1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MachineValueType.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 // Although this default value is arbitrary, it is not random. It is assumed
117 // that a condition that evaluates the same way by a higher percentage than this
118 // is best represented as control flow. Therefore, the default value N should be
119 // set such that the win from N% correct executions is greater than the loss
120 // from (100 - N)% mispredicted executions for the majority of intended targets.
121 static cl::opt<int> MinPercentageForPredictableBranch(
122     "min-predictable-branch", cl::init(99),
123     cl::desc("Minimum percentage (0-100) that a condition must be either true "
124              "or false to assume that the condition is predictable"),
125     cl::Hidden);
126 
127 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
128 #define HANDLE_LIBCALL(code, name) \
129   setLibcallName(RTLIB::code, name);
130 #include "llvm/IR/RuntimeLibcalls.def"
131 #undef HANDLE_LIBCALL
132   // Initialize calling conventions to their default.
133   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
134     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
135 
136   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
137   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
138     setLibcallName(RTLIB::ADD_F128, "__addkf3");
139     setLibcallName(RTLIB::SUB_F128, "__subkf3");
140     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
141     setLibcallName(RTLIB::DIV_F128, "__divkf3");
142     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
143     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
144     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
145     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
146     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
147     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
148     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
149     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
150     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
151     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
152     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
153     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
154     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
155     setLibcallName(RTLIB::UNE_F128, "__nekf2");
156     setLibcallName(RTLIB::OGE_F128, "__gekf2");
157     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
158     setLibcallName(RTLIB::OLE_F128, "__lekf2");
159     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
160     setLibcallName(RTLIB::UO_F128, "__unordkf2");
161   }
162 
163   // A few names are different on particular architectures or environments.
164   if (TT.isOSDarwin()) {
165     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
166     // of the gnueabi-style __gnu_*_ieee.
167     // FIXME: What about other targets?
168     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
169     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
170 
171     // Some darwins have an optimized __bzero/bzero function.
172     switch (TT.getArch()) {
173     case Triple::x86:
174     case Triple::x86_64:
175       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
176         setLibcallName(RTLIB::BZERO, "__bzero");
177       break;
178     case Triple::aarch64:
179     case Triple::aarch64_32:
180       setLibcallName(RTLIB::BZERO, "bzero");
181       break;
182     default:
183       break;
184     }
185 
186     if (darwinHasSinCos(TT)) {
187       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
188       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
189       if (TT.isWatchABI()) {
190         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
191                               CallingConv::ARM_AAPCS_VFP);
192         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
193                               CallingConv::ARM_AAPCS_VFP);
194       }
195     }
196   } else {
197     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
198     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
199   }
200 
201   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
202       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
203     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
204     setLibcallName(RTLIB::SINCOS_F64, "sincos");
205     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
206     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
207     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
208   }
209 
210   if (TT.isPS4CPU()) {
211     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
212     setLibcallName(RTLIB::SINCOS_F64, "sincos");
213   }
214 
215   if (TT.isOSOpenBSD()) {
216     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
217   }
218 }
219 
220 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
221 /// UNKNOWN_LIBCALL if there is none.
222 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
223   if (OpVT == MVT::f16) {
224     if (RetVT == MVT::f32)
225       return FPEXT_F16_F32;
226   } else if (OpVT == MVT::f32) {
227     if (RetVT == MVT::f64)
228       return FPEXT_F32_F64;
229     if (RetVT == MVT::f128)
230       return FPEXT_F32_F128;
231     if (RetVT == MVT::ppcf128)
232       return FPEXT_F32_PPCF128;
233   } else if (OpVT == MVT::f64) {
234     if (RetVT == MVT::f128)
235       return FPEXT_F64_F128;
236     else if (RetVT == MVT::ppcf128)
237       return FPEXT_F64_PPCF128;
238   } else if (OpVT == MVT::f80) {
239     if (RetVT == MVT::f128)
240       return FPEXT_F80_F128;
241   }
242 
243   return UNKNOWN_LIBCALL;
244 }
245 
246 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
247 /// UNKNOWN_LIBCALL if there is none.
248 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
249   if (RetVT == MVT::f16) {
250     if (OpVT == MVT::f32)
251       return FPROUND_F32_F16;
252     if (OpVT == MVT::f64)
253       return FPROUND_F64_F16;
254     if (OpVT == MVT::f80)
255       return FPROUND_F80_F16;
256     if (OpVT == MVT::f128)
257       return FPROUND_F128_F16;
258     if (OpVT == MVT::ppcf128)
259       return FPROUND_PPCF128_F16;
260   } else if (RetVT == MVT::f32) {
261     if (OpVT == MVT::f64)
262       return FPROUND_F64_F32;
263     if (OpVT == MVT::f80)
264       return FPROUND_F80_F32;
265     if (OpVT == MVT::f128)
266       return FPROUND_F128_F32;
267     if (OpVT == MVT::ppcf128)
268       return FPROUND_PPCF128_F32;
269   } else if (RetVT == MVT::f64) {
270     if (OpVT == MVT::f80)
271       return FPROUND_F80_F64;
272     if (OpVT == MVT::f128)
273       return FPROUND_F128_F64;
274     if (OpVT == MVT::ppcf128)
275       return FPROUND_PPCF128_F64;
276   } else if (RetVT == MVT::f80) {
277     if (OpVT == MVT::f128)
278       return FPROUND_F128_F80;
279   }
280 
281   return UNKNOWN_LIBCALL;
282 }
283 
284 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
285 /// UNKNOWN_LIBCALL if there is none.
286 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
287   if (OpVT == MVT::f32) {
288     if (RetVT == MVT::i32)
289       return FPTOSINT_F32_I32;
290     if (RetVT == MVT::i64)
291       return FPTOSINT_F32_I64;
292     if (RetVT == MVT::i128)
293       return FPTOSINT_F32_I128;
294   } else if (OpVT == MVT::f64) {
295     if (RetVT == MVT::i32)
296       return FPTOSINT_F64_I32;
297     if (RetVT == MVT::i64)
298       return FPTOSINT_F64_I64;
299     if (RetVT == MVT::i128)
300       return FPTOSINT_F64_I128;
301   } else if (OpVT == MVT::f80) {
302     if (RetVT == MVT::i32)
303       return FPTOSINT_F80_I32;
304     if (RetVT == MVT::i64)
305       return FPTOSINT_F80_I64;
306     if (RetVT == MVT::i128)
307       return FPTOSINT_F80_I128;
308   } else if (OpVT == MVT::f128) {
309     if (RetVT == MVT::i32)
310       return FPTOSINT_F128_I32;
311     if (RetVT == MVT::i64)
312       return FPTOSINT_F128_I64;
313     if (RetVT == MVT::i128)
314       return FPTOSINT_F128_I128;
315   } else if (OpVT == MVT::ppcf128) {
316     if (RetVT == MVT::i32)
317       return FPTOSINT_PPCF128_I32;
318     if (RetVT == MVT::i64)
319       return FPTOSINT_PPCF128_I64;
320     if (RetVT == MVT::i128)
321       return FPTOSINT_PPCF128_I128;
322   }
323   return UNKNOWN_LIBCALL;
324 }
325 
326 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
327 /// UNKNOWN_LIBCALL if there is none.
328 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
329   if (OpVT == MVT::f32) {
330     if (RetVT == MVT::i32)
331       return FPTOUINT_F32_I32;
332     if (RetVT == MVT::i64)
333       return FPTOUINT_F32_I64;
334     if (RetVT == MVT::i128)
335       return FPTOUINT_F32_I128;
336   } else if (OpVT == MVT::f64) {
337     if (RetVT == MVT::i32)
338       return FPTOUINT_F64_I32;
339     if (RetVT == MVT::i64)
340       return FPTOUINT_F64_I64;
341     if (RetVT == MVT::i128)
342       return FPTOUINT_F64_I128;
343   } else if (OpVT == MVT::f80) {
344     if (RetVT == MVT::i32)
345       return FPTOUINT_F80_I32;
346     if (RetVT == MVT::i64)
347       return FPTOUINT_F80_I64;
348     if (RetVT == MVT::i128)
349       return FPTOUINT_F80_I128;
350   } else if (OpVT == MVT::f128) {
351     if (RetVT == MVT::i32)
352       return FPTOUINT_F128_I32;
353     if (RetVT == MVT::i64)
354       return FPTOUINT_F128_I64;
355     if (RetVT == MVT::i128)
356       return FPTOUINT_F128_I128;
357   } else if (OpVT == MVT::ppcf128) {
358     if (RetVT == MVT::i32)
359       return FPTOUINT_PPCF128_I32;
360     if (RetVT == MVT::i64)
361       return FPTOUINT_PPCF128_I64;
362     if (RetVT == MVT::i128)
363       return FPTOUINT_PPCF128_I128;
364   }
365   return UNKNOWN_LIBCALL;
366 }
367 
368 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
369 /// UNKNOWN_LIBCALL if there is none.
