1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(0), cl::Hidden,
77    cl::desc("Set maximum size of jump tables; zero for no limit."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 static bool darwinHasSinCos(const Triple &TT) {
92   assert(TT.isOSDarwin() && "should be called with darwin triple");
93   // Don't bother with 32 bit x86.
94   if (TT.getArch() == Triple::x86)
95     return false;
96   // Macos < 10.9 has no sincos_stret.
97   if (TT.isMacOSX())
98     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99   // iOS < 7.0 has no sincos_stret.
100   if (TT.isiOS())
101     return !TT.isOSVersionLT(7, 0);
102   // Any other darwin such as WatchOS/TvOS is new enough.
103   return true;
104 }
105 
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112     "min-predictable-branch", cl::init(99),
113     cl::desc("Minimum percentage (0-100) that a condition must be either true "
114              "or false to assume that the condition is predictable"),
115     cl::Hidden);
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // A few names are different on particular architectures or environments.
127   if (TT.isOSDarwin()) {
128     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
129     // of the gnueabi-style __gnu_*_ieee.
130     // FIXME: What about other targets?
131     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
132     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
133 
134     // Some darwins have an optimized __bzero/bzero function.
135     switch (TT.getArch()) {
136     case Triple::x86:
137     case Triple::x86_64:
138       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
139         setLibcallName(RTLIB::BZERO, "__bzero");
140       break;
141     case Triple::aarch64:
142       setLibcallName(RTLIB::BZERO, "bzero");
143       break;
144     default:
145       break;
146     }
147 
148     if (darwinHasSinCos(TT)) {
149       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
150       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
151       if (TT.isWatchABI()) {
152         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
153                               CallingConv::ARM_AAPCS_VFP);
154         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
155                               CallingConv::ARM_AAPCS_VFP);
156       }
157     }
158   } else {
159     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
160     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
161   }
162 
163   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
164       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
165     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
166     setLibcallName(RTLIB::SINCOS_F64, "sincos");
167     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
168     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
169     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
170   }
171 
172   if (TT.isOSOpenBSD()) {
173     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
174   }
175 }
176 
177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
178 /// UNKNOWN_LIBCALL if there is none.
179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
180   if (OpVT == MVT::f16) {
181     if (RetVT == MVT::f32)
182       return FPEXT_F16_F32;
183   } else if (OpVT == MVT::f32) {
184     if (RetVT == MVT::f64)
185       return FPEXT_F32_F64;
186     if (RetVT == MVT::f128)
187       return FPEXT_F32_F128;
188     if (RetVT == MVT::ppcf128)
189       return FPEXT_F32_PPCF128;
190   } else if (OpVT == MVT::f64) {
191     if (RetVT == MVT::f128)
192       return FPEXT_F64_F128;
193     else if (RetVT == MVT::ppcf128)
194       return FPEXT_F64_PPCF128;
195   } else if (OpVT == MVT::f80) {
196     if (RetVT == MVT::f128)
197       return FPEXT_F80_F128;
198   }
199 
200   return UNKNOWN_LIBCALL;
201 }
202 
203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
204 /// UNKNOWN_LIBCALL if there is none.
205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
206   if (RetVT == MVT::f16) {
207     if (OpVT == MVT::f32)
208       return FPROUND_F32_F16;
209     if (OpVT == MVT::f64)
210       return FPROUND_F64_F16;
211     if (OpVT == MVT::f80)
212       return FPROUND_F80_F16;
213     if (OpVT == MVT::f128)
214       return FPROUND_F128_F16;
215     if (OpVT == MVT::ppcf128)
216       return FPROUND_PPCF128_F16;
217   } else if (RetVT == MVT::f32) {
218     if (OpVT == MVT::f64)
219       return FPROUND_F64_F32;
220     if (OpVT == MVT::f80)
221       return FPROUND_F80_F32;
222     if (OpVT == MVT::f128)
223       return FPROUND_F128_F32;
224     if (OpVT == MVT::ppcf128)
225       return FPROUND_PPCF128_F32;
226   } else if (RetVT == MVT::f64) {
227     if (OpVT == MVT::f80)
228       return FPROUND_F80_F64;
229     if (OpVT == MVT::f128)
230       return FPROUND_F128_F64;
231     if (OpVT == MVT::ppcf128)
232       return FPROUND_PPCF128_F64;
233   } else if (RetVT == MVT::f80) {
234     if (OpVT == MVT::f128)
235       return FPROUND_F128_F80;
236   }
237 
238   return UNKNOWN_LIBCALL;
239 }
240 
241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
244   if (OpVT == MVT::f32) {
245     if (RetVT == MVT::i32)
246       return FPTOSINT_F32_I32;
247     if (RetVT == MVT::i64)
248       return FPTOSINT_F32_I64;
249     if (RetVT == MVT::i128)
250       return FPTOSINT_F32_I128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::i32)
253       return FPTOSINT_F64_I32;
254     if (RetVT == MVT::i64)
255       return FPTOSINT_F64_I64;
256     if (RetVT == MVT::i128)
257       return FPTOSINT_F64_I128;
258   } else if (OpVT == MVT::f80) {
259     if (RetVT == MVT::i32)
260       return FPTOSINT_F80_I32;
261     if (RetVT == MVT::i64)
262       return FPTOSINT_F80_I64;
263     if (RetVT == MVT::i128)
264       return FPTOSINT_F80_I128;
265   } else if (OpVT == MVT::f128) {
266     if (RetVT == MVT::i32)
267       return FPTOSINT_F128_I32;
268     if (RetVT == MVT::i64)
269       return FPTOSINT_F128_I64;
270     if (RetVT == MVT::i128)
271       return FPTOSINT_F128_I128;
272   } else if (OpVT == MVT::ppcf128) {
273     if (RetVT == MVT::i32)
274       return FPTOSINT_PPCF128_I32;
275     if (RetVT == MVT::i64)
276       return FPTOSINT_PPCF128_I64;
277     if (RetVT == MVT::i128)
278       return FPTOSINT_PPCF128_I128;
279   }
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOUINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOUINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOUINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOUINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOUINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOUINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOUINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOUINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOUINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOUINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOUINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOUINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOUINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOUINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOUINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::i32) {
329     if (RetVT == MVT::f32)
330       return SINTTOFP_I32_F32;
331     if (RetVT == MVT::f64)
332       return SINTTOFP_I32_F64;
333     if (RetVT == MVT::f80)
334       return SINTTOFP_I32_F80;
335     if (RetVT == MVT::f128)
336       return SINTTOFP_I32_F128;
337     if (RetVT == MVT::ppcf128)
338       return SINTTOFP_I32_PPCF128;
339   } else if (OpVT == MVT::i64) {
340     if (RetVT == MVT::f32)
341       return SINTTOFP_I64_F32;
342     if (RetVT == MVT::f64)
343       return SINTTOFP_I64_F64;
344     if (RetVT == MVT::f80)
345       return SINTTOFP_I64_F80;
346     if (RetVT == MVT::f128)
347       return SINTTOFP_I64_F128;
348     if (RetVT == MVT::ppcf128)
349       return SINTTOFP_I64_PPCF128;
350   } else if (OpVT == MVT::i128) {
351     if (RetVT == MVT::f32)
352       return SINTTOFP_I128_F32;
353     if (RetVT == MVT::f64)
354       return SINTTOFP_I128_F64;
355     if (RetVT == MVT::f80)
356       return SINTTOFP_I128_F80;
357     if (RetVT == MVT::f128)
358       return SINTTOFP_I128_F128;
359     if (RetVT == MVT::ppcf128)
360       return SINTTOFP_I128_PPCF128;
361   }
362   return UNKNOWN_LIBCALL;
363 }
364 
365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
