1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MachineValueType.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 static cl::opt<bool> JumpIsExpensiveOverride(
70     "jump-is-expensive", cl::init(false),
71     cl::desc("Do not create extra branches to split comparison logic."),
72     cl::Hidden);
73 
74 static cl::opt<unsigned> MinimumJumpTableEntries
75   ("min-jump-table-entries", cl::init(4), cl::Hidden,
76    cl::desc("Set minimum number of entries to use a jump table."));
77 
78 static cl::opt<unsigned> MaximumJumpTableSize
79   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80    cl::desc("Set maximum size of jump tables."));
81 
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85                      cl::desc("Minimum density for building a jump table in "
86                               "a normal function"));
87 
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90     "optsize-jump-table-density", cl::init(40), cl::Hidden,
91     cl::desc("Minimum density for building a jump table in "
92              "an optsize function"));
93 
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99        cl::desc("Don't mutate strict-float node to a legalize node"),
100        cl::init(false), cl::Hidden);
101 
102 static bool darwinHasSinCos(const Triple &TT) {
103   assert(TT.isOSDarwin() && "should be called with darwin triple");
104   // Don't bother with 32 bit x86.
105   if (TT.getArch() == Triple::x86)
106     return false;
107   // Macos < 10.9 has no sincos_stret.
108   if (TT.isMacOSX())
109     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110   // iOS < 7.0 has no sincos_stret.
111   if (TT.isiOS())
112     return !TT.isOSVersionLT(7, 0);
113   // Any other darwin such as WatchOS/TvOS is new enough.
114   return true;
115 }
116 
117 // Although this default value is arbitrary, it is not random. It is assumed
118 // that a condition that evaluates the same way by a higher percentage than this
119 // is best represented as control flow. Therefore, the default value N should be
120 // set such that the win from N% correct executions is greater than the loss
121 // from (100 - N)% mispredicted executions for the majority of intended targets.
122 static cl::opt<int> MinPercentageForPredictableBranch(
123     "min-predictable-branch", cl::init(99),
124     cl::desc("Minimum percentage (0-100) that a condition must be either true "
125              "or false to assume that the condition is predictable"),
126     cl::Hidden);
127 
128 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
129 #define HANDLE_LIBCALL(code, name) \
130   setLibcallName(RTLIB::code, name);
131 #include "llvm/IR/RuntimeLibcalls.def"
132 #undef HANDLE_LIBCALL
133   // Initialize calling conventions to their default.
134   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
135     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
136 
137   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
138   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
139     setLibcallName(RTLIB::ADD_F128, "__addkf3");
140     setLibcallName(RTLIB::SUB_F128, "__subkf3");
141     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
142     setLibcallName(RTLIB::DIV_F128, "__divkf3");
143     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
144     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
145     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
146     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
147     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
148     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
149     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
150     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
151     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
152     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
153     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
154     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
155     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
156     setLibcallName(RTLIB::UNE_F128, "__nekf2");
157     setLibcallName(RTLIB::OGE_F128, "__gekf2");
158     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
159     setLibcallName(RTLIB::OLE_F128, "__lekf2");
160     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
161     setLibcallName(RTLIB::UO_F128, "__unordkf2");
162   }
163 
164   // A few names are different on particular architectures or environments.
165   if (TT.isOSDarwin()) {
166     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
167     // of the gnueabi-style __gnu_*_ieee.
168     // FIXME: What about other targets?
169     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
170     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
171 
172     // Some darwins have an optimized __bzero/bzero function.
173     switch (TT.getArch()) {
174     case Triple::x86:
175     case Triple::x86_64:
176       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
177         setLibcallName(RTLIB::BZERO, "__bzero");
178       break;
179     case Triple::aarch64:
180     case Triple::aarch64_32:
181       setLibcallName(RTLIB::BZERO, "bzero");
182       break;
183     default:
184       break;
185     }
186 
187     if (darwinHasSinCos(TT)) {
188       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
189       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
190       if (TT.isWatchABI()) {
191         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
192                               CallingConv::ARM_AAPCS_VFP);
193         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
194                               CallingConv::ARM_AAPCS_VFP);
195       }
196     }
197   } else {
198     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
199     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
200   }
201 
202   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
203       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
204     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
205     setLibcallName(RTLIB::SINCOS_F64, "sincos");
206     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
207     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
208     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
209   }
210 
211   if (TT.isPS4CPU()) {
212     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
213     setLibcallName(RTLIB::SINCOS_F64, "sincos");
214   }
215 
216   if (TT.isOSOpenBSD()) {
217     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
218   }
219 }
220 
221 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
222 /// UNKNOWN_LIBCALL if there is none.
223 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
224   if (OpVT == MVT::f16) {
225     if (RetVT == MVT::f32)
226       return FPEXT_F16_F32;
227     if (RetVT == MVT::f128)
228       return FPEXT_F16_F128;
229   } else if (OpVT == MVT::f32) {
230     if (RetVT == MVT::f64)
231       return FPEXT_F32_F64;
232     if (RetVT == MVT::f128)
233       return FPEXT_F32_F128;
234     if (RetVT == MVT::ppcf128)
235       return FPEXT_F32_PPCF128;
236   } else if (OpVT == MVT::f64) {
237     if (RetVT == MVT::f128)
238       return FPEXT_F64_F128;
239     else if (RetVT == MVT::ppcf128)
240       return FPEXT_F64_PPCF128;
241   } else if (OpVT == MVT::f80) {
242     if (RetVT == MVT::f128)
243       return FPEXT_F80_F128;
244   }
245 
246   return UNKNOWN_LIBCALL;
247 }
248 
249 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
250 /// UNKNOWN_LIBCALL if there is none.
251 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
252   if (RetVT == MVT::f16) {
253     if (OpVT == MVT::f32)
254       return FPROUND_F32_F16;
255     if (OpVT == MVT::f64)
256       return FPROUND_F64_F16;
257     if (OpVT == MVT::f80)
258       return FPROUND_F80_F16;
259     if (OpVT == MVT::f128)
260       return FPROUND_F128_F16;
261     if (OpVT == MVT::ppcf128)
262       return FPROUND_PPCF128_F16;
263   } else if (RetVT == MVT::f32) {
264     if (OpVT == MVT::f64)
265       return FPROUND_F64_F32;
266     if (OpVT == MVT::f80)
267       return FPROUND_F80_F32;
268     if (OpVT == MVT::f128)
269       return FPROUND_F128_F32;
270     if (OpVT == MVT::ppcf128)
271       return FPROUND_PPCF128_F32;
272   } else if (RetVT == MVT::f64) {
273     if (OpVT == MVT::f80)
274       return FPROUND_F80_F64;
275     if (OpVT == MVT::f128)
276       return FPROUND_F128_F64;
277     if (OpVT == MVT::ppcf128)
278       return FPROUND_PPCF128_F64;
279   } else if (RetVT == MVT::f80) {
280     if (OpVT == MVT::f128)
281       return FPROUND_F128_F80;
282   }
283 
284   return UNKNOWN_LIBCALL;
285 }
286 
287 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
288 /// UNKNOWN_LIBCALL if there is none.
289 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
290   if (OpVT == MVT::f32) {
291     if (RetVT == MVT::i32)
292       return FPTOSINT_F32_I32;
293     if (RetVT == MVT::i64)
294       return FPTOSINT_F32_I64;
295     if (RetVT == MVT::i128)
296       return FPTOSINT_F32_I128;
297   } else if (OpVT == MVT::f64) {
298     if (RetVT == MVT::i32)
299       return FPTOSINT_F64_I32;
300     if (RetVT == MVT::i64)
301       return FPTOSINT_F64_I64;
302     if (RetVT == MVT::i128)
303       return FPTOSINT_F64_I128;
304   } else if (OpVT == MVT::f80) {
305     if (RetVT == MVT::i32)
306       return FPTOSINT_F80_I32;
307     if (RetVT == MVT::i64)
308       return FPTOSINT_F80_I64;
309     if (RetVT == MVT::i128)
310       return FPTOSINT_F80_I128;
311   } else if (OpVT == MVT::f128) {
312     if (RetVT == MVT::i32)
313       return FPTOSINT_F128_I32;
314     if (RetVT == MVT::i64)
315       return FPTOSINT_F128_I64;
316     if (RetVT == MVT::i128)
317       return FPTOSINT_F128_I128;
318   } else if (OpVT == MVT::ppcf128) {
319     if (RetVT == MVT::i32)
320       return FPTOSINT_PPCF128_I32;
321     if (RetVT == MVT::i64)
322       return FPTOSINT_PPCF128_I64;
323     if (RetVT == MVT::i128)
324       return FPTOSINT_PPCF128_I128;
325   }
326   return UNKNOWN_LIBCALL;
327 }
328 
329 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
330 /// UNKNOWN_LIBCALL if there is none.