370 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
371   if (OpVT == MVT::i32) {
372     if (RetVT == MVT::f32)
373       return SINTTOFP_I32_F32;
374     if (RetVT == MVT::f64)
375       return SINTTOFP_I32_F64;
376     if (RetVT == MVT::f80)
377       return SINTTOFP_I32_F80;
378     if (RetVT == MVT::f128)
379       return SINTTOFP_I32_F128;
380     if (RetVT == MVT::ppcf128)
381       return SINTTOFP_I32_PPCF128;
382   } else if (OpVT == MVT::i64) {
383     if (RetVT == MVT::f32)
384       return SINTTOFP_I64_F32;
385     if (RetVT == MVT::f64)
386       return SINTTOFP_I64_F64;
387     if (RetVT == MVT::f80)
388       return SINTTOFP_I64_F80;
389     if (RetVT == MVT::f128)
390       return SINTTOFP_I64_F128;
391     if (RetVT == MVT::ppcf128)
392       return SINTTOFP_I64_PPCF128;
393   } else if (OpVT == MVT::i128) {
394     if (RetVT == MVT::f32)
395       return SINTTOFP_I128_F32;
396     if (RetVT == MVT::f64)
397       return SINTTOFP_I128_F64;
398     if (RetVT == MVT::f80)
399       return SINTTOFP_I128_F80;
400     if (RetVT == MVT::f128)
401       return SINTTOFP_I128_F128;
402     if (RetVT == MVT::ppcf128)
403       return SINTTOFP_I128_PPCF128;
404   }
405   return UNKNOWN_LIBCALL;
406 }
407 
408 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
409 /// UNKNOWN_LIBCALL if there is none.
410 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
411   if (OpVT == MVT::i32) {
412     if (RetVT == MVT::f32)
413       return UINTTOFP_I32_F32;
414     if (RetVT == MVT::f64)
415       return UINTTOFP_I32_F64;
416     if (RetVT == MVT::f80)
417       return UINTTOFP_I32_F80;
418     if (RetVT == MVT::f128)
419       return UINTTOFP_I32_F128;
420     if (RetVT == MVT::ppcf128)
421       return UINTTOFP_I32_PPCF128;
422   } else if (OpVT == MVT::i64) {
423     if (RetVT == MVT::f32)
424       return UINTTOFP_I64_F32;
425     if (RetVT == MVT::f64)
426       return UINTTOFP_I64_F64;
427     if (RetVT == MVT::f80)
428       return UINTTOFP_I64_F80;
429     if (RetVT == MVT::f128)
430       return UINTTOFP_I64_F128;
431     if (RetVT == MVT::ppcf128)
432       return UINTTOFP_I64_PPCF128;
433   } else if (OpVT == MVT::i128) {
434     if (RetVT == MVT::f32)
435       return UINTTOFP_I128_F32;
436     if (RetVT == MVT::f64)
437       return UINTTOFP_I128_F64;
438     if (RetVT == MVT::f80)
439       return UINTTOFP_I128_F80;
440     if (RetVT == MVT::f128)
441       return UINTTOFP_I128_F128;
442     if (RetVT == MVT::ppcf128)
443       return UINTTOFP_I128_PPCF128;
444   }
445   return UNKNOWN_LIBCALL;
446 }
447 
448 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
449 #define OP_TO_LIBCALL(Name, Enum)                                              \
450   case Name:                                                                   \
451     switch (VT.SimpleTy) {                                                     \
452     default:                                                                   \
453       return UNKNOWN_LIBCALL;                                                  \
454     case MVT::i8:                                                              \
455       return Enum##_1;                                                         \
456     case MVT::i16:                                                             \
457       return Enum##_2;                                                         \
458     case MVT::i32:                                                             \
459       return Enum##_4;                                                         \
460     case MVT::i64:                                                             \
461       return Enum##_8;                                                         \
462     case MVT::i128:                                                            \
463       return Enum##_16;                                                        \
464     }
465 
466   switch (Opc) {
467     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
468     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
469     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
470     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
471     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
472     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
473     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
474     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
475     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
476     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
477     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
478     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
479   }
480 
481 #undef OP_TO_LIBCALL
482 
483   return UNKNOWN_LIBCALL;
484 }
485 
486 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
487   switch (ElementSize) {
488   case 1:
489     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
490   case 2:
491     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
492   case 4:
493     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
494   case 8:
495     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
496   case 16:
497     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
498   default:
499     return UNKNOWN_LIBCALL;
500   }
501 }
502 
503 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
504   switch (ElementSize) {
505   case 1:
506     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
507   case 2:
508     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
509   case 4:
510     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
511   case 8:
512     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
513   case 16:
514     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
515   default:
516     return UNKNOWN_LIBCALL;
517   }
518 }
519 
520 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
521   switch (ElementSize) {
522   case 1:
523     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
524   case 2:
525     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
526   case 4:
527     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
528   case 8:
529     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
530   case 16:
531     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
532   default:
533     return UNKNOWN_LIBCALL;
534   }
535 }
536 
537 /// InitCmpLibcallCCs - Set default comparison libcall CC.
538 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
539   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
540   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
541   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
542   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
543   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
544   CCs[RTLIB::UNE_F32] = ISD::SETNE;
545   CCs[RTLIB::UNE_F64] = ISD::SETNE;
546   CCs[RTLIB::UNE_F128] = ISD::SETNE;
547   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
548   CCs[RTLIB::OGE_F32] = ISD::SETGE;
549   CCs[RTLIB::OGE_F64] = ISD::SETGE;
550   CCs[RTLIB::OGE_F128] = ISD::SETGE;
551   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
552   CCs[RTLIB::OLT_F32] = ISD::SETLT;
553   CCs[RTLIB::OLT_F64] = ISD::SETLT;
554   CCs[RTLIB::OLT_F128] = ISD::SETLT;
555   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
556   CCs[RTLIB::OLE_F32] = ISD::SETLE;
557   CCs[RTLIB::OLE_F64] = ISD::SETLE;
558   CCs[RTLIB::OLE_F128] = ISD::SETLE;
559   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
560   CCs[RTLIB::OGT_F32] = ISD::SETGT;
561   CCs[RTLIB::OGT_F64] = ISD::SETGT;
562   CCs[RTLIB::OGT_F128] = ISD::SETGT;
563   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
564   CCs[RTLIB::UO_F32] = ISD::SETNE;
565   CCs[RTLIB::UO_F64] = ISD::SETNE;
566   CCs[RTLIB::UO_F128] = ISD::SETNE;
567   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
568 }
569 
570 /// NOTE: The TargetMachine owns TLOF.
571 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
572   initActions();
573 
574   // Perform these initializations only once.
575   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
576       MaxLoadsPerMemcmp = 8;
577   MaxGluedStoresPerMemcpy = 0;
578   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
579       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
580   HasMultipleConditionRegisters = false;
581   HasExtractBitsInsn = false;
582   JumpIsExpensive = JumpIsExpensiveOverride;
583   PredictableSelectIsExpensive = false;
584   EnableExtLdPromotion = false;
585   StackPointerRegisterToSaveRestore = 0;
586   BooleanContents = UndefinedBooleanContent;
587   BooleanFloatContents = UndefinedBooleanContent;
588   BooleanVectorContents = UndefinedBooleanContent;
589   SchedPreferenceInfo = Sched::ILP;
590   GatherAllAliasesMaxDepth = 18;
591   IsStrictFPEnabled = DisableStrictNodeMutation;
592   // TODO: the default will be switched to 0 in the next commit, along
593   // with the Target-specific changes necessary.
594   MaxAtomicSizeInBitsSupported = 1024;
595 
596   MinCmpXchgSizeInBits = 0;
597   SupportsUnalignedAtomics = false;
598 
599   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
600 
601   InitLibcalls(TM.getTargetTriple());
602   InitCmpLibcallCCs(CmpLibcallCCs);
603 }
604 
605 void TargetLoweringBase::initActions() {
606   // All operations default to being supported.
607   memset(OpActions, 0, sizeof(OpActions));
608   memset(LoadExtActions, 0, sizeof(LoadExtActions));
609   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
610   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
611   memset(CondCodeActions, 0, sizeof(CondCodeActions));
612   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
613   std::fill(std::begin(TargetDAGCombineArray),
614             std::end(TargetDAGCombineArray), 0);
615 
616   for (MVT VT : MVT::fp_valuetypes()) {
617     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits().getFixedSize());
618     if (IntVT.isValid()) {
619       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
620       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
621     }
622   }
623 
624   // Set default actions for various operations.
