1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MachineValueType.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <iterator> 62 #include <string> 63 #include <tuple> 64 #include <utility> 65 66 using namespace llvm; 67 68 static cl::opt<bool> JumpIsExpensiveOverride( 69 "jump-is-expensive", cl::init(false), 70 cl::desc("Do not create extra branches to split comparison logic."), 71 cl::Hidden); 72 73 static cl::opt<unsigned> MinimumJumpTableEntries 74 ("min-jump-table-entries", cl::init(4), cl::Hidden, 75 cl::desc("Set minimum number of entries to use a jump table.")); 76 77 static cl::opt<unsigned> MaximumJumpTableSize 78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 79 cl::desc("Set maximum size of jump tables.")); 80 81 /// Minimum jump table density for normal functions. 82 static cl::opt<unsigned> 83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 84 cl::desc("Minimum density for building a jump table in " 85 "a normal function")); 86 87 /// Minimum jump table density for -Os or -Oz functions. 88 static cl::opt<unsigned> OptsizeJumpTableDensity( 89 "optsize-jump-table-density", cl::init(40), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "an optsize function")); 92 93 // FIXME: This option is only to test if the strict fp operation processed 94 // correctly by preventing mutating strict fp operation to normal fp operation 95 // during development. When the backend supports strict float operation, this 96 // option will be meaningless. 97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98 cl::desc("Don't mutate strict-float node to a legalize node"), 99 cl::init(false), cl::Hidden); 100 101 static bool darwinHasSinCos(const Triple &TT) { 102 assert(TT.isOSDarwin() && "should be called with darwin triple"); 103 // Don't bother with 32 bit x86. 104 if (TT.getArch() == Triple::x86) 105 return false; 106 // Macos < 10.9 has no sincos_stret. 107 if (TT.isMacOSX()) 108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 109 // iOS < 7.0 has no sincos_stret. 110 if (TT.isiOS()) 111 return !TT.isOSVersionLT(7, 0); 112 // Any other darwin such as WatchOS/TvOS is new enough. 113 return true; 114 } 115 116 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 117 #define HANDLE_LIBCALL(code, name) \ 118 setLibcallName(RTLIB::code, name); 119 #include "llvm/IR/RuntimeLibcalls.def" 120 #undef HANDLE_LIBCALL 121 // Initialize calling conventions to their default. 122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 124 125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 126 if (TT.isPPC()) { 127 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 128 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 129 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 130 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 131 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 149 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 150 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 151 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 152 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 153 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 154 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 155 } 156 157 // A few names are different on particular architectures or environments. 158 if (TT.isOSDarwin()) { 159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 160 // of the gnueabi-style __gnu_*_ieee. 161 // FIXME: What about other targets? 162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 164 165 // Some darwins have an optimized __bzero/bzero function. 166 switch (TT.getArch()) { 167 case Triple::x86: 168 case Triple::x86_64: 169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 170 setLibcallName(RTLIB::BZERO, "__bzero"); 171 break; 172 case Triple::aarch64: 173 case Triple::aarch64_32: 174 setLibcallName(RTLIB::BZERO, "bzero"); 175 break; 176 default: 177 break; 178 } 179 180 if (darwinHasSinCos(TT)) { 181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 183 if (TT.isWatchABI()) { 184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 185 CallingConv::ARM_AAPCS_VFP); 186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 187 CallingConv::ARM_AAPCS_VFP); 188 } 189 } 190 } else { 191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 193 } 194 195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 197 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 198 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 199 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 200 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 202 } 203 204 if (TT.isPS4()) { 205 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 206 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 207 } 208 209 if (TT.isOSOpenBSD()) { 210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 211 } 212 } 213 214 /// GetFPLibCall - Helper to return the right libcall for the given floating 215 /// point type, or UNKNOWN_LIBCALL if there is none. 216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 217 RTLIB::Libcall Call_F32, 218 RTLIB::Libcall Call_F64, 219 RTLIB::Libcall Call_F80, 220 RTLIB::Libcall Call_F128, 221 RTLIB::Libcall Call_PPCF128) { 222 return 223 VT == MVT::f32 ? Call_F32 : 224 VT == MVT::f64 ? Call_F64 : 225 VT == MVT::f80 ? Call_F80 : 226 VT == MVT::f128 ? Call_F128 : 227 VT == MVT::ppcf128 ? Call_PPCF128 : 228 RTLIB::UNKNOWN_LIBCALL; 229 } 230 231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 232 /// UNKNOWN_LIBCALL if there is none. 233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 234 if (OpVT == MVT::f16) { 235 if (RetVT == MVT::f32) 236 return FPEXT_F16_F32; 237 if (RetVT == MVT::f64) 238 return FPEXT_F16_F64; 239 if (RetVT == MVT::f80) 240 return FPEXT_F16_F80; 241 if (RetVT == MVT::f128) 242 return FPEXT_F16_F128; 243 } else if (OpVT == MVT::f32) { 244 if (RetVT == MVT::f64) 245 return FPEXT_F32_F64; 246 if (RetVT == MVT::f128) 247 return FPEXT_F32_F128; 248 if (RetVT == MVT::ppcf128) 249 return FPEXT_F32_PPCF128; 250 } else if (OpVT == MVT::f64) { 251 if (RetVT == MVT::f128) 252 return FPEXT_F64_F128; 253 else if (RetVT == MVT::ppcf128) 254 return FPEXT_F64_PPCF128; 255 } else if (OpVT == MVT::f80) { 256 if (RetVT == MVT::f128) 257 return FPEXT_F80_F128; 258 } 259 260 return UNKNOWN_LIBCALL; 261 } 262 263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 264 /// UNKNOWN_LIBCALL if there is none. 265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 266 if (RetVT == MVT::f16) { 267 if (OpVT == MVT::f32) 268 return FPROUND_F32_F16; 269 if (OpVT == MVT::f64) 270 return FPROUND_F64_F16; 271 if (OpVT == MVT::f80) 272 return FPROUND_F80_F16; 273 if (OpVT == MVT::f128) 274 return FPROUND_F128_F16; 275 if (OpVT == MVT::ppcf128) 276 return FPROUND_PPCF128_F16; 277 } else if (RetVT == MVT::f32) { 278 if (OpVT == MVT::f64) 279 return FPROUND_F64_F32; 280 if (OpVT == MVT::f80) 281 return FPROUND_F80_F32; 282 if (OpVT == MVT::f128) 283 return FPROUND_F128_F32; 284 if (OpVT == MVT::ppcf128) 285 return FPROUND_PPCF128_F32; 286 } else if (RetVT == MVT::f64) { 287 if (OpVT == MVT::f80) 288 return FPROUND_F80_F64; 289 if (OpVT == MVT::f128) 290 return FPROUND_F128_F64; 291 if (OpVT == MVT::ppcf128) 292 return FPROUND_PPCF128_F64; 293 } else if (RetVT == MVT::f80) { 294 if (OpVT == MVT::f128) 295 return FPROUND_F128_F80; 296 } 297 298 return UNKNOWN_LIBCALL; 299 } 300 301 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 302 /// UNKNOWN_LIBCALL if there is none. 303 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 304 if (OpVT == MVT::f16) { 305 if (RetVT == MVT::i32) 306 return FPTOSINT_F16_I32; 307 if (RetVT == MVT::i64) 308 return FPTOSINT_F16_I64; 309 if (RetVT == MVT::i128) 310 return FPTOSINT_F16_I128; 311 } else if (OpVT == MVT::f32) { 312 if (RetVT == MVT::i32) 313 return FPTOSINT_F32_I32; 314 if (RetVT == MVT::i64) 315 return FPTOSINT_F32_I64; 316 if (RetVT == MVT::i128) 317 return FPTOSINT_F32_I128; 318 } else if (OpVT == MVT::f64) { 319 if (RetVT == MVT::i32) 320 return FPTOSINT_F64_I32; 321 if (RetVT == MVT::i64) 322 return FPTOSINT_F64_I64; 323 if (RetVT == MVT::i128) 324 return FPTOSINT_F64_I128; 325 } else if (OpVT == MVT::f80) { 326 if (RetVT == MVT::i32) 327 return FPTOSINT_F80_I32; 328 if (RetVT == MVT::i64) 329 return FPTOSINT_F80_I64; 330 if (RetVT == MVT::i128) 331 return FPTOSINT_F80_I128; 332 } else if (OpVT == MVT::f128) { 333 if (RetVT == MVT::i32) 334 return FPTOSINT_F128_I32; 335 if (RetVT == MVT::i64) 336 return FPTOSINT_F128_I64; 337 if (RetVT == MVT::i128) 338 return FPTOSINT_F128_I128; 339 } else if (OpVT == MVT::ppcf128) { 340 if (RetVT == MVT::i32) 341 return FPTOSINT_PPCF128_I32; 342 if (RetVT == MVT::i64) 343 return FPTOSINT_PPCF128_I64; 344 if (RetVT == MVT::i128) 345 return FPTOSINT_PPCF128_I128; 346 } 347 return UNKNOWN_LIBCALL; 348 } 349 350 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 351 /// UNKNOWN_LIBCALL if there is none. 352 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 353 if (OpVT == MVT::f16) { 354 if (RetVT == MVT::i32) 355 return FPTOUINT_F16_I32; 356 if (RetVT == MVT::i64) 357 return FPTOUINT_F16_I64; 358 if (RetVT == MVT::i128) 359 return FPTOUINT_F16_I128; 360 } else if (OpVT == MVT::f32) { 361 if (RetVT == MVT::i32) 362 return FPTOUINT_F32_I32; 363 if (RetVT == MVT::i64) 364 return FPTOUINT_F32_I64; 365 if (RetVT == MVT::i128) 366 return FPTOUINT_F32_I128; 367 } else if (OpVT == MVT::f64) { 368 if (RetVT == MVT::i32) 369 return FPTOUINT_F64_I32; 370 if (RetVT == MVT::i64) 371 return FPTOUINT_F64_I64; 372 if (RetVT == MVT::i128) 373 return FPTOUINT_F64_I128; 374 } else if (OpVT == MVT::f80) { 375 if (RetVT == MVT::i32) 376 return FPTOUINT_F80_I32; 377 if (RetVT == MVT::i64) 378 return FPTOUINT_F80_I64; 379 if (RetVT == MVT::i128) 380 return FPTOUINT_F80_I128; 381 } else if (OpVT == MVT::f128) { 382 if (RetVT == MVT::i32) 383 return FPTOUINT_F128_I32; 384 if (RetVT == MVT::i64) 385 return FPTOUINT_F128_I64; 386 if (RetVT == MVT::i128) 387 return FPTOUINT_F128_I128; 388 } else if (OpVT == MVT::ppcf128) { 389 if (RetVT == MVT::i32) 390 return FPTOUINT_PPCF128_I32; 391 if (RetVT == MVT::i64) 392 return FPTOUINT_PPCF128_I64; 