368   if (OpVT == MVT::i32) {
369     if (RetVT == MVT::f32)
370       return UINTTOFP_I32_F32;
371     if (RetVT == MVT::f64)
372       return UINTTOFP_I32_F64;
373     if (RetVT == MVT::f80)
374       return UINTTOFP_I32_F80;
375     if (RetVT == MVT::f128)
376       return UINTTOFP_I32_F128;
377     if (RetVT == MVT::ppcf128)
378       return UINTTOFP_I32_PPCF128;
379   } else if (OpVT == MVT::i64) {
380     if (RetVT == MVT::f32)
381       return UINTTOFP_I64_F32;
382     if (RetVT == MVT::f64)
383       return UINTTOFP_I64_F64;
384     if (RetVT == MVT::f80)
385       return UINTTOFP_I64_F80;
386     if (RetVT == MVT::f128)
387       return UINTTOFP_I64_F128;
388     if (RetVT == MVT::ppcf128)
389       return UINTTOFP_I64_PPCF128;
390   } else if (OpVT == MVT::i128) {
391     if (RetVT == MVT::f32)
392       return UINTTOFP_I128_F32;
393     if (RetVT == MVT::f64)
394       return UINTTOFP_I128_F64;
395     if (RetVT == MVT::f80)
396       return UINTTOFP_I128_F80;
397     if (RetVT == MVT::f128)
398       return UINTTOFP_I128_F128;
399     if (RetVT == MVT::ppcf128)
400       return UINTTOFP_I128_PPCF128;
401   }
402   return UNKNOWN_LIBCALL;
403 }
404 
405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
406 #define OP_TO_LIBCALL(Name, Enum)                                              \
407   case Name:                                                                   \
408     switch (VT.SimpleTy) {                                                     \
409     default:                                                                   \
410       return UNKNOWN_LIBCALL;                                                  \
411     case MVT::i8:                                                              \
412       return Enum##_1;                                                         \
413     case MVT::i16:                                                             \
414       return Enum##_2;                                                         \
415     case MVT::i32:                                                             \
416       return Enum##_4;                                                         \
417     case MVT::i64:                                                             \
418       return Enum##_8;                                                         \
419     case MVT::i128:                                                            \
420       return Enum##_16;                                                        \
421     }
422 
423   switch (Opc) {
424     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
425     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
426     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
427     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
428     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
429     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
430     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
431     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
432     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
433     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
434     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
435     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
436   }
437 
438 #undef OP_TO_LIBCALL
439 
440   return UNKNOWN_LIBCALL;
441 }
442 
443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
444   switch (ElementSize) {
445   case 1:
446     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
447   case 2:
448     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
449   case 4:
450     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
451   case 8:
452     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
453   case 16:
454     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
455   default:
456     return UNKNOWN_LIBCALL;
457   }
458 }
459 
460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
461   switch (ElementSize) {
462   case 1:
463     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
464   case 2:
465     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
466   case 4:
467     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
468   case 8:
469     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
470   case 16:
471     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
472   default:
473     return UNKNOWN_LIBCALL;
474   }
475 }
476 
477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 /// InitCmpLibcallCCs - Set default comparison libcall CC.
495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
500   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
501   CCs[RTLIB::UNE_F32] = ISD::SETNE;
502   CCs[RTLIB::UNE_F64] = ISD::SETNE;
503   CCs[RTLIB::UNE_F128] = ISD::SETNE;
504   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
505   CCs[RTLIB::OGE_F32] = ISD::SETGE;
506   CCs[RTLIB::OGE_F64] = ISD::SETGE;
507   CCs[RTLIB::OGE_F128] = ISD::SETGE;
508   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
509   CCs[RTLIB::OLT_F32] = ISD::SETLT;
510   CCs[RTLIB::OLT_F64] = ISD::SETLT;
511   CCs[RTLIB::OLT_F128] = ISD::SETLT;
512   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
513   CCs[RTLIB::OLE_F32] = ISD::SETLE;
514   CCs[RTLIB::OLE_F64] = ISD::SETLE;
515   CCs[RTLIB::OLE_F128] = ISD::SETLE;
516   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
517   CCs[RTLIB::OGT_F32] = ISD::SETGT;
518   CCs[RTLIB::OGT_F64] = ISD::SETGT;
519   CCs[RTLIB::OGT_F128] = ISD::SETGT;
520   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
521   CCs[RTLIB::UO_F32] = ISD::SETNE;
522   CCs[RTLIB::UO_F64] = ISD::SETNE;
523   CCs[RTLIB::UO_F128] = ISD::SETNE;
524   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
525   CCs[RTLIB::O_F32] = ISD::SETEQ;
526   CCs[RTLIB::O_F64] = ISD::SETEQ;
527   CCs[RTLIB::O_F128] = ISD::SETEQ;
528   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
529 }
530 
531 /// NOTE: The TargetMachine owns TLOF.
532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
533   initActions();
534 
535   // Perform these initializations only once.
536   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
537       MaxLoadsPerMemcmp = 8;
538   MaxGluedStoresPerMemcpy = 0;
539   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
540       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
541   UseUnderscoreSetJmp = false;
542   UseUnderscoreLongJmp = false;
543   HasMultipleConditionRegisters = false;
544   HasExtractBitsInsn = false;
545   JumpIsExpensive = JumpIsExpensiveOverride;
546   PredictableSelectIsExpensive = false;
547   EnableExtLdPromotion = false;
548   HasFloatingPointExceptions = true;
549   StackPointerRegisterToSaveRestore = 0;
550   BooleanContents = UndefinedBooleanContent;
551   BooleanFloatContents = UndefinedBooleanContent;
552   BooleanVectorContents = UndefinedBooleanContent;
553   SchedPreferenceInfo = Sched::ILP;
554   JumpBufSize = 0;
555   JumpBufAlignment = 0;
556   MinFunctionAlignment = 0;
557   PrefFunctionAlignment = 0;
558   PrefLoopAlignment = 0;
559   GatherAllAliasesMaxDepth = 18;
560   MinStackArgumentAlignment = 1;
561   // TODO: the default will be switched to 0 in the next commit, along
562   // with the Target-specific changes necessary.
563   MaxAtomicSizeInBitsSupported = 1024;
564 
565   MinCmpXchgSizeInBits = 0;
566   SupportsUnalignedAtomics = false;
567 
568   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
569 
570   InitLibcalls(TM.getTargetTriple());
571   InitCmpLibcallCCs(CmpLibcallCCs);
572 }
573 
574 void TargetLoweringBase::initActions() {
575   // All operations default to being supported.
576   memset(OpActions, 0, sizeof(OpActions));
577   memset(LoadExtActions, 0, sizeof(LoadExtActions));
578   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
579   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
580   memset(CondCodeActions, 0, sizeof(CondCodeActions));
581   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
582   std::fill(std::begin(TargetDAGCombineArray),
583             std::end(TargetDAGCombineArray), 0);
584 
585   for (MVT VT : MVT::fp_valuetypes()) {
586     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
587     if (IntVT.isValid()) {
588       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
589       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
590     }
591   }
592 
593   // Set default actions for various operations.
