = ValueVTs[j]; 1649 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1650 1651 if (attr.hasRetAttr(Attribute::SExt)) 1652 ExtendKind = ISD::SIGN_EXTEND; 1653 else if (attr.hasRetAttr(Attribute::ZExt)) 1654 ExtendKind = ISD::ZERO_EXTEND; 1655 1656 // FIXME: C calling convention requires the return type to be promoted to 1657 // at least 32-bit. But this is not necessary for non-C calling 1658 // conventions. The frontend should mark functions whose return values 1659 // require promoting with signext or zeroext attributes. 1660 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1661 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1662 if (VT.bitsLT(MinVT)) 1663 VT = MinVT; 1664 } 1665 1666 unsigned NumParts = 1667 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1668 MVT PartVT = 1669 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1670 1671 // 'inreg' on function refers to return value 1672 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1673 if (attr.hasRetAttr(Attribute::InReg)) 1674 Flags.setInReg(); 1675 1676 // Propagate extension type if any 1677 if (attr.hasRetAttr(Attribute::SExt)) 1678 Flags.setSExt(); 1679 else if (attr.hasRetAttr(Attribute::ZExt)) 1680 Flags.setZExt(); 1681 1682 for (unsigned i = 0; i < NumParts; ++i) 1683 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1684 } 1685 } 1686 1687 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1688 /// function arguments in the caller parameter area. This is the actual 1689 /// alignment, not its logarithm. 1690 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1691 const DataLayout &DL) const { 1692 return DL.getABITypeAlign(Ty).value(); 1693 } 1694 1695 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1696 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1697 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1698 // Check if the specified alignment is sufficient based on the data layout. 1699 // TODO: While using the data layout works in practice, a better solution 1700 // would be to implement this check directly (make this a virtual function). 1701 // For example, the ABI alignment may change based on software platform while 1702 // this function should only be affected by hardware implementation. 1703 Type *Ty = VT.getTypeForEVT(Context); 1704 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 1705 // Assume that an access that meets the ABI-specified alignment is fast. 1706 if (Fast != nullptr) 1707 *Fast = true; 1708 return true; 1709 } 1710 1711 // This is a misaligned access. 1712 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1713 } 1714 1715 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1716 LLVMContext &Context, const DataLayout &DL, EVT VT, 1717 const MachineMemOperand &MMO, bool *Fast) const { 1718 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1719 MMO.getAlign(), MMO.getFlags(), Fast); 1720 } 1721 1722 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1723 const DataLayout &DL, EVT VT, 1724 unsigned AddrSpace, Align Alignment, 1725 MachineMemOperand::Flags Flags, 1726 bool *Fast) const { 1727 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1728 Flags, Fast); 1729 } 1730 1731 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1732 const DataLayout &DL, EVT VT, 1733 const MachineMemOperand &MMO, 1734 bool *Fast) const { 1735 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1736 MMO.getFlags(), Fast); 1737 } 1738 1739 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1740 const DataLayout &DL, LLT Ty, 1741 const MachineMemOperand &MMO, 1742 bool *Fast) const { 1743 EVT VT = getApproximateEVTForLLT(Ty, DL, Context); 1744 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1745 MMO.getFlags(), Fast); 1746 } 1747 1748 //===----------------------------------------------------------------------===// 1749 // TargetTransformInfo Helpers 1750 //===----------------------------------------------------------------------===// 1751 1752 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1753 enum InstructionOpcodes { 1754 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1755 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1756 #include "llvm/IR/Instruction.def" 1757 }; 1758 switch (static_cast<InstructionOpcodes>(Opcode)) { 1759 case Ret: return 0; 1760 case Br: return 0; 1761 case Switch: return 0; 1762 case IndirectBr: return 0; 1763 case Invoke: return 0; 1764 case CallBr: return 0; 1765 case Resume: return 0; 1766 case Unreachable: return 0; 1767 case CleanupRet: return 0; 1768 case CatchRet: return 0; 1769 case CatchPad: return 0; 1770 case CatchSwitch: return 0; 1771 case CleanupPad: return 0; 1772 case FNeg: return ISD::FNEG; 1773 case Add: return ISD::ADD; 1774 case FAdd: return ISD::FADD; 1775 case Sub: return ISD::SUB; 1776 case FSub: return ISD::FSUB; 1777 case Mul: return ISD::MUL; 1778 case FMul: return ISD::FMUL; 1779 case UDiv: return ISD::UDIV; 1780 case SDiv: return ISD::SDIV; 1781 case FDiv: return ISD::FDIV; 1782 case URem: return ISD::UREM; 1783 case SRem: return ISD::SREM; 1784 case FRem: return ISD::FREM; 1785 