393 if (RetVT == MVT::i128) 394 return FPTOUINT_PPCF128_I128; 395 } 396 return UNKNOWN_LIBCALL; 397 } 398 399 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 400 /// UNKNOWN_LIBCALL if there is none. 401 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 402 if (OpVT == MVT::i32) { 403 if (RetVT == MVT::f16) 404 return SINTTOFP_I32_F16; 405 if (RetVT == MVT::f32) 406 return SINTTOFP_I32_F32; 407 if (RetVT == MVT::f64) 408 return SINTTOFP_I32_F64; 409 if (RetVT == MVT::f80) 410 return SINTTOFP_I32_F80; 411 if (RetVT == MVT::f128) 412 return SINTTOFP_I32_F128; 413 if (RetVT == MVT::ppcf128) 414 return SINTTOFP_I32_PPCF128; 415 } else if (OpVT == MVT::i64) { 416 if (RetVT == MVT::f16) 417 return SINTTOFP_I64_F16; 418 if (RetVT == MVT::f32) 419 return SINTTOFP_I64_F32; 420 if (RetVT == MVT::f64) 421 return SINTTOFP_I64_F64; 422 if (RetVT == MVT::f80) 423 return SINTTOFP_I64_F80; 424 if (RetVT == MVT::f128) 425 return SINTTOFP_I64_F128; 426 if (RetVT == MVT::ppcf128) 427 return SINTTOFP_I64_PPCF128; 428 } else if (OpVT == MVT::i128) { 429 if (RetVT == MVT::f16) 430 return SINTTOFP_I128_F16; 431 if (RetVT == MVT::f32) 432 return SINTTOFP_I128_F32; 433 if (RetVT == MVT::f64) 434 return SINTTOFP_I128_F64; 435 if (RetVT == MVT::f80) 436 return SINTTOFP_I128_F80; 437 if (RetVT == MVT::f128) 438 return SINTTOFP_I128_F128; 439 if (RetVT == MVT::ppcf128) 440 return SINTTOFP_I128_PPCF128; 441 } 442 return UNKNOWN_LIBCALL; 443 } 444 445 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 446 /// UNKNOWN_LIBCALL if there is none. 447 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 448 if (OpVT == MVT::i32) { 449 if (RetVT == MVT::f16) 450 return UINTTOFP_I32_F16; 451 if (RetVT == MVT::f32) 452 return UINTTOFP_I32_F32; 453 if (RetVT == MVT::f64) 454 return UINTTOFP_I32_F64; 455 if (RetVT == MVT::f80) 456 return UINTTOFP_I32_F80; 457 if (RetVT == MVT::f128) 458 return UINTTOFP_I32_F128; 459 if (RetVT == MVT::ppcf128) 460 return UINTTOFP_I32_PPCF128; 461 } else if (OpVT == MVT::i64) { 462 if (RetVT == MVT::f16) 463 return UINTTOFP_I64_F16; 464 if (RetVT == MVT::f32) 465 return UINTTOFP_I64_F32; 466 if (RetVT == MVT::f64) 467 return UINTTOFP_I64_F64; 468 if (RetVT == MVT::f80) 469 return UINTTOFP_I64_F80; 470 if (RetVT == MVT::f128) 471 return UINTTOFP_I64_F128; 472 if (RetVT == MVT::ppcf128) 473 return UINTTOFP_I64_PPCF128; 474 } else if (OpVT == MVT::i128) { 475 if (RetVT == MVT::f16) 476 return UINTTOFP_I128_F16; 477 if (RetVT == MVT::f32) 478 return UINTTOFP_I128_F32; 479 if (RetVT == MVT::f64) 480 return UINTTOFP_I128_F64; 481 if (RetVT == MVT::f80) 482 return UINTTOFP_I128_F80; 483 if (RetVT == MVT::f128) 484 return UINTTOFP_I128_F128; 485 if (RetVT == MVT::ppcf128) 486 return UINTTOFP_I128_PPCF128; 487 } 488 return UNKNOWN_LIBCALL; 489 } 490 491 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 492 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 493 POWI_PPCF128); 494 } 495 496 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 497 MVT VT) { 498 unsigned ModeN, ModelN; 499 switch (VT.SimpleTy) { 500 case MVT::i8: 501 ModeN = 0; 502 break; 503 case MVT::i16: 504 ModeN = 1; 505 break; 506 case MVT::i32: 507 ModeN = 2; 508 break; 509 case MVT::i64: 510 ModeN = 3; 511 break; 512 case MVT::i128: 513 ModeN = 4; 514 break; 515 default: 516 return UNKNOWN_LIBCALL; 517 } 518 519 switch (Order) { 520 case AtomicOrdering::Monotonic: 521 ModelN = 0; 522 break; 523 case AtomicOrdering::Acquire: 524 ModelN = 1; 525 break; 526 case AtomicOrdering::Release: 527 ModelN = 2; 528 break; 529 case AtomicOrdering::AcquireRelease: 530 case AtomicOrdering::SequentiallyConsistent: 531 ModelN = 3; 532 break; 533 default: 534 return UNKNOWN_LIBCALL; 535 } 536 537 #define LCALLS(A, B) \ 538 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 539 #define LCALL5(A) \ 540 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 541 switch (Opc) { 542 case ISD::ATOMIC_CMP_SWAP: { 543 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 544 return LC[ModeN][ModelN]; 545 } 546 case ISD::ATOMIC_SWAP: { 547 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 548 return LC[ModeN][ModelN]; 549 } 550 case ISD::ATOMIC_LOAD_ADD: { 551 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 552 return LC[ModeN][ModelN]; 553 } 554 case ISD::ATOMIC_LOAD_OR: { 555 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 556 return LC[ModeN][ModelN]; 557 } 558 case ISD::ATOMIC_LOAD_CLR: { 559 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 560 return LC[ModeN][ModelN]; 561 } 562 case ISD::ATOMIC_LOAD_XOR: { 563 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 564 return LC[ModeN][ModelN]; 565 } 566 default: 567 return UNKNOWN_LIBCALL; 568 } 569 #undef LCALLS 570 #undef LCALL5 571 } 572 573 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 574 #define OP_TO_LIBCALL(Name, Enum) \ 575 case Name: \ 576 switch (VT.SimpleTy) { \ 577 default: \ 578 return UNKNOWN_LIBCALL; \ 579 case MVT::i8: \ 580 return Enum##_1; \ 581 case MVT::i16: \ 582 return Enum##_2; \ 583 case MVT::i32: \ 584 return Enum##_4; \ 585 case MVT::i64: \ 586 return Enum##_8; \ 587 case MVT::i128: \ 588 return Enum##_16; \ 589 } 590 591 switch (Opc) { 592 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 593 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 594 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 595 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 596 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 597 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 598 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 602 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 603 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 604 } 605 606 #undef OP_TO_LIBCALL 607 608 return UNKNOWN_LIBCALL; 609 } 610 611 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 612 switch (ElementSize) { 613 case 1: 614 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 615 case 2: 616 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 617 case 4: 618 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 619 case 8: 620 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 621 case 16: 622 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 623 default: 624 return UNKNOWN_LIBCALL; 625 } 626 } 627 628 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 629 switch (ElementSize) { 630 case 1: 631 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 632 case 2: 633 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 634 case 4: 635 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 636 case 8: 637 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 638 case 16: 639 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 640 default: 641 return UNKNOWN_LIBCALL; 642 } 643 } 644 645 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 646 switch (ElementSize) { 647 case 1: 648 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 649 case 2: 650 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 651 case 4: 652 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 653 case 8: 654 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 655 case 16: 656 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 657 default: 658 return UNKNOWN_LIBCALL; 659 } 660 } 661 662 /// InitCmpLibcallCCs - Set default comparison libcall CC. 663 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 664 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); 665 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 666 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 667 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 668 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 669 CCs[RTLIB::UNE_F32] = ISD::SETNE; 670 CCs[RTLIB::UNE_F64] = ISD::SETNE; 671 CCs[RTLIB::UNE_F128] = ISD::SETNE; 672 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 673 CCs[RTLIB::OGE_F32] = ISD::SETGE; 674 CCs[RTLIB::OGE_F64] = ISD::SETGE; 675 CCs[RTLIB::OGE_F128] = ISD::SETGE; 676 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 677 CCs[RTLIB::OLT_F32] = ISD::SETLT; 678 CCs[RTLIB::OLT_F64] = ISD::SETLT; 679 CCs[RTLIB::OLT_F128] = ISD::SETLT; 680 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 681 CCs[RTLIB::OLE_F32] = ISD::SETLE; 682 CCs[RTLIB::OLE_F64] = ISD::SETLE; 683 CCs[RTLIB::OLE_F128] = ISD::SETLE; 684 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 685 CCs[RTLIB::OGT_F32] = ISD::SETGT; 686 CCs[RTLIB::OGT_F64] = ISD::SETGT; 687 CCs[RTLIB::OGT_F128] = ISD::SETGT; 688 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 689 CCs[RTLIB::UO_F32] = ISD::SETNE; 690 CCs[RTLIB::UO_F64] = ISD::SETNE; 691 CCs[RTLIB::UO_F128] = ISD::SETNE; 692 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 693 } 694 695 /// NOTE: The TargetMachine owns TLOF. 696 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 697 initActions(); 698 699 // Perform these initializations only once. 700 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 701 MaxLoadsPerMemcmp = 8; 702 MaxGluedStoresPerMemcpy = 0; 703 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 704 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 705 HasMultipleConditionRegisters = false; 706 HasExtractBitsInsn = false; 707 JumpIsExpensive = JumpIsExpensiveOverride; 708 PredictableSelectIsExpensive = false; 709 EnableExtLdPromotion = false; 710 StackPointerRegisterToSaveRestore = 0; 711 BooleanContents = UndefinedBooleanContent; 712 BooleanFloatContents = UndefinedBooleanContent; 713 BooleanVectorContents = UndefinedBooleanContent; 714 SchedPreferenceInfo = Sched::ILP; 715 GatherAllAliasesMaxDepth = 18; 716 IsStrictFPEnabled = DisableStrictNodeMutation; 717 MaxBytesForAlignment = 0; 718 // TODO: the default will be switched to 0 in the next commit, along 719 // with the Target-specific changes necessary. 720 MaxAtomicSizeInBitsSupported = 1024; 721 722 MinCmpXchgSizeInBits = 0; 723 SupportsUnalignedAtomics = false; 724 725 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 726 727 InitLibcalls(TM.getTargetTriple()); 728 InitCmpLibcallCCs(CmpLibcallCCs); 729 } 730 731 void TargetLoweringBase::initActions() { 732 // All operations default to being supported. 