594   for (MVT VT : MVT::all_valuetypes()) {
595     // Default all indexed load / store to expand.
596     for (unsigned IM = (unsigned)ISD::PRE_INC;
597          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
598       setIndexedLoadAction(IM, VT, Expand);
599       setIndexedStoreAction(IM, VT, Expand);
600     }
601 
602     // Most backends expect to see the node which just returns the value loaded.
603     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
604 
605     // These operations default to expand.
606     setOperationAction(ISD::FGETSIGN, VT, Expand);
607     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
608     setOperationAction(ISD::FMINNUM, VT, Expand);
609     setOperationAction(ISD::FMAXNUM, VT, Expand);
610     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
611     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
612     setOperationAction(ISD::FMINIMUM, VT, Expand);
613     setOperationAction(ISD::FMAXIMUM, VT, Expand);
614     setOperationAction(ISD::FMAD, VT, Expand);
615     setOperationAction(ISD::SMIN, VT, Expand);
616     setOperationAction(ISD::SMAX, VT, Expand);
617     setOperationAction(ISD::UMIN, VT, Expand);
618     setOperationAction(ISD::UMAX, VT, Expand);
619     setOperationAction(ISD::ABS, VT, Expand);
620     setOperationAction(ISD::FSHL, VT, Expand);
621     setOperationAction(ISD::FSHR, VT, Expand);
622     setOperationAction(ISD::SADDSAT, VT, Expand);
623     setOperationAction(ISD::UADDSAT, VT, Expand);
624     setOperationAction(ISD::SSUBSAT, VT, Expand);
625     setOperationAction(ISD::USUBSAT, VT, Expand);
626     setOperationAction(ISD::SMULFIX, VT, Expand);
627     setOperationAction(ISD::UMULFIX, VT, Expand);
628 
629     // Overflow operations default to expand
630     setOperationAction(ISD::SADDO, VT, Expand);
631     setOperationAction(ISD::SSUBO, VT, Expand);
632     setOperationAction(ISD::UADDO, VT, Expand);
633     setOperationAction(ISD::USUBO, VT, Expand);
634     setOperationAction(ISD::SMULO, VT, Expand);
635     setOperationAction(ISD::UMULO, VT, Expand);
636 
637     // ADDCARRY operations default to expand
638     setOperationAction(ISD::ADDCARRY, VT, Expand);
639     setOperationAction(ISD::SUBCARRY, VT, Expand);
640     setOperationAction(ISD::SETCCCARRY, VT, Expand);
641 
642     // ADDC/ADDE/SUBC/SUBE default to expand.
643     setOperationAction(ISD::ADDC, VT, Expand);
644     setOperationAction(ISD::ADDE, VT, Expand);
645     setOperationAction(ISD::SUBC, VT, Expand);
646     setOperationAction(ISD::SUBE, VT, Expand);
647 
648     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
649     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
650     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
651 
652     setOperationAction(ISD::BITREVERSE, VT, Expand);
653 
654     // These library functions default to expand.
655     setOperationAction(ISD::FROUND, VT, Expand);
656     setOperationAction(ISD::FPOWI, VT, Expand);
657 
658     // These operations default to expand for vector types.
659     if (VT.isVector()) {
660       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
661       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
662       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
663       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
664     }
665 
666     // For most targets @llvm.get.dynamic.area.offset just returns 0.
667     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
668   }
669 
670   // Most targets ignore the @llvm.prefetch intrinsic.
671   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
672 
673   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
674   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
675 
676   // ConstantFP nodes default to expand.  Targets can either change this to
677   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
678   // to optimize expansions for certain constants.
679   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
680   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
681   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
682   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
683   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
684 
685   // These library functions default to expand.
686   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
687     setOperationAction(ISD::FCBRT,      VT, Expand);
688     setOperationAction(ISD::FLOG ,      VT, Expand);
689     setOperationAction(ISD::FLOG2,      VT, Expand);
690     setOperationAction(ISD::FLOG10,     VT, Expand);
691     setOperationAction(ISD::FEXP ,      VT, Expand);
692     setOperationAction(ISD::FEXP2,      VT, Expand);
693     setOperationAction(ISD::FFLOOR,     VT, Expand);
694     setOperationAction(ISD::FNEARBYINT, VT, Expand);
695     setOperationAction(ISD::FCEIL,      VT, Expand);
696     setOperationAction(ISD::FRINT,      VT, Expand);
697     setOperationAction(ISD::FTRUNC,     VT, Expand);
698     setOperationAction(ISD::FROUND,     VT, Expand);
699   }
700 
701   // Default ISD::TRAP to expand (which turns it into abort).
702   setOperationAction(ISD::TRAP, MVT::Other, Expand);
703 
704   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
705   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
706   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
707 }
708 
709 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
710                                                EVT) const {
711   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
712 }
713 
714 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
715                                          bool LegalTypes) const {
716   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
717   if (LHSTy.isVector())
718     return LHSTy;
719   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
720                     : getPointerTy(DL);
721 }
722 
723 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
724   assert(isTypeLegal(VT));
725   switch (Op) {
726   default:
727     return false;
728   case ISD::SDIV:
729   case ISD::UDIV:
730   case ISD::SREM:
731   case ISD::UREM:
732     return true;
733   }
734 }
735 
736 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
737   // If the command-line option was specified, ignore this request.
738   if (!JumpIsExpensiveOverride.getNumOccurrences())
739     JumpIsExpensive = isExpensive;
740 }
741 
742 TargetLoweringBase::LegalizeKind
743 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
744   // If this is a simple type, use the ComputeRegisterProp mechanism.
745   if (VT.isSimple()) {
746     MVT SVT = VT.getSimpleVT();
747     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
748     MVT NVT = TransformToType[SVT.SimpleTy];
749     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
750 
751     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
752             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
753            "Promote may not follow Expand or Promote");
754 
755     if (LA == TypeSplitVector)
756       return LegalizeKind(LA,
757                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
758                                            SVT.getVectorNumElements() / 2));
759     if (LA == TypeScalarizeVector)
760       return LegalizeKind(LA, SVT.getVectorElementType());
761     return LegalizeKind(LA, NVT);
762   }
763 
764   // Handle Extended Scalar Types.
765   if (!VT.isVector()) {
766     assert(VT.isInteger() && "Float types must be simple");
767     unsigned BitSize = VT.getSizeInBits();
768     // First promote to a power-of-two size, then expand if necessary.
769     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
770       EVT NVT = VT.getRoundIntegerType(Context);
771       assert(NVT != VT && "Unable to round integer VT");
772       LegalizeKind NextStep = getTypeConversion(Context, NVT);
773       // Avoid multi-step promotion.
774       if (NextStep.first == TypePromoteInteger)
775         return NextStep;
776       // Return rounded integer type.
777       return LegalizeKind(TypePromoteInteger, NVT);
778     }
779 
780     return LegalizeKind(TypeExpandInteger,
781                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
782   }
783 
784   // Handle vector types.
785   unsigned NumElts = VT.getVectorNumElements();
786   EVT EltVT = VT.getVectorElementType();
787 
788   // Vectors with only one element are always scalarized.