case Shl: return ISD::SHL; 1786 case LShr: return ISD::SRL; 1787 case AShr: return ISD::SRA; 1788 case And: return ISD::AND; 1789 case Or: return ISD::OR; 1790 case Xor: return ISD::XOR; 1791 case Alloca: return 0; 1792 case Load: return ISD::LOAD; 1793 case Store: return ISD::STORE; 1794 case GetElementPtr: return 0; 1795 case Fence: return 0; 1796 case AtomicCmpXchg: return 0; 1797 case AtomicRMW: return 0; 1798 case Trunc: return ISD::TRUNCATE; 1799 case ZExt: return ISD::ZERO_EXTEND; 1800 case SExt: return ISD::SIGN_EXTEND; 1801 case FPToUI: return ISD::FP_TO_UINT; 1802 case FPToSI: return ISD::FP_TO_SINT; 1803 case UIToFP: return ISD::UINT_TO_FP; 1804 case SIToFP: return ISD::SINT_TO_FP; 1805 case FPTrunc: return ISD::FP_ROUND; 1806 case FPExt: return ISD::FP_EXTEND; 1807 case PtrToInt: return ISD::BITCAST; 1808 case IntToPtr: return ISD::BITCAST; 1809 case BitCast: return ISD::BITCAST; 1810 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1811 case ICmp: return ISD::SETCC; 1812 case FCmp: return ISD::SETCC; 1813 case PHI: return 0; 1814 case Call: return 0; 1815 case Select: return ISD::SELECT; 1816 case UserOp1: return 0; 1817 case UserOp2: return 0; 1818 case VAArg: return 0; 1819 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1820 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1821 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1822 case ExtractValue: return ISD::MERGE_VALUES; 1823 case InsertValue: return ISD::MERGE_VALUES; 1824 case LandingPad: return 0; 1825 case Freeze: return ISD::FREEZE; 1826 } 1827 1828 llvm_unreachable("Unknown instruction type encountered!"); 1829 } 1830 1831 std::pair<InstructionCost, MVT> 1832 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1833 Type *Ty) const { 1834 LLVMContext &C = Ty->getContext(); 1835 EVT MTy = getValueType(DL, Ty); 1836 1837 InstructionCost Cost = 1; 1838 // We keep legalizing the type until we find a legal kind. We assume that 1839 // the only operation that costs anything is the split. After splitting 1840 // we need to handle two types. 1841 while (true) { 1842 LegalizeKind LK = getTypeConversion(C, MTy); 1843 1844 if (LK.first == TypeScalarizeScalableVector) { 1845 // Ensure we return a sensible simple VT here, since many callers of this 1846 // function require it. 1847 MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64; 1848 return std::make_pair(InstructionCost::getInvalid(), VT); 1849 } 1850 1851 if (LK.first == TypeLegal) 1852 return std::make_pair(Cost, MTy.getSimpleVT()); 1853 1854 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1855 Cost *= 2; 1856 1857 // Do not loop with f128 type. 1858 if (MTy == LK.second) 1859 return std::make_pair(Cost, MTy.getSimpleVT()); 1860 1861 // Keep legalizing the type. 1862 MTy = LK.second; 1863 } 1864 } 1865 1866 Value * 1867 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 1868 bool UseTLS) const { 1869 // compiler-rt provides a variable with a magic name. Targets that do not 1870 // link with compiler-rt may also provide such a variable. 1871 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1872 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1873 auto UnsafeStackPtr = 1874 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1875 1876 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1877 1878 if (!UnsafeStackPtr) { 1879 auto TLSModel = UseTLS ? 1880 GlobalValue::InitialExecTLSModel : 1881 GlobalValue::NotThreadLocal; 1882 // The global variable is not defined yet, define it ourselves. 1883 // We use the initial-exec TLS model because we do not support the 1884 // variable living anywhere other than in the main executable. 1885 UnsafeStackPtr = new GlobalVariable( 1886 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1887 UnsafeStackPtrVar, nullptr, TLSModel); 1888 } else { 1889 // The variable exists, check its type and attributes. 1890 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1891 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1892 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1893 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1894 (UseTLS ? "" : "not ") + "be thread-local"); 1895 } 1896 return UnsafeStackPtr; 1897 } 1898 1899 Value * 1900 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 1901 if (!TM.getTargetTriple().isAndroid()) 1902 return getDefaultSafeStackPointerLocation(IRB, true); 1903 1904 // Android provides a libc function to retrieve the address of the current 1905 // thread's unsafe stack pointer. 1906 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1907 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1908 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1909 StackPtrTy->getPointerTo(0)); 1910 return IRB.CreateCall(Fn); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Loop Strength Reduction hooks 1915 //===----------------------------------------------------------------------===// 1916 1917 /// isLegalAddressingMode - Return true if the addressing mode represented 1918 /// by AM is legal for this target, for a load/store of the specified type. 1919 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1920 const AddrMode &AM, Type *Ty, 1921 unsigned AS, Instruction *I) const { 1922 // The default implementation of this implements a conservative RISCy, r+r and 1923 // r+i addr mode. 1924 1925 // Allows a sign-extended 16-bit immediate field. 