1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLoweringBase class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/MachineValueType.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstddef> 58 #include <cstdint> 59 #include <cstring> 60 #include <iterator> 61 #include <string> 62 #include <tuple> 63 #include <utility> 64 65 using namespace llvm; 66 67 static cl::opt<bool> JumpIsExpensiveOverride( 68 "jump-is-expensive", cl::init(false), 69 cl::desc("Do not create extra branches to split comparison logic."), 70 cl::Hidden); 71 72 static cl::opt<unsigned> MinimumJumpTableEntries 73 ("min-jump-table-entries", cl::init(4), cl::Hidden, 74 cl::desc("Set minimum number of entries to use a jump table.")); 75 76 static cl::opt<unsigned> MaximumJumpTableSize 77 ("max-jump-table-size", cl::init(0), cl::Hidden, 78 cl::desc("Set maximum size of jump tables; zero for no limit.")); 79 80 /// Minimum jump table density for normal functions. 81 static cl::opt<unsigned> 82 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 83 cl::desc("Minimum density for building a jump table in " 84 "a normal function")); 85 86 /// Minimum jump table density for -Os or -Oz functions. 87 static cl::opt<unsigned> OptsizeJumpTableDensity( 88 "optsize-jump-table-density", cl::init(40), cl::Hidden, 89 cl::desc("Minimum density for building a jump table in " 90 "an optsize function")); 91 92 // Although this default value is arbitrary, it is not random. It is assumed 93 // that a condition that evaluates the same way by a higher percentage than this 94 // is best represented as control flow. Therefore, the default value N should be 95 // set such that the win from N% correct executions is greater than the loss 96 // from (100 - N)% mispredicted executions for the majority of intended targets. 97 static cl::opt<int> MinPercentageForPredictableBranch( 98 "min-predictable-branch", cl::init(99), 99 cl::desc("Minimum percentage (0-100) that a condition must be either true " 100 "or false to assume that the condition is predictable"), 101 cl::Hidden); 102 103 /// InitLibcallNames - Set default libcall names. 104 static void InitLibcallNames(const char **Names, const Triple &TT) { 105 #define HANDLE_LIBCALL(code, name) \ 106 Names[RTLIB::code] = name; 107 #include "llvm/CodeGen/RuntimeLibcalls.def" 108 #undef HANDLE_LIBCALL 109 110 // A few names are different on particular architectures or environments. 111 if (TT.isOSDarwin()) { 112 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 113 // of the gnueabi-style __gnu_*_ieee. 114 // FIXME: What about other targets? 115 Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2"; 116 Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2"; 117 } else { 118 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 119 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 120 } 121 122 if (TT.isGNUEnvironment() || TT.isOSFuchsia()) { 123 Names[RTLIB::SINCOS_F32] = "sincosf"; 124 Names[RTLIB::SINCOS_F64] = "sincos"; 125 Names[RTLIB::SINCOS_F80] = "sincosl"; 126 Names[RTLIB::SINCOS_F128] = "sincosl"; 127 Names[RTLIB::SINCOS_PPCF128] = "sincosl"; 128 } 129 130 if (TT.isOSOpenBSD()) { 131 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr; 132 } 133 } 134 135 /// Set default libcall CallingConvs. 136 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 137 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 138 CCs[LC] = CallingConv::C; 139 } 140 141 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 142 /// UNKNOWN_LIBCALL if there is none. 143 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 144 if (OpVT == MVT::f16) { 145 if (RetVT == MVT::f32) 146 return FPEXT_F16_F32; 147 } else if (OpVT == MVT::f32) { 148 if (RetVT == MVT::f64) 149 return FPEXT_F32_F64; 150 if (RetVT == MVT::f128) 151 return FPEXT_F32_F128; 152 if (RetVT == MVT::ppcf128) 153 return FPEXT_F32_PPCF128; 154 } else if (OpVT == MVT::f64) { 155 if (RetVT == MVT::f128) 156 return FPEXT_F64_F128; 157 else if (RetVT == MVT::ppcf128) 158 return FPEXT_F64_PPCF128; 159 } 160 161 return UNKNOWN_LIBCALL; 162 } 163 164 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 165 /// UNKNOWN_LIBCALL if there is none. 166 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 167 if (RetVT == MVT::f16) { 168 if (OpVT == MVT::f32) 169 return FPROUND_F32_F16; 170 if (OpVT == MVT::f64) 171 return FPROUND_F64_F16; 172 if (OpVT == MVT::f80) 173 return FPROUND_F80_F16; 174 if (OpVT == MVT::f128) 175 return FPROUND_F128_F16; 176 if (OpVT == MVT::ppcf128) 177 return FPROUND_PPCF128_F16; 178 } else if (RetVT == MVT::f32) { 179 if (OpVT == MVT::f64) 180 return FPROUND_F64_F32; 181 if (OpVT == MVT::f80) 182 return FPROUND_F80_F32; 183 if (OpVT == MVT::f128) 184 return FPROUND_F128_F32; 185 if (OpVT == MVT::ppcf128) 186 return FPROUND_PPCF128_F32; 187 } else if (RetVT == MVT::f64) { 188 if (OpVT == MVT::f80) 189 return FPROUND_F80_F64; 190 if (OpVT == MVT::f128) 191 return FPROUND_F128_F64; 192 if (OpVT == MVT::ppcf128) 193 return FPROUND_PPCF128_F64; 194 } 195 196 return UNKNOWN_LIBCALL; 197 } 198 199 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 200 /// UNKNOWN_LIBCALL if there is none. 201 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 202 if (OpVT == MVT::f32) { 203 if (RetVT == MVT::i32) 204 return FPTOSINT_F32_I32; 205 if (RetVT == MVT::i64) 206 return FPTOSINT_F32_I64; 207 if (RetVT == MVT::i128) 208 return FPTOSINT_F32_I128; 209 } else if (OpVT == MVT::f64) { 210 if (RetVT == MVT::i32) 211 return FPTOSINT_F64_I32; 212 if (RetVT == MVT::i64) 213 return FPTOSINT_F64_I64; 214 if (RetVT == MVT::i128) 215 return FPTOSINT_F64_I128; 216 } else if (OpVT == MVT::f80) { 217 if (RetVT == MVT::i32) 218 return FPTOSINT_F80_I32; 219 if (RetVT == MVT::i64) 220 return FPTOSINT_F80_I64; 221 if (RetVT == MVT::i128) 222 return FPTOSINT_F80_I128; 223 } else if (OpVT == MVT::f128) { 224 if (RetVT == MVT::i32) 225 return FPTOSINT_F128_I32; 226 if (RetVT == MVT::i64) 227 return FPTOSINT_F128_I64; 228 if (RetVT == MVT::i128) 229 return FPTOSINT_F128_I128; 230 } else if (OpVT == MVT::ppcf128) { 231 if (RetVT == MVT::i32) 232 return FPTOSINT_PPCF128_I32; 233 if (RetVT == MVT::i64) 234 return FPTOSINT_PPCF128_I64; 235 if (RetVT == MVT::i128) 236 return FPTOSINT_PPCF128_I128; 237 } 238 return UNKNOWN_LIBCALL; 239 } 240 241 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 242 /// UNKNOWN_LIBCALL if there is none. 243 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 244 if (OpVT == MVT::f32) { 245 if (RetVT == MVT::i32) 246 return FPTOUINT_F32_I32; 247 if (RetVT == MVT::i64) 248 return FPTOUINT_F32_I64; 249 if (RetVT == MVT::i128) 250 return FPTOUINT_F32_I128; 251 } else if (OpVT == MVT::f64) { 252 if (RetVT == MVT::i32) 253 return FPTOUINT_F64_I32; 254 if (RetVT == MVT::i64) 255 return FPTOUINT_F64_I64; 256 if (RetVT == MVT::i128) 257 return FPTOUINT_F64_I128; 258 } else if (OpVT == MVT::f80) { 259 if (RetVT == MVT::i32) 260 return FPTOUINT_F80_I32; 261 if (RetVT == MVT::i64) 262 return FPTOUINT_F80_I64; 263 if (RetVT == MVT::i128) 264 return FPTOUINT_F80_I128; 265 } else if (OpVT == MVT::f128) { 266 if (RetVT == MVT::i32) 267 return FPTOUINT_F128_I32; 268 if (RetVT == MVT::i64) 269 return FPTOUINT_F128_I64; 270 if (RetVT == MVT::i128) 271 return FPTOUINT_F128_I128; 272 } else if (OpVT == MVT::ppcf128) { 273 if (RetVT == MVT::i32) 274 return FPTOUINT_PPCF128_I32; 275 if (RetVT == MVT::i64) 276 return FPTOUINT_PPCF128_I64; 277 if (RetVT == MVT::i128) 278 return FPTOUINT_PPCF128_I128; 279 } 280 return UNKNOWN_LIBCALL; 281 } 282 283 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 284 /// UNKNOWN_LIBCALL if there is none. 285 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 286 if (OpVT == MVT::i32) { 287 if (RetVT == MVT::f32) 288 return SINTTOFP_I32_F32; 289 if (RetVT == MVT::f64) 290 return SINTTOFP_I32_F64; 291 if (RetVT == MVT::f80) 292 return SINTTOFP_I32_F80; 293 if (RetVT == MVT::f128) 294 return SINTTOFP_I32_F128; 295 if (RetVT == MVT::ppcf128) 296 return SINTTOFP_I32_PPCF128; 297 } else if (OpVT == MVT::i64) { 298 if (RetVT == MVT::f32) 299 return SINTTOFP_I64_F32; 300 if (RetVT == MVT::f64) 301 return SINTTOFP_I64_F64; 302 if (RetVT == MVT::f80) 303 return SINTTOFP_I64_F80; 304 if (RetVT == MVT::f128) 305 return SINTTOFP_I64_F128; 306 if (RetVT == MVT::ppcf128) 307 return SINTTOFP_I64_PPCF128; 308 } else if (OpVT == MVT::i128) { 309 if (RetVT == MVT::f32) 310 return SINTTOFP_I128_F32; 311 if (RetVT == MVT::f64) 312 return SINTTOFP_I128_F64; 313 if (RetVT == MVT::f80) 314 return SINTTOFP_I128_F80; 315 if (RetVT == MVT::f128) 316 return SINTTOFP_I128_F128; 317 if (RetVT == MVT::ppcf128) 318 return SINTTOFP_I128_PPCF128; 319 } 320 return UNKNOWN_LIBCALL; 321 } 322 323 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 324 /// UNKNOWN_LIBCALL if there is none. 325 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 326 if (OpVT == MVT::i32) { 327 if (RetVT == MVT::f32) 328 return UINTTOFP_I32_F32; 329 if (RetVT == MVT::f64) 330 return UINTTOFP_I32_F64; 331 if (RetVT == MVT::f80) 332 return UINTTOFP_I32_F80; 333 if (RetVT == MVT::f128) 334 return UINTTOFP_I32_F128; 335 if (RetVT == MVT::ppcf128) 336 return UINTTOFP_I32_PPCF128; 337 } else if (OpVT == MVT::i64) { 338 if (RetVT == MVT::f32) 339 return UINTTOFP_I64_F32; 340 if (RetVT == MVT::f64) 341 return UINTTOFP_I64_F64; 342 if (RetVT == MVT::f80) 343 return UINTTOFP_I64_F80; 344 if (RetVT == MVT::f128) 345 return UINTTOFP_I64_F128; 346 if (RetVT == MVT::ppcf128) 347 return UINTTOFP_I64_PPCF128; 348 } else if (OpVT == MVT::i128) { 349 if (RetVT == MVT::f32) 350 return UINTTOFP_I128_F32; 351 if (RetVT == MVT::f64) 352 return UINTTOFP_I128_F64; 353 if (RetVT == MVT::f80) 354 return UINTTOFP_I128_F80; 355 if (RetVT == MVT::f128) 356 return UINTTOFP_I128_F128; 357 if (RetVT == MVT::ppcf128) 358 return UINTTOFP_I128_PPCF128; 359 } 360 return UNKNOWN_LIBCALL; 361 } 362 363 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 364 #define OP_TO_LIBCALL(Name, Enum) \ 365 case Name: \ 366 switch (VT.SimpleTy) { \ 367 default: \ 368 return UNKNOWN_LIBCALL; \ 369 case MVT::i8: \ 370 return Enum##_1; \ 371 case MVT::i16: \ 372 return Enum##_2; \ 373 case MVT::i32: \ 374 return Enum##_4; \ 375 case MVT::i64: \ 376 return Enum##_8; \ 377 case MVT::i128: \ 378 return Enum##_16; \ 379 } 380 381 switch (Opc) { 382 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 383 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 384 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 385 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 386 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 387 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 388 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 389 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 390 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 391 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 392 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 393 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 394 } 395 396 #undef OP_TO_LIBCALL 397 398 return UNKNOWN_LIBCALL; 399 } 400 401 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 402 switch (ElementSize) { 403 case 1: 404 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 405 case 2: 406 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 407 case 4: 408 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 409 case 8: 410 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 411 case 16: 412 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 413 default: 414 return UNKNOWN_LIBCALL; 415 } 416 } 417 418 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 419 switch (ElementSize) { 420 case 1: 421 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 422 case 2: 423 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 424 case 4: 425 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 426 case 8: 427 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 428 case 16: 429 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 430 default: 431 return UNKNOWN_LIBCALL; 432 } 433 } 434 435 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 436 switch (ElementSize) { 437 case 1: 438 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 439 case 2: 440 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 441 case 4: 442 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 443 case 8: 444 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 445 case 16: 446 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 447 default: 448 return UNKNOWN_LIBCALL; 449 } 450 } 451 452 /// InitCmpLibcallCCs - Set default comparison libcall CC. 453 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 454 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 455 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 456 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 457 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 458 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 459 CCs[RTLIB::UNE_F32] = ISD::SETNE; 460 CCs[RTLIB::UNE_F64] = ISD::SETNE; 461 CCs[RTLIB::UNE_F128] = ISD::SETNE; 462 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 463 CCs[RTLIB::OGE_F32] = ISD::SETGE; 464 CCs[RTLIB::OGE_F64] = ISD::SETGE; 465 CCs[RTLIB::OGE_F128] = ISD::SETGE; 466 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 467 CCs[RTLIB::OLT_F32] = ISD::SETLT; 468 CCs[RTLIB::OLT_F64] = ISD::SETLT; 469 CCs[RTLIB::OLT_F128] = ISD::SETLT; 470 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 471 CCs[RTLIB::OLE_F32] = ISD::SETLE; 472 CCs[RTLIB::OLE_F64] = ISD::SETLE; 473 CCs[RTLIB::OLE_F128] = ISD::SETLE; 474 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 475 CCs[RTLIB::OGT_F32] = ISD::SETGT; 476 CCs[RTLIB::OGT_F64] = ISD::SETGT; 477 CCs[RTLIB::OGT_F128] = ISD::SETGT; 478 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 479 CCs[RTLIB::UO_F32] = ISD::SETNE; 480 CCs[RTLIB::UO_F64] = ISD::SETNE; 481 CCs[RTLIB::UO_F128] = ISD::SETNE; 482 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 483 CCs[RTLIB::O_F32] = ISD::SETEQ; 484 CCs[RTLIB::O_F64] = ISD::SETEQ; 485 CCs[RTLIB::O_F128] = ISD::SETEQ; 486 CCs[RTLIB::O_PPCF128] = ISD::SETEQ; 487 } 488 489 /// NOTE: The TargetMachine owns TLOF. 490 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 491 initActions(); 492 493 // Perform these initializations only once. 494 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 495 MaxLoadsPerMemcmp = 8; 496 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 497 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 498 UseUnderscoreSetJmp = false; 499 UseUnderscoreLongJmp = false; 500 HasMultipleConditionRegisters = false; 501 HasExtractBitsInsn = false; 502 JumpIsExpensive = JumpIsExpensiveOverride; 503 PredictableSelectIsExpensive = false; 504 EnableExtLdPromotion = false; 505 HasFloatingPointExceptions = true; 506 StackPointerRegisterToSaveRestore = 0; 507 BooleanContents = UndefinedBooleanContent; 508 BooleanFloatContents = UndefinedBooleanContent; 509 BooleanVectorContents = UndefinedBooleanContent; 510 SchedPreferenceInfo = Sched::ILP; 511 JumpBufSize = 0; 512 JumpBufAlignment = 0; 513 MinFunctionAlignment = 0; 514 PrefFunctionAlignment = 0; 515 PrefLoopAlignment = 0; 516 GatherAllAliasesMaxDepth = 18; 517 MinStackArgumentAlignment = 1; 518 // TODO: the default will be switched to 0 in the next commit, along 519 // with the Target-specific changes necessary. 520 MaxAtomicSizeInBitsSupported = 1024; 521 522 MinCmpXchgSizeInBits = 0; 523 SupportsUnalignedAtomics = false; 524 525 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 526 527 InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple()); 528 InitCmpLibcallCCs(CmpLibcallCCs); 529 InitLibcallCallingConvs(LibcallCallingConvs); 530 } 531 532 void TargetLoweringBase::initActions() { 533 // All operations default to being supported. 