331 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
332   if (OpVT == MVT::f32) {
333     if (RetVT == MVT::i32)
334       return FPTOUINT_F32_I32;
335     if (RetVT == MVT::i64)
336       return FPTOUINT_F32_I64;
337     if (RetVT == MVT::i128)
338       return FPTOUINT_F32_I128;
339   } else if (OpVT == MVT::f64) {
340     if (RetVT == MVT::i32)
341       return FPTOUINT_F64_I32;
342     if (RetVT == MVT::i64)
343       return FPTOUINT_F64_I64;
344     if (RetVT == MVT::i128)
345       return FPTOUINT_F64_I128;
346   } else if (OpVT == MVT::f80) {
347     if (RetVT == MVT::i32)
348       return FPTOUINT_F80_I32;
349     if (RetVT == MVT::i64)
350       return FPTOUINT_F80_I64;
351     if (RetVT == MVT::i128)
352       return FPTOUINT_F80_I128;
353   } else if (OpVT == MVT::f128) {
354     if (RetVT == MVT::i32)
355       return FPTOUINT_F128_I32;
356     if (RetVT == MVT::i64)
357       return FPTOUINT_F128_I64;
358     if (RetVT == MVT::i128)
359       return FPTOUINT_F128_I128;
360   } else if (OpVT == MVT::ppcf128) {
361     if (RetVT == MVT::i32)
362       return FPTOUINT_PPCF128_I32;
363     if (RetVT == MVT::i64)
364       return FPTOUINT_PPCF128_I64;
365     if (RetVT == MVT::i128)
366       return FPTOUINT_PPCF128_I128;
367   }
368   return UNKNOWN_LIBCALL;
369 }
370 
371 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
372 /// UNKNOWN_LIBCALL if there is none.
373 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
374   if (OpVT == MVT::i32) {
375     if (RetVT == MVT::f32)
376       return SINTTOFP_I32_F32;
377     if (RetVT == MVT::f64)
378       return SINTTOFP_I32_F64;
379     if (RetVT == MVT::f80)
380       return SINTTOFP_I32_F80;
381     if (RetVT == MVT::f128)
382       return SINTTOFP_I32_F128;
383     if (RetVT == MVT::ppcf128)
384       return SINTTOFP_I32_PPCF128;
385   } else if (OpVT == MVT::i64) {
386     if (RetVT == MVT::f32)
387       return SINTTOFP_I64_F32;
388     if (RetVT == MVT::f64)
389       return SINTTOFP_I64_F64;
390     if (RetVT == MVT::f80)
391       return SINTTOFP_I64_F80;
392     if (RetVT == MVT::f128)
393       return SINTTOFP_I64_F128;
394     if (RetVT == MVT::ppcf128)
395       return SINTTOFP_I64_PPCF128;
396   } else if (OpVT == MVT::i128) {
397     if (RetVT == MVT::f32)
398       return SINTTOFP_I128_F32;
399     if (RetVT == MVT::f64)
400       return SINTTOFP_I128_F64;
401     if (RetVT == MVT::f80)
402       return SINTTOFP_I128_F80;
403     if (RetVT == MVT::f128)
404       return SINTTOFP_I128_F128;
405     if (RetVT == MVT::ppcf128)
406       return SINTTOFP_I128_PPCF128;
407   }
408   return UNKNOWN_LIBCALL;
409 }
410 
411 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
412 /// UNKNOWN_LIBCALL if there is none.
413 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
414   if (OpVT == MVT::i32) {
415     if (RetVT == MVT::f32)
416       return UINTTOFP_I32_F32;
417     if (RetVT == MVT::f64)
418       return UINTTOFP_I32_F64;
419     if (RetVT == MVT::f80)
420       return UINTTOFP_I32_F80;
421     if (RetVT == MVT::f128)
422       return UINTTOFP_I32_F128;
423     if (RetVT == MVT::ppcf128)
424       return UINTTOFP_I32_PPCF128;
425   } else if (OpVT == MVT::i64) {
426     if (RetVT == MVT::f32)
427       return UINTTOFP_I64_F32;
428     if (RetVT == MVT::f64)
429       return UINTTOFP_I64_F64;
430     if (RetVT == MVT::f80)
431       return UINTTOFP_I64_F80;
432     if (RetVT == MVT::f128)
433       return UINTTOFP_I64_F128;
434     if (RetVT == MVT::ppcf128)
435       return UINTTOFP_I64_PPCF128;
436   } else if (OpVT == MVT::i128) {
437     if (RetVT == MVT::f32)
438       return UINTTOFP_I128_F32;
439     if (RetVT == MVT::f64)
440       return UINTTOFP_I128_F64;
441     if (RetVT == MVT::f80)
442       return UINTTOFP_I128_F80;
443     if (RetVT == MVT::f128)
444       return UINTTOFP_I128_F128;
445     if (RetVT == MVT::ppcf128)
446       return UINTTOFP_I128_PPCF128;
447   }
448   return UNKNOWN_LIBCALL;
449 }
450 
451 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
452                                         MVT VT) {
453   unsigned ModeN, ModelN;
454   switch (VT.SimpleTy) {
455   case MVT::i8:
456     ModeN = 0;
457     break;
458   case MVT::i16:
459     ModeN = 1;
460     break;
461   case MVT::i32:
462     ModeN = 2;
463     break;
464   case MVT::i64:
465     ModeN = 3;
466     break;
467   case MVT::i128:
468     ModeN = 4;
469     break;
470   default:
471     return UNKNOWN_LIBCALL;
472   }
473 
474   switch (Order) {
475   case AtomicOrdering::Monotonic:
476     ModelN = 0;
477     break;
478   case AtomicOrdering::Acquire:
479     ModelN = 1;
480     break;
481   case AtomicOrdering::Release:
482     ModelN = 2;
483     break;
484   case AtomicOrdering::AcquireRelease:
485   case AtomicOrdering::SequentiallyConsistent:
486     ModelN = 3;
487     break;
488   default:
489     return UNKNOWN_LIBCALL;
490   }
491 
492 #define LCALLS(A, B)                                                           \
493   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
494 #define LCALL5(A)                                                              \
495   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
496   switch (Opc) {
497   case ISD::ATOMIC_CMP_SWAP: {
498     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
499     return LC[ModeN][ModelN];
500   }
501   case ISD::ATOMIC_SWAP: {
502     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
503     return LC[ModeN][ModelN];
504   }
505   case ISD::ATOMIC_LOAD_ADD: {
506     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
507     return LC[ModeN][ModelN];
508   }
509   case ISD::ATOMIC_LOAD_OR: {
510     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
511     return LC[ModeN][ModelN];
512   }
513   case ISD::ATOMIC_LOAD_CLR: {
514     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
515     return LC[ModeN][ModelN];
516   }
517   case ISD::ATOMIC_LOAD_XOR: {
518     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
519     return LC[ModeN][ModelN];
520   }
521   default:
522     return UNKNOWN_LIBCALL;
523   }
524 #undef LCALLS
525 #undef LCALL5
526 }
527 
528 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
529 #define OP_TO_LIBCALL(Name, Enum)                                              \
530   case Name:                                                                   \
531     switch (VT.SimpleTy) {                                                     \
532     default:                                                                   \
533       return UNKNOWN_LIBCALL;                                                  \
534     case MVT::i8:                                                              \
535       return Enum##_1;                                                         \
536     case MVT::i16:                                                             \
537       return Enum##_2;                                                         \
538     case MVT::i32:                                                             \
539       return Enum##_4;                                                         \
540     case MVT::i64:                                                             \
541       return Enum##_8;                                                         \
542     case MVT::i128:                                                            \
543       return Enum##_16;                                                        \
544     }
545 
546   switch (Opc) {
547     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
548     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
549     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
550     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
551     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
552     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
553     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
554     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
555     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
556     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
557     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
558     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
559   }
560 
561 #undef OP_TO_LIBCALL
562 
563   return UNKNOWN_LIBCALL;
564 }
565 
566 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
567   switch (ElementSize) {
568   case 1:
569     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
570   case 2:
571     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
572   case 4:
573     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
574   case 8:
575     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
576   case 16:
577     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
578   default:
579     return UNKNOWN_LIBCALL;
580   }
581 }
582 
583 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
584   switch (ElementSize) {
585   case 1:
586     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
587   case 2:
588     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
589   case 4:
590     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
591   case 8:
592     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
593   case 16:
594     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
595   default:
596     return UNKNOWN_LIBCALL;
597   }
598 }
599 
600 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
601   switch (ElementSize) {
602   case 1:
603     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
604   case 2:
605     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
606   case 4:
607     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
608   case 8:
609     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
610   case 16:
611     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
612   default:
613     return UNKNOWN_LIBCALL;
614   }
615 }
616 
617 /// InitCmpLibcallCCs - Set default comparison libcall CC.
618 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
619   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
620   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
621   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
622   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
623   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
624   CCs[RTLIB::UNE_F32] = ISD::SETNE;
625   CCs[RTLIB::UNE_F64] = ISD::SETNE;
626   CCs[RTLIB::UNE_F128] = ISD::SETNE;
627   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
628   CCs[RTLIB::OGE_F32] = ISD::SETGE;
629   CCs[RTLIB::OGE_F64] = ISD::SETGE;
630   CCs[RTLIB::OGE_F128] = ISD::SETGE;
631   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
632   CCs[RTLIB::OLT_F32] = ISD::SETLT;
633   CCs[RTLIB::OLT_F64] = ISD::SETLT;
634   CCs[RTLIB::OLT_F128] = ISD::SETLT;
635   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
636   CCs[RTLIB::OLE_F32] = ISD::SETLE;
637   CCs[RTLIB::OLE_F64] = ISD::SETLE;
638   CCs[RTLIB::OLE_F128] = ISD::SETLE;
639   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
640   CCs[RTLIB::OGT_F32] = ISD::SETGT;
641   CCs[RTLIB::OGT_F64] = ISD::SETGT;
642   CCs[RTLIB::OGT_F128] = ISD::SETGT;
643   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
644   CCs[RTLIB::UO_F32] = ISD::SETNE;
645   CCs[RTLIB::UO_F64] = ISD::SETNE;
646   CCs[RTLIB::UO_F128] = ISD::SETNE;
647   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
648 }
649 
650 /// NOTE: The TargetMachine owns TLOF.