789   if (NumElts == 1)
790     return LegalizeKind(TypeScalarizeVector, EltVT);
791 
792   // Try to widen vector elements until the element type is a power of two and
793   // promote it to a legal type later on, for example:
794   // <3 x i8> -> <4 x i8> -> <4 x i32>
795   if (EltVT.isInteger()) {
796     // Vectors with a number of elements that is not a power of two are always
797     // widened, for example <3 x i8> -> <4 x i8>.
798     if (!VT.isPow2VectorType()) {
799       NumElts = (unsigned)NextPowerOf2(NumElts);
800       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
801       return LegalizeKind(TypeWidenVector, NVT);
802     }
803 
804     // Examine the element type.
805     LegalizeKind LK = getTypeConversion(Context, EltVT);
806 
807     // If type is to be expanded, split the vector.
808     //  <4 x i140> -> <2 x i140>
809     if (LK.first == TypeExpandInteger)
810       return LegalizeKind(TypeSplitVector,
811                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
812 
813     // Promote the integer element types until a legal vector type is found
814     // or until the element integer type is too big. If a legal type was not
815     // found, fallback to the usual mechanism of widening/splitting the
816     // vector.
817     EVT OldEltVT = EltVT;
818     while (true) {
819       // Increase the bitwidth of the element to the next pow-of-two
820       // (which is greater than 8 bits).
821       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
822                   .getRoundIntegerType(Context);
823 
824       // Stop trying when getting a non-simple element type.
825       // Note that vector elements may be greater than legal vector element
826       // types. Example: X86 XMM registers hold 64bit element on 32bit
827       // systems.
828       if (!EltVT.isSimple())
829         break;
830 
831       // Build a new vector type and check if it is legal.
832       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
833       // Found a legal promoted vector type.
834       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
835         return LegalizeKind(TypePromoteInteger,
836                             EVT::getVectorVT(Context, EltVT, NumElts));
837     }
838 
839     // Reset the type to the unexpanded type if we did not find a legal vector
840     // type with a promoted vector element type.
841     EltVT = OldEltVT;
842   }
843 
844   // Try to widen the vector until a legal type is found.
845   // If there is no wider legal type, split the vector.
846   while (true) {
847     // Round up to the next power of 2.
848     NumElts = (unsigned)NextPowerOf2(NumElts);
849 
850     // If there is no simple vector type with this many elements then there
851     // cannot be a larger legal vector type.  Note that this assumes that
852     // there are no skipped intermediate vector types in the simple types.
853     if (!EltVT.isSimple())
854       break;
855     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
856     if (LargerVector == MVT())
857       break;
858 
859     // If this type is legal then widen the vector.
860     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
861       return LegalizeKind(TypeWidenVector, LargerVector);
862   }
863 
864   // Widen odd vectors to next power of two.
865   if (!VT.isPow2VectorType()) {
866     EVT NVT = VT.getPow2VectorType(Context);
867     return LegalizeKind(TypeWidenVector, NVT);
868   }
869 
870   // Vectors with illegal element types are expanded.
871   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
872   return LegalizeKind(TypeSplitVector, NVT);
873 }
874 
875 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
876                                           unsigned &NumIntermediates,
877                                           MVT &RegisterVT,
878                                           TargetLoweringBase *TLI) {
879   // Figure out the right, legal destination reg to copy into.
880   unsigned NumElts = VT.getVectorNumElements();
881   MVT EltTy = VT.getVectorElementType();
882 
883   unsigned NumVectorRegs = 1;
884 
885   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
886   // could break down into LHS/RHS like LegalizeDAG does.
887   if (!isPowerOf2_32(NumElts)) {
888     NumVectorRegs = NumElts;
889     NumElts = 1;
890   }
891 
892   // Divide the input until we get to a supported size.  This will always
893   // end with a scalar if the target doesn't support vectors.
894   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
895     NumElts >>= 1;
896     NumVectorRegs <<= 1;
897   }
898 
899   NumIntermediates = NumVectorRegs;
900 
901   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
902   if (!TLI->isTypeLegal(NewVT))
903     NewVT = EltTy;
904   IntermediateVT = NewVT;
905 
906   unsigned NewVTSize = NewVT.getSizeInBits();
907 
908   // Convert sizes such as i33 to i64.
909   if (!isPowerOf2_32(NewVTSize))
910     NewVTSize = NextPowerOf2(NewVTSize);
911 
912   MVT DestVT = TLI->getRegisterType(NewVT);
913   RegisterVT = DestVT;
914   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
915     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
916 
917   // Otherwise, promotion or legal types use the same number of registers as
918   // the vector decimated to the appropriate level.
919   return NumVectorRegs;
920 }
921 
922 /// isLegalRC - Return true if the value types that can be represented by the
923 /// specified register class are all legal.
924 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
925                                    const TargetRegisterClass &RC) const {
926   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
927     if (isTypeLegal(*I))
928       return true;
929   return false;
930 }
931 
932 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
933 /// sequence of memory operands that is recognized by PrologEpilogInserter.
934 MachineBasicBlock *
935 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
936                                    MachineBasicBlock *MBB) const {
937   MachineInstr *MI = &InitialMI;
938   MachineFunction &MF = *MI->getMF();
939   MachineFrameInfo &MFI = MF.getFrameInfo();
940 
941   // We're handling multiple types of operands here:
942   // PATCHPOINT MetaArgs - live-in, read only, direct
943   // STATEPOINT Deopt Spill - live-through, read only, indirect
944   // STATEPOINT Deopt Alloca - live-through, read only, direct
945   // (We're currently conservative and mark the deopt slots read/write in
946   // practice.)
947   // STATEPOINT GC Spill - live-through, read/write, indirect
948   // STATEPOINT GC Alloca - live-through, read/write, direct
949   // The live-in vs live-through is handled already (the live through ones are
950   // all stack slots), but we need to handle the different type of stackmap
951   // operands and memory effects here.
952 
953   // MI changes inside this loop as we grow operands.
954   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
955     MachineOperand &MO = MI->getOperand(OperIdx);
956     if (!MO.isFI())
957       continue;
958 
959     // foldMemoryOperand builds a new MI after replacing a single FI operand
960     // with the canonical set of five x86 addressing-mode operands.
961     int FI = MO.getIndex();
962     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
963 
964     // Copy operands before the frame-index.
965     for (unsigned i = 0; i < OperIdx; ++i)
966       MIB.add(MI->getOperand(i));
967     // Add frame index operands recognized by stackmaps.cpp
968     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
969       // indirect-mem-ref tag, size, #FI, offset.
970       // Used for spills inserted by StatepointLowering.  This codepath is not
971       // used for patchpoints/stackmaps at all, for these spilling is done via
972       // foldMemoryOperand callback only.
973       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
974       MIB.addImm(StackMaps::IndirectMemRefOp);
975       MIB.addImm(MFI.getObjectSize(FI));
976       MIB.add(MI->getOperand(OperIdx));
977       MIB.addImm(0);
978     } else {
979       // direct-mem-ref tag, #FI, offset.
980       // Used by patchpoint, and direct alloca arguments to statepoints
981       MIB.addImm(StackMaps::DirectMemRefOp);
982       MIB.add(MI->getOperand(OperIdx));
983       MIB.addImm(0);
984     }
985     // Copy the operands after the frame index.