534 memset(OpActions, 0, sizeof(OpActions)); 535 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 536 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 537 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 538 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 539 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 540 std::fill(std::begin(TargetDAGCombineArray), 541 std::end(TargetDAGCombineArray), 0); 542 543 // Set default actions for various operations. 544 for (MVT VT : MVT::all_valuetypes()) { 545 // Default all indexed load / store to expand. 546 for (unsigned IM = (unsigned)ISD::PRE_INC; 547 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 548 setIndexedLoadAction(IM, VT, Expand); 549 setIndexedStoreAction(IM, VT, Expand); 550 } 551 552 // Most backends expect to see the node which just returns the value loaded. 553 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 554 555 // These operations default to expand. 556 setOperationAction(ISD::FGETSIGN, VT, Expand); 557 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 558 setOperationAction(ISD::FMINNUM, VT, Expand); 559 setOperationAction(ISD::FMAXNUM, VT, Expand); 560 setOperationAction(ISD::FMINNAN, VT, Expand); 561 setOperationAction(ISD::FMAXNAN, VT, Expand); 562 setOperationAction(ISD::FMAD, VT, Expand); 563 setOperationAction(ISD::SMIN, VT, Expand); 564 setOperationAction(ISD::SMAX, VT, Expand); 565 setOperationAction(ISD::UMIN, VT, Expand); 566 setOperationAction(ISD::UMAX, VT, Expand); 567 setOperationAction(ISD::ABS, VT, Expand); 568 569 // Overflow operations default to expand 570 setOperationAction(ISD::SADDO, VT, Expand); 571 setOperationAction(ISD::SSUBO, VT, Expand); 572 setOperationAction(ISD::UADDO, VT, Expand); 573 setOperationAction(ISD::USUBO, VT, Expand); 574 setOperationAction(ISD::SMULO, VT, Expand); 575 setOperationAction(ISD::UMULO, VT, Expand); 576 577 // ADDCARRY operations default to expand 578 setOperationAction(ISD::ADDCARRY, VT, Expand); 579 setOperationAction(ISD::SUBCARRY, VT, Expand); 580 setOperationAction(ISD::SETCCCARRY, VT, Expand); 581 582 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 583 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 584 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 585 586 setOperationAction(ISD::BITREVERSE, VT, Expand); 587 588 // These library functions default to expand. 589 setOperationAction(ISD::FROUND, VT, Expand); 590 setOperationAction(ISD::FPOWI, VT, Expand); 591 592 // These operations default to expand for vector types. 593 if (VT.isVector()) { 594 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 595 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 596 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 597 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 598 } 599 600 // For most targets @llvm.get.dynamic.area.offset just returns 0. 601 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 602 } 603 604 // Most targets ignore the @llvm.prefetch intrinsic. 605 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 606 607 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 608 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 609 610 // ConstantFP nodes default to expand. Targets can either change this to 611 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 612 // to optimize expansions for certain constants. 613 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 614 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 615 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 616 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 617 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 618 619 // These library functions default to expand. 620 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 621 setOperationAction(ISD::FLOG , VT, Expand); 622 setOperationAction(ISD::FLOG2, VT, Expand); 623 setOperationAction(ISD::FLOG10, VT, Expand); 624 setOperationAction(ISD::FEXP , VT, Expand); 625 setOperationAction(ISD::FEXP2, VT, Expand); 626 setOperationAction(ISD::FFLOOR, VT, Expand); 627 setOperationAction(ISD::FNEARBYINT, VT, Expand); 628 setOperationAction(ISD::FCEIL, VT, Expand); 629 setOperationAction(ISD::FRINT, VT, Expand); 630 setOperationAction(ISD::FTRUNC, VT, Expand); 631 setOperationAction(ISD::FROUND, VT, Expand); 632 } 633 634 // Default ISD::TRAP to expand (which turns it into abort). 635 setOperationAction(ISD::TRAP, MVT::Other, Expand); 636 637 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 638 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 639 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 640 } 641 642 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 643 EVT) const { 644 return MVT::getIntegerVT(8 * DL.getPointerSize(0)); 645 } 646 647 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, 648 const DataLayout &DL) const { 649 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 650 if (LHSTy.isVector()) 651 return LHSTy; 652 return getScalarShiftAmountTy(DL, LHSTy); 653 } 654 655 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 656 assert(isTypeLegal(VT)); 657 switch (Op) { 658 default: 659 return false; 660 case ISD::SDIV: 661 case ISD::UDIV: 662 case ISD::SREM: 663 case ISD::UREM: 664 return true; 665 } 666 } 667 668 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 669 // If the command-line option was specified, ignore this request. 670 if (!JumpIsExpensiveOverride.getNumOccurrences()) 671 JumpIsExpensive = isExpensive; 672 } 673 674 TargetLoweringBase::LegalizeKind 675 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 676 // If this is a simple type, use the ComputeRegisterProp mechanism. 677 if (VT.isSimple()) { 678 MVT SVT = VT.getSimpleVT(); 679 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 680 MVT NVT = TransformToType[SVT.SimpleTy]; 681 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 682 683 assert((LA == TypeLegal || LA == TypeSoftenFloat || 684 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && 685 "Promote may not follow Expand or Promote"); 686 687 if (LA == TypeSplitVector) 688 return LegalizeKind(LA, 689 EVT::getVectorVT(Context, SVT.getVectorElementType(), 690 SVT.getVectorNumElements() / 2)); 691 if (LA == TypeScalarizeVector) 692 return LegalizeKind(LA, SVT.getVectorElementType()); 693 return LegalizeKind(LA, NVT); 694 } 695 696 // Handle Extended Scalar Types. 697 if (!VT.isVector()) { 698 assert(VT.isInteger() && "Float types must be simple"); 699 unsigned BitSize = VT.getSizeInBits(); 700 // First promote to a power-of-two size, then expand if necessary. 701 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 702 EVT NVT = VT.getRoundIntegerType(Context); 703 assert(NVT != VT && "Unable to round integer VT"); 704 LegalizeKind NextStep = getTypeConversion(Context, NVT); 705 // Avoid multi-step promotion. 706 if (NextStep.first == TypePromoteInteger) 707 return NextStep; 708 // Return rounded integer type. 709 return LegalizeKind(TypePromoteInteger, NVT); 710 } 711 712 return LegalizeKind(TypeExpandInteger, 713 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 714 } 715 716 // Handle vector types. 717 unsigned NumElts = VT.getVectorNumElements(); 718 EVT EltVT = VT.getVectorElementType(); 719 720 // Vectors with only one element are always scalarized. 721 if (NumElts == 1) 722 return LegalizeKind(TypeScalarizeVector, EltVT); 723 724 // Try to widen vector elements until the element type is a power of two and 725 // promote it to a legal type later on, for example: 726 // <3 x i8> -> <4 x i8> -> <4 x i32> 727 if (EltVT.isInteger()) { 728 // Vectors with a number of elements that is not a power of two are always 729 // widened, for example <3 x i8> -> <4 x i8>. 