1926 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1927 return false; 1928 1929 // No global is ever allowed as a base. 1930 if (AM.BaseGV) 1931 return false; 1932 1933 // Only support r+r, 1934 switch (AM.Scale) { 1935 case 0: // "r+i" or just "i", depending on HasBaseReg. 1936 break; 1937 case 1: 1938 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1939 return false; 1940 // Otherwise we have r+r or r+i. 1941 break; 1942 case 2: 1943 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1944 return false; 1945 // Allow 2*r as r+r. 1946 break; 1947 default: // Don't allow n * r 1948 return false; 1949 } 1950 1951 return true; 1952 } 1953 1954 //===----------------------------------------------------------------------===// 1955 // Stack Protector 1956 //===----------------------------------------------------------------------===// 1957 1958 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1959 // so that SelectionDAG handle SSP. 1960 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 1961 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1962 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1963 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1964 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1965 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1966 G->setVisibility(GlobalValue::HiddenVisibility); 1967 return C; 1968 } 1969 return nullptr; 1970 } 1971 1972 // Currently only support "standard" __stack_chk_guard. 1973 // TODO: add LOAD_STACK_GUARD support. 1974 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1975 if (!M.getNamedValue("__stack_chk_guard")) { 1976 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1977 GlobalVariable::ExternalLinkage, nullptr, 1978 "__stack_chk_guard"); 1979 1980 // FreeBSD has "__stack_chk_guard" defined externally on libc.so 1981 if (TM.getRelocationModel() == Reloc::Static && 1982 !TM.getTargetTriple().isWindowsGNUEnvironment() && 1983 !TM.getTargetTriple().isOSFreeBSD()) 1984 GV->setDSOLocal(true); 1985 } 1986 } 1987 1988 // Currently only support "standard" __stack_chk_guard. 1989 // TODO: add LOAD_STACK_GUARD support. 1990 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1991 return M.getNamedValue("__stack_chk_guard"); 1992 } 1993 1994 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1995 return nullptr; 1996 } 1997 1998 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1999 return MinimumJumpTableEntries; 2000 } 2001 2002 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 2003 MinimumJumpTableEntries = Val; 2004 } 2005 2006 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2007 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2008 } 2009 2010 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2011 return MaximumJumpTableSize; 2012 } 2013 2014 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2015 MaximumJumpTableSize = Val; 2016 } 2017 2018 bool TargetLoweringBase::isJumpTableRelative() const { 2019 return getTargetMachine().isPositionIndependent(); 2020 } 2021 2022 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { 2023 if (TM.Options.LoopAlignment) 2024 return Align(TM.Options.LoopAlignment); 2025 return PrefLoopAlignment; 2026 } 2027 2028 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( 2029 MachineBasicBlock *MBB) const { 2030 return MaxBytesForAlignment; 2031 } 2032 2033 //===----------------------------------------------------------------------===// 2034 // Reciprocal Estimates 2035 //===----------------------------------------------------------------------===// 2036 2037 /// Get the reciprocal estimate attribute string for a function that will 2038 /// override the target defaults. 2039 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2040 const Function &F = MF.getFunction(); 2041 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2042 } 2043 2044 /// Construct a string for the given reciprocal operation of the given type. 2045 /// This string should match the corresponding option to the front-end's 2046 /// "-mrecip" flag assuming those strings have been passed through in an 2047 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2048 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2049 std::string Name = VT.isVector() ? "vec-" : ""; 2050 2051 Name += IsSqrt ? "sqrt" : "div"; 2052 2053 // TODO: Handle other float types? 2054 if (VT.getScalarType() == MVT::f64) { 2055 Name += "d"; 2056 } else if (VT.getScalarType() == MVT::f16) { 2057 Name += "h"; 2058 } else { 2059 assert(VT.getScalarType() == MVT::f32 && 2060 "Unexpected FP type for reciprocal estimate"); 2061 Name += "f"; 2062 } 2063 2064 return Name; 2065 } 2066 2067 /// Return the character position and value (a single numeric character) of a 2068 /// customized refinement operation in the input string if it exists. Return 2069 /// false if there is no customized refinement step count. 