733 memset(OpActions, 0, sizeof(OpActions)); 734 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 735 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 736 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 737 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 738 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 739 std::fill(std::begin(TargetDAGCombineArray), 740 std::end(TargetDAGCombineArray), 0); 741 742 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to 743 // remove this and targets should individually set these types if not legal. 744 for (ISD::NodeType NT : 745 enum_seq_inclusive(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, 746 force_iteration_on_noniterable_enum)) { 747 for (MVT VT : {MVT::i2, MVT::i4}) 748 OpActions[(unsigned)VT.SimpleTy][NT] = Expand; 749 } 750 for (MVT AVT : MVT::all_valuetypes()) { 751 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { 752 setTruncStoreAction(AVT, VT, Expand); 753 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); 754 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); 755 } 756 } 757 for (unsigned IM = (unsigned)ISD::PRE_INC; 758 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 759 for (MVT VT : {MVT::i2, MVT::i4}) { 760 setIndexedLoadAction(IM, VT, Expand); 761 setIndexedStoreAction(IM, VT, Expand); 762 setIndexedMaskedLoadAction(IM, VT, Expand); 763 setIndexedMaskedStoreAction(IM, VT, Expand); 764 } 765 } 766 767 for (MVT VT : MVT::fp_valuetypes()) { 768 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 769 if (IntVT.isValid()) { 770 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 771 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 772 } 773 } 774 775 // Set default actions for various operations. 776 for (MVT VT : MVT::all_valuetypes()) { 777 // Default all indexed load / store to expand. 778 for (unsigned IM = (unsigned)ISD::PRE_INC; 779 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 780 setIndexedLoadAction(IM, VT, Expand); 781 setIndexedStoreAction(IM, VT, Expand); 782 setIndexedMaskedLoadAction(IM, VT, Expand); 783 setIndexedMaskedStoreAction(IM, VT, Expand); 784 } 785 786 // Most backends expect to see the node which just returns the value loaded. 787 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 788 789 // These operations default to expand. 790 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, 791 ISD::FMINNUM, ISD::FMAXNUM, 792 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, 793 ISD::FMINIMUM, ISD::FMAXIMUM, 794 ISD::FMAD, ISD::SMIN, 795 ISD::SMAX, ISD::UMIN, 796 ISD::UMAX, ISD::ABS, 797 ISD::FSHL, ISD::FSHR, 798 ISD::SADDSAT, ISD::UADDSAT, 799 ISD::SSUBSAT, ISD::USUBSAT, 800 ISD::SSHLSAT, ISD::USHLSAT, 801 ISD::SMULFIX, ISD::SMULFIXSAT, 802 ISD::UMULFIX, ISD::UMULFIXSAT, 803 ISD::SDIVFIX, ISD::SDIVFIXSAT, 804 ISD::UDIVFIX, ISD::UDIVFIXSAT, 805 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 806 ISD::IS_FPCLASS}, 807 VT, Expand); 808 809 // Overflow operations default to expand 810 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, 811 ISD::SMULO, ISD::UMULO}, 812 VT, Expand); 813 814 // ADDCARRY operations default to expand 815 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY, 816 ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, 817 VT, Expand); 818 819 // ADDC/ADDE/SUBC/SUBE default to expand. 820 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, 821 Expand); 822 823 // Halving adds 824 setOperationAction( 825 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, 826 Expand); 827 828 // Absolute difference 829 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); 830 831 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 832 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 833 Expand); 834 835 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); 836 837 // These library functions default to expand. 838 setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand); 839 840 // These operations default to expand for vector types. 841 if (VT.isVector()) 842 setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, 843 ISD::ANY_EXTEND_VECTOR_INREG, 844 ISD::SIGN_EXTEND_VECTOR_INREG, 845 ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR}, 846 VT, Expand); 847 848 // Constrained floating-point operations default to expand. 849 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 850 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 851 #include "llvm/IR/ConstrainedOps.def" 852 853 // For most targets @llvm.get.dynamic.area.offset just returns 0. 854 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 855 856 // Vector reduction default to expand. 857 setOperationAction( 858 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, 859 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 860 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 861 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, 862 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, 863 VT, Expand); 864 865 // Named vector shuffles default to expand. 866 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 867 } 868 869 // Most targets ignore the @llvm.prefetch intrinsic. 870 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 871 872 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 873 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 874 875 // ConstantFP nodes default to expand. Targets can either change this to 876 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 877 // to optimize expansions for certain constants. 878 setOperationAction(ISD::ConstantFP, 879 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, 880 Expand); 881 882 // These library functions default to expand. 883 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, 884 ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, 885 ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND, 886 ISD::LRINT, ISD::LLRINT}, 887 {MVT::f32, MVT::f64, MVT::f128}, Expand); 888 889 // Default ISD::TRAP to expand (which turns it into abort). 890 setOperationAction(ISD::TRAP, MVT::Other, Expand); 891 892 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 893 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 894 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 895 896 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 897 } 898 899 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 900 EVT) const { 901 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 902 } 903 904 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 905 bool LegalTypes) const { 906 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 907 if (LHSTy.isVector()) 908 return LHSTy; 909 MVT ShiftVT = 910 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); 911 // If any possible shift value won't fit in the prefered type, just use 912 // something safe. Assume it will be legalized when the shift is expanded. 913 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) 914 ShiftVT = MVT::i32; 915 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && 916 "ShiftVT is still too small!"); 917 return ShiftVT; 918 } 919 920 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 921 assert(isTypeLegal(VT)); 922 switch (Op) { 923 default: 924 return false; 925 case ISD::SDIV: 926 case ISD::UDIV: 927 case ISD::SREM: 928 case ISD::UREM: 929 return true; 930 } 931 } 932 933 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 934 unsigned DestAS) const { 935 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 936 } 937 938 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 939 // If the command-line option was specified, ignore this request. 940 if (!JumpIsExpensiveOverride.getNumOccurrences()) 941 JumpIsExpensive = isExpensive; 942 } 943 944 TargetLoweringBase::LegalizeKind 945 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 946 // If this is a simple type, use the ComputeRegisterProp mechanism. 947 if (VT.isSimple()) { 948 MVT SVT = VT.getSimpleVT(); 949 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 950 MVT NVT = TransformToType[SVT.SimpleTy]; 951 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 952 953 assert((LA == TypeLegal || LA == TypeSoftenFloat || 954 LA == TypeSoftPromoteHalf || 955 (NVT.isVector() || 956 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 957 "Promote may not follow Expand or Promote"); 958 959 if (LA == TypeSplitVector) 960 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 961 if (LA == TypeScalarizeVector) 962 return LegalizeKind(LA, SVT.getVectorElementType()); 963 return LegalizeKind(LA, NVT); 964 } 965 966 // Handle Extended Scalar Types. 967 if (!VT.isVector()) { 968 assert(VT.isInteger() && "Float types must be simple"); 969 unsigned BitSize = VT.getSizeInBits(); 970 // First promote to a power-of-two size, then expand if necessary. 971 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 972 EVT NVT = VT.getRoundIntegerType(Context); 973 assert(NVT != VT && "Unable to round integer VT"); 974 LegalizeKind NextStep = getTypeConversion(Context, NVT); 975 // Avoid multi-step promotion. 976 if (NextStep.first == TypePromoteInteger) 977 return NextStep; 978 // Return rounded integer type. 979 return LegalizeKind(TypePromoteInteger, NVT); 980 } 981 982 return LegalizeKind(TypeExpandInteger, 983 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 984 } 985 986 // Handle vector types. 987 ElementCount NumElts = VT.getVectorElementCount(); 988 EVT EltVT = VT.getVectorElementType(); 989 990 // Vectors with only one element are always scalarized. 991 if (NumElts.isScalar()) 992 return LegalizeKind(TypeScalarizeVector, EltVT); 993 994 // Try to widen vector elements until the element type is a power of two and 995 // promote it to a legal type later on, for example: 996 // <3 x i8> -> <4 x i8> -> <4 x i32> 997 if (EltVT.isInteger()) { 998 // Vectors with a number of elements that is not a power of two are always 999 // widened, for example <3 x i8> -> <4 x i8>. 1000 if (!VT.isPow2VectorType()) { 1001 NumElts = NumElts.coefficientNextPowerOf2(); 1002 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1003 return LegalizeKind(TypeWidenVector, NVT); 1004 } 1005 1006 // Examine the element type. 1007 LegalizeKind LK = getTypeConversion(Context, EltVT); 1008 1009 // If type is to be expanded, split the vector. 