730 if (!VT.isPow2VectorType()) { 731 NumElts = (unsigned)NextPowerOf2(NumElts); 732 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 733 return LegalizeKind(TypeWidenVector, NVT); 734 } 735 736 // Examine the element type. 737 LegalizeKind LK = getTypeConversion(Context, EltVT); 738 739 // If type is to be expanded, split the vector. 740 // <4 x i140> -> <2 x i140> 741 if (LK.first == TypeExpandInteger) 742 return LegalizeKind(TypeSplitVector, 743 EVT::getVectorVT(Context, EltVT, NumElts / 2)); 744 745 // Promote the integer element types until a legal vector type is found 746 // or until the element integer type is too big. If a legal type was not 747 // found, fallback to the usual mechanism of widening/splitting the 748 // vector. 749 EVT OldEltVT = EltVT; 750 while (true) { 751 // Increase the bitwidth of the element to the next pow-of-two 752 // (which is greater than 8 bits). 753 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 754 .getRoundIntegerType(Context); 755 756 // Stop trying when getting a non-simple element type. 757 // Note that vector elements may be greater than legal vector element 758 // types. Example: X86 XMM registers hold 64bit element on 32bit 759 // systems. 760 if (!EltVT.isSimple()) 761 break; 762 763 // Build a new vector type and check if it is legal. 764 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 765 // Found a legal promoted vector type. 766 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 767 return LegalizeKind(TypePromoteInteger, 768 EVT::getVectorVT(Context, EltVT, NumElts)); 769 } 770 771 // Reset the type to the unexpanded type if we did not find a legal vector 772 // type with a promoted vector element type. 773 EltVT = OldEltVT; 774 } 775 776 // Try to widen the vector until a legal type is found. 777 // If there is no wider legal type, split the vector. 778 while (true) { 779 // Round up to the next power of 2. 780 NumElts = (unsigned)NextPowerOf2(NumElts); 781 782 // If there is no simple vector type with this many elements then there 783 // cannot be a larger legal vector type. Note that this assumes that 784 // there are no skipped intermediate vector types in the simple types. 785 if (!EltVT.isSimple()) 786 break; 787 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 788 if (LargerVector == MVT()) 789 break; 790 791 // If this type is legal then widen the vector. 792 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 793 return LegalizeKind(TypeWidenVector, LargerVector); 794 } 795 796 // Widen odd vectors to next power of two. 797 if (!VT.isPow2VectorType()) { 798 EVT NVT = VT.getPow2VectorType(Context); 799 return LegalizeKind(TypeWidenVector, NVT); 800 } 801 802 // Vectors with illegal element types are expanded. 803 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); 804 return LegalizeKind(TypeSplitVector, NVT); 805 } 806 807 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 808 unsigned &NumIntermediates, 809 MVT &RegisterVT, 810 TargetLoweringBase *TLI) { 811 // Figure out the right, legal destination reg to copy into. 812 unsigned NumElts = VT.getVectorNumElements(); 813 MVT EltTy = VT.getVectorElementType(); 814 815 unsigned NumVectorRegs = 1; 816 817 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 818 // could break down into LHS/RHS like LegalizeDAG does. 819 if (!isPowerOf2_32(NumElts)) { 820 NumVectorRegs = NumElts; 821 NumElts = 1; 822 } 823 824 // Divide the input until we get to a supported size. This will always 825 // end with a scalar if the target doesn't support vectors. 826 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 827 NumElts >>= 1; 828 NumVectorRegs <<= 1; 829 } 830 831 NumIntermediates = NumVectorRegs; 832 833 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 834 if (!TLI->isTypeLegal(NewVT)) 835 NewVT = EltTy; 836 IntermediateVT = NewVT; 837 838 unsigned NewVTSize = NewVT.getSizeInBits(); 839 840 // Convert sizes such as i33 to i64. 841 if (!isPowerOf2_32(NewVTSize)) 842 NewVTSize = NextPowerOf2(NewVTSize); 843 844 MVT DestVT = TLI->getRegisterType(NewVT); 845 RegisterVT = DestVT; 846 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 847 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 848 849 // Otherwise, promotion or legal types use the same number of registers as 850 // the vector decimated to the appropriate level. 851 return NumVectorRegs; 852 } 853 854 /// isLegalRC - Return true if the value types that can be represented by the 855 /// specified register class are all legal. 856 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 857 const TargetRegisterClass &RC) const { 858 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 859 if (isTypeLegal(*I)) 860 return true; 861 return false; 862 } 863 864 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 865 /// sequence of memory operands that is recognized by PrologEpilogInserter. 866 MachineBasicBlock * 867 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 868 MachineBasicBlock *MBB) const { 869 MachineInstr *MI = &InitialMI; 870 MachineFunction &MF = *MI->getMF(); 871 MachineFrameInfo &MFI = MF.getFrameInfo(); 872 873 // We're handling multiple types of operands here: 874 // PATCHPOINT MetaArgs - live-in, read only, direct 875 // STATEPOINT Deopt Spill - live-through, read only, indirect 876 // STATEPOINT Deopt Alloca - live-through, read only, direct 877 // (We're currently conservative and mark the deopt slots read/write in 878 // practice.) 879 // STATEPOINT GC Spill - live-through, read/write, indirect 880 // STATEPOINT GC Alloca - live-through, read/write, direct 881 // The live-in vs live-through is handled already (the live through ones are 882 // all stack slots), but we need to handle the different type of stackmap 883 // operands and memory effects here. 884 885 // MI changes inside this loop as we grow operands. 886 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 887 MachineOperand &MO = MI->getOperand(OperIdx); 888 if (!MO.isFI()) 889 continue; 890 891 // foldMemoryOperand builds a new MI after replacing a single FI operand 892 // with the canonical set of five x86 addressing-mode operands. 893 int FI = MO.getIndex(); 894 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 895 896 // Copy operands before the frame-index. 897 for (unsigned i = 0; i < OperIdx; ++i) 898 MIB.add(MI->getOperand(i)); 899 // Add frame index operands recognized by stackmaps.cpp 900 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 901 // indirect-mem-ref tag, size, #FI, offset. 902 // Used for spills inserted by StatepointLowering. This codepath is not 903 // used for patchpoints/stackmaps at all, for these spilling is done via 904 // foldMemoryOperand callback only. 905 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 906 MIB.addImm(StackMaps::IndirectMemRefOp); 907 MIB.addImm(MFI.getObjectSize(FI)); 908 MIB.add(MI->getOperand(OperIdx)); 909 MIB.addImm(0); 910 } else { 911 // direct-mem-ref tag, #FI, offset. 912 // Used by patchpoint, and direct alloca arguments to statepoints 913 MIB.addImm(StackMaps::DirectMemRefOp); 914 MIB.add(MI->getOperand(OperIdx)); 915 MIB.addImm(0); 916 } 917 // Copy the operands after the frame index. 918 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 919 MIB.add(MI->getOperand(i)); 920 921 // Inherit previous memory operands. 922 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 923 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 924 925 // Add a new memory operand for this FI. 926 assert(MFI.getObjectOffset(FI) != -1); 927 928 auto Flags = MachineMemOperand::MOLoad; 929 if (MI->getOpcode() == TargetOpcode::STATEPOINT) { 930 Flags |= MachineMemOperand::MOStore; 931 Flags |= MachineMemOperand::MOVolatile; 932 } 933 MachineMemOperand *MMO = MF.getMachineMemOperand( 934 MachinePointerInfo::getFixedStack(MF, FI), Flags, 935 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); 936 MIB->addMemOperand(MF, MMO); 937 938 // Replace the instruction and update the operand index. 