1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MachineValueType.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstddef> 60 #include <cstdint> 61 #include <cstring> 62 #include <iterator> 63 #include <string> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 static cl::opt<bool> JumpIsExpensiveOverride( 70 "jump-is-expensive", cl::init(false), 71 cl::desc("Do not create extra branches to split comparison logic."), 72 cl::Hidden); 73 74 static cl::opt<unsigned> MinimumJumpTableEntries 75 ("min-jump-table-entries", cl::init(4), cl::Hidden, 76 cl::desc("Set minimum number of entries to use a jump table.")); 77 78 static cl::opt<unsigned> MaximumJumpTableSize 79 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 80 cl::desc("Set maximum size of jump tables.")); 81 82 /// Minimum jump table density for normal functions. 83 static cl::opt<unsigned> 84 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 85 cl::desc("Minimum density for building a jump table in " 86 "a normal function")); 87 88 /// Minimum jump table density for -Os or -Oz functions. 89 static cl::opt<unsigned> OptsizeJumpTableDensity( 90 "optsize-jump-table-density", cl::init(40), cl::Hidden, 91 cl::desc("Minimum density for building a jump table in " 92 "an optsize function")); 93 94 // FIXME: This option is only to test if the strict fp operation processed 95 // correctly by preventing mutating strict fp operation to normal fp operation 96 // during development. When the backend supports strict float operation, this 97 // option will be meaningless. 98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 99 cl::desc("Don't mutate strict-float node to a legalize node"), 100 cl::init(false), cl::Hidden); 101 102 static bool darwinHasSinCos(const Triple &TT) { 103 assert(TT.isOSDarwin() && "should be called with darwin triple"); 104 // Don't bother with 32 bit x86. 105 if (TT.getArch() == Triple::x86) 106 return false; 107 // Macos < 10.9 has no sincos_stret. 108 if (TT.isMacOSX()) 109 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 110 // iOS < 7.0 has no sincos_stret. 111 if (TT.isiOS()) 112 return !TT.isOSVersionLT(7, 0); 113 // Any other darwin such as WatchOS/TvOS is new enough. 114 return true; 115 } 116 117 // Although this default value is arbitrary, it is not random. It is assumed 118 // that a condition that evaluates the same way by a higher percentage than this 119 // is best represented as control flow. Therefore, the default value N should be 120 // set such that the win from N% correct executions is greater than the loss 121 // from (100 - N)% mispredicted executions for the majority of intended targets. 122 static cl::opt<int> MinPercentageForPredictableBranch( 123 "min-predictable-branch", cl::init(99), 124 cl::desc("Minimum percentage (0-100) that a condition must be either true " 125 "or false to assume that the condition is predictable"), 126 cl::Hidden); 127 128 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 129 #define HANDLE_LIBCALL(code, name) \ 130 setLibcallName(RTLIB::code, name); 131 #include "llvm/IR/RuntimeLibcalls.def" 132 #undef HANDLE_LIBCALL 133 // Initialize calling conventions to their default. 134 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 135 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 136 137 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 138 if (TT.getArch() == Triple::ppc || TT.isPPC64()) { 139 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 140 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 141 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 142 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 143 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 144 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 145 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 146 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 147 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 148 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 149 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 150 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 151 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 152 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 153 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 154 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 155 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 156 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 157 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 158 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 159 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 160 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 161 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 162 } 163 164 // A few names are different on particular architectures or environments. 