625   for (MVT VT : MVT::all_valuetypes()) {
626     // Default all indexed load / store to expand.
627     for (unsigned IM = (unsigned)ISD::PRE_INC;
628          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
629       setIndexedLoadAction(IM, VT, Expand);
630       setIndexedStoreAction(IM, VT, Expand);
631       setIndexedMaskedLoadAction(IM, VT, Expand);
632       setIndexedMaskedStoreAction(IM, VT, Expand);
633     }
634 
635     // Most backends expect to see the node which just returns the value loaded.
636     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
637 
638     // These operations default to expand.
639     setOperationAction(ISD::FGETSIGN, VT, Expand);
640     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
641     setOperationAction(ISD::FMINNUM, VT, Expand);
642     setOperationAction(ISD::FMAXNUM, VT, Expand);
643     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
644     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
645     setOperationAction(ISD::FMINIMUM, VT, Expand);
646     setOperationAction(ISD::FMAXIMUM, VT, Expand);
647     setOperationAction(ISD::FMAD, VT, Expand);
648     setOperationAction(ISD::SMIN, VT, Expand);
649     setOperationAction(ISD::SMAX, VT, Expand);
650     setOperationAction(ISD::UMIN, VT, Expand);
651     setOperationAction(ISD::UMAX, VT, Expand);
652     setOperationAction(ISD::ABS, VT, Expand);
653     setOperationAction(ISD::FSHL, VT, Expand);
654     setOperationAction(ISD::FSHR, VT, Expand);
655     setOperationAction(ISD::SADDSAT, VT, Expand);
656     setOperationAction(ISD::UADDSAT, VT, Expand);
657     setOperationAction(ISD::SSUBSAT, VT, Expand);
658     setOperationAction(ISD::USUBSAT, VT, Expand);
659     setOperationAction(ISD::SMULFIX, VT, Expand);
660     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
661     setOperationAction(ISD::UMULFIX, VT, Expand);
662     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
663     setOperationAction(ISD::SDIVFIX, VT, Expand);
664     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
665     setOperationAction(ISD::UDIVFIX, VT, Expand);
666     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
667 
668     // Overflow operations default to expand
669     setOperationAction(ISD::SADDO, VT, Expand);
670     setOperationAction(ISD::SSUBO, VT, Expand);
671     setOperationAction(ISD::UADDO, VT, Expand);
672     setOperationAction(ISD::USUBO, VT, Expand);
673     setOperationAction(ISD::SMULO, VT, Expand);
674     setOperationAction(ISD::UMULO, VT, Expand);
675 
676     // ADDCARRY operations default to expand
677     setOperationAction(ISD::ADDCARRY, VT, Expand);
678     setOperationAction(ISD::SUBCARRY, VT, Expand);
679     setOperationAction(ISD::SETCCCARRY, VT, Expand);
680 
681     // ADDC/ADDE/SUBC/SUBE default to expand.
682     setOperationAction(ISD::ADDC, VT, Expand);
683     setOperationAction(ISD::ADDE, VT, Expand);
684     setOperationAction(ISD::SUBC, VT, Expand);
685     setOperationAction(ISD::SUBE, VT, Expand);
686 
687     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
688     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
689     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
690 
691     setOperationAction(ISD::BITREVERSE, VT, Expand);
692 
693     // These library functions default to expand.
694     setOperationAction(ISD::FROUND, VT, Expand);
695     setOperationAction(ISD::FPOWI, VT, Expand);
696 
697     // These operations default to expand for vector types.
698     if (VT.isVector()) {
699       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
700       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
701       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
702       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
703       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
704       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
705     }
706 
707     // Constrained floating-point operations default to expand.
708 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
709     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
710 #include "llvm/IR/ConstrainedOps.def"
711 
712     // For most targets @llvm.get.dynamic.area.offset just returns 0.
713     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
714 
715     // Vector reduction default to expand.
716     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
717     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
718     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
719     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
720     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
721     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
722     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
723     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
724     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
725     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
726     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
727     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
728     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
729   }
730 
731   // Most targets ignore the @llvm.prefetch intrinsic.
732   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
733 
734   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
735   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
736 
737   // ConstantFP nodes default to expand.  Targets can either change this to
738   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
739   // to optimize expansions for certain constants.
740   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
741   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
742   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
743   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
744   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
745 
746   // These library functions default to expand.
747   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
748     setOperationAction(ISD::FCBRT,      VT, Expand);
749     setOperationAction(ISD::FLOG ,      VT, Expand);
750     setOperationAction(ISD::FLOG2,      VT, Expand);
751     setOperationAction(ISD::FLOG10,     VT, Expand);
752     setOperationAction(ISD::FEXP ,      VT, Expand);
753     setOperationAction(ISD::FEXP2,      VT, Expand);
754     setOperationAction(ISD::FFLOOR,     VT, Expand);
755     setOperationAction(ISD::FNEARBYINT, VT, Expand);
756     setOperationAction(ISD::FCEIL,      VT, Expand);
757     setOperationAction(ISD::FRINT,      VT, Expand);
758     setOperationAction(ISD::FTRUNC,     VT, Expand);
759     setOperationAction(ISD::FROUND,     VT, Expand);
760     setOperationAction(ISD::LROUND,     VT, Expand);
761     setOperationAction(ISD::LLROUND,    VT, Expand);
762     setOperationAction(ISD::LRINT,      VT, Expand);
763     setOperationAction(ISD::LLRINT,     VT, Expand);
764   }
765 
766   // Default ISD::TRAP to expand (which turns it into abort).
767   setOperationAction(ISD::TRAP, MVT::Other, Expand);
768 
769   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
770   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
771   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
772 }
773 
774 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
775                                                EVT) const {
776   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
777 }
778 
779 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
780                                          bool LegalTypes) const {
781   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
782   if (LHSTy.isVector())
783     return LHSTy;
784   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
785                     : getPointerTy(DL);
786 }
787 
788 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
789   assert(isTypeLegal(VT));
790   switch (Op) {
791   default:
792     return false;
793   case ISD::SDIV:
794   case ISD::UDIV:
795   case ISD::SREM:
796   case ISD::UREM:
797     return true;
798   }
799 }
800 
801 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
802   // If the command-line option was specified, ignore this request.
803   if (!JumpIsExpensiveOverride.getNumOccurrences())
804     JumpIsExpensive = isExpensive;
805 }
806 
807 TargetLoweringBase::LegalizeKind
808 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
809   // If this is a simple type, use the ComputeRegisterProp mechanism.
810   if (VT.isSimple()) {
811     MVT SVT = VT.getSimpleVT();
812     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
813     MVT NVT = TransformToType[SVT.SimpleTy];
814     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
815 
816     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
817             LA == TypeSoftPromoteHalf ||
818             (NVT.isVector() ||
819              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
820            "Promote may not follow Expand or Promote");
821 
822     if (LA == TypeSplitVector)
823       return LegalizeKind(LA,
824                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
825                                            SVT.getVectorNumElements() / 2));
826     if (LA == TypeScalarizeVector)
827       return LegalizeKind(LA, SVT.getVectorElementType());
828     return LegalizeKind(LA, NVT);
829   }
830 
831   // Handle Extended Scalar Types.
832   if (!VT.isVector()) {
833     assert(VT.isInteger() && "Float types must be simple");
834     unsigned BitSize = VT.getSizeInBits();
835     // First promote to a power-of-two size, then expand if necessary.
836     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
837       EVT NVT = VT.getRoundIntegerType(Context);
838       assert(NVT != VT && "Unable to round integer VT");
839       LegalizeKind NextStep = getTypeConversion(Context, NVT);
840       // Avoid multi-step promotion.
841       if (NextStep.first == TypePromoteInteger)
842         return NextStep;
843       // Return rounded integer type.
844       return LegalizeKind(TypePromoteInteger, NVT);
845     }
846 
847     return LegalizeKind(TypeExpandInteger,
848                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
849   }
850 
851   // Handle vector types.
852   unsigned NumElts = VT.getVectorNumElements();
853   EVT EltVT = VT.getVectorElementType();
854 
855   // Vectors with only one element are always scalarized.
856   if (NumElts == 1)
857     return LegalizeKind(TypeScalarizeVector, EltVT);
858 
859   // Try to widen vector elements until the element type is a power of two and
860   // promote it to a legal type later on, for example:
861   // <3 x i8> -> <4 x i8> -> <4 x i32>
862   if (EltVT.isInteger()) {
863     // Vectors with a number of elements that is not a power of two are always
864     // widened, for example <3 x i8> -> <4 x i8>.