651 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
652   initActions();
653 
654   // Perform these initializations only once.
655   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
656       MaxLoadsPerMemcmp = 8;
657   MaxGluedStoresPerMemcpy = 0;
658   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
659       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
660   HasMultipleConditionRegisters = false;
661   HasExtractBitsInsn = false;
662   JumpIsExpensive = JumpIsExpensiveOverride;
663   PredictableSelectIsExpensive = false;
664   EnableExtLdPromotion = false;
665   StackPointerRegisterToSaveRestore = 0;
666   BooleanContents = UndefinedBooleanContent;
667   BooleanFloatContents = UndefinedBooleanContent;
668   BooleanVectorContents = UndefinedBooleanContent;
669   SchedPreferenceInfo = Sched::ILP;
670   GatherAllAliasesMaxDepth = 18;
671   IsStrictFPEnabled = DisableStrictNodeMutation;
672   // TODO: the default will be switched to 0 in the next commit, along
673   // with the Target-specific changes necessary.
674   MaxAtomicSizeInBitsSupported = 1024;
675 
676   MinCmpXchgSizeInBits = 0;
677   SupportsUnalignedAtomics = false;
678 
679   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
680 
681   InitLibcalls(TM.getTargetTriple());
682   InitCmpLibcallCCs(CmpLibcallCCs);
683 }
684 
685 void TargetLoweringBase::initActions() {
686   // All operations default to being supported.
687   memset(OpActions, 0, sizeof(OpActions));
688   memset(LoadExtActions, 0, sizeof(LoadExtActions));
689   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
690   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
691   memset(CondCodeActions, 0, sizeof(CondCodeActions));
692   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
693   std::fill(std::begin(TargetDAGCombineArray),
694             std::end(TargetDAGCombineArray), 0);
695 
696   for (MVT VT : MVT::fp_valuetypes()) {
697     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
698     if (IntVT.isValid()) {
699       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
700       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
701     }
702   }
703 
704   // Set default actions for various operations.
705   for (MVT VT : MVT::all_valuetypes()) {
706     // Default all indexed load / store to expand.
707     for (unsigned IM = (unsigned)ISD::PRE_INC;
708          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
709       setIndexedLoadAction(IM, VT, Expand);
710       setIndexedStoreAction(IM, VT, Expand);
711       setIndexedMaskedLoadAction(IM, VT, Expand);
712       setIndexedMaskedStoreAction(IM, VT, Expand);
713     }
714 
715     // Most backends expect to see the node which just returns the value loaded.
716     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
717 
718     // These operations default to expand.
719     setOperationAction(ISD::FGETSIGN, VT, Expand);
720     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
721     setOperationAction(ISD::FMINNUM, VT, Expand);
722     setOperationAction(ISD::FMAXNUM, VT, Expand);
723     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
724     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
725     setOperationAction(ISD::FMINIMUM, VT, Expand);
726     setOperationAction(ISD::FMAXIMUM, VT, Expand);
727     setOperationAction(ISD::FMAD, VT, Expand);
728     setOperationAction(ISD::SMIN, VT, Expand);
729     setOperationAction(ISD::SMAX, VT, Expand);
730     setOperationAction(ISD::UMIN, VT, Expand);
731     setOperationAction(ISD::UMAX, VT, Expand);
732     setOperationAction(ISD::ABS, VT, Expand);
733     setOperationAction(ISD::FSHL, VT, Expand);
734     setOperationAction(ISD::FSHR, VT, Expand);
735     setOperationAction(ISD::SADDSAT, VT, Expand);
736     setOperationAction(ISD::UADDSAT, VT, Expand);
737     setOperationAction(ISD::SSUBSAT, VT, Expand);
738     setOperationAction(ISD::USUBSAT, VT, Expand);
739     setOperationAction(ISD::SSHLSAT, VT, Expand);
740     setOperationAction(ISD::USHLSAT, VT, Expand);
741     setOperationAction(ISD::SMULFIX, VT, Expand);
742     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
743     setOperationAction(ISD::UMULFIX, VT, Expand);
744     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
745     setOperationAction(ISD::SDIVFIX, VT, Expand);
746     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
747     setOperationAction(ISD::UDIVFIX, VT, Expand);
748     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
749 
750     // Overflow operations default to expand
751     setOperationAction(ISD::SADDO, VT, Expand);
752     setOperationAction(ISD::SSUBO, VT, Expand);
753     setOperationAction(ISD::UADDO, VT, Expand);
754     setOperationAction(ISD::USUBO, VT, Expand);
755     setOperationAction(ISD::SMULO, VT, Expand);
756     setOperationAction(ISD::UMULO, VT, Expand);
757 
758     // ADDCARRY operations default to expand
759     setOperationAction(ISD::ADDCARRY, VT, Expand);
760     setOperationAction(ISD::SUBCARRY, VT, Expand);
761     setOperationAction(ISD::SETCCCARRY, VT, Expand);
762     setOperationAction(ISD::SADDO_CARRY, VT, Expand);
763     setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
764 
765     // ADDC/ADDE/SUBC/SUBE default to expand.
766     setOperationAction(ISD::ADDC, VT, Expand);
767     setOperationAction(ISD::ADDE, VT, Expand);
768     setOperationAction(ISD::SUBC, VT, Expand);
769     setOperationAction(ISD::SUBE, VT, Expand);
770 
771     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
772     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
773     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
774 
775     setOperationAction(ISD::BITREVERSE, VT, Expand);
776     setOperationAction(ISD::PARITY, VT, Expand);
777 
778     // These library functions default to expand.
779     setOperationAction(ISD::FROUND, VT, Expand);
780     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
781     setOperationAction(ISD::FPOWI, VT, Expand);
782 
783     // These operations default to expand for vector types.
784     if (VT.isVector()) {
785       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
786       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
787       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
788       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
789       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
790       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
791     }
792 
793     // Constrained floating-point operations default to expand.
794 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
795     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
796 #include "llvm/IR/ConstrainedOps.def"
797 
798     // For most targets @llvm.get.dynamic.area.offset just returns 0.
799     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
800 
801     // Vector reduction default to expand.
802     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
803     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
804     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
805     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
806     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
807     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
808     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
809     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
810     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
811     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
812     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
813     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
814     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
815     setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
816     setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
817   }
818 
819   // Most targets ignore the @llvm.prefetch intrinsic.
820   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
821 
822   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
823   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
824 
825   // ConstantFP nodes default to expand.  Targets can either change this to
826   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
827   // to optimize expansions for certain constants.
828   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
829   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
830   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
831   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
832   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
833 
834   // These library functions default to expand.
835   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
836     setOperationAction(ISD::FCBRT,      VT, Expand);
837     setOperationAction(ISD::FLOG ,      VT, Expand);
838     setOperationAction(ISD::FLOG2,      VT, Expand);
839     setOperationAction(ISD::FLOG10,     VT, Expand);
840     setOperationAction(ISD::FEXP ,      VT, Expand);
841     setOperationAction(ISD::FEXP2,      VT, Expand);
842     setOperationAction(ISD::FFLOOR,     VT, Expand);
843     setOperationAction(ISD::FNEARBYINT, VT, Expand);
844     setOperationAction(ISD::FCEIL,      VT, Expand);
845     setOperationAction(ISD::FRINT,      VT, Expand);
846     setOperationAction(ISD::FTRUNC,     VT, Expand);
847     setOperationAction(ISD::FROUND,     VT, Expand);
848     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
849     setOperationAction(ISD::LROUND,     VT, Expand);
850     setOperationAction(ISD::LLROUND,    VT, Expand);
851     setOperationAction(ISD::LRINT,      VT, Expand);
852     setOperationAction(ISD::LLRINT,     VT, Expand);
853   }
854 
855   // Default ISD::TRAP to expand (which turns it into abort).
856   setOperationAction(ISD::TRAP, MVT::Other, Expand);
857 
858   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
859   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
860   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
861 }
862 
863 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
864                                                EVT) const {
865   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
866 }
867 
868 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
869                                          bool LegalTypes) const {
870   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
871   if (LHSTy.isVector())
872     return LHSTy;
873   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
874                     : getPointerTy(DL);
875 }
876 
877 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
878   assert(isTypeLegal(VT));
879   switch (Op) {
880   default:
881     return false;
882   case ISD::SDIV:
883   case ISD::UDIV:
884   case ISD::SREM:
885   case ISD::UREM:
886     return true;
887   }
888 }
889 
890 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
891                                              unsigned DestAS) const {
892   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
893 }
894 
895 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
896   // If the command-line option was specified, ignore this request.
897   if (!JumpIsExpensiveOverride.getNumOccurrences())
898     JumpIsExpensive = isExpensive;
899 }
900 
901 TargetLoweringBase::LegalizeKind
902 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
903   // If this is a simple type, use the ComputeRegisterProp mechanism.