1010 // <4 x i140> -> <2 x i140> 1011 if (LK.first == TypeExpandInteger) { 1012 if (VT.getVectorElementCount().isScalable()) 1013 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1014 return LegalizeKind(TypeSplitVector, 1015 VT.getHalfNumVectorElementsVT(Context)); 1016 } 1017 1018 // Promote the integer element types until a legal vector type is found 1019 // or until the element integer type is too big. If a legal type was not 1020 // found, fallback to the usual mechanism of widening/splitting the 1021 // vector. 1022 EVT OldEltVT = EltVT; 1023 while (true) { 1024 // Increase the bitwidth of the element to the next pow-of-two 1025 // (which is greater than 8 bits). 1026 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1027 .getRoundIntegerType(Context); 1028 1029 // Stop trying when getting a non-simple element type. 1030 // Note that vector elements may be greater than legal vector element 1031 // types. Example: X86 XMM registers hold 64bit element on 32bit 1032 // systems. 1033 if (!EltVT.isSimple()) 1034 break; 1035 1036 // Build a new vector type and check if it is legal. 1037 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1038 // Found a legal promoted vector type. 1039 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1040 return LegalizeKind(TypePromoteInteger, 1041 EVT::getVectorVT(Context, EltVT, NumElts)); 1042 } 1043 1044 // Reset the type to the unexpanded type if we did not find a legal vector 1045 // type with a promoted vector element type. 1046 EltVT = OldEltVT; 1047 } 1048 1049 // Try to widen the vector until a legal type is found. 1050 // If there is no wider legal type, split the vector. 1051 while (true) { 1052 // Round up to the next power of 2. 1053 NumElts = NumElts.coefficientNextPowerOf2(); 1054 1055 // If there is no simple vector type with this many elements then there 1056 // cannot be a larger legal vector type. Note that this assumes that 1057 // there are no skipped intermediate vector types in the simple types. 1058 if (!EltVT.isSimple()) 1059 break; 1060 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1061 if (LargerVector == MVT()) 1062 break; 1063 1064 // If this type is legal then widen the vector. 1065 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1066 return LegalizeKind(TypeWidenVector, LargerVector); 1067 } 1068 1069 // Widen odd vectors to next power of two. 1070 if (!VT.isPow2VectorType()) { 1071 EVT NVT = VT.getPow2VectorType(Context); 1072 return LegalizeKind(TypeWidenVector, NVT); 1073 } 1074 1075 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1076 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1077 1078 // Vectors with illegal element types are expanded. 1079 EVT NVT = EVT::getVectorVT(Context, EltVT, 1080 VT.getVectorElementCount().divideCoefficientBy(2)); 1081 return LegalizeKind(TypeSplitVector, NVT); 1082 } 1083 1084 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1085 unsigned &NumIntermediates, 1086 MVT &RegisterVT, 1087 TargetLoweringBase *TLI) { 1088 // Figure out the right, legal destination reg to copy into. 1089 ElementCount EC = VT.getVectorElementCount(); 1090 MVT EltTy = VT.getVectorElementType(); 1091 1092 unsigned NumVectorRegs = 1; 1093 1094 // Scalable vectors cannot be scalarized, so splitting or widening is 1095 // required. 1096 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1097 llvm_unreachable( 1098 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1099 1100 // FIXME: We don't support non-power-of-2-sized vectors for now. 1101 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1102 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1103 // Split EC to unit size (scalable property is preserved). 1104 NumVectorRegs = EC.getKnownMinValue(); 1105 EC = ElementCount::getFixed(1); 1106 } 1107 1108 // Divide the input until we get to a supported size. This will 1109 // always end up with an EC that represent a scalar or a scalable 1110 // scalar. 1111 while (EC.getKnownMinValue() > 1 && 1112 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1113 EC = EC.divideCoefficientBy(2); 1114 NumVectorRegs <<= 1; 1115 } 1116 1117 NumIntermediates = NumVectorRegs; 1118 1119 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1120 if (!TLI->isTypeLegal(NewVT)) 1121 NewVT = EltTy; 1122 IntermediateVT = NewVT; 1123 1124 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1125 1126 // Convert sizes such as i33 to i64. 1127 if (!isPowerOf2_32(LaneSizeInBits)) 1128 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1129 1130 MVT DestVT = TLI->getRegisterType(NewVT); 1131 RegisterVT = DestVT; 1132 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1133 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1134 1135 // Otherwise, promotion or legal types use the same number of registers as 1136 // the vector decimated to the appropriate level. 1137 return NumVectorRegs; 1138 } 1139 1140 /// isLegalRC - Return true if the value types that can be represented by the 1141 /// specified register class are all legal. 1142 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1143 const TargetRegisterClass &RC) const { 1144 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1145 if (isTypeLegal(*I)) 1146 return true; 1147 return false; 1148 } 1149 1150 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1151 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1152 MachineBasicBlock * 1153 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1154 MachineBasicBlock *MBB) const { 1155 MachineInstr *MI = &InitialMI; 1156 MachineFunction &MF = *MI->getMF(); 1157 MachineFrameInfo &MFI = MF.getFrameInfo(); 1158 1159 // We're handling multiple types of operands here: 1160 // PATCHPOINT MetaArgs - live-in, read only, direct 1161 // STATEPOINT Deopt Spill - live-through, read only, indirect 1162 // STATEPOINT Deopt Alloca - live-through, read only, direct 1163 // (We're currently conservative and mark the deopt slots read/write in 1164 // practice.) 1165 // STATEPOINT GC Spill - live-through, read/write, indirect 1166 // STATEPOINT GC Alloca - live-through, read/write, direct 1167 // The live-in vs live-through is handled already (the live through ones are 1168 // all stack slots), but we need to handle the different type of stackmap 1169 // operands and memory effects here. 1170 1171 if (llvm::none_of(MI->operands(), 1172 [](MachineOperand &Operand) { return Operand.isFI(); })) 1173 return MBB; 1174 1175 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1176 1177 // Inherit previous memory operands. 1178 MIB.cloneMemRefs(*MI); 1179 1180 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1181 MachineOperand &MO = MI->getOperand(i); 1182 if (!MO.isFI()) { 1183 // Index of Def operand this Use it tied to. 1184 // Since Defs are coming before Uses, if Use is tied, then 1185 // index of Def must be smaller that index of that Use. 1186 // Also, Defs preserve their position in new MI. 1187 unsigned TiedTo = i; 1188 if (MO.isReg() && MO.isTied()) 1189 TiedTo = MI->findTiedOperandIdx(i); 1190 MIB.add(MO); 1191 if (TiedTo < i) 1192 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1193 continue; 1194 } 1195 1196 // foldMemoryOperand builds a new MI after replacing a single FI operand 1197 // with the canonical set of five x86 addressing-mode operands. 1198 int FI = MO.getIndex(); 1199 1200 // Add frame index operands recognized by stackmaps.cpp 1201 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1202 // indirect-mem-ref tag, size, #FI, offset. 1203 // Used for spills inserted by StatepointLowering. This codepath is not 1204 // used for patchpoints/stackmaps at all, for these spilling is done via 1205 // foldMemoryOperand callback only. 1206 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1207 MIB.addImm(StackMaps::IndirectMemRefOp); 1208 MIB.addImm(MFI.getObjectSize(FI)); 1209 MIB.add(MO); 1210 MIB.addImm(0); 1211 } else { 1212 // direct-mem-ref tag, #FI, offset. 1213 // Used by patchpoint, and direct alloca arguments to statepoints 1214 MIB.addImm(StackMaps::DirectMemRefOp); 1215 MIB.add(MO); 1216 MIB.addImm(0); 1217 } 1218 1219 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1220 1221 // Add a new memory operand for this FI. 1222 assert(MFI.getObjectOffset(FI) != -1); 1223 1224 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1225 // PATCHPOINT should be updated to do the same. (TODO) 1226 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1227 auto Flags = MachineMemOperand::MOLoad; 1228 MachineMemOperand *MMO = MF.getMachineMemOperand( 1229 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1230 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1231 MIB->addMemOperand(MF, MMO); 1232 } 1233 } 1234 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1235 MI->eraseFromParent(); 1236 return MBB; 1237 } 1238 1239 /// findRepresentativeClass - Return the largest legal super-reg register class 1240 /// of the register class for the specified type and its associated "cost". 1241 // This function is in TargetLowering because it uses RegClassForVT which would 1242 // need to be moved to TargetRegisterInfo and would necessitate moving 1243 // isTypeLegal over as well - a massive change that would just require 1244 // TargetLowering having a TargetRegisterInfo class member that it would use. 1245 std::pair<const TargetRegisterClass *, uint8_t> 1246 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1247 MVT VT) const { 1248 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1249 if (!RC) 1250 return std::make_pair(RC, 0); 1251 1252 // Compute the set of all super-register classes. 1253 BitVector SuperRegRC(TRI->getNumRegClasses()); 1254 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1255 SuperRegRC.setBitsInMask(RCI.getMask()); 1256 1257 // Find the first legal register class with the largest spill size. 1258 const TargetRegisterClass *BestRC = RC; 1259 for (unsigned i : SuperRegRC.set_bits()) { 1260 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1261 // We want the largest possible spill size. 1262 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1263 continue; 1264 if (!isLegalRC(*TRI, *SuperRC)) 1265 continue; 1266 BestRC = SuperRC; 1267 } 1268 return std::make_pair(BestRC, 1); 1269 } 1270 1271 /// computeRegisterProperties - Once all of the register classes are added, 1272 /// this allows us to compute derived properties we expose. 