865     if (!VT.isPow2VectorType()) {
866       NumElts = (unsigned)NextPowerOf2(NumElts);
867       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
868       return LegalizeKind(TypeWidenVector, NVT);
869     }
870 
871     // Examine the element type.
872     LegalizeKind LK = getTypeConversion(Context, EltVT);
873 
874     // If type is to be expanded, split the vector.
875     //  <4 x i140> -> <2 x i140>
876     if (LK.first == TypeExpandInteger)
877       return LegalizeKind(TypeSplitVector,
878                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
879 
880     // Promote the integer element types until a legal vector type is found
881     // or until the element integer type is too big. If a legal type was not
882     // found, fallback to the usual mechanism of widening/splitting the
883     // vector.
884     EVT OldEltVT = EltVT;
885     while (true) {
886       // Increase the bitwidth of the element to the next pow-of-two
887       // (which is greater than 8 bits).
888       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
889                   .getRoundIntegerType(Context);
890 
891       // Stop trying when getting a non-simple element type.
892       // Note that vector elements may be greater than legal vector element
893       // types. Example: X86 XMM registers hold 64bit element on 32bit
894       // systems.
895       if (!EltVT.isSimple())
896         break;
897 
898       // Build a new vector type and check if it is legal.
899       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
900       // Found a legal promoted vector type.
901       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
902         return LegalizeKind(TypePromoteInteger,
903                             EVT::getVectorVT(Context, EltVT, NumElts));
904     }
905 
906     // Reset the type to the unexpanded type if we did not find a legal vector
907     // type with a promoted vector element type.
908     EltVT = OldEltVT;
909   }
910 
911   // Try to widen the vector until a legal type is found.
912   // If there is no wider legal type, split the vector.
913   while (true) {
914     // Round up to the next power of 2.
915     NumElts = (unsigned)NextPowerOf2(NumElts);
916 
917     // If there is no simple vector type with this many elements then there
918     // cannot be a larger legal vector type.  Note that this assumes that
919     // there are no skipped intermediate vector types in the simple types.
920     if (!EltVT.isSimple())
921       break;
922     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
923     if (LargerVector == MVT())
924       break;
925 
926     // If this type is legal then widen the vector.
927     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
928       return LegalizeKind(TypeWidenVector, LargerVector);
929   }
930 
931   // Widen odd vectors to next power of two.
932   if (!VT.isPow2VectorType()) {
933     EVT NVT = VT.getPow2VectorType(Context);
934     return LegalizeKind(TypeWidenVector, NVT);
935   }
936 
937   // Vectors with illegal element types are expanded.
938   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
939   return LegalizeKind(TypeSplitVector, NVT);
940 }
941 
942 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
943                                           unsigned &NumIntermediates,
944                                           MVT &RegisterVT,
945                                           TargetLoweringBase *TLI) {
946   // Figure out the right, legal destination reg to copy into.
947   ElementCount EC = VT.getVectorElementCount();
948   MVT EltTy = VT.getVectorElementType();
949 
950   unsigned NumVectorRegs = 1;
951 
952   // FIXME: We don't support non-power-of-2-sized vectors for now.
953   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
954   if (!isPowerOf2_32(EC.Min)) {
955     // Split EC to unit size (scalable property is preserved).
956     NumVectorRegs = EC.Min;
957     EC = EC / NumVectorRegs;
958   }
959 
960   // Divide the input until we get to a supported size. This will
961   // always end up with an EC that represent a scalar or a scalable
962   // scalar.
963   while (EC.Min > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
964     EC.Min >>= 1;
965     NumVectorRegs <<= 1;
966   }
967 
968   NumIntermediates = NumVectorRegs;
969 
970   MVT NewVT = MVT::getVectorVT(EltTy, EC);
971   if (!TLI->isTypeLegal(NewVT))
972     NewVT = EltTy;
973   IntermediateVT = NewVT;
974 
975   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits().getFixedSize();
976 
977   // Convert sizes such as i33 to i64.
978   if (!isPowerOf2_32(LaneSizeInBits))
979     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
980 
981   MVT DestVT = TLI->getRegisterType(NewVT);
982   RegisterVT = DestVT;
983   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
984     return NumVectorRegs *
985            (LaneSizeInBits / DestVT.getScalarSizeInBits().getFixedSize());
986 
987   // Otherwise, promotion or legal types use the same number of registers as
988   // the vector decimated to the appropriate level.
989   return NumVectorRegs;
990 }
991 
992 /// isLegalRC - Return true if the value types that can be represented by the
993 /// specified register class are all legal.
994 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
995                                    const TargetRegisterClass &RC) const {
996   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
997     if (isTypeLegal(*I))
998       return true;
999   return false;
1000 }
1001 
1002 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1003 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1004 MachineBasicBlock *
1005 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1006                                    MachineBasicBlock *MBB) const {
1007   MachineInstr *MI = &InitialMI;
1008   MachineFunction &MF = *MI->getMF();
1009   MachineFrameInfo &MFI = MF.getFrameInfo();
1010 
1011   // We're handling multiple types of operands here:
1012   // PATCHPOINT MetaArgs - live-in, read only, direct
1013   // STATEPOINT Deopt Spill - live-through, read only, indirect
1014   // STATEPOINT Deopt Alloca - live-through, read only, direct
1015   // (We're currently conservative and mark the deopt slots read/write in
1016   // practice.)
1017   // STATEPOINT GC Spill - live-through, read/write, indirect
1018   // STATEPOINT GC Alloca - live-through, read/write, direct
1019   // The live-in vs live-through is handled already (the live through ones are
1020   // all stack slots), but we need to handle the different type of stackmap
1021   // operands and memory effects here.
1022 
1023   // MI changes inside this loop as we grow operands.
1024   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1025     MachineOperand &MO = MI->getOperand(OperIdx);
1026     if (!MO.isFI())
1027       continue;
1028 
1029     // foldMemoryOperand builds a new MI after replacing a single FI operand
1030     // with the canonical set of five x86 addressing-mode operands.
1031     int FI = MO.getIndex();
1032     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1033 
1034     // Copy operands before the frame-index.
1035     for (unsigned i = 0; i < OperIdx; ++i)
1036       MIB.add(MI->getOperand(i));
1037     // Add frame index operands recognized by stackmaps.cpp
1038     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1039       // indirect-mem-ref tag, size, #FI, offset.
1040       // Used for spills inserted by StatepointLowering.  This codepath is not
1041       // used for patchpoints/stackmaps at all, for these spilling is done via
1042       // foldMemoryOperand callback only.
1043       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1044       MIB.addImm(StackMaps::IndirectMemRefOp);
1045       MIB.addImm(MFI.getObjectSize(FI));
1046       MIB.add(MI->getOperand(OperIdx));
1047       MIB.addImm(0);
1048     } else {
1049       // direct-mem-ref tag, #FI, offset.
1050       // Used by patchpoint, and direct alloca arguments to statepoints
1051       MIB.addImm(StackMaps::DirectMemRefOp);
1052       MIB.add(MI->getOperand(OperIdx));
1053       MIB.addImm(0);
1054     }
1055     // Copy the operands after the frame index.
1056     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1057       MIB.add(MI->getOperand(i));
1058 
1059     // Inherit previous memory operands.
1060     MIB.cloneMemRefs(*MI);
1061     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1062 
1063     // Add a new memory operand for this FI.
1064     assert(MFI.getObjectOffset(FI) != -1);
1065 
1066     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1067     // PATCHPOINT should be updated to do the same. (TODO)
1068     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1069       auto Flags = MachineMemOperand::MOLoad;
1070       MachineMemOperand *MMO = MF.getMachineMemOperand(
1071           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1072           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1073       MIB->addMemOperand(MF, MMO);
1074     }
1075 
1076     // Replace the instruction and update the operand index.
1077     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1078     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1079     MI->eraseFromParent();
1080     MI = MIB;
1081   }
1082   return MBB;
1083 }
1084 
1085 MachineBasicBlock *
1086 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1087                                         MachineBasicBlock *MBB) const {
1088   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1089          "Called emitXRayCustomEvent on the wrong MI!");
1090   auto &MF = *MI.getMF();
1091   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1092   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1093     MIB.add(MI.getOperand(OpIdx));
1094 
1095   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1096   MI.eraseFromParent();
1097   return MBB;
1098 }
1099 
1100 MachineBasicBlock *
1101 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1102                                        MachineBasicBlock *MBB) const {
1103   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1104          "Called emitXRayTypedEvent on the wrong MI!");
1105   auto &MF = *MI.getMF();
1106   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1107   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1108     MIB.add(MI.getOperand(OpIdx));
1109 
1110   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1111   MI.eraseFromParent();
1112   return MBB;
1113 }
1114 
1115 /// findRepresentativeClass - Return the largest legal super-reg register class
1116 /// of the register class for the specified type and its associated "cost".