904   if (VT.isSimple()) {
905     MVT SVT = VT.getSimpleVT();
906     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
907     MVT NVT = TransformToType[SVT.SimpleTy];
908     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
909 
910     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
911             LA == TypeSoftPromoteHalf ||
912             (NVT.isVector() ||
913              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
914            "Promote may not follow Expand or Promote");
915 
916     if (LA == TypeSplitVector)
917       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
918     if (LA == TypeScalarizeVector)
919       return LegalizeKind(LA, SVT.getVectorElementType());
920     return LegalizeKind(LA, NVT);
921   }
922 
923   // Handle Extended Scalar Types.
924   if (!VT.isVector()) {
925     assert(VT.isInteger() && "Float types must be simple");
926     unsigned BitSize = VT.getSizeInBits();
927     // First promote to a power-of-two size, then expand if necessary.
928     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
929       EVT NVT = VT.getRoundIntegerType(Context);
930       assert(NVT != VT && "Unable to round integer VT");
931       LegalizeKind NextStep = getTypeConversion(Context, NVT);
932       // Avoid multi-step promotion.
933       if (NextStep.first == TypePromoteInteger)
934         return NextStep;
935       // Return rounded integer type.
936       return LegalizeKind(TypePromoteInteger, NVT);
937     }
938 
939     return LegalizeKind(TypeExpandInteger,
940                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
941   }
942 
943   // Handle vector types.
944   ElementCount NumElts = VT.getVectorElementCount();
945   EVT EltVT = VT.getVectorElementType();
946 
947   // Vectors with only one element are always scalarized.
948   if (NumElts.isScalar())
949     return LegalizeKind(TypeScalarizeVector, EltVT);
950 
951   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
952     report_fatal_error("Cannot legalize this vector");
953 
954   // Try to widen vector elements until the element type is a power of two and
955   // promote it to a legal type later on, for example:
956   // <3 x i8> -> <4 x i8> -> <4 x i32>
957   if (EltVT.isInteger()) {
958     // Vectors with a number of elements that is not a power of two are always
959     // widened, for example <3 x i8> -> <4 x i8>.
960     if (!VT.isPow2VectorType()) {
961       NumElts = NumElts.coefficientNextPowerOf2();
962       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
963       return LegalizeKind(TypeWidenVector, NVT);
964     }
965 
966     // Examine the element type.
967     LegalizeKind LK = getTypeConversion(Context, EltVT);
968 
969     // If type is to be expanded, split the vector.
970     //  <4 x i140> -> <2 x i140>
971     if (LK.first == TypeExpandInteger)
972       return LegalizeKind(TypeSplitVector,
973                           VT.getHalfNumVectorElementsVT(Context));
974 
975     // Promote the integer element types until a legal vector type is found
976     // or until the element integer type is too big. If a legal type was not
977     // found, fallback to the usual mechanism of widening/splitting the
978     // vector.
979     EVT OldEltVT = EltVT;
980     while (true) {
981       // Increase the bitwidth of the element to the next pow-of-two
982       // (which is greater than 8 bits).
983       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
984                   .getRoundIntegerType(Context);
985 
986       // Stop trying when getting a non-simple element type.
987       // Note that vector elements may be greater than legal vector element
988       // types. Example: X86 XMM registers hold 64bit element on 32bit
989       // systems.
990       if (!EltVT.isSimple())
991         break;
992 
993       // Build a new vector type and check if it is legal.
994       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
995       // Found a legal promoted vector type.
996       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
997         return LegalizeKind(TypePromoteInteger,
998                             EVT::getVectorVT(Context, EltVT, NumElts));
999     }
1000 
1001     // Reset the type to the unexpanded type if we did not find a legal vector
1002     // type with a promoted vector element type.
1003     EltVT = OldEltVT;
1004   }
1005 
1006   // Try to widen the vector until a legal type is found.
1007   // If there is no wider legal type, split the vector.
1008   while (true) {
1009     // Round up to the next power of 2.
1010     NumElts = NumElts.coefficientNextPowerOf2();
1011 
1012     // If there is no simple vector type with this many elements then there
1013     // cannot be a larger legal vector type.  Note that this assumes that
1014     // there are no skipped intermediate vector types in the simple types.
1015     if (!EltVT.isSimple())
1016       break;
1017     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1018     if (LargerVector == MVT())
1019       break;
1020 
1021     // If this type is legal then widen the vector.
1022     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1023       return LegalizeKind(TypeWidenVector, LargerVector);
1024   }
1025 
1026   // Widen odd vectors to next power of two.
1027   if (!VT.isPow2VectorType()) {
1028     EVT NVT = VT.getPow2VectorType(Context);
1029     return LegalizeKind(TypeWidenVector, NVT);
1030   }
1031 
1032   // Vectors with illegal element types are expanded.
1033   EVT NVT = EVT::getVectorVT(Context, EltVT,
1034                              VT.getVectorElementCount().divideCoefficientBy(2));
1035   return LegalizeKind(TypeSplitVector, NVT);
1036 }
1037 
1038 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1039                                           unsigned &NumIntermediates,
1040                                           MVT &RegisterVT,
1041                                           TargetLoweringBase *TLI) {
1042   // Figure out the right, legal destination reg to copy into.
1043   ElementCount EC = VT.getVectorElementCount();
1044   MVT EltTy = VT.getVectorElementType();
1045 
1046   unsigned NumVectorRegs = 1;
1047 
1048   // Scalable vectors cannot be scalarized, so splitting or widening is
1049   // required.
1050   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1051     llvm_unreachable(
1052         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1053 
1054   // FIXME: We don't support non-power-of-2-sized vectors for now.
1055   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1056   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1057     // Split EC to unit size (scalable property is preserved).
1058     NumVectorRegs = EC.getKnownMinValue();
1059     EC = ElementCount::getFixed(1);
1060   }
1061 
1062   // Divide the input until we get to a supported size. This will
1063   // always end up with an EC that represent a scalar or a scalable
1064   // scalar.
1065   while (EC.getKnownMinValue() > 1 &&
1066          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1067     EC = EC.divideCoefficientBy(2);
1068     NumVectorRegs <<= 1;
1069   }
1070 
1071   NumIntermediates = NumVectorRegs;
1072 
1073   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1074   if (!TLI->isTypeLegal(NewVT))
1075     NewVT = EltTy;
1076   IntermediateVT = NewVT;
1077 
1078   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1079 
1080   // Convert sizes such as i33 to i64.
1081   if (!isPowerOf2_32(LaneSizeInBits))
1082     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1083 
1084   MVT DestVT = TLI->getRegisterType(NewVT);
1085   RegisterVT = DestVT;
1086   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1087     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1088 
1089   // Otherwise, promotion or legal types use the same number of registers as
1090   // the vector decimated to the appropriate level.
1091   return NumVectorRegs;
1092 }
1093 
1094 /// isLegalRC - Return true if the value types that can be represented by the
1095 /// specified register class are all legal.
1096 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1097                                    const TargetRegisterClass &RC) const {
1098   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1099     if (isTypeLegal(*I))
1100       return true;
1101   return false;
1102 }
1103 
1104 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1105 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1106 MachineBasicBlock *
1107 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1108                                    MachineBasicBlock *MBB) const {
1109   MachineInstr *MI = &InitialMI;
1110   MachineFunction &MF = *MI->getMF();
1111   MachineFrameInfo &MFI = MF.getFrameInfo();
1112 
1113   // We're handling multiple types of operands here:
1114   // PATCHPOINT MetaArgs - live-in, read only, direct
1115   // STATEPOINT Deopt Spill - live-through, read only, indirect
1116   // STATEPOINT Deopt Alloca - live-through, read only, direct
1117   // (We're currently conservative and mark the deopt slots read/write in
1118   // practice.)
1119   // STATEPOINT GC Spill - live-through, read/write, indirect
1120   // STATEPOINT GC Alloca - live-through, read/write, direct
1121   // The live-in vs live-through is handled already (the live through ones are
1122   // all stack slots), but we need to handle the different type of stackmap
1123   // operands and memory effects here.
1124 
1125   if (!llvm::any_of(MI->operands(),
1126                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1127     return MBB;
1128 
1129   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1130 
1131   // Inherit previous memory operands.
1132   MIB.cloneMemRefs(*MI);
1133 
1134   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1135     MachineOperand &MO = MI->getOperand(i);
1136     if (!MO.isFI()) {
1137       // Index of Def operand this Use it tied to.
1138       // Since Defs are coming before Uses, if Use is tied, then
1139       // index of Def must be smaller that index of that Use.
1140       // Also, Defs preserve their position in new MI.
1141       unsigned TiedTo = i;
1142       if (MO.isReg() && MO.isTied())
1143         TiedTo = MI->findTiedOperandIdx(i);
1144       MIB.add(MO);
1145       if (TiedTo < i)
1146         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1147       continue;
1148     }
1149 
1150     // foldMemoryOperand builds a new MI after replacing a single FI operand
1151     // with the canonical set of five x86 addressing-mode operands.
1152     int FI = MO.getIndex();
1153 
1154     // Add frame index operands recognized by stackmaps.cpp
1155     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1156       // indirect-mem-ref tag, size, #FI, offset.
1157       // Used for spills inserted by StatepointLowering.  This codepath is not
1158       // used for patchpoints/stackmaps at all, for these spilling is done via
1159       // foldMemoryOperand callback only.