986     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
987       MIB.add(MI->getOperand(i));
988 
989     // Inherit previous memory operands.
990     MIB.cloneMemRefs(*MI);
991     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
992 
993     // Add a new memory operand for this FI.
994     assert(MFI.getObjectOffset(FI) != -1);
995 
996     auto Flags = MachineMemOperand::MOLoad;
997     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
998       Flags |= MachineMemOperand::MOStore;
999       Flags |= MachineMemOperand::MOVolatile;
1000     }
1001     MachineMemOperand *MMO = MF.getMachineMemOperand(
1002         MachinePointerInfo::getFixedStack(MF, FI), Flags,
1003         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1004     MIB->addMemOperand(MF, MMO);
1005 
1006     // Replace the instruction and update the operand index.
1007     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1008     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1009     MI->eraseFromParent();
1010     MI = MIB;
1011   }
1012   return MBB;
1013 }
1014 
1015 MachineBasicBlock *
1016 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1017                                         MachineBasicBlock *MBB) const {
1018   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1019          "Called emitXRayCustomEvent on the wrong MI!");
1020   auto &MF = *MI.getMF();
1021   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1022   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1023     MIB.add(MI.getOperand(OpIdx));
1024 
1025   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1026   MI.eraseFromParent();
1027   return MBB;
1028 }
1029 
1030 MachineBasicBlock *
1031 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1032                                        MachineBasicBlock *MBB) const {
1033   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1034          "Called emitXRayTypedEvent on the wrong MI!");
1035   auto &MF = *MI.getMF();
1036   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1037   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1038     MIB.add(MI.getOperand(OpIdx));
1039 
1040   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1041   MI.eraseFromParent();
1042   return MBB;
1043 }
1044 
1045 /// findRepresentativeClass - Return the largest legal super-reg register class
1046 /// of the register class for the specified type and its associated "cost".
1047 // This function is in TargetLowering because it uses RegClassForVT which would
1048 // need to be moved to TargetRegisterInfo and would necessitate moving
1049 // isTypeLegal over as well - a massive change that would just require
1050 // TargetLowering having a TargetRegisterInfo class member that it would use.
1051 std::pair<const TargetRegisterClass *, uint8_t>
1052 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1053                                             MVT VT) const {
1054   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1055   if (!RC)
1056     return std::make_pair(RC, 0);
1057 
1058   // Compute the set of all super-register classes.
1059   BitVector SuperRegRC(TRI->getNumRegClasses());
1060   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1061     SuperRegRC.setBitsInMask(RCI.getMask());
1062 
1063   // Find the first legal register class with the largest spill size.
1064   const TargetRegisterClass *BestRC = RC;
1065   for (unsigned i : SuperRegRC.set_bits()) {
1066     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1067     // We want the largest possible spill size.
1068     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1069       continue;
1070     if (!isLegalRC(*TRI, *SuperRC))
1071       continue;
1072     BestRC = SuperRC;
1073   }
1074   return std::make_pair(BestRC, 1);
1075 }
1076 
1077 /// computeRegisterProperties - Once all of the register classes are added,
1078 /// this allows us to compute derived properties we expose.
1079 void TargetLoweringBase::computeRegisterProperties(
1080     const TargetRegisterInfo *TRI) {
1081   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1082                 "Too many value types for ValueTypeActions to hold!");
1083 
1084   // Everything defaults to needing one register.
1085   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1086     NumRegistersForVT[i] = 1;
1087     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1088   }
1089   // ...except isVoid, which doesn't need any registers.
1090   NumRegistersForVT[MVT::isVoid] = 0;
1091 
1092   // Find the largest integer register class.
1093   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1094   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1095     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1096 
1097   // Every integer value type larger than this largest register takes twice as
1098   // many registers to represent as the previous ValueType.
1099   for (unsigned ExpandedReg = LargestIntReg + 1;
1100        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1101     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1102     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1103     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1104     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1105                                    TypeExpandInteger);
1106   }
1107 
1108   // Inspect all of the ValueType's smaller than the largest integer
1109   // register to see which ones need promotion.
1110   unsigned LegalIntReg = LargestIntReg;
1111   for (unsigned IntReg = LargestIntReg - 1;
1112        IntReg >= (unsigned)MVT::i1; --IntReg) {
1113     MVT IVT = (MVT::SimpleValueType)IntReg;
1114     if (isTypeLegal(IVT)) {
1115       LegalIntReg = IntReg;
1116     } else {
1117       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1118         (MVT::SimpleValueType)LegalIntReg;
1119       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1120     }
1121   }
1122 
1123   // ppcf128 type is really two f64's.
1124   if (!isTypeLegal(MVT::ppcf128)) {
1125     if (isTypeLegal(MVT::f64)) {
1126       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1127       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1128       TransformToType[MVT::ppcf128] = MVT::f64;
1129       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1130     } else {
1131       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1132       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1133       TransformToType[MVT::ppcf128] = MVT::i128;
1134       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1135     }
1136   }
1137 
1138   // Decide how to handle f128. If the target does not have native f128 support,
1139   // expand it to i128 and we will be generating soft float library calls.
1140   if (!isTypeLegal(MVT::f128)) {
1141     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1142     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1143     TransformToType[MVT::f128] = MVT::i128;
1144     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1145   }
1146 
1147   // Decide how to handle f64. If the target does not have native f64 support,
1148   // expand it to i64 and we will be generating soft float library calls.
1149   if (!isTypeLegal(MVT::f64)) {
1150     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1151     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1152     TransformToType[MVT::f64] = MVT::i64;
1153     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1154   }
1155 
1156   // Decide how to handle f32. If the target does not have native f32 support,
1157   // expand it to i32 and we will be generating soft float library calls.
1158   if (!isTypeLegal(MVT::f32)) {
1159     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1160     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1161     TransformToType[MVT::f32] = MVT::i32;
1162     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1163   }
1164 
1165   // Decide how to handle f16. If the target does not have native f16 support,
1166   // promote it to f32, because there are no f16 library calls (except for
1167   // conversions).
1168   if (!isTypeLegal(MVT::f16)) {
1169     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1170     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1171     TransformToType[MVT::f16] = MVT::f32;
1172     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1173   }
1174 
1175   // Loop over all of the vector value types to see which need transformations.
1176   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1177        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1178     MVT VT = (MVT::SimpleValueType) i;
1179     if (isTypeLegal(VT))
1180       continue;
1181 
1182     MVT EltVT = VT.getVectorElementType();
1183     unsigned NElts = VT.getVectorNumElements();
1184     bool IsLegalWiderType = false;
1185     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1186     switch (PreferredAction) {
1187     case TypePromoteInteger:
1188       // Try to promote the elements of integer vectors. If no legal
1189       // promotion was found, fall through to the widen-vector method.
1190       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1191         MVT SVT = (MVT::SimpleValueType) nVT;
1192         // Promote vectors of integers to vectors with the same number
1193         // of elements, with a wider element type.
1194         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1195             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1196           TransformToType[i] = SVT;
1197           RegisterTypeForVT[i] = SVT;
1198           NumRegistersForVT[i] = 1;
1199           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1200           IsLegalWiderType = true;
1201           break;
1202         }
1203       }
1204       if (IsLegalWiderType)
1205         break;
1206       LLVM_FALLTHROUGH;
1207 
1208     case TypeWidenVector:
1209       // Try to widen the vector.