1117 // This function is in TargetLowering because it uses RegClassForVT which would
1118 // need to be moved to TargetRegisterInfo and would necessitate moving
1119 // isTypeLegal over as well - a massive change that would just require
1120 // TargetLowering having a TargetRegisterInfo class member that it would use.
1121 std::pair<const TargetRegisterClass *, uint8_t>
1122 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1123                                             MVT VT) const {
1124   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1125   if (!RC)
1126     return std::make_pair(RC, 0);
1127 
1128   // Compute the set of all super-register classes.
1129   BitVector SuperRegRC(TRI->getNumRegClasses());
1130   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1131     SuperRegRC.setBitsInMask(RCI.getMask());
1132 
1133   // Find the first legal register class with the largest spill size.
1134   const TargetRegisterClass *BestRC = RC;
1135   for (unsigned i : SuperRegRC.set_bits()) {
1136     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1137     // We want the largest possible spill size.
1138     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1139       continue;
1140     if (!isLegalRC(*TRI, *SuperRC))
1141       continue;
1142     BestRC = SuperRC;
1143   }
1144   return std::make_pair(BestRC, 1);
1145 }
1146 
1147 /// computeRegisterProperties - Once all of the register classes are added,
1148 /// this allows us to compute derived properties we expose.
1149 void TargetLoweringBase::computeRegisterProperties(
1150     const TargetRegisterInfo *TRI) {
1151   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1152                 "Too many value types for ValueTypeActions to hold!");
1153 
1154   // Everything defaults to needing one register.
1155   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1156     NumRegistersForVT[i] = 1;
1157     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1158   }
1159   // ...except isVoid, which doesn't need any registers.
1160   NumRegistersForVT[MVT::isVoid] = 0;
1161 
1162   // Find the largest integer register class.
1163   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1164   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1165     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1166 
1167   // Every integer value type larger than this largest register takes twice as
1168   // many registers to represent as the previous ValueType.
1169   for (unsigned ExpandedReg = LargestIntReg + 1;
1170        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1171     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1172     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1173     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1174     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1175                                    TypeExpandInteger);
1176   }
1177 
1178   // Inspect all of the ValueType's smaller than the largest integer
1179   // register to see which ones need promotion.
1180   unsigned LegalIntReg = LargestIntReg;
1181   for (unsigned IntReg = LargestIntReg - 1;
1182        IntReg >= (unsigned)MVT::i1; --IntReg) {
1183     MVT IVT = (MVT::SimpleValueType)IntReg;
1184     if (isTypeLegal(IVT)) {
1185       LegalIntReg = IntReg;
1186     } else {
1187       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1188         (MVT::SimpleValueType)LegalIntReg;
1189       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1190     }
1191   }
1192 
1193   // ppcf128 type is really two f64's.
1194   if (!isTypeLegal(MVT::ppcf128)) {
1195     if (isTypeLegal(MVT::f64)) {
1196       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1197       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1198       TransformToType[MVT::ppcf128] = MVT::f64;
1199       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1200     } else {
1201       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1202       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1203       TransformToType[MVT::ppcf128] = MVT::i128;
1204       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1205     }
1206   }
1207 
1208   // Decide how to handle f128. If the target does not have native f128 support,
1209   // expand it to i128 and we will be generating soft float library calls.
1210   if (!isTypeLegal(MVT::f128)) {
1211     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1212     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1213     TransformToType[MVT::f128] = MVT::i128;
1214     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1215   }
1216 
1217   // Decide how to handle f64. If the target does not have native f64 support,
1218   // expand it to i64 and we will be generating soft float library calls.
1219   if (!isTypeLegal(MVT::f64)) {
1220     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1221     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1222     TransformToType[MVT::f64] = MVT::i64;
1223     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1224   }
1225 
1226   // Decide how to handle f32. If the target does not have native f32 support,
1227   // expand it to i32 and we will be generating soft float library calls.
1228   if (!isTypeLegal(MVT::f32)) {
1229     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1230     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1231     TransformToType[MVT::f32] = MVT::i32;
1232     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1233   }
1234 
1235   // Decide how to handle f16. If the target does not have native f16 support,
1236   // promote it to f32, because there are no f16 library calls (except for
1237   // conversions).
1238   if (!isTypeLegal(MVT::f16)) {
1239     // Allow targets to control how we legalize half.
1240     if (softPromoteHalfType()) {
1241       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1242       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1243       TransformToType[MVT::f16] = MVT::f32;
1244       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1245     } else {
1246       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1247       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1248       TransformToType[MVT::f16] = MVT::f32;
1249       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1250     }
1251   }
1252 
1253   // Loop over all of the vector value types to see which need transformations.
1254   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1255        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1256     MVT VT = (MVT::SimpleValueType) i;
1257     if (isTypeLegal(VT))
1258       continue;
1259 
1260     MVT EltVT = VT.getVectorElementType();
1261     unsigned NElts = VT.getVectorNumElements();
1262     bool IsLegalWiderType = false;
1263     bool IsScalable = VT.isScalableVector();
1264     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1265     switch (PreferredAction) {
1266     case TypePromoteInteger: {
1267       MVT::SimpleValueType EndVT = IsScalable ?
1268                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1269                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1270       // Try to promote the elements of integer vectors. If no legal
1271       // promotion was found, fall through to the widen-vector method.
1272       for (unsigned nVT = i + 1;
1273            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1274         MVT SVT = (MVT::SimpleValueType) nVT;
1275         // Promote vectors of integers to vectors with the same number
1276         // of elements, with a wider element type.
1277         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1278             SVT.getVectorNumElements() == NElts &&
1279             SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1280           TransformToType[i] = SVT;
1281           RegisterTypeForVT[i] = SVT;
1282           NumRegistersForVT[i] = 1;
1283           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1284           IsLegalWiderType = true;
1285           break;
1286         }
1287       }
1288       if (IsLegalWiderType)
1289         break;
1290       LLVM_FALLTHROUGH;
1291     }
1292 
1293     case TypeWidenVector:
1294       if (isPowerOf2_32(NElts)) {
1295         // Try to widen the vector.
1296         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1297           MVT SVT = (MVT::SimpleValueType) nVT;
1298           if (SVT.getVectorElementType() == EltVT
1299               && SVT.getVectorNumElements() > NElts
1300               && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1301             TransformToType[i] = SVT;
1302             RegisterTypeForVT[i] = SVT;
1303             NumRegistersForVT[i] = 1;
1304             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1305             IsLegalWiderType = true;
1306             break;
1307           }
1308         }
1309         if (IsLegalWiderType)
1310           break;
1311       } else {
1312         // Only widen to the next power of 2 to keep consistency with EVT.
1313         MVT NVT = VT.getPow2VectorType();
1314         if (isTypeLegal(NVT)) {
1315           TransformToType[i] = NVT;
1316           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1317           RegisterTypeForVT[i] = NVT;
1318           NumRegistersForVT[i] = 1;
1319           break;
1320         }
1321       }
1322       LLVM_FALLTHROUGH;
1323 
1324     case TypeSplitVector:
1325     case TypeScalarizeVector: {
1326       MVT IntermediateVT;
1327       MVT RegisterVT;
1328       unsigned NumIntermediates;
1329       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1330           NumIntermediates, RegisterVT, this);
1331       NumRegistersForVT[i] = NumRegisters;
1332       assert(NumRegistersForVT[i] == NumRegisters &&
1333              "NumRegistersForVT size cannot represent NumRegisters!");
1334       RegisterTypeForVT[i] = RegisterVT;
1335 
1336       MVT NVT = VT.getPow2VectorType();
1337       if (NVT == VT) {
1338         // Type is already a power of 2.  The default action is to split.
1339         TransformToType[i] = MVT::Other;
1340         if (PreferredAction == TypeScalarizeVector)
1341           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1342         else if (PreferredAction == TypeSplitVector)
1343           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1344         else
1345           // Set type action according to the number of elements.
1346           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1347                                                         : TypeSplitVector);
1348       } else {
1349         TransformToType[i] = NVT;
1350         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1351       }
1352       break;
1353     }
1354     default:
1355       llvm_unreachable("Unknown vector legalization action!");
1356     }
1357   }
1358 
1359   // Determine the 'representative' register class for each value type.