1160       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1161       MIB.addImm(StackMaps::IndirectMemRefOp);
1162       MIB.addImm(MFI.getObjectSize(FI));
1163       MIB.add(MO);
1164       MIB.addImm(0);
1165     } else {
1166       // direct-mem-ref tag, #FI, offset.
1167       // Used by patchpoint, and direct alloca arguments to statepoints
1168       MIB.addImm(StackMaps::DirectMemRefOp);
1169       MIB.add(MO);
1170       MIB.addImm(0);
1171     }
1172 
1173     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1174 
1175     // Add a new memory operand for this FI.
1176     assert(MFI.getObjectOffset(FI) != -1);
1177 
1178     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1179     // PATCHPOINT should be updated to do the same. (TODO)
1180     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1181       auto Flags = MachineMemOperand::MOLoad;
1182       MachineMemOperand *MMO = MF.getMachineMemOperand(
1183           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1184           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1185       MIB->addMemOperand(MF, MMO);
1186     }
1187   }
1188   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1189   MI->eraseFromParent();
1190   return MBB;
1191 }
1192 
1193 MachineBasicBlock *
1194 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1195                                         MachineBasicBlock *MBB) const {
1196   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1197          "Called emitXRayCustomEvent on the wrong MI!");
1198   auto &MF = *MI.getMF();
1199   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1200   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1201     MIB.add(MI.getOperand(OpIdx));
1202 
1203   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1204   MI.eraseFromParent();
1205   return MBB;
1206 }
1207 
1208 MachineBasicBlock *
1209 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1210                                        MachineBasicBlock *MBB) const {
1211   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1212          "Called emitXRayTypedEvent on the wrong MI!");
1213   auto &MF = *MI.getMF();
1214   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1215   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1216     MIB.add(MI.getOperand(OpIdx));
1217 
1218   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1219   MI.eraseFromParent();
1220   return MBB;
1221 }
1222 
1223 /// findRepresentativeClass - Return the largest legal super-reg register class
1224 /// of the register class for the specified type and its associated "cost".
1225 // This function is in TargetLowering because it uses RegClassForVT which would
1226 // need to be moved to TargetRegisterInfo and would necessitate moving
1227 // isTypeLegal over as well - a massive change that would just require
1228 // TargetLowering having a TargetRegisterInfo class member that it would use.
1229 std::pair<const TargetRegisterClass *, uint8_t>
1230 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1231                                             MVT VT) const {
1232   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1233   if (!RC)
1234     return std::make_pair(RC, 0);
1235 
1236   // Compute the set of all super-register classes.
1237   BitVector SuperRegRC(TRI->getNumRegClasses());
1238   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1239     SuperRegRC.setBitsInMask(RCI.getMask());
1240 
1241   // Find the first legal register class with the largest spill size.
1242   const TargetRegisterClass *BestRC = RC;
1243   for (unsigned i : SuperRegRC.set_bits()) {
1244     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1245     // We want the largest possible spill size.
1246     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1247       continue;
1248     if (!isLegalRC(*TRI, *SuperRC))
1249       continue;
1250     BestRC = SuperRC;
1251   }
1252   return std::make_pair(BestRC, 1);
1253 }
1254 
1255 /// computeRegisterProperties - Once all of the register classes are added,
1256 /// this allows us to compute derived properties we expose.
1257 void TargetLoweringBase::computeRegisterProperties(
1258     const TargetRegisterInfo *TRI) {
1259   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1260                 "Too many value types for ValueTypeActions to hold!");
1261 
1262   // Everything defaults to needing one register.
1263   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1264     NumRegistersForVT[i] = 1;
1265     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1266   }
1267   // ...except isVoid, which doesn't need any registers.
1268   NumRegistersForVT[MVT::isVoid] = 0;
1269 
1270   // Find the largest integer register class.
1271   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1272   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1273     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1274 
1275   // Every integer value type larger than this largest register takes twice as
1276   // many registers to represent as the previous ValueType.
1277   for (unsigned ExpandedReg = LargestIntReg + 1;
1278        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1279     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1280     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1281     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1282     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1283                                    TypeExpandInteger);
1284   }
1285 
1286   // Inspect all of the ValueType's smaller than the largest integer
1287   // register to see which ones need promotion.
1288   unsigned LegalIntReg = LargestIntReg;
1289   for (unsigned IntReg = LargestIntReg - 1;
1290        IntReg >= (unsigned)MVT::i1; --IntReg) {
1291     MVT IVT = (MVT::SimpleValueType)IntReg;
1292     if (isTypeLegal(IVT)) {
1293       LegalIntReg = IntReg;
1294     } else {
1295       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1296         (MVT::SimpleValueType)LegalIntReg;
1297       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1298     }
1299   }
1300 
1301   // ppcf128 type is really two f64's.
1302   if (!isTypeLegal(MVT::ppcf128)) {
1303     if (isTypeLegal(MVT::f64)) {
1304       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1305       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1306       TransformToType[MVT::ppcf128] = MVT::f64;
1307       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1308     } else {
1309       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1310       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1311       TransformToType[MVT::ppcf128] = MVT::i128;
1312       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1313     }
1314   }
1315 
1316   // Decide how to handle f128. If the target does not have native f128 support,
1317   // expand it to i128 and we will be generating soft float library calls.
1318   if (!isTypeLegal(MVT::f128)) {
1319     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1320     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1321     TransformToType[MVT::f128] = MVT::i128;
1322     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1323   }
1324 
1325   // Decide how to handle f64. If the target does not have native f64 support,
1326   // expand it to i64 and we will be generating soft float library calls.
1327   if (!isTypeLegal(MVT::f64)) {
1328     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1329     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1330     TransformToType[MVT::f64] = MVT::i64;
1331     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1332   }
1333 
1334   // Decide how to handle f32. If the target does not have native f32 support,
1335   // expand it to i32 and we will be generating soft float library calls.
1336   if (!isTypeLegal(MVT::f32)) {
1337     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1338     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1339     TransformToType[MVT::f32] = MVT::i32;
1340     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1341   }
1342 
1343   // Decide how to handle f16. If the target does not have native f16 support,
1344   // promote it to f32, because there are no f16 library calls (except for
1345   // conversions).
1346   if (!isTypeLegal(MVT::f16)) {
1347     // Allow targets to control how we legalize half.
1348     if (softPromoteHalfType()) {
1349       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1350       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1351       TransformToType[MVT::f16] = MVT::f32;
1352       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1353     } else {
1354       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1355       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1356       TransformToType[MVT::f16] = MVT::f32;
1357       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1358     }
1359   }
1360 
1361   // Loop over all of the vector value types to see which need transformations.
1362   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1363        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1364     MVT VT = (MVT::SimpleValueType) i;
1365     if (isTypeLegal(VT))
1366       continue;
1367 
1368     MVT EltVT = VT.getVectorElementType();
1369     ElementCount EC = VT.getVectorElementCount();
1370     bool IsLegalWiderType = false;
1371     bool IsScalable = VT.isScalableVector();
1372     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1373     switch (PreferredAction) {
1374     case TypePromoteInteger: {
1375       MVT::SimpleValueType EndVT = IsScalable ?
1376                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1377                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1378       // Try to promote the elements of integer vectors. If no legal
1379       // promotion was found, fall through to the widen-vector method.
1380       for (unsigned nVT = i + 1;
1381            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1382         MVT SVT = (MVT::SimpleValueType) nVT;
1383         // Promote vectors of integers to vectors with the same number
1384         // of elements, with a wider element type.
1385         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1386             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1387           TransformToType[i] = SVT;
1388           RegisterTypeForVT[i] = SVT;
1389           NumRegistersForVT[i] = 1;
1390           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1391           IsLegalWiderType = true;
1392           break;
1393         }
1394       }
1395       if (IsLegalWiderType)
1396         break;
1397       LLVM_FALLTHROUGH;
1398     }
1399 
1400     case TypeWidenVector:
1401       if (isPowerOf2_32(EC.getKnownMinValue())) {
1402         // Try to widen the vector.
1403         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1404           MVT SVT = (MVT::SimpleValueType) nVT;
1405           if (SVT.getVectorElementType() == EltVT &&
1406               SVT.isScalableVector() == IsScalable &&
1407               SVT.getVectorElementCount().getKnownMinValue() >
1408                   EC.getKnownMinValue() &&
1409               isTypeLegal(SVT)) {
1410             TransformToType[i] = SVT;
1411             RegisterTypeForVT[i] = SVT;
1412             NumRegistersForVT[i] = 1;
1413             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1414             IsLegalWiderType = true;
1415             break;
1416           }
1417         }
1418         if (IsLegalWiderType)
1419           break;
1420       } else {
1421         // Only widen to the next power of 2 to keep consistency with EVT.
1422         MVT NVT = VT.getPow2VectorType();
1423         if (isTypeLegal(NVT)) {
1424           TransformToType[i] = NVT;
1425           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1426           RegisterTypeForVT[i] = NVT;
1427           NumRegistersForVT[i] = 1;
1428           break;
1429         }
1430       }
1431       LLVM_FALLTHROUGH;
1432 
1433     case TypeSplitVector:
1434     case TypeScalarizeVector: {
1435       MVT IntermediateVT;
1436       MVT RegisterVT;
1437       unsigned NumIntermediates;
1438       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1439           NumIntermediates, RegisterVT, this);
1440       NumRegistersForVT[i] = NumRegisters;
1441       assert(NumRegistersForVT[i] == NumRegisters &&
1442              "NumRegistersForVT size cannot represent NumRegisters!");
1443       RegisterTypeForVT[i] = RegisterVT;
1444 
1445       MVT NVT = VT.getPow2VectorType();
1446       if (NVT == VT) {
1447         // Type is already a power of 2.  The default action is to split.