2070 static bool parseRefinementStep(StringRef In, size_t &Position, 2071 uint8_t &Value) { 2072 const char RefStepToken = ':'; 2073 Position = In.find(RefStepToken); 2074 if (Position == StringRef::npos) 2075 return false; 2076 2077 StringRef RefStepString = In.substr(Position + 1); 2078 // Allow exactly one numeric character for the additional refinement 2079 // step parameter. 2080 if (RefStepString.size() == 1) { 2081 char RefStepChar = RefStepString[0]; 2082 if (isDigit(RefStepChar)) { 2083 Value = RefStepChar - '0'; 2084 return true; 2085 } 2086 } 2087 report_fatal_error("Invalid refinement step for -recip."); 2088 } 2089 2090 /// For the input attribute string, return one of the ReciprocalEstimate enum 2091 /// status values (enabled, disabled, or not specified) for this operation on 2092 /// the specified data type. 2093 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2094 if (Override.empty()) 2095 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2096 2097 SmallVector<StringRef, 4> OverrideVector; 2098 Override.split(OverrideVector, ','); 2099 unsigned NumArgs = OverrideVector.size(); 2100 2101 // Check if "all", "none", or "default" was specified. 2102 if (NumArgs == 1) { 2103 // Look for an optional setting of the number of refinement steps needed 2104 // for this type of reciprocal operation. 2105 size_t RefPos; 2106 uint8_t RefSteps; 2107 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2108 // Split the string for further processing. 2109 Override = Override.substr(0, RefPos); 2110 } 2111 2112 // All reciprocal types are enabled. 2113 if (Override == "all") 2114 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2115 2116 // All reciprocal types are disabled. 2117 if (Override == "none") 2118 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2119 2120 // Target defaults for enablement are used. 2121 if (Override == "default") 2122 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2123 } 2124 2125 // The attribute string may omit the size suffix ('f'/'d'). 2126 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2127 std::string VTNameNoSize = VTName; 2128 VTNameNoSize.pop_back(); 2129 static const char DisabledPrefix = '!'; 2130 2131 for (StringRef RecipType : OverrideVector) { 2132 size_t RefPos; 2133 uint8_t RefSteps; 2134 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2135 RecipType = RecipType.substr(0, RefPos); 2136 2137 // Ignore the disablement token for string matching. 2138 bool IsDisabled = RecipType[0] == DisabledPrefix; 2139 if (IsDisabled) 2140 RecipType = RecipType.substr(1); 2141 2142 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2143 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2144 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2145 } 2146 2147 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2148 } 2149 2150 /// For the input attribute string, return the customized refinement step count 2151 /// for this operation on the specified data type. If the step count does not 2152 /// exist, return the ReciprocalEstimate enum value for unspecified. 2153 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2154 if (Override.empty()) 2155 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2156 2157 SmallVector<StringRef, 4> OverrideVector; 2158 Override.split(OverrideVector, ','); 2159 unsigned NumArgs = OverrideVector.size(); 2160 2161 // Check if "all", "default", or "none" was specified. 2162 if (NumArgs == 1) { 2163 // Look for an optional setting of the number of refinement steps needed 2164 // for this type of reciprocal operation. 2165 size_t RefPos; 2166 uint8_t RefSteps; 2167 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2168 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2169 2170 // Split the string for further processing. 2171 Override = Override.substr(0, RefPos); 2172 assert(Override != "none" && 2173 "Disabled reciprocals, but specifed refinement steps?"); 2174 2175 // If this is a general override, return the specified number of steps. 2176 if (Override == "all" || Override == "default") 2177 return RefSteps; 2178 } 2179 2180 // The attribute string may omit the size suffix ('f'/'d'). 2181 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2182 std::string VTNameNoSize = VTName; 2183 VTNameNoSize.pop_back(); 2184 2185 for (StringRef RecipType : OverrideVector) { 2186 size_t RefPos; 2187 uint8_t RefSteps; 2188 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2189 continue; 2190 2191 RecipType = RecipType.substr(0, RefPos); 2192 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2193 return RefSteps; 2194 } 2195 2196 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2197 } 2198 2199 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2200 MachineFunction &MF) const { 2201 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2202 } 2203 2204 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2205 MachineFunction &MF) const { 2206 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2207 } 2208 