939 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 940 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 941 MI->eraseFromParent(); 942 MI = MIB; 943 } 944 return MBB; 945 } 946 947 /// findRepresentativeClass - Return the largest legal super-reg register class 948 /// of the register class for the specified type and its associated "cost". 949 // This function is in TargetLowering because it uses RegClassForVT which would 950 // need to be moved to TargetRegisterInfo and would necessitate moving 951 // isTypeLegal over as well - a massive change that would just require 952 // TargetLowering having a TargetRegisterInfo class member that it would use. 953 std::pair<const TargetRegisterClass *, uint8_t> 954 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 955 MVT VT) const { 956 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 957 if (!RC) 958 return std::make_pair(RC, 0); 959 960 // Compute the set of all super-register classes. 961 BitVector SuperRegRC(TRI->getNumRegClasses()); 962 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 963 SuperRegRC.setBitsInMask(RCI.getMask()); 964 965 // Find the first legal register class with the largest spill size. 966 const TargetRegisterClass *BestRC = RC; 967 for (unsigned i : SuperRegRC.set_bits()) { 968 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 969 // We want the largest possible spill size. 970 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 971 continue; 972 if (!isLegalRC(*TRI, *SuperRC)) 973 continue; 974 BestRC = SuperRC; 975 } 976 return std::make_pair(BestRC, 1); 977 } 978 979 /// computeRegisterProperties - Once all of the register classes are added, 980 /// this allows us to compute derived properties we expose. 981 void TargetLoweringBase::computeRegisterProperties( 982 const TargetRegisterInfo *TRI) { 983 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 984 "Too many value types for ValueTypeActions to hold!"); 985 986 // Everything defaults to needing one register. 987 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 988 NumRegistersForVT[i] = 1; 989 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 990 } 991 // ...except isVoid, which doesn't need any registers. 992 NumRegistersForVT[MVT::isVoid] = 0; 993 994 // Find the largest integer register class. 995 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 996 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 997 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 998 999 // Every integer value type larger than this largest register takes twice as 1000 // many registers to represent as the previous ValueType. 1001 for (unsigned ExpandedReg = LargestIntReg + 1; 1002 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1003 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1004 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1005 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1006 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1007 TypeExpandInteger); 1008 } 1009 1010 // Inspect all of the ValueType's smaller than the largest integer 1011 // register to see which ones need promotion. 1012 unsigned LegalIntReg = LargestIntReg; 1013 for (unsigned IntReg = LargestIntReg - 1; 1014 IntReg >= (unsigned)MVT::i1; --IntReg) { 1015 MVT IVT = (MVT::SimpleValueType)IntReg; 1016 if (isTypeLegal(IVT)) { 1017 LegalIntReg = IntReg; 1018 } else { 1019 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1020 (const MVT::SimpleValueType)LegalIntReg; 1021 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1022 } 1023 } 1024 1025 // ppcf128 type is really two f64's. 1026 if (!isTypeLegal(MVT::ppcf128)) { 1027 if (isTypeLegal(MVT::f64)) { 1028 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1029 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1030 TransformToType[MVT::ppcf128] = MVT::f64; 1031 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1032 } else { 1033 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1034 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1035 TransformToType[MVT::ppcf128] = MVT::i128; 1036 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1037 } 1038 } 1039 1040 // Decide how to handle f128. If the target does not have native f128 support, 1041 // expand it to i128 and we will be generating soft float library calls. 1042 if (!isTypeLegal(MVT::f128)) { 1043 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1044 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1045 TransformToType[MVT::f128] = MVT::i128; 1046 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1047 } 1048 1049 // Decide how to handle f64. If the target does not have native f64 support, 1050 // expand it to i64 and we will be generating soft float library calls. 1051 if (!isTypeLegal(MVT::f64)) { 1052 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1053 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1054 TransformToType[MVT::f64] = MVT::i64; 1055 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1056 } 1057 1058 // Decide how to handle f32. If the target does not have native f32 support, 1059 // expand it to i32 and we will be generating soft float library calls. 1060 if (!isTypeLegal(MVT::f32)) { 1061 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1062 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1063 TransformToType[MVT::f32] = MVT::i32; 1064 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1065 } 1066 1067 // Decide how to handle f16. If the target does not have native f16 support, 1068 // promote it to f32, because there are no f16 library calls (except for 1069 // conversions). 1070 if (!isTypeLegal(MVT::f16)) { 1071 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1072 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1073 TransformToType[MVT::f16] = MVT::f32; 1074 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1075 } 1076 1077 // Loop over all of the vector value types to see which need transformations. 1078 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1079 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1080 MVT VT = (MVT::SimpleValueType) i; 1081 if (isTypeLegal(VT)) 1082 continue; 1083 1084 MVT EltVT = VT.getVectorElementType(); 1085 unsigned NElts = VT.getVectorNumElements(); 1086 bool IsLegalWiderType = false; 1087 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1088 switch (PreferredAction) { 1089 case TypePromoteInteger: 1090 // Try to promote the elements of integer vectors. If no legal 1091 // promotion was found, fall through to the widen-vector method. 1092 for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { 1093 MVT SVT = (MVT::SimpleValueType) nVT; 1094 // Promote vectors of integers to vectors with the same number 1095 // of elements, with a wider element type. 1096 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && 1097 SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { 1098 TransformToType[i] = SVT; 1099 RegisterTypeForVT[i] = SVT; 1100 NumRegistersForVT[i] = 1; 1101 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1102 IsLegalWiderType = true; 1103 break; 1104 } 1105 } 1106 if (IsLegalWiderType) 1107 break; 1108 LLVM_FALLTHROUGH; 1109 1110 case TypeWidenVector: 1111 // Try to widen the vector. 1112 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1113 MVT SVT = (MVT::SimpleValueType) nVT; 1114 if (SVT.getVectorElementType() == EltVT 1115 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { 1116 TransformToType[i] = SVT; 1117 RegisterTypeForVT[i] = SVT; 1118 NumRegistersForVT[i] = 1; 1119 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1120 IsLegalWiderType = true; 1121 break; 1122 } 1123 } 1124 if (IsLegalWiderType) 1125 break; 1126 LLVM_FALLTHROUGH; 1127 1128 case TypeSplitVector: 1129 case TypeScalarizeVector: { 1130 MVT IntermediateVT; 1131 MVT RegisterVT; 1132 unsigned NumIntermediates; 1133 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1134 NumIntermediates, RegisterVT, this); 1135 RegisterTypeForVT[i] = RegisterVT; 1136 1137 MVT NVT = VT.getPow2VectorType(); 1138 if (NVT == VT) { 1139 // Type is already a power of 2. The default action is to split. 