1448         TransformToType[i] = MVT::Other;
1449         if (PreferredAction == TypeScalarizeVector)
1450           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1451         else if (PreferredAction == TypeSplitVector)
1452           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1453         else if (EC.getKnownMinValue() > 1)
1454           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1455         else
1456           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1457                                                  ? TypeScalarizeScalableVector
1458                                                  : TypeScalarizeVector);
1459       } else {
1460         TransformToType[i] = NVT;
1461         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1462       }
1463       break;
1464     }
1465     default:
1466       llvm_unreachable("Unknown vector legalization action!");
1467     }
1468   }
1469 
1470   // Determine the 'representative' register class for each value type.
1471   // An representative register class is the largest (meaning one which is
1472   // not a sub-register class / subreg register class) legal register class for
1473   // a group of value types. For example, on i386, i8, i16, and i32
1474   // representative would be GR32; while on x86_64 it's GR64.
1475   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1476     const TargetRegisterClass* RRC;
1477     uint8_t Cost;
1478     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1479     RepRegClassForVT[i] = RRC;
1480     RepRegClassCostForVT[i] = Cost;
1481   }
1482 }
1483 
1484 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1485                                            EVT VT) const {
1486   assert(!VT.isVector() && "No default SetCC type for vectors!");
1487   return getPointerTy(DL).SimpleTy;
1488 }
1489 
1490 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1491   return MVT::i32; // return the default value
1492 }
1493 
1494 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1495 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1496 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1497 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1498 ///
1499 /// This method returns the number of registers needed, and the VT for each
1500 /// register.  It also returns the VT and quantity of the intermediate values
1501 /// before they are promoted/expanded.
1502 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1503                                                 EVT &IntermediateVT,
1504                                                 unsigned &NumIntermediates,
1505                                                 MVT &RegisterVT) const {
1506   ElementCount EltCnt = VT.getVectorElementCount();
1507 
1508   // If there is a wider vector type with the same element type as this one,
1509   // or a promoted vector type that has the same number of elements which
1510   // are wider, then we should convert to that legal vector type.
1511   // This handles things like <2 x float> -> <4 x float> and
1512   // <4 x i1> -> <4 x i32>.
1513   LegalizeTypeAction TA = getTypeAction(Context, VT);
1514   if (EltCnt.getKnownMinValue() != 1 &&
1515       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1516     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1517     if (isTypeLegal(RegisterEVT)) {
1518       IntermediateVT = RegisterEVT;
1519       RegisterVT = RegisterEVT.getSimpleVT();
1520       NumIntermediates = 1;
1521       return 1;
1522     }
1523   }
1524 
1525   // Figure out the right, legal destination reg to copy into.
1526   EVT EltTy = VT.getVectorElementType();
1527 
1528   unsigned NumVectorRegs = 1;
1529 
1530   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1531   // types like done elsewhere in SelectionDAG.
1532   if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) {
1533     LegalizeKind LK;
1534     EVT PartVT = VT;
1535     do {
1536       // Iterate until we've found a legal (part) type to hold VT.
1537       LK = getTypeConversion(Context, PartVT);
1538       PartVT = LK.second;
1539     } while (LK.first != TypeLegal);
1540 
1541     NumIntermediates = VT.getVectorElementCount().getKnownMinValue() /
1542                        PartVT.getVectorElementCount().getKnownMinValue();
1543 
1544     // FIXME: This code needs to be extended to handle more complex vector
1545     // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
1546     // supported cases are vectors that are broken down into equal parts
1547     // such as nxv6i64 -> 3 x nxv2i64.
1548     assert((PartVT.getVectorElementCount() * NumIntermediates) ==
1549                VT.getVectorElementCount() &&
1550            "Expected an integer multiple of PartVT");
1551     IntermediateVT = PartVT;
1552     RegisterVT = getRegisterType(Context, IntermediateVT);
1553     return NumIntermediates;
1554   }
1555 
1556   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1557   // we could break down into LHS/RHS like LegalizeDAG does.
1558   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1559     NumVectorRegs = EltCnt.getKnownMinValue();
1560     EltCnt = ElementCount::getFixed(1);
1561   }
1562 
1563   // Divide the input until we get to a supported size.  This will always
1564   // end with a scalar if the target doesn't support vectors.
1565   while (EltCnt.getKnownMinValue() > 1 &&
1566          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1567     EltCnt = EltCnt.divideCoefficientBy(2);
1568     NumVectorRegs <<= 1;
1569   }
1570 
1571   NumIntermediates = NumVectorRegs;
1572 
1573   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1574   if (!isTypeLegal(NewVT))
1575     NewVT = EltTy;
1576   IntermediateVT = NewVT;
1577 
1578   MVT DestVT = getRegisterType(Context, NewVT);
1579   RegisterVT = DestVT;
1580 
1581   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1582     TypeSize NewVTSize = NewVT.getSizeInBits();
1583     // Convert sizes such as i33 to i64.
1584     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1585       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1586     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1587   }
1588 
1589   // Otherwise, promotion or legal types use the same number of registers as
1590   // the vector decimated to the appropriate level.
1591   return NumVectorRegs;
1592 }
1593 
1594 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1595                                                 uint64_t NumCases,
1596                                                 uint64_t Range,
1597                                                 ProfileSummaryInfo *PSI,
1598                                                 BlockFrequencyInfo *BFI) const {
1599   // FIXME: This function check the maximum table size and density, but the
1600   // minimum size is not checked. It would be nice if the minimum size is
1601   // also combined within this function. Currently, the minimum size check is
1602   // performed in findJumpTable() in SelectionDAGBuiler and
1603   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1604   const bool OptForSize =
1605       SI->getParent()->getParent()->hasOptSize() ||
1606       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1607   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1608   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1609 
1610   // Check whether the number of cases is small enough and
1611   // the range is dense enough for a jump table.
1612   return (OptForSize || Range <= MaxJumpTableSize) &&
1613          (NumCases * 100 >= Range * MinDensity);
1614 }
1615 
1616 /// Get the EVTs and ArgFlags collections that represent the legalized return
1617 /// type of the given function.  This does not require a DAG or a return value,
1618 /// and is suitable for use before any DAGs for the function are constructed.
1619 /// TODO: Move this out of TargetLowering.cpp.
1620 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1621                          AttributeList attr,
1622                          SmallVectorImpl<ISD::OutputArg> &Outs,
1623                          const TargetLowering &TLI, const DataLayout &DL) {
1624   SmallVector<EVT, 4> ValueVTs;
1625   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1626   unsigned NumValues = ValueVTs.size();
1627   if (NumValues == 0) return;
1628 
1629   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1630     EVT VT = ValueVTs[j];
1631     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1632 
1633     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1634       ExtendKind = ISD::SIGN_EXTEND;
1635     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1636       ExtendKind = ISD::ZERO_EXTEND;
1637 
1638     // FIXME: C calling convention requires the return type to be promoted to
1639     // at least 32-bit. But this is not necessary for non-C calling
1640     // conventions. The frontend should mark functions whose return values
1641     // require promoting with signext or zeroext attributes.
1642     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1643       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1644       if (VT.bitsLT(MinVT))
1645         VT = MinVT;
1646     }
1647 
1648     unsigned NumParts =
1649         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1650     MVT PartVT =
1651         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1652 
1653     // 'inreg' on function refers to return value
1654     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1655     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1656       Flags.setInReg();
1657 
1658     // Propagate extension type if any
1659     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1660       Flags.setSExt();
1661     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1662       Flags.setZExt();
1663 
1664     for (unsigned i = 0; i < NumParts; ++i)
1665       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1666   }
1667 }
1668 
1669 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1670 /// function arguments in the caller parameter area.  This is the actual
1671 /// alignment, not its logarithm.
1672 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1673                                                    const DataLayout &DL) const {
1674   return DL.getABITypeAlign(Ty).value();
1675 }
1676 
1677 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1678     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1679     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1680   // Check if the specified alignment is sufficient based on the data layout.
1681   // TODO: While using the data layout works in practice, a better solution
1682   // would be to implement this check directly (make this a virtual function).
1683   // For example, the ABI alignment may change based on software platform while
1684   // this function should only be affected by hardware implementation.
1685   Type *Ty = VT.getTypeForEVT(Context);
1686   if (Alignment >= DL.getABITypeAlign(Ty)) {
1687     // Assume that an access that meets the ABI-specified alignment is fast.
1688     if (Fast != nullptr)
1689       *Fast = true;
1690     return true;
1691   }
1692 
1693   // This is a misaligned access.