2209 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2210 MachineFunction &MF) const { 2211 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2212 } 2213 2214 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2215 MachineFunction &MF) const { 2216 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2217 } 2218 2219 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2220 MF.getRegInfo().freezeReservedRegs(MF); 2221 } 2222 2223 MachineMemOperand::Flags 2224 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, 2225 const DataLayout &DL) const { 2226 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2227 if (LI.isVolatile()) 2228 Flags |= MachineMemOperand::MOVolatile; 2229 2230 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2231 Flags |= MachineMemOperand::MONonTemporal; 2232 2233 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2234 Flags |= MachineMemOperand::MOInvariant; 2235 2236 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) 2237 Flags |= MachineMemOperand::MODereferenceable; 2238 2239 Flags |= getTargetMMOFlags(LI); 2240 return Flags; 2241 } 2242 2243 MachineMemOperand::Flags 2244 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2245 const DataLayout &DL) const { 2246 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2247 2248 if (SI.isVolatile()) 2249 Flags |= MachineMemOperand::MOVolatile; 2250 2251 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2252 Flags |= MachineMemOperand::MONonTemporal; 2253 2254 // FIXME: Not preserving dereferenceable 2255 Flags |= getTargetMMOFlags(SI); 2256 return Flags; 2257 } 2258 2259 MachineMemOperand::Flags 2260 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2261 const DataLayout &DL) const { 2262 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2263 2264 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2265 if (RMW->isVolatile()) 2266 Flags |= MachineMemOperand::MOVolatile; 2267 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2268 if (CmpX->isVolatile()) 2269 Flags |= MachineMemOperand::MOVolatile; 2270 } else 2271 llvm_unreachable("not an atomic instruction"); 2272 2273 // FIXME: Not preserving dereferenceable 2274 Flags |= getTargetMMOFlags(AI); 2275 return Flags; 2276 } 2277 2278 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2279 Instruction *Inst, 2280 AtomicOrdering Ord) const { 2281 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2282 return Builder.CreateFence(Ord); 2283 else 2284 return nullptr; 2285 } 2286 2287 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2288 Instruction *Inst, 2289 AtomicOrdering Ord) const { 2290 if (isAcquireOrStronger(Ord)) 2291 return Builder.CreateFence(Ord); 2292 else 2293 return nullptr; 2294 } 2295 2296 //===----------------------------------------------------------------------===// 2297 // GlobalISel Hooks 2298 //===----------------------------------------------------------------------===// 2299 2300 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2301 const TargetTransformInfo *TTI) const { 2302 auto &MF = *MI.getMF(); 2303 auto &MRI = MF.getRegInfo(); 2304 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2305 // this helper function computes the maximum number of uses we should consider 2306 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2307 // break even in terms of code size when the original MI has 2 users vs 2308 // choosing to potentially spill. Any more than 2 users we we have a net code 2309 // size increase. This doesn't take into account register pressure though. 2310 auto maxUses = [](unsigned RematCost) { 2311 // A cost of 1 means remats are basically free. 2312 if (RematCost == 1) 2313 return UINT_MAX; 2314 if (RematCost == 2) 2315 return 2U; 2316 2317 // Remat is too expensive, only sink if there's one user. 2318 if (RematCost > 2) 2319 return 1U; 2320 llvm_unreachable("Unexpected remat cost"); 2321 }; 2322 2323 // Helper to walk through uses and terminate if we've reached a limit. Saves 2324 // us spending time traversing uses if all we want to know is if it's >= min. 2325 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { 2326 unsigned NumUses = 0; 2327 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); 2328 for (; UI != UE && NumUses < MaxUses; ++UI) { 2329 NumUses++; 2330 } 2331 // If we haven't reached the end yet then there are more than MaxUses users. 2332 return UI == UE; 2333 }; 2334 2335 switch (MI.getOpcode()) { 2336 default: 2337 return false; 2338 // Constants-like instructions should be close to their users. 2339 // We don't want long live-ranges for them. 2340 case TargetOpcode::G_CONSTANT: 2341 case TargetOpcode::G_FCONSTANT: 2342 case TargetOpcode::G_FRAME_INDEX: 2343 case TargetOpcode::G_INTTOPTR: 2344 return true; 2345 case TargetOpcode::G_GLOBAL_VALUE: { 2346 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2347 Register Reg = MI.getOperand(0).getReg(); 2348 unsigned MaxUses = maxUses(RematCost); 2349 if (MaxUses == UINT_MAX) 2350 return true; // Remats are "free" so always localize. 2351 bool B = isUsesAtMost(Reg, MaxUses); 2352 return B; 2353 } 2354 } 2355 } 2356