1210       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1211         MVT SVT = (MVT::SimpleValueType) nVT;
1212         if (SVT.getVectorElementType() == EltVT
1213             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1214           TransformToType[i] = SVT;
1215           RegisterTypeForVT[i] = SVT;
1216           NumRegistersForVT[i] = 1;
1217           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1218           IsLegalWiderType = true;
1219           break;
1220         }
1221       }
1222       if (IsLegalWiderType)
1223         break;
1224       LLVM_FALLTHROUGH;
1225 
1226     case TypeSplitVector:
1227     case TypeScalarizeVector: {
1228       MVT IntermediateVT;
1229       MVT RegisterVT;
1230       unsigned NumIntermediates;
1231       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1232           NumIntermediates, RegisterVT, this);
1233       RegisterTypeForVT[i] = RegisterVT;
1234 
1235       MVT NVT = VT.getPow2VectorType();
1236       if (NVT == VT) {
1237         // Type is already a power of 2.  The default action is to split.
1238         TransformToType[i] = MVT::Other;
1239         if (PreferredAction == TypeScalarizeVector)
1240           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1241         else if (PreferredAction == TypeSplitVector)
1242           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1243         else
1244           // Set type action according to the number of elements.
1245           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1246                                                         : TypeSplitVector);
1247       } else {
1248         TransformToType[i] = NVT;
1249         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1250       }
1251       break;
1252     }
1253     default:
1254       llvm_unreachable("Unknown vector legalization action!");
1255     }
1256   }
1257 
1258   // Determine the 'representative' register class for each value type.
1259   // An representative register class is the largest (meaning one which is
1260   // not a sub-register class / subreg register class) legal register class for
1261   // a group of value types. For example, on i386, i8, i16, and i32
1262   // representative would be GR32; while on x86_64 it's GR64.
1263   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1264     const TargetRegisterClass* RRC;
1265     uint8_t Cost;
1266     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1267     RepRegClassForVT[i] = RRC;
1268     RepRegClassCostForVT[i] = Cost;
1269   }
1270 }
1271 
1272 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1273                                            EVT VT) const {
1274   assert(!VT.isVector() && "No default SetCC type for vectors!");
1275   return getPointerTy(DL).SimpleTy;
1276 }
1277 
1278 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1279   return MVT::i32; // return the default value
1280 }
1281 
1282 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1283 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1284 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1285 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1286 ///
1287 /// This method returns the number of registers needed, and the VT for each
1288 /// register.  It also returns the VT and quantity of the intermediate values
1289 /// before they are promoted/expanded.
1290 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1291                                                 EVT &IntermediateVT,
1292                                                 unsigned &NumIntermediates,
1293                                                 MVT &RegisterVT) const {
1294   unsigned NumElts = VT.getVectorNumElements();
1295 
1296   // If there is a wider vector type with the same element type as this one,
1297   // or a promoted vector type that has the same number of elements which
1298   // are wider, then we should convert to that legal vector type.
1299   // This handles things like <2 x float> -> <4 x float> and
1300   // <4 x i1> -> <4 x i32>.
1301   LegalizeTypeAction TA = getTypeAction(Context, VT);
1302   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1303     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1304     if (isTypeLegal(RegisterEVT)) {
1305       IntermediateVT = RegisterEVT;
1306       RegisterVT = RegisterEVT.getSimpleVT();
1307       NumIntermediates = 1;
1308       return 1;
1309     }
1310   }
1311 
1312   // Figure out the right, legal destination reg to copy into.
1313   EVT EltTy = VT.getVectorElementType();
1314 
1315   unsigned NumVectorRegs = 1;
1316 
1317   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1318   // could break down into LHS/RHS like LegalizeDAG does.
1319   if (!isPowerOf2_32(NumElts)) {
1320     NumVectorRegs = NumElts;
1321     NumElts = 1;
1322   }
1323 
1324   // Divide the input until we get to a supported size.  This will always
1325   // end with a scalar if the target doesn't support vectors.
1326   while (NumElts > 1 && !isTypeLegal(
1327                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1328     NumElts >>= 1;
1329     NumVectorRegs <<= 1;
1330   }
1331 
1332   NumIntermediates = NumVectorRegs;
1333 
1334   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1335   if (!isTypeLegal(NewVT))
1336     NewVT = EltTy;
1337   IntermediateVT = NewVT;
1338 
1339   MVT DestVT = getRegisterType(Context, NewVT);
1340   RegisterVT = DestVT;
1341   unsigned NewVTSize = NewVT.getSizeInBits();
1342 
1343   // Convert sizes such as i33 to i64.
1344   if (!isPowerOf2_32(NewVTSize))
1345     NewVTSize = NextPowerOf2(NewVTSize);
1346 
1347   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1348     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1349 
1350   // Otherwise, promotion or legal types use the same number of registers as
1351   // the vector decimated to the appropriate level.
1352   return NumVectorRegs;
1353 }
1354 
1355 /// Get the EVTs and ArgFlags collections that represent the legalized return
1356 /// type of the given function.  This does not require a DAG or a return value,
1357 /// and is suitable for use before any DAGs for the function are constructed.
1358 /// TODO: Move this out of TargetLowering.cpp.
1359 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1360                          AttributeList attr,
1361                          SmallVectorImpl<ISD::OutputArg> &Outs,
1362                          const TargetLowering &TLI, const DataLayout &DL) {
1363   SmallVector<EVT, 4> ValueVTs;
1364   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1365   unsigned NumValues = ValueVTs.size();
1366   if (NumValues == 0) return;
1367 
1368   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1369     EVT VT = ValueVTs[j];
1370     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1371 
1372     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1373       ExtendKind = ISD::SIGN_EXTEND;
1374     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1375       ExtendKind = ISD::ZERO_EXTEND;
1376 
1377     // FIXME: C calling convention requires the return type to be promoted to
1378     // at least 32-bit. But this is not necessary for non-C calling
1379     // conventions. The frontend should mark functions whose return values
1380     // require promoting with signext or zeroext attributes.
1381     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1382       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1383       if (VT.bitsLT(MinVT))
1384         VT = MinVT;
1385     }
1386 
1387     unsigned NumParts =
1388         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1389     MVT PartVT =
1390         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1391 
1392     // 'inreg' on function refers to return value
1393     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1394     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1395       Flags.setInReg();
1396 
1397     // Propagate extension type if any
1398     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1399       Flags.setSExt();
1400     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1401       Flags.setZExt();
1402 
1403     for (unsigned i = 0; i < NumParts; ++i)
1404       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1405   }
1406 }
1407 
1408 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1409 /// function arguments in the caller parameter area.  This is the actual
1410 /// alignment, not its logarithm.
1411 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1412                                                    const DataLayout &DL) const {
1413   return DL.getABITypeAlignment(Ty);
1414 }
1415 
1416 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1417                                             const DataLayout &DL, EVT VT,
1418                                             unsigned AddrSpace,
1419                                             unsigned Alignment,
1420                                             bool *Fast) const {
1421   // Check if the specified alignment is sufficient based on the data layout.
1422   // TODO: While using the data layout works in practice, a better solution
1423   // would be to implement this check directly (make this a virtual function).