1360   // An representative register class is the largest (meaning one which is
1361   // not a sub-register class / subreg register class) legal register class for
1362   // a group of value types. For example, on i386, i8, i16, and i32
1363   // representative would be GR32; while on x86_64 it's GR64.
1364   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1365     const TargetRegisterClass* RRC;
1366     uint8_t Cost;
1367     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1368     RepRegClassForVT[i] = RRC;
1369     RepRegClassCostForVT[i] = Cost;
1370   }
1371 }
1372 
1373 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1374                                            EVT VT) const {
1375   assert(!VT.isVector() && "No default SetCC type for vectors!");
1376   return getPointerTy(DL).SimpleTy;
1377 }
1378 
1379 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1380   return MVT::i32; // return the default value
1381 }
1382 
1383 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1384 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1385 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1386 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1387 ///
1388 /// This method returns the number of registers needed, and the VT for each
1389 /// register.  It also returns the VT and quantity of the intermediate values
1390 /// before they are promoted/expanded.
1391 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1392                                                 EVT &IntermediateVT,
1393                                                 unsigned &NumIntermediates,
1394                                                 MVT &RegisterVT) const {
1395   ElementCount EltCnt = VT.getVectorElementCount();
1396 
1397   // If there is a wider vector type with the same element type as this one,
1398   // or a promoted vector type that has the same number of elements which
1399   // are wider, then we should convert to that legal vector type.
1400   // This handles things like <2 x float> -> <4 x float> and
1401   // <4 x i1> -> <4 x i32>.
1402   LegalizeTypeAction TA = getTypeAction(Context, VT);
1403   if (EltCnt.Min != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1404     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1405     if (isTypeLegal(RegisterEVT)) {
1406       IntermediateVT = RegisterEVT;
1407       RegisterVT = RegisterEVT.getSimpleVT();
1408       NumIntermediates = 1;
1409       return 1;
1410     }
1411   }
1412 
1413   // Figure out the right, legal destination reg to copy into.
1414   EVT EltTy = VT.getVectorElementType();
1415 
1416   unsigned NumVectorRegs = 1;
1417 
1418   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1419   // could break down into LHS/RHS like LegalizeDAG does.
1420   if (!isPowerOf2_32(EltCnt.Min)) {
1421     NumVectorRegs = EltCnt.Min;
1422     EltCnt.Min = 1;
1423   }
1424 
1425   // Divide the input until we get to a supported size.  This will always
1426   // end with a scalar if the target doesn't support vectors.
1427   while (EltCnt.Min > 1 &&
1428          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1429     EltCnt.Min >>= 1;
1430     NumVectorRegs <<= 1;
1431   }
1432 
1433   NumIntermediates = NumVectorRegs;
1434 
1435   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1436   if (!isTypeLegal(NewVT))
1437     NewVT = EltTy;
1438   IntermediateVT = NewVT;
1439 
1440   MVT DestVT = getRegisterType(Context, NewVT);
1441   RegisterVT = DestVT;
1442   unsigned NewVTSize = NewVT.getSizeInBits();
1443 
1444   // Convert sizes such as i33 to i64.
1445   if (!isPowerOf2_32(NewVTSize))
1446     NewVTSize = NextPowerOf2(NewVTSize);
1447 
1448   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1449     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1450 
1451   // Otherwise, promotion or legal types use the same number of registers as
1452   // the vector decimated to the appropriate level.
1453   return NumVectorRegs;
1454 }
1455 
1456 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1457                                                 uint64_t NumCases,
1458                                                 uint64_t Range,
1459                                                 ProfileSummaryInfo *PSI,
1460                                                 BlockFrequencyInfo *BFI) const {
1461   // FIXME: This function check the maximum table size and density, but the
1462   // minimum size is not checked. It would be nice if the minimum size is
1463   // also combined within this function. Currently, the minimum size check is
1464   // performed in findJumpTable() in SelectionDAGBuiler and
1465   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1466   const bool OptForSize =
1467       SI->getParent()->getParent()->hasOptSize() ||
1468       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1469   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1470   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1471 
1472   // Check whether the number of cases is small enough and
1473   // the range is dense enough for a jump table.
1474   return (OptForSize || Range <= MaxJumpTableSize) &&
1475          (NumCases * 100 >= Range * MinDensity);
1476 }
1477 
1478 /// Get the EVTs and ArgFlags collections that represent the legalized return
1479 /// type of the given function.  This does not require a DAG or a return value,
1480 /// and is suitable for use before any DAGs for the function are constructed.
1481 /// TODO: Move this out of TargetLowering.cpp.
1482 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1483                          AttributeList attr,
1484                          SmallVectorImpl<ISD::OutputArg> &Outs,
1485                          const TargetLowering &TLI, const DataLayout &DL) {
1486   SmallVector<EVT, 4> ValueVTs;
1487   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1488   unsigned NumValues = ValueVTs.size();
1489   if (NumValues == 0) return;
1490 
1491   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1492     EVT VT = ValueVTs[j];
1493     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1494 
1495     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1496       ExtendKind = ISD::SIGN_EXTEND;
1497     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1498       ExtendKind = ISD::ZERO_EXTEND;
1499 
1500     // FIXME: C calling convention requires the return type to be promoted to
1501     // at least 32-bit. But this is not necessary for non-C calling
1502     // conventions. The frontend should mark functions whose return values
1503     // require promoting with signext or zeroext attributes.
1504     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1505       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1506       if (VT.bitsLT(MinVT))
1507         VT = MinVT;
1508     }
1509 
1510     unsigned NumParts =
1511         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1512     MVT PartVT =
1513         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1514 
1515     // 'inreg' on function refers to return value
1516     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1517     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1518       Flags.setInReg();
1519 
1520     // Propagate extension type if any
1521     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1522       Flags.setSExt();
1523     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1524       Flags.setZExt();
1525 
1526     for (unsigned i = 0; i < NumParts; ++i)
1527       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1528   }
1529 }
1530 
1531 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1532 /// function arguments in the caller parameter area.  This is the actual
1533 /// alignment, not its logarithm.
1534 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1535                                                    const DataLayout &DL) const {
1536   return DL.getABITypeAlign(Ty).value();
1537 }
1538 
1539 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1540     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1541     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1542   // Check if the specified alignment is sufficient based on the data layout.
1543   // TODO: While using the data layout works in practice, a better solution
1544   // would be to implement this check directly (make this a virtual function).
1545   // For example, the ABI alignment may change based on software platform while
1546   // this function should only be affected by hardware implementation.
1547   Type *Ty = VT.getTypeForEVT(Context);
1548   if (Alignment >= DL.getABITypeAlign(Ty).value()) {
1549     // Assume that an access that meets the ABI-specified alignment is fast.
1550     if (Fast != nullptr)
1551       *Fast = true;
1552     return true;
1553   }
1554 
1555   // This is a misaligned access.