1273 void TargetLoweringBase::computeRegisterProperties( 1274 const TargetRegisterInfo *TRI) { 1275 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, 1276 "Too many value types for ValueTypeActions to hold!"); 1277 1278 // Everything defaults to needing one register. 1279 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1280 NumRegistersForVT[i] = 1; 1281 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1282 } 1283 // ...except isVoid, which doesn't need any registers. 1284 NumRegistersForVT[MVT::isVoid] = 0; 1285 1286 // Find the largest integer register class. 1287 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1288 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1289 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1290 1291 // Every integer value type larger than this largest register takes twice as 1292 // many registers to represent as the previous ValueType. 1293 for (unsigned ExpandedReg = LargestIntReg + 1; 1294 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1295 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1296 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1297 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1298 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1299 TypeExpandInteger); 1300 } 1301 1302 // Inspect all of the ValueType's smaller than the largest integer 1303 // register to see which ones need promotion. 1304 unsigned LegalIntReg = LargestIntReg; 1305 for (unsigned IntReg = LargestIntReg - 1; 1306 IntReg >= (unsigned)MVT::i1; --IntReg) { 1307 MVT IVT = (MVT::SimpleValueType)IntReg; 1308 if (isTypeLegal(IVT)) { 1309 LegalIntReg = IntReg; 1310 } else { 1311 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1312 (MVT::SimpleValueType)LegalIntReg; 1313 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1314 } 1315 } 1316 1317 // ppcf128 type is really two f64's. 1318 if (!isTypeLegal(MVT::ppcf128)) { 1319 if (isTypeLegal(MVT::f64)) { 1320 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1321 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1322 TransformToType[MVT::ppcf128] = MVT::f64; 1323 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1324 } else { 1325 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1326 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1327 TransformToType[MVT::ppcf128] = MVT::i128; 1328 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1329 } 1330 } 1331 1332 // Decide how to handle f128. If the target does not have native f128 support, 1333 // expand it to i128 and we will be generating soft float library calls. 1334 if (!isTypeLegal(MVT::f128)) { 1335 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1336 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1337 TransformToType[MVT::f128] = MVT::i128; 1338 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1339 } 1340 1341 // Decide how to handle f64. If the target does not have native f64 support, 1342 // expand it to i64 and we will be generating soft float library calls. 1343 if (!isTypeLegal(MVT::f64)) { 1344 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1345 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1346 TransformToType[MVT::f64] = MVT::i64; 1347 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1348 } 1349 1350 // Decide how to handle f32. If the target does not have native f32 support, 1351 // expand it to i32 and we will be generating soft float library calls. 1352 if (!isTypeLegal(MVT::f32)) { 1353 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1354 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1355 TransformToType[MVT::f32] = MVT::i32; 1356 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1357 } 1358 1359 // Decide how to handle f16. If the target does not have native f16 support, 1360 // promote it to f32, because there are no f16 library calls (except for 1361 // conversions). 1362 if (!isTypeLegal(MVT::f16)) { 1363 // Allow targets to control how we legalize half. 1364 if (softPromoteHalfType()) { 1365 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1366 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1367 TransformToType[MVT::f16] = MVT::f32; 1368 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1369 } else { 1370 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1371 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1372 TransformToType[MVT::f16] = MVT::f32; 1373 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1374 } 1375 } 1376 1377 // Loop over all of the vector value types to see which need transformations. 1378 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1379 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1380 MVT VT = (MVT::SimpleValueType) i; 1381 if (isTypeLegal(VT)) 1382 continue; 1383 1384 MVT EltVT = VT.getVectorElementType(); 1385 ElementCount EC = VT.getVectorElementCount(); 1386 bool IsLegalWiderType = false; 1387 bool IsScalable = VT.isScalableVector(); 1388 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1389 switch (PreferredAction) { 1390 case TypePromoteInteger: { 1391 MVT::SimpleValueType EndVT = IsScalable ? 1392 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1393 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1394 // Try to promote the elements of integer vectors. If no legal 1395 // promotion was found, fall through to the widen-vector method. 1396 for (unsigned nVT = i + 1; 1397 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1398 MVT SVT = (MVT::SimpleValueType) nVT; 1399 // Promote vectors of integers to vectors with the same number 1400 // of elements, with a wider element type. 1401 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1402 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1403 TransformToType[i] = SVT; 1404 RegisterTypeForVT[i] = SVT; 1405 NumRegistersForVT[i] = 1; 1406 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1407 IsLegalWiderType = true; 1408 break; 1409 } 1410 } 1411 if (IsLegalWiderType) 1412 break; 1413 LLVM_FALLTHROUGH; 1414 } 1415 1416 case TypeWidenVector: 1417 if (isPowerOf2_32(EC.getKnownMinValue())) { 1418 // Try to widen the vector. 1419 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1420 MVT SVT = (MVT::SimpleValueType) nVT; 1421 if (SVT.getVectorElementType() == EltVT && 1422 SVT.isScalableVector() == IsScalable && 1423 SVT.getVectorElementCount().getKnownMinValue() > 1424 EC.getKnownMinValue() && 1425 isTypeLegal(SVT)) { 1426 TransformToType[i] = SVT; 1427 RegisterTypeForVT[i] = SVT; 1428 NumRegistersForVT[i] = 1; 1429 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1430 IsLegalWiderType = true; 1431 break; 1432 } 1433 } 1434 if (IsLegalWiderType) 1435 break; 1436 } else { 1437 // Only widen to the next power of 2 to keep consistency with EVT. 1438 MVT NVT = VT.getPow2VectorType(); 1439 if (isTypeLegal(NVT)) { 1440 TransformToType[i] = NVT; 1441 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1442 RegisterTypeForVT[i] = NVT; 1443 NumRegistersForVT[i] = 1; 1444 break; 1445 } 1446 } 1447 LLVM_FALLTHROUGH; 1448 1449 case TypeSplitVector: 1450 case TypeScalarizeVector: { 1451 MVT IntermediateVT; 1452 MVT RegisterVT; 1453 unsigned NumIntermediates; 1454 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1455 NumIntermediates, RegisterVT, this); 1456 NumRegistersForVT[i] = NumRegisters; 1457 assert(NumRegistersForVT[i] == NumRegisters && 1458 "NumRegistersForVT size cannot represent NumRegisters!"); 1459 RegisterTypeForVT[i] = RegisterVT; 1460 1461 MVT NVT = VT.getPow2VectorType(); 1462 if (NVT == VT) { 1463 // Type is already a power of 2. The default action is to split. 1464 TransformToType[i] = MVT::Other; 1465 if (PreferredAction == TypeScalarizeVector) 1466 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1467 else if (PreferredAction == TypeSplitVector) 1468 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1469 else if (EC.getKnownMinValue() > 1) 1470 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1471 else 1472 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1473 ? TypeScalarizeScalableVector 1474 : TypeScalarizeVector); 1475 } else { 1476 TransformToType[i] = NVT; 1477 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1478 } 1479 break; 1480 } 1481 default: 1482 llvm_unreachable("Unknown vector legalization action!"); 1483 } 1484 } 1485 1486 // Determine the 'representative' register class for each value type. 1487 // An representative register class is the largest (meaning one which is 1488 // not a sub-register class / subreg register class) legal register class for 1489 // a group of value types. For example, on i386, i8, i16, and i32 1490 // representative would be GR32; while on x86_64 it's GR64. 1491 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1492 const TargetRegisterClass* RRC; 1493 uint8_t Cost; 1494 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1495 RepRegClassForVT[i] = RRC; 1496 RepRegClassCostForVT[i] = Cost; 1497 } 1498 } 1499 1500 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1501 EVT VT) const { 1502 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1503 return getPointerTy(DL).SimpleTy; 1504 } 1505 1506 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1507 return MVT::i32; // return the default value 1508 } 1509 1510 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1511 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1512 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1513 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1514 /// 1515 /// This method returns the number of registers needed, and the VT for each 1516 /// register. It also returns the VT and quantity of the intermediate values 1517 /// before they are promoted/expanded. 