165 if (TT.isOSDarwin()) { 166 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 167 // of the gnueabi-style __gnu_*_ieee. 168 // FIXME: What about other targets? 169 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 170 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 171 172 // Some darwins have an optimized __bzero/bzero function. 173 switch (TT.getArch()) { 174 case Triple::x86: 175 case Triple::x86_64: 176 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 177 setLibcallName(RTLIB::BZERO, "__bzero"); 178 break; 179 case Triple::aarch64: 180 case Triple::aarch64_32: 181 setLibcallName(RTLIB::BZERO, "bzero"); 182 break; 183 default: 184 break; 185 } 186 187 if (darwinHasSinCos(TT)) { 188 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 189 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 190 if (TT.isWatchABI()) { 191 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 192 CallingConv::ARM_AAPCS_VFP); 193 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 194 CallingConv::ARM_AAPCS_VFP); 195 } 196 } 197 } else { 198 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 199 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 200 } 201 202 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 203 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 204 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 205 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 206 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 207 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 208 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 209 } 210 211 if (TT.isPS4CPU()) { 212 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 213 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 214 } 215 216 if (TT.isOSOpenBSD()) { 217 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 218 } 219 } 220 221 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 222 /// UNKNOWN_LIBCALL if there is none. 223 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 224 if (OpVT == MVT::f16) { 225 if (RetVT == MVT::f32) 226 return FPEXT_F16_F32; 227 if (RetVT == MVT::f64) 228 return FPEXT_F16_F64; 229 if (RetVT == MVT::f128) 230 return FPEXT_F16_F128; 231 } else if (OpVT == MVT::f32) { 232 if (RetVT == MVT::f64) 233 return FPEXT_F32_F64; 234 if (RetVT == MVT::f128) 235 return FPEXT_F32_F128; 236 if (RetVT == MVT::ppcf128) 237 return FPEXT_F32_PPCF128; 238 } else if (OpVT == MVT::f64) { 239 if (RetVT == MVT::f128) 240 return FPEXT_F64_F128; 241 else if (RetVT == MVT::ppcf128) 242 return FPEXT_F64_PPCF128; 243 } else if (OpVT == MVT::f80) { 244 if (RetVT == MVT::f128) 245 return FPEXT_F80_F128; 246 } 247 248 return UNKNOWN_LIBCALL; 249 } 250 251 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 252 /// UNKNOWN_LIBCALL if there is none. 253 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 254 if (RetVT == MVT::f16) { 255 if (OpVT == MVT::f32) 256 return FPROUND_F32_F16; 257 if (OpVT == MVT::f64) 258 return FPROUND_F64_F16; 259 if (OpVT == MVT::f80) 260 return FPROUND_F80_F16; 261 if (OpVT == MVT::f128) 262 return FPROUND_F128_F16; 263 if (OpVT == MVT::ppcf128) 264 return FPROUND_PPCF128_F16; 265 } else if (RetVT == MVT::f32) { 266 if (OpVT == MVT::f64) 267 return FPROUND_F64_F32; 268 if (OpVT == MVT::f80) 269 return FPROUND_F80_F32; 270 if (OpVT == MVT::f128) 271 return FPROUND_F128_F32; 272 if (OpVT == MVT::ppcf128) 273 return FPROUND_PPCF128_F32; 274 } else if (RetVT == MVT::f64) { 275 if (OpVT == MVT::f80) 276 return FPROUND_F80_F64; 277 if (OpVT == MVT::f128) 278 return FPROUND_F128_F64; 279 if (OpVT == MVT::ppcf128) 280 return FPROUND_PPCF128_F64; 281 } else if (RetVT == MVT::f80) { 282 if (OpVT == MVT::f128) 283 return FPROUND_F128_F80; 284 } 285 286 return UNKNOWN_LIBCALL; 287 } 288 289 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 290 /// UNKNOWN_LIBCALL if there is none. 291 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 292 if (OpVT == MVT::f16) { 293 if (RetVT == MVT::i32) 294 return FPTOSINT_F16_I32; 295 if (RetVT == MVT::i64) 