1694   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags,
1695                                         Fast);
1696 }
1697 
1698 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1699     LLVMContext &Context, const DataLayout &DL, EVT VT,
1700     const MachineMemOperand &MMO, bool *Fast) const {
1701   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1702                                         MMO.getAlign(), MMO.getFlags(), Fast);
1703 }
1704 
1705 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1706                                             const DataLayout &DL, EVT VT,
1707                                             unsigned AddrSpace, Align Alignment,
1708                                             MachineMemOperand::Flags Flags,
1709                                             bool *Fast) const {
1710   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1711                                         Flags, Fast);
1712 }
1713 
1714 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1715                                             const DataLayout &DL, EVT VT,
1716                                             const MachineMemOperand &MMO,
1717                                             bool *Fast) const {
1718   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1719                             MMO.getFlags(), Fast);
1720 }
1721 
1722 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1723   return BranchProbability(MinPercentageForPredictableBranch, 100);
1724 }
1725 
1726 //===----------------------------------------------------------------------===//
1727 //  TargetTransformInfo Helpers
1728 //===----------------------------------------------------------------------===//
1729 
1730 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1731   enum InstructionOpcodes {
1732 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1733 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1734 #include "llvm/IR/Instruction.def"
1735   };
1736   switch (static_cast<InstructionOpcodes>(Opcode)) {
1737   case Ret:            return 0;
1738   case Br:             return 0;
1739   case Switch:         return 0;
1740   case IndirectBr:     return 0;
1741   case Invoke:         return 0;
1742   case CallBr:         return 0;
1743   case Resume:         return 0;
1744   case Unreachable:    return 0;
1745   case CleanupRet:     return 0;
1746   case CatchRet:       return 0;
1747   case CatchPad:       return 0;
1748   case CatchSwitch:    return 0;
1749   case CleanupPad:     return 0;
1750   case FNeg:           return ISD::FNEG;
1751   case Add:            return ISD::ADD;
1752   case FAdd:           return ISD::FADD;
1753   case Sub:            return ISD::SUB;
1754   case FSub:           return ISD::FSUB;
1755   case Mul:            return ISD::MUL;
1756   case FMul:           return ISD::FMUL;
1757   case UDiv:           return ISD::UDIV;
1758   case SDiv:           return ISD::SDIV;
1759   case FDiv:           return ISD::FDIV;
1760   case URem:           return ISD::UREM;
1761   case SRem:           return ISD::SREM;
1762   case FRem:           return ISD::FREM;
1763   case Shl:            return ISD::SHL;
1764   case LShr:           return ISD::SRL;
1765   case AShr:           return ISD::SRA;
1766   case And:            return ISD::AND;
1767   case Or:             return ISD::OR;
1768   case Xor:            return ISD::XOR;
1769   case Alloca:         return 0;
1770   case Load:           return ISD::LOAD;
1771   case Store:          return ISD::STORE;
1772   case GetElementPtr:  return 0;
1773   case Fence:          return 0;
1774   case AtomicCmpXchg:  return 0;
1775   case AtomicRMW:      return 0;
1776   case Trunc:          return ISD::TRUNCATE;
1777   case ZExt:           return ISD::ZERO_EXTEND;
1778   case SExt:           return ISD::SIGN_EXTEND;
1779   case FPToUI:         return ISD::FP_TO_UINT;
1780   case FPToSI:         return ISD::FP_TO_SINT;
1781   case UIToFP:         return ISD::UINT_TO_FP;
1782   case SIToFP:         return ISD::SINT_TO_FP;
1783   case FPTrunc:        return ISD::FP_ROUND;
1784   case FPExt:          return ISD::FP_EXTEND;
1785   case PtrToInt:       return ISD::BITCAST;
1786   case IntToPtr:       return ISD::BITCAST;
1787   case BitCast:        return ISD::BITCAST;
1788   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1789   case ICmp:           return ISD::SETCC;
1790   case FCmp:           return ISD::SETCC;
1791   case PHI:            return 0;
1792   case Call:           return 0;
1793   case Select:         return ISD::SELECT;
1794   case UserOp1:        return 0;
1795   case UserOp2:        return 0;
1796   case VAArg:          return 0;
1797   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1798   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1799   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1800   case ExtractValue:   return ISD::MERGE_VALUES;
1801   case InsertValue:    return ISD::MERGE_VALUES;
1802   case LandingPad:     return 0;
1803   case Freeze:         return ISD::FREEZE;
1804   }
1805 
1806   llvm_unreachable("Unknown instruction type encountered!");
1807 }
1808 
1809 std::pair<int, MVT>
1810 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1811                                             Type *Ty) const {
1812   LLVMContext &C = Ty->getContext();
1813   EVT MTy = getValueType(DL, Ty);
1814 
1815   int Cost = 1;
1816   // We keep legalizing the type until we find a legal kind. We assume that
1817   // the only operation that costs anything is the split. After splitting
1818   // we need to handle two types.
1819   while (true) {
1820     LegalizeKind LK = getTypeConversion(C, MTy);
1821 
1822     if (LK.first == TypeLegal)
1823       return std::make_pair(Cost, MTy.getSimpleVT());
1824 
1825     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1826       Cost *= 2;
1827 
1828     // Do not loop with f128 type.
1829     if (MTy == LK.second)
1830       return std::make_pair(Cost, MTy.getSimpleVT());
1831 
1832     // Keep legalizing the type.
1833     MTy = LK.second;
1834   }
1835 }
1836 
1837 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1838                                                               bool UseTLS) const {
1839   // compiler-rt provides a variable with a magic name.  Targets that do not
1840   // link with compiler-rt may also provide such a variable.
1841   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1842   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1843   auto UnsafeStackPtr =
1844       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1845 
1846   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1847 
1848   if (!UnsafeStackPtr) {
1849     auto TLSModel = UseTLS ?
1850         GlobalValue::InitialExecTLSModel :
1851         GlobalValue::NotThreadLocal;
1852     // The global variable is not defined yet, define it ourselves.
1853     // We use the initial-exec TLS model because we do not support the
1854     // variable living anywhere other than in the main executable.
1855     UnsafeStackPtr = new GlobalVariable(
1856         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1857         UnsafeStackPtrVar, nullptr, TLSModel);
1858   } else {
1859     // The variable exists, check its type and attributes.
1860     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1861       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1862     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1863       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1864                          (UseTLS ? "" : "not ") + "be thread-local");
1865   }
1866   return UnsafeStackPtr;
1867 }
1868 
1869 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1870   if (!TM.getTargetTriple().isAndroid())
1871     return getDefaultSafeStackPointerLocation(IRB, true);
1872 
1873   // Android provides a libc function to retrieve the address of the current
1874   // thread's unsafe stack pointer.
1875   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1876   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1877   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1878                                              StackPtrTy->getPointerTo(0));
1879   return IRB.CreateCall(Fn);
1880 }
1881 
1882 //===----------------------------------------------------------------------===//
1883 //  Loop Strength Reduction hooks
1884 //===----------------------------------------------------------------------===//
1885 
1886 /// isLegalAddressingMode - Return true if the addressing mode represented
1887 /// by AM is legal for this target, for a load/store of the specified type.
1888 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1889                                                const AddrMode &AM, Type *Ty,
1890                                                unsigned AS, Instruction *I) const {
1891   // The default implementation of this implements a conservative RISCy, r+r and
1892   // r+i addr mode.
1893 
1894   // Allows a sign-extended 16-bit immediate field.
1895   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1896     return false;
1897 
1898   // No global is ever allowed as a base.
1899   if (AM.BaseGV)
1900     return false;
1901 
1902   // Only support r+r,
1903   switch (AM.Scale) {
1904   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1905     break;
1906   case 1:
1907     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1908       return false;
1909     // Otherwise we have r+r or r+i.
1910     break;
1911   case 2:
1912     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1913       return false;
1914     // Allow 2*r as r+r.
1915     break;
1916   default: // Don't allow n * r
1917     return false;
1918   }
1919 
1920   return true;
1921 }
1922 
1923 //===----------------------------------------------------------------------===//
1924 //  Stack Protector
1925 //===----------------------------------------------------------------------===//
1926 
1927 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1928 // so that SelectionDAG handle SSP.
1929 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1930   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1931     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1932     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1933     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1934     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1935       G->setVisibility(GlobalValue::HiddenVisibility);
1936     return C;
1937   }
1938   return nullptr;
1939 }
1940 
1941 // Currently only support "standard" __stack_chk_guard.
1942 // TODO: add LOAD_STACK_GUARD support.
1943 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1944   if (!M.getNamedValue("__stack_chk_guard"))
1945     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1946                        GlobalVariable::ExternalLinkage,
1947                        nullptr, "__stack_chk_guard");
1948 }
1949 
1950 // Currently only support "standard" __stack_chk_guard.
1951 // TODO: add LOAD_STACK_GUARD support.
1952 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1953   return M.getNamedValue("__stack_chk_guard");
1954 }
1955 
1956 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1957   return nullptr;
1958 }
1959 
1960 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1961   return MinimumJumpTableEntries;
1962 }
1963 
1964 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1965   MinimumJumpTableEntries = Val;
1966 }
1967 
1968 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1969   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1970 }
1971 
1972 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1973   return MaximumJumpTableSize;
1974 }
1975 
1976 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1977   MaximumJumpTableSize = Val;
1978 }
1979 
1980 bool TargetLoweringBase::isJumpTableRelative() const {
1981   return getTargetMachine().isPositionIndependent();
1982 }
1983 
1984 //===----------------------------------------------------------------------===//
1985 //  Reciprocal Estimates
1986 //===----------------------------------------------------------------------===//
1987 
1988 /// Get the reciprocal estimate attribute string for a function that will
1989 /// override the target defaults.
1990 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1991   const Function &F = MF.getFunction();
1992   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1993 }
1994 
1995 /// Construct a string for the given reciprocal operation of the given type.