1424   // For example, the ABI alignment may change based on software platform while
1425   // this function should only be affected by hardware implementation.
1426   Type *Ty = VT.getTypeForEVT(Context);
1427   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1428     // Assume that an access that meets the ABI-specified alignment is fast.
1429     if (Fast != nullptr)
1430       *Fast = true;
1431     return true;
1432   }
1433 
1434   // This is a misaligned access.
1435   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1436 }
1437 
1438 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1439   return BranchProbability(MinPercentageForPredictableBranch, 100);
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 //  TargetTransformInfo Helpers
1444 //===----------------------------------------------------------------------===//
1445 
1446 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1447   enum InstructionOpcodes {
1448 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1449 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1450 #include "llvm/IR/Instruction.def"
1451   };
1452   switch (static_cast<InstructionOpcodes>(Opcode)) {
1453   case Ret:            return 0;
1454   case Br:             return 0;
1455   case Switch:         return 0;
1456   case IndirectBr:     return 0;
1457   case Invoke:         return 0;
1458   case Resume:         return 0;
1459   case Unreachable:    return 0;
1460   case CleanupRet:     return 0;
1461   case CatchRet:       return 0;
1462   case CatchPad:       return 0;
1463   case CatchSwitch:    return 0;
1464   case CleanupPad:     return 0;
1465   case FNeg:           return ISD::FNEG;
1466   case Add:            return ISD::ADD;
1467   case FAdd:           return ISD::FADD;
1468   case Sub:            return ISD::SUB;
1469   case FSub:           return ISD::FSUB;
1470   case Mul:            return ISD::MUL;
1471   case FMul:           return ISD::FMUL;
1472   case UDiv:           return ISD::UDIV;
1473   case SDiv:           return ISD::SDIV;
1474   case FDiv:           return ISD::FDIV;
1475   case URem:           return ISD::UREM;
1476   case SRem:           return ISD::SREM;
1477   case FRem:           return ISD::FREM;
1478   case Shl:            return ISD::SHL;
1479   case LShr:           return ISD::SRL;
1480   case AShr:           return ISD::SRA;
1481   case And:            return ISD::AND;
1482   case Or:             return ISD::OR;
1483   case Xor:            return ISD::XOR;
1484   case Alloca:         return 0;
1485   case Load:           return ISD::LOAD;
1486   case Store:          return ISD::STORE;
1487   case GetElementPtr:  return 0;
1488   case Fence:          return 0;
1489   case AtomicCmpXchg:  return 0;
1490   case AtomicRMW:      return 0;
1491   case Trunc:          return ISD::TRUNCATE;
1492   case ZExt:           return ISD::ZERO_EXTEND;
1493   case SExt:           return ISD::SIGN_EXTEND;
1494   case FPToUI:         return ISD::FP_TO_UINT;
1495   case FPToSI:         return ISD::FP_TO_SINT;
1496   case UIToFP:         return ISD::UINT_TO_FP;
1497   case SIToFP:         return ISD::SINT_TO_FP;
1498   case FPTrunc:        return ISD::FP_ROUND;
1499   case FPExt:          return ISD::FP_EXTEND;
1500   case PtrToInt:       return ISD::BITCAST;
1501   case IntToPtr:       return ISD::BITCAST;
1502   case BitCast:        return ISD::BITCAST;
1503   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1504   case ICmp:           return ISD::SETCC;
1505   case FCmp:           return ISD::SETCC;
1506   case PHI:            return 0;
1507   case Call:           return 0;
1508   case Select:         return ISD::SELECT;
1509   case UserOp1:        return 0;
1510   case UserOp2:        return 0;
1511   case VAArg:          return 0;
1512   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1513   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1514   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1515   case ExtractValue:   return ISD::MERGE_VALUES;
1516   case InsertValue:    return ISD::MERGE_VALUES;
1517   case LandingPad:     return 0;
1518   }
1519 
1520   llvm_unreachable("Unknown instruction type encountered!");
1521 }
1522 
1523 std::pair<int, MVT>
1524 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1525                                             Type *Ty) const {
1526   LLVMContext &C = Ty->getContext();
1527   EVT MTy = getValueType(DL, Ty);
1528 
1529   int Cost = 1;
1530   // We keep legalizing the type until we find a legal kind. We assume that
1531   // the only operation that costs anything is the split. After splitting
1532   // we need to handle two types.
1533   while (true) {
1534     LegalizeKind LK = getTypeConversion(C, MTy);
1535 
1536     if (LK.first == TypeLegal)
1537       return std::make_pair(Cost, MTy.getSimpleVT());
1538 
1539     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1540       Cost *= 2;
1541 
1542     // Do not loop with f128 type.
1543     if (MTy == LK.second)
1544       return std::make_pair(Cost, MTy.getSimpleVT());
1545 
1546     // Keep legalizing the type.
1547     MTy = LK.second;
1548   }
1549 }
1550 
1551 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1552                                                               bool UseTLS) const {
1553   // compiler-rt provides a variable with a magic name.  Targets that do not
1554   // link with compiler-rt may also provide such a variable.
1555   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1556   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1557   auto UnsafeStackPtr =
1558       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1559 
1560   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1561 
1562   if (!UnsafeStackPtr) {
1563     auto TLSModel = UseTLS ?
1564         GlobalValue::InitialExecTLSModel :
1565         GlobalValue::NotThreadLocal;
1566     // The global variable is not defined yet, define it ourselves.
1567     // We use the initial-exec TLS model because we do not support the
1568     // variable living anywhere other than in the main executable.
1569     UnsafeStackPtr = new GlobalVariable(
1570         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1571         UnsafeStackPtrVar, nullptr, TLSModel);
1572   } else {
1573     // The variable exists, check its type and attributes.
1574     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1575       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1576     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1577       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1578                          (UseTLS ? "" : "not ") + "be thread-local");
1579   }
1580   return UnsafeStackPtr;
1581 }
1582 
1583 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1584   if (!TM.getTargetTriple().isAndroid())
1585     return getDefaultSafeStackPointerLocation(IRB, true);
1586 
1587   // Android provides a libc function to retrieve the address of the current
1588   // thread's unsafe stack pointer.
1589   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1590   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1591   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1592                                              StackPtrTy->getPointerTo(0));
1593   return IRB.CreateCall(Fn);
1594 }
1595 
1596 //===----------------------------------------------------------------------===//
1597 //  Loop Strength Reduction hooks
1598 //===----------------------------------------------------------------------===//
1599 
1600 /// isLegalAddressingMode - Return true if the addressing mode represented
1601 /// by AM is legal for this target, for a load/store of the specified type.
1602 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1603                                                const AddrMode &AM, Type *Ty,
1604                                                unsigned AS, Instruction *I) const {
1605   // The default implementation of this implements a conservative RISCy, r+r and
1606   // r+i addr mode.
1607 
1608   // Allows a sign-extended 16-bit immediate field.
1609   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1610     return false;
1611 
1612   // No global is ever allowed as a base.
1613   if (AM.BaseGV)
1614     return false;
1615 
1616   // Only support r+r,
1617   switch (AM.Scale) {
1618   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1619     break;
1620   case 1:
1621     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1622       return false;
1623     // Otherwise we have r+r or r+i.
1624     break;
1625   case 2:
1626     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1627       return false;
1628     // Allow 2*r as r+r.