1140 TransformToType[i] = MVT::Other; 1141 if (PreferredAction == TypeScalarizeVector) 1142 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1143 else if (PreferredAction == TypeSplitVector) 1144 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1145 else 1146 // Set type action according to the number of elements. 1147 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector 1148 : TypeSplitVector); 1149 } else { 1150 TransformToType[i] = NVT; 1151 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1152 } 1153 break; 1154 } 1155 default: 1156 llvm_unreachable("Unknown vector legalization action!"); 1157 } 1158 } 1159 1160 // Determine the 'representative' register class for each value type. 1161 // An representative register class is the largest (meaning one which is 1162 // not a sub-register class / subreg register class) legal register class for 1163 // a group of value types. For example, on i386, i8, i16, and i32 1164 // representative would be GR32; while on x86_64 it's GR64. 1165 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1166 const TargetRegisterClass* RRC; 1167 uint8_t Cost; 1168 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1169 RepRegClassForVT[i] = RRC; 1170 RepRegClassCostForVT[i] = Cost; 1171 } 1172 } 1173 1174 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1175 EVT VT) const { 1176 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1177 return getPointerTy(DL).SimpleTy; 1178 } 1179 1180 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1181 return MVT::i32; // return the default value 1182 } 1183 1184 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1185 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1186 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1187 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1188 /// 1189 /// This method returns the number of registers needed, and the VT for each 1190 /// register. It also returns the VT and quantity of the intermediate values 1191 /// before they are promoted/expanded. 1192 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1193 EVT &IntermediateVT, 1194 unsigned &NumIntermediates, 1195 MVT &RegisterVT) const { 1196 unsigned NumElts = VT.getVectorNumElements(); 1197 1198 // If there is a wider vector type with the same element type as this one, 1199 // or a promoted vector type that has the same number of elements which 1200 // are wider, then we should convert to that legal vector type. 1201 // This handles things like <2 x float> -> <4 x float> and 1202 // <4 x i1> -> <4 x i32>. 1203 LegalizeTypeAction TA = getTypeAction(Context, VT); 1204 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1205 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1206 if (isTypeLegal(RegisterEVT)) { 1207 IntermediateVT = RegisterEVT; 1208 RegisterVT = RegisterEVT.getSimpleVT(); 1209 NumIntermediates = 1; 1210 return 1; 1211 } 1212 } 1213 1214 // Figure out the right, legal destination reg to copy into. 1215 EVT EltTy = VT.getVectorElementType(); 1216 1217 unsigned NumVectorRegs = 1; 1218 1219 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1220 // could break down into LHS/RHS like LegalizeDAG does. 1221 if (!isPowerOf2_32(NumElts)) { 1222 NumVectorRegs = NumElts; 1223 NumElts = 1; 1224 } 1225 1226 // Divide the input until we get to a supported size. This will always 1227 // end with a scalar if the target doesn't support vectors. 1228 while (NumElts > 1 && !isTypeLegal( 1229 EVT::getVectorVT(Context, EltTy, NumElts))) { 1230 NumElts >>= 1; 1231 NumVectorRegs <<= 1; 1232 } 1233 1234 NumIntermediates = NumVectorRegs; 1235 1236 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1237 if (!isTypeLegal(NewVT)) 1238 NewVT = EltTy; 1239 IntermediateVT = NewVT; 1240 1241 MVT DestVT = getRegisterType(Context, NewVT); 1242 RegisterVT = DestVT; 1243 unsigned NewVTSize = NewVT.getSizeInBits(); 1244 1245 // Convert sizes such as i33 to i64. 1246 if (!isPowerOf2_32(NewVTSize)) 1247 NewVTSize = NextPowerOf2(NewVTSize); 1248 1249 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1250 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1251 1252 // Otherwise, promotion or legal types use the same number of registers as 1253 // the vector decimated to the appropriate level. 1254 return NumVectorRegs; 1255 } 1256 1257 /// Get the EVTs and ArgFlags collections that represent the legalized return 1258 /// type of the given function. This does not require a DAG or a return value, 1259 /// and is suitable for use before any DAGs for the function are constructed. 1260 /// TODO: Move this out of TargetLowering.cpp. 1261 void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr, 1262 SmallVectorImpl<ISD::OutputArg> &Outs, 1263 const TargetLowering &TLI, const DataLayout &DL) { 1264 SmallVector<EVT, 4> ValueVTs; 1265 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1266 unsigned NumValues = ValueVTs.size(); 1267 if (NumValues == 0) return; 1268 1269 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1270 EVT VT = ValueVTs[j]; 1271 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1272 1273 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1274 ExtendKind = ISD::SIGN_EXTEND; 1275 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1276 ExtendKind = ISD::ZERO_EXTEND; 1277 1278 // FIXME: C calling convention requires the return type to be promoted to 1279 // at least 32-bit. But this is not necessary for non-C calling 1280 // conventions. The frontend should mark functions whose return values 1281 // require promoting with signext or zeroext attributes. 1282 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1283 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1284 if (VT.bitsLT(MinVT)) 1285 VT = MinVT; 1286 } 1287 1288 unsigned NumParts = 1289 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), VT); 1290 MVT PartVT = 1291 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), VT); 1292 1293 // 'inreg' on function refers to return value 1294 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1295 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1296 Flags.setInReg(); 1297 1298 // Propagate extension type if any 1299 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1300 Flags.setSExt(); 1301 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1302 Flags.setZExt(); 1303 1304 for (unsigned i = 0; i < NumParts; ++i) 1305 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); 1306 } 1307 } 1308 1309 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1310 /// function arguments in the caller parameter area. This is the actual 1311 /// alignment, not its logarithm. 1312 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1313 const DataLayout &DL) const { 1314 return DL.getABITypeAlignment(Ty); 1315 } 1316 1317 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1318 const DataLayout &DL, EVT VT, 1319 unsigned AddrSpace, 1320 unsigned Alignment, 1321 bool *Fast) const { 1322 // Check if the specified alignment is sufficient based on the data layout. 1323 // TODO: While using the data layout works in practice, a better solution 1324 // would be to implement this check directly (make this a virtual function). 1325 // For example, the ABI alignment may change based on software platform while 1326 // this function should only be affected by hardware implementation. 1327 Type *Ty = VT.getTypeForEVT(Context); 1328 if (Alignment >= DL.getABITypeAlignment(Ty)) { 1329 // Assume that an access that meets the ABI-specified alignment is fast. 1330 if (Fast != nullptr) 1331 *Fast = true; 1332 return true; 1333 } 1334 1335 // This is a misaligned access. 