1556   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1557 }
1558 
1559 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1560     LLVMContext &Context, const DataLayout &DL, EVT VT,
1561     const MachineMemOperand &MMO, bool *Fast) const {
1562   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1563                                         MMO.getAlign().value(), MMO.getFlags(),
1564                                         Fast);
1565 }
1566 
1567 bool TargetLoweringBase::allowsMemoryAccess(
1568     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1569     unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1570   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1571                                         Flags, Fast);
1572 }
1573 
1574 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1575                                             const DataLayout &DL, EVT VT,
1576                                             const MachineMemOperand &MMO,
1577                                             bool *Fast) const {
1578   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1579                             MMO.getAlign().value(), MMO.getFlags(), Fast);
1580 }
1581 
1582 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1583   return BranchProbability(MinPercentageForPredictableBranch, 100);
1584 }
1585 
1586 //===----------------------------------------------------------------------===//
1587 //  TargetTransformInfo Helpers
1588 //===----------------------------------------------------------------------===//
1589 
1590 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1591   enum InstructionOpcodes {
1592 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1593 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1594 #include "llvm/IR/Instruction.def"
1595   };
1596   switch (static_cast<InstructionOpcodes>(Opcode)) {
1597   case Ret:            return 0;
1598   case Br:             return 0;
1599   case Switch:         return 0;
1600   case IndirectBr:     return 0;
1601   case Invoke:         return 0;
1602   case CallBr:         return 0;
1603   case Resume:         return 0;
1604   case Unreachable:    return 0;
1605   case CleanupRet:     return 0;
1606   case CatchRet:       return 0;
1607   case CatchPad:       return 0;
1608   case CatchSwitch:    return 0;
1609   case CleanupPad:     return 0;
1610   case FNeg:           return ISD::FNEG;
1611   case Add:            return ISD::ADD;
1612   case FAdd:           return ISD::FADD;
1613   case Sub:            return ISD::SUB;
1614   case FSub:           return ISD::FSUB;
1615   case Mul:            return ISD::MUL;
1616   case FMul:           return ISD::FMUL;
1617   case UDiv:           return ISD::UDIV;
1618   case SDiv:           return ISD::SDIV;
1619   case FDiv:           return ISD::FDIV;
1620   case URem:           return ISD::UREM;
1621   case SRem:           return ISD::SREM;
1622   case FRem:           return ISD::FREM;
1623   case Shl:            return ISD::SHL;
1624   case LShr:           return ISD::SRL;
1625   case AShr:           return ISD::SRA;
1626   case And:            return ISD::AND;
1627   case Or:             return ISD::OR;
1628   case Xor:            return ISD::XOR;
1629   case Alloca:         return 0;
1630   case Load:           return ISD::LOAD;
1631   case Store:          return ISD::STORE;
1632   case GetElementPtr:  return 0;
1633   case Fence:          return 0;
1634   case AtomicCmpXchg:  return 0;
1635   case AtomicRMW:      return 0;
1636   case Trunc:          return ISD::TRUNCATE;
1637   case ZExt:           return ISD::ZERO_EXTEND;
1638   case SExt:           return ISD::SIGN_EXTEND;
1639   case FPToUI:         return ISD::FP_TO_UINT;
1640   case FPToSI:         return ISD::FP_TO_SINT;
1641   case UIToFP:         return ISD::UINT_TO_FP;
1642   case SIToFP:         return ISD::SINT_TO_FP;
1643   case FPTrunc:        return ISD::FP_ROUND;
1644   case FPExt:          return ISD::FP_EXTEND;
1645   case PtrToInt:       return ISD::BITCAST;
1646   case IntToPtr:       return ISD::BITCAST;
1647   case BitCast:        return ISD::BITCAST;
1648   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1649   case ICmp:           return ISD::SETCC;
1650   case FCmp:           return ISD::SETCC;
1651   case PHI:            return 0;
1652   case Call:           return 0;
1653   case Select:         return ISD::SELECT;
1654   case UserOp1:        return 0;
1655   case UserOp2:        return 0;
1656   case VAArg:          return 0;
1657   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1658   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1659   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1660   case ExtractValue:   return ISD::MERGE_VALUES;
1661   case InsertValue:    return ISD::MERGE_VALUES;
1662   case LandingPad:     return 0;
1663   case Freeze:         return ISD::FREEZE;
1664   }
1665 
1666   llvm_unreachable("Unknown instruction type encountered!");
1667 }
1668 
1669 std::pair<int, MVT>
1670 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1671                                             Type *Ty) const {
1672   LLVMContext &C = Ty->getContext();
1673   EVT MTy = getValueType(DL, Ty);
1674 
1675   int Cost = 1;
1676   // We keep legalizing the type until we find a legal kind. We assume that
1677   // the only operation that costs anything is the split. After splitting
1678   // we need to handle two types.
1679   while (true) {
1680     LegalizeKind LK = getTypeConversion(C, MTy);
1681 
1682     if (LK.first == TypeLegal)
1683       return std::make_pair(Cost, MTy.getSimpleVT());
1684 
1685     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1686       Cost *= 2;
1687 
1688     // Do not loop with f128 type.
1689     if (MTy == LK.second)
1690       return std::make_pair(Cost, MTy.getSimpleVT());
1691 
1692     // Keep legalizing the type.
1693     MTy = LK.second;
1694   }
1695 }
1696 
1697 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1698                                                               bool UseTLS) const {
1699   // compiler-rt provides a variable with a magic name.  Targets that do not
1700   // link with compiler-rt may also provide such a variable.
1701   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1702   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1703   auto UnsafeStackPtr =
1704       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1705 
1706   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1707 
1708   if (!UnsafeStackPtr) {
1709     auto TLSModel = UseTLS ?
1710         GlobalValue::InitialExecTLSModel :
1711         GlobalValue::NotThreadLocal;
1712     // The global variable is not defined yet, define it ourselves.
1713     // We use the initial-exec TLS model because we do not support the
1714     // variable living anywhere other than in the main executable.
1715     UnsafeStackPtr = new GlobalVariable(
1716         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1717         UnsafeStackPtrVar, nullptr, TLSModel);
1718   } else {
1719     // The variable exists, check its type and attributes.
1720     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1721       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1722     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1723       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1724                          (UseTLS ? "" : "not ") + "be thread-local");
1725   }
1726   return UnsafeStackPtr;
1727 }
1728 
1729 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1730   if (!TM.getTargetTriple().isAndroid())
1731     return getDefaultSafeStackPointerLocation(IRB, true);
1732 
1733   // Android provides a libc function to retrieve the address of the current
1734   // thread's unsafe stack pointer.
1735   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1736   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1737   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1738                                              StackPtrTy->getPointerTo(0));
1739   return IRB.CreateCall(Fn);
1740 }
1741 
1742 //===----------------------------------------------------------------------===//
1743 //  Loop Strength Reduction hooks
1744 //===----------------------------------------------------------------------===//
1745 
1746 /// isLegalAddressingMode - Return true if the addressing mode represented
1747 /// by AM is legal for this target, for a load/store of the specified type.
1748 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1749                                                const AddrMode &AM, Type *Ty,
1750                                                unsigned AS, Instruction *I) const {
1751   // The default implementation of this implements a conservative RISCy, r+r and
1752   // r+i addr mode.
1753 
1754   // Allows a sign-extended 16-bit immediate field.
1755   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1756     return false;
1757 
1758   // No global is ever allowed as a base.
1759   if (AM.BaseGV)
1760     return false;
1761 
1762   // Only support r+r,
1763   switch (AM.Scale) {
1764   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1765     break;
1766   case 1:
1767     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1768       return false;
1769     // Otherwise we have r+r or r+i.
1770     break;
1771   case 2:
1772     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1773       return false;
1774     // Allow 2*r as r+r.
1775     break;
1776   default: // Don't allow n * r
1777     return false;
1778   }
1779 
1780   return true;
1781 }
1782 
1783 //===----------------------------------------------------------------------===//
1784 //  Stack Protector
1785 //===----------------------------------------------------------------------===//
1786 
1787 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1788 // so that SelectionDAG handle SSP.
1789 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1790   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1791     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1792     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1793     return M.getOrInsertGlobal("__guard_local", PtrTy);
1794   }
1795   return nullptr;
1796 }
1797 
1798 // Currently only support "standard" __stack_chk_guard.
1799 // TODO: add LOAD_STACK_GUARD support.
1800 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1801   if (!M.getNamedValue("__stack_chk_guard"))
1802     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1803                        GlobalVariable::ExternalLinkage,
1804                        nullptr, "__stack_chk_guard");
1805 }
1806 
1807 // Currently only support "standard" __stack_chk_guard.
1808 // TODO: add LOAD_STACK_GUARD support.
1809 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1810   return M.getNamedValue("__stack_chk_guard");
1811 }
1812 
1813 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1814   return nullptr;
1815 }
1816 
1817 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1818   return MinimumJumpTableEntries;
1819 }
1820 
1821 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1822   MinimumJumpTableEntries = Val;
1823 }
1824 
1825 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1826   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1827 }
1828 
1829 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1830   return MaximumJumpTableSize;
1831 }
1832 
1833 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1834   MaximumJumpTableSize = Val;
1835 }
1836 
1837 //===----------------------------------------------------------------------===//
1838 //  Reciprocal Estimates
1839 //===----------------------------------------------------------------------===//
1840 
1841 /// Get the reciprocal estimate attribute string for a function that will
1842 /// override the target defaults.
1843 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1844   const Function &F = MF.getFunction();
1845   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1846 }
1847 
1848 /// Construct a string for the given reciprocal operation of the given type.
1849 /// This string should match the corresponding option to the front-end's
1850 /// "-mrecip" flag assuming those strings have been passed through in an
1851 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1852 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1853   std::string Name = VT.isVector() ? "vec-" : "";
1854 
1855   Name += IsSqrt ? "sqrt" : "div";
1856 
1857   // TODO: Handle "half" or other float types?
1858   if (VT.getScalarType() == MVT::f64) {
1859     Name += "d";
1860   } else {
1861     assert(VT.getScalarType() == MVT::f32 &&
1862            "Unexpected FP type for reciprocal estimate");
1863     Name += "f";
1864   }
1865 
1866   return Name;
1867 }
1868 
1869 /// Return the character position and value (a single numeric character) of a
1870 /// customized refinement operation in the input string if it exists. Return
1871 /// false if there is no customized refinement step count.