1629     break;
1630   default: // Don't allow n * r
1631     return false;
1632   }
1633 
1634   return true;
1635 }
1636 
1637 //===----------------------------------------------------------------------===//
1638 //  Stack Protector
1639 //===----------------------------------------------------------------------===//
1640 
1641 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1642 // so that SelectionDAG handle SSP.
1643 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1644   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1645     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1646     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1647     return M.getOrInsertGlobal("__guard_local", PtrTy);
1648   }
1649   return nullptr;
1650 }
1651 
1652 // Currently only support "standard" __stack_chk_guard.
1653 // TODO: add LOAD_STACK_GUARD support.
1654 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1655   if (!M.getNamedValue("__stack_chk_guard"))
1656     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1657                        GlobalVariable::ExternalLinkage,
1658                        nullptr, "__stack_chk_guard");
1659 }
1660 
1661 // Currently only support "standard" __stack_chk_guard.
1662 // TODO: add LOAD_STACK_GUARD support.
1663 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1664   return M.getNamedValue("__stack_chk_guard");
1665 }
1666 
1667 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1668   return nullptr;
1669 }
1670 
1671 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1672   return MinimumJumpTableEntries;
1673 }
1674 
1675 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1676   MinimumJumpTableEntries = Val;
1677 }
1678 
1679 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1680   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1681 }
1682 
1683 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1684   return MaximumJumpTableSize;
1685 }
1686 
1687 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1688   MaximumJumpTableSize = Val;
1689 }
1690 
1691 //===----------------------------------------------------------------------===//
1692 //  Reciprocal Estimates
1693 //===----------------------------------------------------------------------===//
1694 
1695 /// Get the reciprocal estimate attribute string for a function that will
1696 /// override the target defaults.
1697 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1698   const Function &F = MF.getFunction();
1699   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1700 }
1701 
1702 /// Construct a string for the given reciprocal operation of the given type.
1703 /// This string should match the corresponding option to the front-end's
1704 /// "-mrecip" flag assuming those strings have been passed through in an
1705 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1706 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1707   std::string Name = VT.isVector() ? "vec-" : "";
1708 
1709   Name += IsSqrt ? "sqrt" : "div";
1710 
1711   // TODO: Handle "half" or other float types?
1712   if (VT.getScalarType() == MVT::f64) {
1713     Name += "d";
1714   } else {
1715     assert(VT.getScalarType() == MVT::f32 &&
1716            "Unexpected FP type for reciprocal estimate");
1717     Name += "f";
1718   }
1719 
1720   return Name;
1721 }
1722 
1723 /// Return the character position and value (a single numeric character) of a
1724 /// customized refinement operation in the input string if it exists. Return
1725 /// false if there is no customized refinement step count.
1726 static bool parseRefinementStep(StringRef In, size_t &Position,
1727                                 uint8_t &Value) {
1728   const char RefStepToken = ':';
1729   Position = In.find(RefStepToken);
1730   if (Position == StringRef::npos)
1731     return false;
1732 
1733   StringRef RefStepString = In.substr(Position + 1);
1734   // Allow exactly one numeric character for the additional refinement
1735   // step parameter.
1736   if (RefStepString.size() == 1) {
1737     char RefStepChar = RefStepString[0];
1738     if (RefStepChar >= '0' && RefStepChar <= '9') {
1739       Value = RefStepChar - '0';
1740       return true;
1741     }
1742   }
1743   report_fatal_error("Invalid refinement step for -recip.");
1744 }
1745 
1746 /// For the input attribute string, return one of the ReciprocalEstimate enum
1747 /// status values (enabled, disabled, or not specified) for this operation on
1748 /// the specified data type.
1749 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1750   if (Override.empty())
1751     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1752 
1753   SmallVector<StringRef, 4> OverrideVector;
1754   Override.split(OverrideVector, ',');
1755   unsigned NumArgs = OverrideVector.size();
1756 
1757   // Check if "all", "none", or "default" was specified.
1758   if (NumArgs == 1) {
1759     // Look for an optional setting of the number of refinement steps needed
1760     // for this type of reciprocal operation.
1761     size_t RefPos;
1762     uint8_t RefSteps;
1763     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1764       // Split the string for further processing.
1765       Override = Override.substr(0, RefPos);
1766     }
1767 
1768     // All reciprocal types are enabled.
1769     if (Override == "all")
1770       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1771 
1772     // All reciprocal types are disabled.
1773     if (Override == "none")
1774       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1775 
1776     // Target defaults for enablement are used.
1777     if (Override == "default")
1778       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1779   }
1780 
1781   // The attribute string may omit the size suffix ('f'/'d').
1782   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1783   std::string VTNameNoSize = VTName;
1784   VTNameNoSize.pop_back();
1785   static const char DisabledPrefix = '!';
1786 
1787   for (StringRef RecipType : OverrideVector) {
1788     size_t RefPos;
1789     uint8_t RefSteps;
1790     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1791       RecipType = RecipType.substr(0, RefPos);
1792 
1793     // Ignore the disablement token for string matching.
1794     bool IsDisabled = RecipType[0] == DisabledPrefix;
1795     if (IsDisabled)
1796       RecipType = RecipType.substr(1);
1797 
1798     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1799       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1800                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1801   }
1802 
1803   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1804 }
1805 
1806 /// For the input attribute string, return the customized refinement step count
1807 /// for this operation on the specified data type. If the step count does not
1808 /// exist, return the ReciprocalEstimate enum value for unspecified.
1809 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1810   if (Override.empty())
1811     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1812 
1813   SmallVector<StringRef, 4> OverrideVector;
1814   Override.split(OverrideVector, ',');
1815   unsigned NumArgs = OverrideVector.size();
1816 
1817   // Check if "all", "default", or "none" was specified.
1818   if (NumArgs == 1) {
1819     // Look for an optional setting of the number of refinement steps needed
1820     // for this type of reciprocal operation.
1821     size_t RefPos;
1822     uint8_t RefSteps;
1823     if (!parseRefinementStep(Override, RefPos, RefSteps))
1824       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1825 
1826     // Split the string for further processing.
1827     Override = Override.substr(0, RefPos);
1828     assert(Override != "none" &&
1829            "Disabled reciprocals, but specifed refinement steps?");
1830 
1831     // If this is a general override, return the specified number of steps.
1832     if (Override == "all" || Override == "default")
1833       return RefSteps;
1834   }
1835 
1836   // The attribute string may omit the size suffix ('f'/'d').
1837   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1838   std::string VTNameNoSize = VTName;
1839   VTNameNoSize.pop_back();
1840 
1841   for (StringRef RecipType : OverrideVector) {
1842     size_t RefPos;
1843     uint8_t RefSteps;
1844     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1845       continue;
1846 
1847     RecipType = RecipType.substr(0, RefPos);
1848     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1849       return RefSteps;
1850   }
1851 
1852   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1853 }
1854 
1855 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1856                                                     MachineFunction &MF) const {
1857   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1858 }
1859 
1860 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1861                                                    MachineFunction &MF) const {
1862   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1863 }
1864 
1865 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1866                                                MachineFunction &MF) const {
1867   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1868 }
1869 
1870 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1871                                               MachineFunction &MF) const {
1872   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1873 }
1874 
1875 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1876   MF.getRegInfo().freezeReservedRegs(MF);
1877 }
1878