1336 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); 1337 } 1338 1339 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1340 return BranchProbability(MinPercentageForPredictableBranch, 100); 1341 } 1342 1343 //===----------------------------------------------------------------------===// 1344 // TargetTransformInfo Helpers 1345 //===----------------------------------------------------------------------===// 1346 1347 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1348 enum InstructionOpcodes { 1349 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1350 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1351 #include "llvm/IR/Instruction.def" 1352 }; 1353 switch (static_cast<InstructionOpcodes>(Opcode)) { 1354 case Ret: return 0; 1355 case Br: return 0; 1356 case Switch: return 0; 1357 case IndirectBr: return 0; 1358 case Invoke: return 0; 1359 case Resume: return 0; 1360 case Unreachable: return 0; 1361 case CleanupRet: return 0; 1362 case CatchRet: return 0; 1363 case CatchPad: return 0; 1364 case CatchSwitch: return 0; 1365 case CleanupPad: return 0; 1366 case Add: return ISD::ADD; 1367 case FAdd: return ISD::FADD; 1368 case Sub: return ISD::SUB; 1369 case FSub: return ISD::FSUB; 1370 case Mul: return ISD::MUL; 1371 case FMul: return ISD::FMUL; 1372 case UDiv: return ISD::UDIV; 1373 case SDiv: return ISD::SDIV; 1374 case FDiv: return ISD::FDIV; 1375 case URem: return ISD::UREM; 1376 case SRem: return ISD::SREM; 1377 case FRem: return ISD::FREM; 1378 case Shl: return ISD::SHL; 1379 case LShr: return ISD::SRL; 1380 case AShr: return ISD::SRA; 1381 case And: return ISD::AND; 1382 case Or: return ISD::OR; 1383 case Xor: return ISD::XOR; 1384 case Alloca: return 0; 1385 case Load: return ISD::LOAD; 1386 case Store: return ISD::STORE; 1387 case GetElementPtr: return 0; 1388 case Fence: return 0; 1389 case AtomicCmpXchg: return 0; 1390 case AtomicRMW: return 0; 1391 case Trunc: return ISD::TRUNCATE; 1392 case ZExt: return ISD::ZERO_EXTEND; 1393 case SExt: return ISD::SIGN_EXTEND; 1394 case FPToUI: return ISD::FP_TO_UINT; 1395 case FPToSI: return ISD::FP_TO_SINT; 1396 case UIToFP: return ISD::UINT_TO_FP; 1397 case SIToFP: return ISD::SINT_TO_FP; 1398 case FPTrunc: return ISD::FP_ROUND; 1399 case FPExt: return ISD::FP_EXTEND; 1400 case PtrToInt: return ISD::BITCAST; 1401 case IntToPtr: return ISD::BITCAST; 1402 case BitCast: return ISD::BITCAST; 1403 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1404 case ICmp: return ISD::SETCC; 1405 case FCmp: return ISD::SETCC; 1406 case PHI: return 0; 1407 case Call: return 0; 1408 case Select: return ISD::SELECT; 1409 case UserOp1: return 0; 1410 case UserOp2: return 0; 1411 case VAArg: return 0; 1412 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1413 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1414 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1415 case ExtractValue: return ISD::MERGE_VALUES; 1416 case InsertValue: return ISD::MERGE_VALUES; 1417 case LandingPad: return 0; 1418 } 1419 1420 llvm_unreachable("Unknown instruction type encountered!"); 1421 } 1422 1423 std::pair<int, MVT> 1424 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1425 Type *Ty) const { 1426 LLVMContext &C = Ty->getContext(); 1427 EVT MTy = getValueType(DL, Ty); 1428 1429 int Cost = 1; 1430 // We keep legalizing the type until we find a legal kind. We assume that 1431 // the only operation that costs anything is the split. After splitting 1432 // we need to handle two types. 1433 while (true) { 1434 LegalizeKind LK = getTypeConversion(C, MTy); 1435 1436 if (LK.first == TypeLegal) 1437 return std::make_pair(Cost, MTy.getSimpleVT()); 1438 1439 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1440 Cost *= 2; 1441 1442 // Do not loop with f128 type. 1443 if (MTy == LK.second) 1444 return std::make_pair(Cost, MTy.getSimpleVT()); 1445 1446 // Keep legalizing the type. 1447 MTy = LK.second; 1448 } 1449 } 1450 1451 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1452 bool UseTLS) const { 1453 // compiler-rt provides a variable with a magic name. Targets that do not 1454 // link with compiler-rt may also provide such a variable. 1455 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1456 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1457 auto UnsafeStackPtr = 1458 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1459 1460 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1461 1462 if (!UnsafeStackPtr) { 1463 auto TLSModel = UseTLS ? 1464 GlobalValue::InitialExecTLSModel : 1465 GlobalValue::NotThreadLocal; 1466 // The global variable is not defined yet, define it ourselves. 1467 // We use the initial-exec TLS model because we do not support the 1468 // variable living anywhere other than in the main executable. 1469 UnsafeStackPtr = new GlobalVariable( 1470 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1471 UnsafeStackPtrVar, nullptr, TLSModel); 1472 } else { 1473 // The variable exists, check its type and attributes. 1474 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1475 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1476 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1477 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1478 (UseTLS ? "" : "not ") + "be thread-local"); 1479 } 1480 return UnsafeStackPtr; 1481 } 1482 1483 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1484 if (!TM.getTargetTriple().isAndroid()) 1485 return getDefaultSafeStackPointerLocation(IRB, true); 1486 1487 // Android provides a libc function to retrieve the address of the current 1488 // thread's unsafe stack pointer. 1489 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1490 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1491 Value *Fn = M->getOrInsertFunction("__safestack_pointer_address", 1492 StackPtrTy->getPointerTo(0)); 1493 return IRB.CreateCall(Fn); 1494 } 1495 1496 //===----------------------------------------------------------------------===// 1497 // Loop Strength Reduction hooks 1498 //===----------------------------------------------------------------------===// 1499 1500 /// isLegalAddressingMode - Return true if the addressing mode represented 1501 /// by AM is legal for this target, for a load/store of the specified type. 1502 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1503 const AddrMode &AM, Type *Ty, 1504 unsigned AS, Instruction *I) const { 1505 // The default implementation of this implements a conservative RISCy, r+r and 1506 // r+i addr mode. 1507 1508 // Allows a sign-extended 16-bit immediate field. 1509 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1510 return false; 1511 1512 // No global is ever allowed as a base. 1513 if (AM.BaseGV) 1514 return false; 1515 1516 // Only support r+r, 1517 switch (AM.Scale) { 1518 case 0: // "r+i" or just "i", depending on HasBaseReg. 1519 break; 1520 case 1: 1521 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1522 return false; 1523 // Otherwise we have r+r or r+i. 1524 break; 1525 case 2: 1526 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1527 return false; 1528 // Allow 2*r as r+r. 1529 break; 1530 default: // Don't allow n * r 1531 return false; 1532 } 1533 1534 return true; 1535 } 1536 1537 //===----------------------------------------------------------------------===// 1538 // Stack Protector 1539 //===----------------------------------------------------------------------===// 1540 1541 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1542 // so that SelectionDAG handle SSP. 1543 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1544 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1545 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1546 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1547 return M.getOrInsertGlobal("__guard_local", PtrTy); 1548 } 1549 return nullptr; 1550 } 1551 1552 // Currently only support "standard" __stack_chk_guard. 1553 // TODO: add LOAD_STACK_GUARD support. 1554 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1555 M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext())); 1556 } 1557 1558 // Currently only support "standard" __stack_chk_guard. 