1996 /// This string should match the corresponding option to the front-end's
1997 /// "-mrecip" flag assuming those strings have been passed through in an
1998 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1999 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2000   std::string Name = VT.isVector() ? "vec-" : "";
2001 
2002   Name += IsSqrt ? "sqrt" : "div";
2003 
2004   // TODO: Handle "half" or other float types?
2005   if (VT.getScalarType() == MVT::f64) {
2006     Name += "d";
2007   } else {
2008     assert(VT.getScalarType() == MVT::f32 &&
2009            "Unexpected FP type for reciprocal estimate");
2010     Name += "f";
2011   }
2012 
2013   return Name;
2014 }
2015 
2016 /// Return the character position and value (a single numeric character) of a
2017 /// customized refinement operation in the input string if it exists. Return
2018 /// false if there is no customized refinement step count.
2019 static bool parseRefinementStep(StringRef In, size_t &Position,
2020                                 uint8_t &Value) {
2021   const char RefStepToken = ':';
2022   Position = In.find(RefStepToken);
2023   if (Position == StringRef::npos)
2024     return false;
2025 
2026   StringRef RefStepString = In.substr(Position + 1);
2027   // Allow exactly one numeric character for the additional refinement
2028   // step parameter.
2029   if (RefStepString.size() == 1) {
2030     char RefStepChar = RefStepString[0];
2031     if (RefStepChar >= '0' && RefStepChar <= '9') {
2032       Value = RefStepChar - '0';
2033       return true;
2034     }
2035   }
2036   report_fatal_error("Invalid refinement step for -recip.");
2037 }
2038 
2039 /// For the input attribute string, return one of the ReciprocalEstimate enum
2040 /// status values (enabled, disabled, or not specified) for this operation on
2041 /// the specified data type.
2042 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2043   if (Override.empty())
2044     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2045 
2046   SmallVector<StringRef, 4> OverrideVector;
2047   Override.split(OverrideVector, ',');
2048   unsigned NumArgs = OverrideVector.size();
2049 
2050   // Check if "all", "none", or "default" was specified.
2051   if (NumArgs == 1) {
2052     // Look for an optional setting of the number of refinement steps needed
2053     // for this type of reciprocal operation.
2054     size_t RefPos;
2055     uint8_t RefSteps;
2056     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2057       // Split the string for further processing.
2058       Override = Override.substr(0, RefPos);
2059     }
2060 
2061     // All reciprocal types are enabled.
2062     if (Override == "all")
2063       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2064 
2065     // All reciprocal types are disabled.
2066     if (Override == "none")
2067       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2068 
2069     // Target defaults for enablement are used.
2070     if (Override == "default")
2071       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2072   }
2073 
2074   // The attribute string may omit the size suffix ('f'/'d').
2075   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2076   std::string VTNameNoSize = VTName;
2077   VTNameNoSize.pop_back();
2078   static const char DisabledPrefix = '!';
2079 
2080   for (StringRef RecipType : OverrideVector) {
2081     size_t RefPos;
2082     uint8_t RefSteps;
2083     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2084       RecipType = RecipType.substr(0, RefPos);
2085 
2086     // Ignore the disablement token for string matching.
2087     bool IsDisabled = RecipType[0] == DisabledPrefix;
2088     if (IsDisabled)
2089       RecipType = RecipType.substr(1);
2090 
2091     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2092       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2093                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2094   }
2095 
2096   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2097 }
2098 
2099 /// For the input attribute string, return the customized refinement step count
2100 /// for this operation on the specified data type. If the step count does not
2101 /// exist, return the ReciprocalEstimate enum value for unspecified.
2102 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2103   if (Override.empty())
2104     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2105 
2106   SmallVector<StringRef, 4> OverrideVector;
2107   Override.split(OverrideVector, ',');
2108   unsigned NumArgs = OverrideVector.size();
2109 
2110   // Check if "all", "default", or "none" was specified.
2111   if (NumArgs == 1) {
2112     // Look for an optional setting of the number of refinement steps needed
2113     // for this type of reciprocal operation.
2114     size_t RefPos;
2115     uint8_t RefSteps;
2116     if (!parseRefinementStep(Override, RefPos, RefSteps))
2117       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2118 
2119     // Split the string for further processing.
2120     Override = Override.substr(0, RefPos);
2121     assert(Override != "none" &&
2122            "Disabled reciprocals, but specifed refinement steps?");
2123 
2124     // If this is a general override, return the specified number of steps.
2125     if (Override == "all" || Override == "default")
2126       return RefSteps;
2127   }
2128 
2129   // The attribute string may omit the size suffix ('f'/'d').
2130   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2131   std::string VTNameNoSize = VTName;
2132   VTNameNoSize.pop_back();
2133 
2134   for (StringRef RecipType : OverrideVector) {
2135     size_t RefPos;
2136     uint8_t RefSteps;
2137     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2138       continue;
2139 
2140     RecipType = RecipType.substr(0, RefPos);
2141     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2142       return RefSteps;
2143   }
2144 
2145   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2146 }
2147 
2148 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2149                                                     MachineFunction &MF) const {
2150   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2151 }
2152 
2153 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2154                                                    MachineFunction &MF) const {
2155   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2156 }
2157 
2158 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2159                                                MachineFunction &MF) const {
2160   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2161 }
2162 
2163 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2164                                               MachineFunction &MF) const {
2165   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2166 }
2167 
2168 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2169   MF.getRegInfo().freezeReservedRegs(MF);
2170 }
2171 
2172 MachineMemOperand::Flags
2173 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2174                                            const DataLayout &DL) const {
2175   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2176   if (LI.isVolatile())
2177     Flags |= MachineMemOperand::MOVolatile;
2178 
2179   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2180     Flags |= MachineMemOperand::MONonTemporal;
2181 
2182   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2183     Flags |= MachineMemOperand::MOInvariant;
2184 
2185   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2186     Flags |= MachineMemOperand::MODereferenceable;
2187 
2188   Flags |= getTargetMMOFlags(LI);
2189   return Flags;
2190 }
2191 
2192 MachineMemOperand::Flags
2193 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2194                                             const DataLayout &DL) const {
2195   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2196 
2197   if (SI.isVolatile())
2198     Flags |= MachineMemOperand::MOVolatile;
2199 
2200   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2201     Flags |= MachineMemOperand::MONonTemporal;
2202 
2203   // FIXME: Not preserving dereferenceable
2204   Flags |= getTargetMMOFlags(SI);
2205   return Flags;
2206 }
2207 
2208 MachineMemOperand::Flags
2209 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2210                                              const DataLayout &DL) const {
2211   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2212 
2213   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2214     if (RMW->isVolatile())
2215       Flags |= MachineMemOperand::MOVolatile;
2216   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2217     if (CmpX->isVolatile())
2218       Flags |= MachineMemOperand::MOVolatile;
2219   } else
2220     llvm_unreachable("not an atomic instruction");
2221 
2222   // FIXME: Not preserving dereferenceable
2223   Flags |= getTargetMMOFlags(AI);
2224   return Flags;
2225 }
2226 
2227 //===----------------------------------------------------------------------===//
2228 //  GlobalISel Hooks
2229 //===----------------------------------------------------------------------===//
2230 
2231 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2232                                         const TargetTransformInfo *TTI) const {
2233   auto &MF = *MI.getMF();
2234   auto &MRI = MF.getRegInfo();
2235   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2236   // this helper function computes the maximum number of uses we should consider
2237   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2238   // break even in terms of code size when the original MI has 2 users vs
2239   // choosing to potentially spill. Any more than 2 users we we have a net code
2240   // size increase. This doesn't take into account register pressure though.
2241   auto maxUses = [](unsigned RematCost) {
2242     // A cost of 1 means remats are basically free.
2243     if (RematCost == 1)
2244       return UINT_MAX;
2245     if (RematCost == 2)
2246       return 2U;
2247 
2248     // Remat is too expensive, only sink if there's one user.
2249     if (RematCost > 2)
2250       return 1U;
2251     llvm_unreachable("Unexpected remat cost");
2252   };
2253 
2254   // Helper to walk through uses and terminate if we've reached a limit. Saves
2255   // us spending time traversing uses if all we want to know is if it's >= min.
2256   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2257     unsigned NumUses = 0;
2258     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2259     for (; UI != UE && NumUses < MaxUses; ++UI) {
2260       NumUses++;
2261     }
2262     // If we haven't reached the end yet then there are more than MaxUses users.
2263     return UI == UE;
2264   };
2265 
2266   switch (MI.getOpcode()) {
2267   default:
2268     return false;
2269   // Constants-like instructions should be close to their users.
2270   // We don't want long live-ranges for them.
2271   case TargetOpcode::G_CONSTANT:
2272   case TargetOpcode::G_FCONSTANT:
2273   case TargetOpcode::G_FRAME_INDEX:
2274   case TargetOpcode::G_INTTOPTR:
2275     return true;
2276   case TargetOpcode::G_GLOBAL_VALUE: {
2277     unsigned RematCost = TTI->getGISelRematGlobalCost();
2278     Register Reg = MI.getOperand(0).getReg();
2279     unsigned MaxUses = maxUses(RematCost);
2280     if (MaxUses == UINT_MAX)
2281       return true; // Remats are "free" so always localize.
2282     bool B = isUsesAtMost(Reg, MaxUses);
2283     return B;
2284   }
2285   }
2286 }
2287