1518 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1519 EVT VT, EVT &IntermediateVT, 1520 unsigned &NumIntermediates, 1521 MVT &RegisterVT) const { 1522 ElementCount EltCnt = VT.getVectorElementCount(); 1523 1524 // If there is a wider vector type with the same element type as this one, 1525 // or a promoted vector type that has the same number of elements which 1526 // are wider, then we should convert to that legal vector type. 1527 // This handles things like <2 x float> -> <4 x float> and 1528 // <4 x i1> -> <4 x i32>. 1529 LegalizeTypeAction TA = getTypeAction(Context, VT); 1530 if (!EltCnt.isScalar() && 1531 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1532 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1533 if (isTypeLegal(RegisterEVT)) { 1534 IntermediateVT = RegisterEVT; 1535 RegisterVT = RegisterEVT.getSimpleVT(); 1536 NumIntermediates = 1; 1537 return 1; 1538 } 1539 } 1540 1541 // Figure out the right, legal destination reg to copy into. 1542 EVT EltTy = VT.getVectorElementType(); 1543 1544 unsigned NumVectorRegs = 1; 1545 1546 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1547 // types like done elsewhere in SelectionDAG. 1548 if (EltCnt.isScalable()) { 1549 LegalizeKind LK; 1550 EVT PartVT = VT; 1551 do { 1552 // Iterate until we've found a legal (part) type to hold VT. 1553 LK = getTypeConversion(Context, PartVT); 1554 PartVT = LK.second; 1555 } while (LK.first != TypeLegal); 1556 1557 if (!PartVT.isVector()) { 1558 report_fatal_error( 1559 "Don't know how to legalize this scalable vector type"); 1560 } 1561 1562 NumIntermediates = 1563 divideCeil(VT.getVectorElementCount().getKnownMinValue(), 1564 PartVT.getVectorElementCount().getKnownMinValue()); 1565 IntermediateVT = PartVT; 1566 RegisterVT = getRegisterType(Context, IntermediateVT); 1567 return NumIntermediates; 1568 } 1569 1570 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1571 // we could break down into LHS/RHS like LegalizeDAG does. 1572 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1573 NumVectorRegs = EltCnt.getKnownMinValue(); 1574 EltCnt = ElementCount::getFixed(1); 1575 } 1576 1577 // Divide the input until we get to a supported size. This will always 1578 // end with a scalar if the target doesn't support vectors. 1579 while (EltCnt.getKnownMinValue() > 1 && 1580 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1581 EltCnt = EltCnt.divideCoefficientBy(2); 1582 NumVectorRegs <<= 1; 1583 } 1584 1585 NumIntermediates = NumVectorRegs; 1586 1587 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1588 if (!isTypeLegal(NewVT)) 1589 NewVT = EltTy; 1590 IntermediateVT = NewVT; 1591 1592 MVT DestVT = getRegisterType(Context, NewVT); 1593 RegisterVT = DestVT; 1594 1595 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1596 TypeSize NewVTSize = NewVT.getSizeInBits(); 1597 // Convert sizes such as i33 to i64. 1598 if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) 1599 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1600 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1601 } 1602 1603 // Otherwise, promotion or legal types use the same number of registers as 1604 // the vector decimated to the appropriate level. 1605 return NumVectorRegs; 1606 } 1607 1608 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1609 uint64_t NumCases, 1610 uint64_t Range, 1611 ProfileSummaryInfo *PSI, 1612 BlockFrequencyInfo *BFI) const { 1613 // FIXME: This function check the maximum table size and density, but the 1614 // minimum size is not checked. It would be nice if the minimum size is 1615 // also combined within this function. Currently, the minimum size check is 1616 // performed in findJumpTable() in SelectionDAGBuiler and 1617 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1618 const bool OptForSize = 1619 SI->getParent()->getParent()->hasOptSize() || 1620 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1621 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1622 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1623 1624 // Check whether the number of cases is small enough and 1625 // the range is dense enough for a jump table. 1626 return (OptForSize || Range <= MaxJumpTableSize) && 1627 (NumCases * 100 >= Range * MinDensity); 1628 } 1629 1630 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, 1631 EVT ConditionVT) const { 1632 return getRegisterType(Context, ConditionVT); 1633 } 1634 1635 /// Get the EVTs and ArgFlags collections that represent the legalized return 1636 /// type of the given function. This does not require a DAG or a return value, 1637 /// and is suitable for use before any DAGs for the function are constructed. 1638 /// TODO: Move this out of TargetLowering.cpp. 1639 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1640 AttributeList attr, 1641 SmallVectorImpl<ISD::OutputArg> &Outs, 1642 const TargetLowering &TLI, const DataLayout &DL) { 1643 SmallVector<EVT, 4> ValueVTs; 1644 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1645 unsigned NumValues = ValueVTs.size(); 1646 if (NumValues == 0) return; 1647 1648 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1649 EVT VT = ValueVTs[j]; 1650 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1651 1652 if (attr.hasRetAttr(Attribute::SExt)) 1653 ExtendKind = ISD::SIGN_EXTEND; 1654 else if (attr.hasRetAttr(Attribute::ZExt)) 1655 ExtendKind = ISD::ZERO_EXTEND; 1656 1657 // FIXME: C calling convention requires the return type to be promoted to 1658 // at least 32-bit. But this is not necessary for non-C calling 1659 // conventions. The frontend should mark functions whose return values 1660 // require promoting with signext or zeroext attributes. 1661 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1662 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1663 if (VT.bitsLT(MinVT)) 1664 VT = MinVT; 1665 } 1666 1667 unsigned NumParts = 1668 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1669 MVT PartVT = 1670 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1671 1672 // 'inreg' on function refers to return value 1673 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1674 if (attr.hasRetAttr(Attribute::InReg)) 1675 Flags.setInReg(); 1676 1677 // Propagate extension type if any 1678 if (attr.hasRetAttr(Attribute::SExt)) 1679 Flags.setSExt(); 1680 else if (attr.hasRetAttr(Attribute::ZExt)) 1681 Flags.setZExt(); 1682 1683 for (unsigned i = 0; i < NumParts; ++i) 1684 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1685 } 1686 } 1687 1688 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1689 /// function arguments in the caller parameter area. This is the actual 1690 /// alignment, not its logarithm. 1691 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1692 const DataLayout &DL) const { 1693 return DL.getABITypeAlign(Ty).value(); 1694 } 1695 1696 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1697 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1698 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1699 // Check if the specified alignment is sufficient based on the data layout. 1700 // TODO: While using the data layout works in practice, a better solution 1701 // would be to implement this check directly (make this a virtual function). 1702 // For example, the ABI alignment may change based on software platform while 1703 // this function should only be affected by hardware implementation. 1704 Type *Ty = VT.getTypeForEVT(Context); 1705 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 1706 // Assume that an access that meets the ABI-specified alignment is fast. 1707 if (Fast != nullptr) 1708 *Fast = true; 1709 return true; 1710 } 1711 1712 // This is a misaligned access. 1713 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1714 } 1715 1716 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1717 LLVMContext &Context, const DataLayout &DL, EVT VT, 1718 const MachineMemOperand &MMO, bool *Fast) const { 1719 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1720 MMO.getAlign(), MMO.getFlags(), Fast); 1721 } 1722 1723 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1724 const DataLayout &DL, EVT VT, 1725 unsigned AddrSpace, Align Alignment, 1726 MachineMemOperand::Flags Flags, 1727 bool *Fast) const { 1728 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1729 Flags, Fast); 1730 } 1731 1732 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1733 const DataLayout &DL, EVT VT, 1734 const MachineMemOperand &MMO, 1735 bool *Fast) const { 1736 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1737 MMO.getFlags(), Fast); 1738 } 1739 1740 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1741 const DataLayout &DL, LLT Ty, 1742 const MachineMemOperand &MMO, 1743 bool *Fast) const { 1744 EVT VT = getApproximateEVTForLLT(Ty, DL, Context); 1745 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1746 MMO.getFlags(), Fast); 1747 } 1748 1749 //===----------------------------------------------------------------------===// 1750 // TargetTransformInfo Helpers 1751 //===----------------------------------------------------------------------===// 1752 1753 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1754 enum InstructionOpcodes { 1755 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1756 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1757 #include "llvm/IR/Instruction.def" 1758 }; 1759 switch (static_cast<InstructionOpcodes>(Opcode)) { 1760 case Ret: return 0; 1761 case Br: return 0; 1762 case Switch: return 0; 1763 case IndirectBr: return 0; 1764 case Invoke: return 0; 1765 case CallBr: return 0; 1766 case Resume: return 0; 1767 case Unreachable: return 0; 1768 case CleanupRet: return 0; 1769 case CatchRet: return 0; 1770 case CatchPad: return 0; 1771 case CatchSwitch: return 0; 1772 case CleanupPad: return 0; 1773 case FNeg: return ISD::FNEG; 1774 case Add: return ISD::ADD; 1775 case FAdd: return ISD::FADD; 1776 case Sub: return ISD::SUB; 1777 case FSub: return ISD::FSUB; 1778 case Mul: return ISD::MUL; 1779 case FMul: return ISD::FMUL; 1780 case UDiv: return ISD::UDIV; 1781 case SDiv: return ISD::SDIV; 1782 case FDiv: return ISD::FDIV; 1783 case URem: return ISD::UREM; 1784 case SRem: return ISD::SREM; 1785 case FRem: return ISD::FREM; 1786 case Shl: return ISD::SHL; 1787 case LShr: return ISD::SRL; 1788 