1559 // TODO: add LOAD_STACK_GUARD support. 1560 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1561 return M.getGlobalVariable("__stack_chk_guard", true); 1562 } 1563 1564 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1565 return nullptr; 1566 } 1567 1568 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1569 return MinimumJumpTableEntries; 1570 } 1571 1572 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1573 MinimumJumpTableEntries = Val; 1574 } 1575 1576 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 1577 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 1578 } 1579 1580 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 1581 return MaximumJumpTableSize; 1582 } 1583 1584 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 1585 MaximumJumpTableSize = Val; 1586 } 1587 1588 //===----------------------------------------------------------------------===// 1589 // Reciprocal Estimates 1590 //===----------------------------------------------------------------------===// 1591 1592 /// Get the reciprocal estimate attribute string for a function that will 1593 /// override the target defaults. 1594 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 1595 const Function *F = MF.getFunction(); 1596 return F->getFnAttribute("reciprocal-estimates").getValueAsString(); 1597 } 1598 1599 /// Construct a string for the given reciprocal operation of the given type. 1600 /// This string should match the corresponding option to the front-end's 1601 /// "-mrecip" flag assuming those strings have been passed through in an 1602 /// attribute string. For example, "vec-divf" for a division of a vXf32. 1603 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 1604 std::string Name = VT.isVector() ? "vec-" : ""; 1605 1606 Name += IsSqrt ? "sqrt" : "div"; 1607 1608 // TODO: Handle "half" or other float types? 1609 if (VT.getScalarType() == MVT::f64) { 1610 Name += "d"; 1611 } else { 1612 assert(VT.getScalarType() == MVT::f32 && 1613 "Unexpected FP type for reciprocal estimate"); 1614 Name += "f"; 1615 } 1616 1617 return Name; 1618 } 1619 1620 /// Return the character position and value (a single numeric character) of a 1621 /// customized refinement operation in the input string if it exists. Return 1622 /// false if there is no customized refinement step count. 1623 static bool parseRefinementStep(StringRef In, size_t &Position, 1624 uint8_t &Value) { 1625 const char RefStepToken = ':'; 1626 Position = In.find(RefStepToken); 1627 if (Position == StringRef::npos) 1628 return false; 1629 1630 StringRef RefStepString = In.substr(Position + 1); 1631 // Allow exactly one numeric character for the additional refinement 1632 // step parameter. 1633 if (RefStepString.size() == 1) { 1634 char RefStepChar = RefStepString[0]; 1635 if (RefStepChar >= '0' && RefStepChar <= '9') { 1636 Value = RefStepChar - '0'; 1637 return true; 1638 } 1639 } 1640 report_fatal_error("Invalid refinement step for -recip."); 1641 } 1642 1643 /// For the input attribute string, return one of the ReciprocalEstimate enum 1644 /// status values (enabled, disabled, or not specified) for this operation on 1645 /// the specified data type. 1646 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 1647 if (Override.empty()) 1648 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1649 1650 SmallVector<StringRef, 4> OverrideVector; 1651 SplitString(Override, OverrideVector, ","); 1652 unsigned NumArgs = OverrideVector.size(); 1653 1654 // Check if "all", "none", or "default" was specified. 1655 if (NumArgs == 1) { 1656 // Look for an optional setting of the number of refinement steps needed 1657 // for this type of reciprocal operation. 1658 size_t RefPos; 1659 uint8_t RefSteps; 1660 if (parseRefinementStep(Override, RefPos, RefSteps)) { 1661 // Split the string for further processing. 1662 Override = Override.substr(0, RefPos); 1663 } 1664 1665 // All reciprocal types are enabled. 1666 if (Override == "all") 1667 return TargetLoweringBase::ReciprocalEstimate::Enabled; 1668 1669 // All reciprocal types are disabled. 1670 if (Override == "none") 1671 return TargetLoweringBase::ReciprocalEstimate::Disabled; 1672 1673 // Target defaults for enablement are used. 1674 if (Override == "default") 1675 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1676 } 1677 1678 // The attribute string may omit the size suffix ('f'/'d'). 1679 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1680 std::string VTNameNoSize = VTName; 1681 VTNameNoSize.pop_back(); 1682 static const char DisabledPrefix = '!'; 1683 1684 for (StringRef RecipType : OverrideVector) { 1685 size_t RefPos; 1686 uint8_t RefSteps; 1687 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 1688 RecipType = RecipType.substr(0, RefPos); 1689 1690 // Ignore the disablement token for string matching. 1691 bool IsDisabled = RecipType[0] == DisabledPrefix; 1692 if (IsDisabled) 1693 RecipType = RecipType.substr(1); 1694 1695 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1696 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 1697 : TargetLoweringBase::ReciprocalEstimate::Enabled; 1698 } 1699 1700 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1701 } 1702 1703 /// For the input attribute string, return the customized refinement step count 1704 /// for this operation on the specified data type. If the step count does not 1705 /// exist, return the ReciprocalEstimate enum value for unspecified. 1706 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 1707 if (Override.empty()) 1708 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1709 1710 SmallVector<StringRef, 4> OverrideVector; 1711 SplitString(Override, OverrideVector, ","); 1712 unsigned NumArgs = OverrideVector.size(); 1713 1714 // Check if "all", "default", or "none" was specified. 1715 if (NumArgs == 1) { 1716 // Look for an optional setting of the number of refinement steps needed 1717 // for this type of reciprocal operation. 1718 size_t RefPos; 1719 uint8_t RefSteps; 1720 if (!parseRefinementStep(Override, RefPos, RefSteps)) 1721 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1722 1723 // Split the string for further processing. 1724 Override = Override.substr(0, RefPos); 1725 assert(Override != "none" && 1726 "Disabled reciprocals, but specifed refinement steps?"); 1727 1728 // If this is a general override, return the specified number of steps. 1729 if (Override == "all" || Override == "default") 1730 return RefSteps; 1731 } 1732 1733 // The attribute string may omit the size suffix ('f'/'d'). 1734 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1735 std::string VTNameNoSize = VTName; 1736 VTNameNoSize.pop_back(); 1737 1738 for (StringRef RecipType : OverrideVector) { 1739 size_t RefPos; 1740 uint8_t RefSteps; 1741 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 1742 continue; 1743 1744 RecipType = RecipType.substr(0, RefPos); 1745 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1746 return RefSteps; 1747 } 1748 1749 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1750 } 1751 1752 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 1753 MachineFunction &MF) const { 1754 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 1755 } 1756 1757 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 1758 MachineFunction &MF) const { 1759 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 1760 } 1761 1762 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 1763 MachineFunction &MF) const { 1764 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 1765 } 1766 1767 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 1768 MachineFunction &MF) const { 1769 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 1770 } 1771 1772 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 1773 MF.getRegInfo().freezeReservedRegs(MF); 1774 } 1775