1872 static bool parseRefinementStep(StringRef In, size_t &Position,
1873                                 uint8_t &Value) {
1874   const char RefStepToken = ':';
1875   Position = In.find(RefStepToken);
1876   if (Position == StringRef::npos)
1877     return false;
1878 
1879   StringRef RefStepString = In.substr(Position + 1);
1880   // Allow exactly one numeric character for the additional refinement
1881   // step parameter.
1882   if (RefStepString.size() == 1) {
1883     char RefStepChar = RefStepString[0];
1884     if (RefStepChar >= '0' && RefStepChar <= '9') {
1885       Value = RefStepChar - '0';
1886       return true;
1887     }
1888   }
1889   report_fatal_error("Invalid refinement step for -recip.");
1890 }
1891 
1892 /// For the input attribute string, return one of the ReciprocalEstimate enum
1893 /// status values (enabled, disabled, or not specified) for this operation on
1894 /// the specified data type.
1895 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1896   if (Override.empty())
1897     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1898 
1899   SmallVector<StringRef, 4> OverrideVector;
1900   Override.split(OverrideVector, ',');
1901   unsigned NumArgs = OverrideVector.size();
1902 
1903   // Check if "all", "none", or "default" was specified.
1904   if (NumArgs == 1) {
1905     // Look for an optional setting of the number of refinement steps needed
1906     // for this type of reciprocal operation.
1907     size_t RefPos;
1908     uint8_t RefSteps;
1909     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1910       // Split the string for further processing.
1911       Override = Override.substr(0, RefPos);
1912     }
1913 
1914     // All reciprocal types are enabled.
1915     if (Override == "all")
1916       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1917 
1918     // All reciprocal types are disabled.
1919     if (Override == "none")
1920       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1921 
1922     // Target defaults for enablement are used.
1923     if (Override == "default")
1924       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1925   }
1926 
1927   // The attribute string may omit the size suffix ('f'/'d').
1928   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1929   std::string VTNameNoSize = VTName;
1930   VTNameNoSize.pop_back();
1931   static const char DisabledPrefix = '!';
1932 
1933   for (StringRef RecipType : OverrideVector) {
1934     size_t RefPos;
1935     uint8_t RefSteps;
1936     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1937       RecipType = RecipType.substr(0, RefPos);
1938 
1939     // Ignore the disablement token for string matching.
1940     bool IsDisabled = RecipType[0] == DisabledPrefix;
1941     if (IsDisabled)
1942       RecipType = RecipType.substr(1);
1943 
1944     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1945       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1946                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1947   }
1948 
1949   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1950 }
1951 
1952 /// For the input attribute string, return the customized refinement step count
1953 /// for this operation on the specified data type. If the step count does not
1954 /// exist, return the ReciprocalEstimate enum value for unspecified.
1955 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1956   if (Override.empty())
1957     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1958 
1959   SmallVector<StringRef, 4> OverrideVector;
1960   Override.split(OverrideVector, ',');
1961   unsigned NumArgs = OverrideVector.size();
1962 
1963   // Check if "all", "default", or "none" was specified.
1964   if (NumArgs == 1) {
1965     // Look for an optional setting of the number of refinement steps needed
1966     // for this type of reciprocal operation.
1967     size_t RefPos;
1968     uint8_t RefSteps;
1969     if (!parseRefinementStep(Override, RefPos, RefSteps))
1970       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1971 
1972     // Split the string for further processing.
1973     Override = Override.substr(0, RefPos);
1974     assert(Override != "none" &&
1975            "Disabled reciprocals, but specifed refinement steps?");
1976 
1977     // If this is a general override, return the specified number of steps.
1978     if (Override == "all" || Override == "default")
1979       return RefSteps;
1980   }
1981 
1982   // The attribute string may omit the size suffix ('f'/'d').
1983   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1984   std::string VTNameNoSize = VTName;
1985   VTNameNoSize.pop_back();
1986 
1987   for (StringRef RecipType : OverrideVector) {
1988     size_t RefPos;
1989     uint8_t RefSteps;
1990     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1991       continue;
1992 
1993     RecipType = RecipType.substr(0, RefPos);
1994     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1995       return RefSteps;
1996   }
1997 
1998   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1999 }
2000 
2001 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2002                                                     MachineFunction &MF) const {
2003   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2004 }
2005 
2006 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2007                                                    MachineFunction &MF) const {
2008   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2009 }
2010 
2011 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2012                                                MachineFunction &MF) const {
2013   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2014 }
2015 
2016 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2017                                               MachineFunction &MF) const {
2018   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2019 }
2020 
2021 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2022   MF.getRegInfo().freezeReservedRegs(MF);
2023 }
2024 
2025 MachineMemOperand::Flags
2026 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2027                                            const DataLayout &DL) const {
2028   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2029   if (LI.isVolatile())
2030     Flags |= MachineMemOperand::MOVolatile;
2031 
2032   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2033     Flags |= MachineMemOperand::MONonTemporal;
2034 
2035   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2036     Flags |= MachineMemOperand::MOInvariant;
2037 
2038   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2039     Flags |= MachineMemOperand::MODereferenceable;
2040 
2041   Flags |= getTargetMMOFlags(LI);
2042   return Flags;
2043 }
2044 
2045 MachineMemOperand::Flags
2046 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2047                                             const DataLayout &DL) const {
2048   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2049 
2050   if (SI.isVolatile())
2051     Flags |= MachineMemOperand::MOVolatile;
2052 
2053   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2054     Flags |= MachineMemOperand::MONonTemporal;
2055 
2056   // FIXME: Not preserving dereferenceable
2057   Flags |= getTargetMMOFlags(SI);
2058   return Flags;
2059 }
2060 
2061 MachineMemOperand::Flags
2062 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2063                                              const DataLayout &DL) const {
2064   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2065 
2066   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2067     if (RMW->isVolatile())
2068       Flags |= MachineMemOperand::MOVolatile;
2069   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2070     if (CmpX->isVolatile())
2071       Flags |= MachineMemOperand::MOVolatile;
2072   } else
2073     llvm_unreachable("not an atomic instruction");
2074 
2075   // FIXME: Not preserving dereferenceable
2076   Flags |= getTargetMMOFlags(AI);
2077   return Flags;
2078 }
2079 
2080 //===----------------------------------------------------------------------===//
2081 //  GlobalISel Hooks
2082 //===----------------------------------------------------------------------===//
2083 
2084 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2085                                         const TargetTransformInfo *TTI) const {
2086   auto &MF = *MI.getMF();
2087   auto &MRI = MF.getRegInfo();
2088   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2089   // this helper function computes the maximum number of uses we should consider
2090   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2091   // break even in terms of code size when the original MI has 2 users vs
2092   // choosing to potentially spill. Any more than 2 users we we have a net code
2093   // size increase. This doesn't take into account register pressure though.
2094   auto maxUses = [](unsigned RematCost) {
2095     // A cost of 1 means remats are basically free.
2096     if (RematCost == 1)
2097       return UINT_MAX;
2098     if (RematCost == 2)
2099       return 2U;
2100 
2101     // Remat is too expensive, only sink if there's one user.
2102     if (RematCost > 2)
2103       return 1U;
2104     llvm_unreachable("Unexpected remat cost");
2105   };
2106 
2107   // Helper to walk through uses and terminate if we've reached a limit. Saves
2108   // us spending time traversing uses if all we want to know is if it's >= min.
2109   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2110     unsigned NumUses = 0;
2111     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2112     for (; UI != UE && NumUses < MaxUses; ++UI) {
2113       NumUses++;
2114     }
2115     // If we haven't reached the end yet then there are more than MaxUses users.
2116     return UI == UE;
2117   };
2118 
2119   switch (MI.getOpcode()) {
2120   default:
2121     return false;
2122   // Constants-like instructions should be close to their users.
2123   // We don't want long live-ranges for them.
2124   case TargetOpcode::G_CONSTANT:
2125   case TargetOpcode::G_FCONSTANT:
2126   case TargetOpcode::G_FRAME_INDEX:
2127   case TargetOpcode::G_INTTOPTR:
2128     return true;
2129   case TargetOpcode::G_GLOBAL_VALUE: {
2130     unsigned RematCost = TTI->getGISelRematGlobalCost();
2131     Register Reg = MI.getOperand(0).getReg();
2132     unsigned MaxUses = maxUses(RematCost);
2133     if (MaxUses == UINT_MAX)
2134       return true; // Remats are "free" so always localize.
2135     bool B = isUsesAtMost(Reg, MaxUses);
2136     return B;
2137   }
2138   }
2139 }
2140