case AShr: return ISD::SRA; 1789 case And: return ISD::AND; 1790 case Or: return ISD::OR; 1791 case Xor: return ISD::XOR; 1792 case Alloca: return 0; 1793 case Load: return ISD::LOAD; 1794 case Store: return ISD::STORE; 1795 case GetElementPtr: return 0; 1796 case Fence: return 0; 1797 case AtomicCmpXchg: return 0; 1798 case AtomicRMW: return 0; 1799 case Trunc: return ISD::TRUNCATE; 1800 case ZExt: return ISD::ZERO_EXTEND; 1801 case SExt: return ISD::SIGN_EXTEND; 1802 case FPToUI: return ISD::FP_TO_UINT; 1803 case FPToSI: return ISD::FP_TO_SINT; 1804 case UIToFP: return ISD::UINT_TO_FP; 1805 case SIToFP: return ISD::SINT_TO_FP; 1806 case FPTrunc: return ISD::FP_ROUND; 1807 case FPExt: return ISD::FP_EXTEND; 1808 case PtrToInt: return ISD::BITCAST; 1809 case IntToPtr: return ISD::BITCAST; 1810 case BitCast: return ISD::BITCAST; 1811 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1812 case ICmp: return ISD::SETCC; 1813 case FCmp: return ISD::SETCC; 1814 case PHI: return 0; 1815 case Call: return 0; 1816 case Select: return ISD::SELECT; 1817 case UserOp1: return 0; 1818 case UserOp2: return 0; 1819 case VAArg: return 0; 1820 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1821 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1822 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1823 case ExtractValue: return ISD::MERGE_VALUES; 1824 case InsertValue: return ISD::MERGE_VALUES; 1825 case LandingPad: return 0; 1826 case Freeze: return ISD::FREEZE; 1827 } 1828 1829 llvm_unreachable("Unknown instruction type encountered!"); 1830 } 1831 1832 std::pair<InstructionCost, MVT> 1833 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1834 Type *Ty) const { 1835 LLVMContext &C = Ty->getContext(); 1836 EVT MTy = getValueType(DL, Ty); 1837 1838 InstructionCost Cost = 1; 1839 // We keep legalizing the type until we find a legal kind. We assume that 1840 // the only operation that costs anything is the split. After splitting 1841 // we need to handle two types. 1842 while (true) { 1843 LegalizeKind LK = getTypeConversion(C, MTy); 1844 1845 if (LK.first == TypeScalarizeScalableVector) { 1846 // Ensure we return a sensible simple VT here, since many callers of this 1847 // function require it. 1848 MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64; 1849 return std::make_pair(InstructionCost::getInvalid(), VT); 1850 } 1851 1852 if (LK.first == TypeLegal) 1853 return std::make_pair(Cost, MTy.getSimpleVT()); 1854 1855 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1856 Cost *= 2; 1857 1858 // Do not loop with f128 type. 1859 if (MTy == LK.second) 1860 return std::make_pair(Cost, MTy.getSimpleVT()); 1861 1862 // Keep legalizing the type. 1863 MTy = LK.second; 1864 } 1865 } 1866 1867 Value * 1868 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 1869 bool UseTLS) const { 1870 // compiler-rt provides a variable with a magic name. Targets that do not 1871 // link with compiler-rt may also provide such a variable. 1872 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1873 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1874 auto UnsafeStackPtr = 1875 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1876 1877 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1878 1879 if (!UnsafeStackPtr) { 1880 auto TLSModel = UseTLS ? 1881 GlobalValue::InitialExecTLSModel : 1882 GlobalValue::NotThreadLocal; 1883 // The global variable is not defined yet, define it ourselves. 1884 // We use the initial-exec TLS model because we do not support the 1885 // variable living anywhere other than in the main executable. 1886 UnsafeStackPtr = new GlobalVariable( 1887 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1888 UnsafeStackPtrVar, nullptr, TLSModel); 1889 } else { 1890 // The variable exists, check its type and attributes. 1891 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1892 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1893 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1894 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1895 (UseTLS ? "" : "not ") + "be thread-local"); 1896 } 1897 return UnsafeStackPtr; 1898 } 1899 1900 Value * 1901 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 1902 if (!TM.getTargetTriple().isAndroid()) 1903 return getDefaultSafeStackPointerLocation(IRB, true); 1904 1905 // Android provides a libc function to retrieve the address of the current 1906 // thread's unsafe stack pointer. 1907 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1908 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1909 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1910 StackPtrTy->getPointerTo(0)); 1911 return IRB.CreateCall(Fn); 1912 } 1913 1914 //===----------------------------------------------------------------------===// 1915 // Loop Strength Reduction hooks 1916 //===----------------------------------------------------------------------===// 1917 1918 /// isLegalAddressingMode - Return true if the addressing mode represented 1919 /// by AM is legal for this target, for a load/store of the specified type. 1920 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1921 const AddrMode &AM, Type *Ty, 1922 unsigned AS, Instruction *I) const { 1923 // The default implementation of this implements a conservative RISCy, r+r and 1924 // r+i addr mode. 1925 1926 // Allows a sign-extended 16-bit immediate field. 1927 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1928 return false; 1929 1930 // No global is ever allowed as a base. 1931 if (AM.BaseGV) 1932 return false; 1933 1934 // Only support r+r, 1935 switch (AM.Scale) { 1936 case 0: // "r+i" or just "i", depending on HasBaseReg. 1937 break; 1938 case 1: 1939 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1940 return false; 1941 // Otherwise we have r+r or r+i. 1942 break; 1943 case 2: 1944 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1945 return false; 1946 // Allow 2*r as r+r. 1947 break; 1948 default: // Don't allow n * r 1949 return false; 1950 } 1951 1952 return true; 1953 } 1954 1955 //===----------------------------------------------------------------------===// 1956 // Stack Protector 1957 //===----------------------------------------------------------------------===// 1958 1959 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1960 // so that SelectionDAG handle SSP. 1961 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 1962 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1963 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1964 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1965 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1966 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1967 G->setVisibility(GlobalValue::HiddenVisibility); 1968 return C; 1969 } 1970 return nullptr; 1971 } 1972 1973 // Currently only support "standard" __stack_chk_guard. 1974 // TODO: add LOAD_STACK_GUARD support. 1975 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1976 if (!M.getNamedValue("__stack_chk_guard")) { 1977 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1978 GlobalVariable::ExternalLinkage, nullptr, 1979 "__stack_chk_guard"); 1980 1981 // FreeBSD has "__stack_chk_guard" defined externally on libc.so 1982 if (TM.getRelocationModel() == Reloc::Static && 1983 !TM.getTargetTriple().isWindowsGNUEnvironment() && 1984 !TM.getTargetTriple().isOSFreeBSD()) 1985 GV->setDSOLocal(true); 1986 } 1987 } 1988 1989 // Currently only support "standard" __stack_chk_guard. 1990 // TODO: add LOAD_STACK_GUARD support. 1991 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1992 return M.getNamedValue("__stack_chk_guard"); 1993 } 1994 1995 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1996 return nullptr; 1997 } 1998 1999 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 2000 return MinimumJumpTableEntries; 2001 } 2002 2003 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 2004 MinimumJumpTableEntries = Val; 2005 } 2006 2007 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2008 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2009 } 2010 2011 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2012 return MaximumJumpTableSize; 2013 } 2014 2015 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2016 MaximumJumpTableSize = Val; 2017 } 2018 2019 bool TargetLoweringBase::isJumpTableRelative() const { 2020 return getTargetMachine().isPositionIndependent(); 2021 } 2022 2023 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { 2024 if (TM.Options.LoopAlignment) 2025 return Align(TM.Options.LoopAlignment); 2026 return PrefLoopAlignment; 2027 } 2028 2029 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( 2030 MachineBasicBlock *MBB) const { 2031 return MaxBytesForAlignment; 2032 } 2033 2034 //===----------------------------------------------------------------------===// 2035 // Reciprocal Estimates 2036 //===----------------------------------------------------------------------===// 2037 2038 /// Get the reciprocal estimate attribute string for a function that will 2039 /// override the target defaults. 2040 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2041 const Function &F = MF.getFunction(); 2042 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2043 } 2044 2045 /// Construct a string for the given reciprocal operation of the given type. 2046 /// This string should match the corresponding option to the front-end's 2047 /// "-mrecip" flag assuming those strings have been passed through in an 2048 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2049 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2050 std::string Name = VT.isVector() ? "vec-" : ""; 2051 2052 Name += IsSqrt ? "sqrt" : "div"; 2053 2054 // TODO: Handle other float types? 2055 if (VT.getScalarType() == MVT::f64) { 2056 Name += "d"; 2057 } else if (VT.getScalarType() == MVT::f16) { 2058 Name += "h"; 2059 } else { 2060 assert(VT.getScalarType() == MVT::f32 && 2061 "Unexpected FP type for reciprocal estimate"); 2062 Name += "f"; 2063 } 2064 2065 return Name; 2066 } 2067 2068 /// Return the character position and value (a single numeric character) of a 2069 /// customized refinement operation in the input string if it exists. Return 2070 /// false if there is no customized refinement step count. 2071 static bool parseRefinementStep(StringRef In, size_t &Position, 2072 uint8_t &Value) { 2073 const char RefStepToken = ':'; 2074 Position = In.find(RefStepToken); 2075 if (Position == StringRef::npos) 2076 return false; 2077 2078 StringRef RefStepString = In.substr(Position + 1); 2079 // Allow exactly one numeric character for the additional refinement 2080 // step parameter. 2081 if (RefStepString.size() == 1) { 2082 char RefStepChar = RefStepString[0]; 2083 if (isDigit(RefStepChar)) { 2084 Value = RefStepChar - '0'; 2085 return true; 2086 } 2087 } 2088 report_fatal_error("Invalid refinement step for -recip."); 2089 } 2090 2091 /// For the input attribute string, return one of the ReciprocalEstimate enum 2092 /// status values (enabled, disabled, or not specified) for this operation on 2093 /// the specified data type. 2094 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2095 if (Override.empty()) 2096 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2097 2098 SmallVector<StringRef, 4> OverrideVector; 2099 Override.split(OverrideVector, ','); 2100 unsigned NumArgs = OverrideVector.size(); 2101 2102 // Check if "all", "none", or "default" was specified. 2103 if (NumArgs == 1) { 2104 // Look for an optional setting of the number of refinement steps needed 2105 // for this type of reciprocal operation. 2106 size_t RefPos; 2107 uint8_t RefSteps; 2108 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2109 // Split the string for further processing. 2110 Override = Override.substr(0, RefPos); 2111 } 2112 2113 // All reciprocal types are enabled. 2114 if (Override == "all") 2115 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2116 2117 // All reciprocal types are disabled. 2118 if (Override == "none") 2119 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2120 2121 // Target defaults for enablement are used. 2122 if (Override == "default") 2123 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2124 } 2125 2126 // The attribute string may omit the size suffix ('f'/'d'). 2127 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2128 std::string VTNameNoSize = VTName; 2129 VTNameNoSize.pop_back(); 2130 static const char DisabledPrefix = '!'; 2131 2132 for (StringRef RecipType : OverrideVector) { 2133 size_t RefPos; 2134 uint8_t RefSteps; 2135 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2136 RecipType = RecipType.substr(0, RefPos); 2137 2138 // Ignore the disablement token for string matching. 2139 bool IsDisabled = RecipType[0] == DisabledPrefix; 2140 if (IsDisabled) 2141 RecipType = RecipType.substr(1); 2142 2143 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2144 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2145 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2146 } 2147 2148 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2149 } 2150 2151 /// For the input attribute string, return the customized refinement step count 2152 /// for this operation on the specified data type. If the step count does not 2153 /// exist, return the ReciprocalEstimate enum value for unspecified. 2154 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2155 if (Override.empty()) 2156 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2157 2158 SmallVector<StringRef, 4> OverrideVector; 2159 Override.split(OverrideVector, ','); 2160 unsigned NumArgs = OverrideVector.size(); 2161 2162 // Check if "all", "default", or "none" was specified. 2163 if (NumArgs == 1) { 2164 // Look for an optional setting of the number of refinement steps needed 2165 // for this type of reciprocal operation. 2166 size_t RefPos; 2167 uint8_t RefSteps; 2168 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2169 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2170 2171 // Split the string for further processing. 2172 Override = Override.substr(0, RefPos); 2173 assert(Override != "none" && 2174 "Disabled reciprocals, but specifed refinement steps?"); 2175 2176 // If this is a general override, return the specified number of steps. 2177 if (Override == "all" || Override == "default") 2178 return RefSteps; 2179 } 2180 2181 // The attribute string may omit the size suffix ('f'/'d'). 2182 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2183 std::string VTNameNoSize = VTName; 2184 VTNameNoSize.pop_back(); 2185 2186 for (StringRef RecipType : OverrideVector) { 2187 size_t RefPos; 2188 uint8_t RefSteps; 2189 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2190 continue; 2191 2192 RecipType = RecipType.substr(0, RefPos); 2193 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2194 return RefSteps; 2195 } 2196 2197 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2198 } 2199 2200 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2201 MachineFunction &MF) const { 2202 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2203 } 2204 2205 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2206 MachineFunction &MF) const { 2207 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2208 } 2209 2210 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2211 MachineFunction &MF) const { 2212 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2213 } 2214 2215 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2216 MachineFunction &MF) const { 2217 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2218 } 2219 2220 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2221 MF.getRegInfo().freezeReservedRegs(MF); 2222 } 2223 2224 MachineMemOperand::Flags 2225 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, 2226 const DataLayout &DL) const { 2227 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2228 if (LI.isVolatile()) 2229 Flags |= MachineMemOperand::MOVolatile; 2230 2231 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2232 Flags |= MachineMemOperand::MONonTemporal; 2233 2234 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2235 Flags |= MachineMemOperand::MOInvariant; 2236 2237 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) 2238 Flags |= MachineMemOperand::MODereferenceable; 2239 2240 Flags |= getTargetMMOFlags(LI); 2241 return Flags; 2242 } 2243 2244 MachineMemOperand::Flags 2245 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2246 const DataLayout &DL) const { 2247 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2248 2249 if (SI.isVolatile()) 2250 Flags |= MachineMemOperand::MOVolatile; 2251 2252 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2253 Flags |= MachineMemOperand::MONonTemporal; 2254 2255 // FIXME: Not preserving dereferenceable 2256 Flags |= getTargetMMOFlags(SI); 2257 return Flags; 2258 } 2259 2260 MachineMemOperand::Flags 2261 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2262 const DataLayout &DL) const { 2263 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2264 2265 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2266 if (RMW->isVolatile()) 2267 Flags |= MachineMemOperand::MOVolatile; 2268 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2269 if (CmpX->isVolatile()) 2270 Flags |= MachineMemOperand::MOVolatile; 2271 } else 2272 llvm_unreachable("not an atomic instruction"); 2273 2274 // FIXME: Not preserving dereferenceable 2275 Flags |= getTargetMMOFlags(AI); 2276 return Flags; 2277 } 2278 2279 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2280 Instruction *Inst, 2281 AtomicOrdering Ord) const { 2282 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2283 return Builder.CreateFence(Ord); 2284 else 2285 return nullptr; 2286 } 2287 2288 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2289 Instruction *Inst, 2290 AtomicOrdering Ord) const { 2291 if (isAcquireOrStronger(Ord)) 2292 return Builder.CreateFence(Ord); 2293 else 2294 return nullptr; 2295 } 2296 2297 //===----------------------------------------------------------------------===// 2298 // GlobalISel Hooks 2299 //===----------------------------------------------------------------------===// 2300 2301 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2302 const TargetTransformInfo *TTI) const { 2303 auto &MF = *MI.getMF(); 2304 auto &MRI = MF.getRegInfo(); 2305 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2306 // this helper function computes the maximum number of uses we should consider 2307 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2308 // break even in terms of code size when the original MI has 2 users vs 2309 // choosing to potentially spill. Any more than 2 users we we have a net code 2310 // size increase. This doesn't take into account register pressure though. 2311 auto maxUses = [](unsigned RematCost) { 2312 // A cost of 1 means remats are basically free. 2313 if (RematCost == 1) 2314 return UINT_MAX; 2315 if (RematCost == 2) 2316 return 2U; 2317 2318 // Remat is too expensive, only sink if there's one user. 2319 if (RematCost > 2) 2320 return 1U; 2321 llvm_unreachable("Unexpected remat cost"); 2322 }; 2323 2324 // Helper to walk through uses and terminate if we've reached a limit. Saves 2325 // us spending time traversing uses if all we want to know is if it's >= min. 2326 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { 2327 unsigned NumUses = 0; 2328 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); 2329 for (; UI != UE && NumUses < MaxUses; ++UI) { 2330 NumUses++; 2331 } 2332 // If we haven't reached the end yet then there are more than MaxUses users. 2333 return UI == UE; 2334 }; 2335 2336 switch (MI.getOpcode()) { 2337 default: 2338 return false; 2339 // Constants-like instructions should be close to their users. 2340 // We don't want long live-ranges for them. 2341 case TargetOpcode::G_CONSTANT: 2342 case TargetOpcode::G_FCONSTANT: 2343 case TargetOpcode::G_FRAME_INDEX: 2344 case TargetOpcode::G_INTTOPTR: 2345 return true; 2346 case TargetOpcode::G_GLOBAL_VALUE: { 2347 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2348 Register Reg = MI.getOperand(0).getReg(); 2349 unsigned MaxUses = maxUses(RematCost); 2350 if (MaxUses == UINT_MAX) 2351 return true; // Remats are "free" so always localize. 2352 bool B = isUsesAtMost(Reg, MaxUses); 2353 return B; 2354 } 2355 } 2356 } 2357