296 return FPTOSINT_F16_I64; 297 if (RetVT == MVT::i128) 298 return FPTOSINT_F16_I128; 299 } else if (OpVT == MVT::f32) { 300 if (RetVT == MVT::i32) 301 return FPTOSINT_F32_I32; 302 if (RetVT == MVT::i64) 303 return FPTOSINT_F32_I64; 304 if (RetVT == MVT::i128) 305 return FPTOSINT_F32_I128; 306 } else if (OpVT == MVT::f64) { 307 if (RetVT == MVT::i32) 308 return FPTOSINT_F64_I32; 309 if (RetVT == MVT::i64) 310 return FPTOSINT_F64_I64; 311 if (RetVT == MVT::i128) 312 return FPTOSINT_F64_I128; 313 } else if (OpVT == MVT::f80) { 314 if (RetVT == MVT::i32) 315 return FPTOSINT_F80_I32; 316 if (RetVT == MVT::i64) 317 return FPTOSINT_F80_I64; 318 if (RetVT == MVT::i128) 319 return FPTOSINT_F80_I128; 320 } else if (OpVT == MVT::f128) { 321 if (RetVT == MVT::i32) 322 return FPTOSINT_F128_I32; 323 if (RetVT == MVT::i64) 324 return FPTOSINT_F128_I64; 325 if (RetVT == MVT::i128) 326 return FPTOSINT_F128_I128; 327 } else if (OpVT == MVT::ppcf128) { 328 if (RetVT == MVT::i32) 329 return FPTOSINT_PPCF128_I32; 330 if (RetVT == MVT::i64) 331 return FPTOSINT_PPCF128_I64; 332 if (RetVT == MVT::i128) 333 return FPTOSINT_PPCF128_I128; 334 } 335 return UNKNOWN_LIBCALL; 336 } 337 338 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 339 /// UNKNOWN_LIBCALL if there is none. 340 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 341 if (OpVT == MVT::f16) { 342 if (RetVT == MVT::i32) 343 return FPTOUINT_F16_I32; 344 if (RetVT == MVT::i64) 345 return FPTOUINT_F16_I64; 346 if (RetVT == MVT::i128) 347 return FPTOUINT_F16_I128; 348 } else if (OpVT == MVT::f32) { 349 if (RetVT == MVT::i32) 350 return FPTOUINT_F32_I32; 351 if (RetVT == MVT::i64) 352 return FPTOUINT_F32_I64; 353 if (RetVT == MVT::i128) 354 return FPTOUINT_F32_I128; 355 } else if (OpVT == MVT::f64) { 356 if (RetVT == MVT::i32) 357 return FPTOUINT_F64_I32; 358 if (RetVT == MVT::i64) 359 return FPTOUINT_F64_I64; 360 if (RetVT == MVT::i128) 361 return FPTOUINT_F64_I128; 362 } else if (OpVT == MVT::f80) { 363 if (RetVT == MVT::i32) 364 return FPTOUINT_F80_I32; 365 if (RetVT == MVT::i64) 366 return FPTOUINT_F80_I64; 367 if (RetVT == MVT::i128) 368 return FPTOUINT_F80_I128; 369 } else if (OpVT == MVT::f128) { 370 if (RetVT == MVT::i32) 371 return FPTOUINT_F128_I32; 372 if (RetVT == MVT::i64) 373 return FPTOUINT_F128_I64; 374 if (RetVT == MVT::i128) 375 return FPTOUINT_F128_I128; 376 } else if (OpVT == MVT::ppcf128) { 377 if (RetVT == MVT::i32) 378 return FPTOUINT_PPCF128_I32; 379 if (RetVT == MVT::i64) 380 return FPTOUINT_PPCF128_I64; 381 if (RetVT == MVT::i128) 382 return FPTOUINT_PPCF128_I128; 383 } 384 return UNKNOWN_LIBCALL; 385 } 386 387 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 388 /// UNKNOWN_LIBCALL if there is none. 389 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 390 if (OpVT == MVT::i32) { 391 if (RetVT == MVT::f16) 392 return SINTTOFP_I32_F16; 393 if (RetVT == MVT::f32) 394 return SINTTOFP_I32_F32; 395 if (RetVT == MVT::f64) 396 return SINTTOFP_I32_F64; 397 if (RetVT == MVT::f80) 398 return SINTTOFP_I32_F80; 399 if (RetVT == MVT::f128) 400 return SINTTOFP_I32_F128; 401 if (RetVT == MVT::ppcf128) 402 return SINTTOFP_I32_PPCF128; 403 } else if (OpVT == MVT::i64) { 404 if (RetVT == MVT::f16) 405 return SINTTOFP_I64_F16; 406 if (RetVT == MVT::f32) 407 return SINTTOFP_I64_F32; 408 if (RetVT == MVT::f64) 409 return SINTTOFP_I64_F64; 410 if (RetVT == MVT::f80) 411 return SINTTOFP_I64_F80; 412 if (RetVT == MVT::f128) 413 return SINTTOFP_I64_F128; 414 if (RetVT == MVT::ppcf128) 415 return SINTTOFP_I64_PPCF128; 416 } else if (OpVT == MVT::i128) { 417 if (RetVT == MVT::f16) 418 return SINTTOFP_I128_F16; 419 if (RetVT == MVT::f32) 420 return SINTTOFP_I128_F32; 421 if (RetVT == MVT::f64) 422 return SINTTOFP_I128_F64; 423 if (RetVT == MVT::f80) 424 return SINTTOFP_I128_F80; 425 if (RetVT == MVT::f128) 426 return SINTTOFP_I128_F128; 427 if (RetVT == MVT::ppcf128) 428 return SINTTOFP_I128_PPCF128; 429 } 430 return UNKNOWN_LIBCALL; 431 } 432 433 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 434 /// UNKNOWN_LIBCALL if there is none. 435 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 436 if (OpVT == MVT::i32) { 437 if (RetVT == MVT::f16) 438 return UINTTOFP_I32_F16; 439 if (RetVT == MVT::f32) 440 return UINTTOFP_I32_F32; 441 if (RetVT == MVT::f64) 442 return UINTTOFP_I32_F64; 443 if (RetVT == MVT::f80) 444 return UINTTOFP_I32_F80; 445 if (RetVT == MVT::f128) 446 return UINTTOFP_I32_F128; 447 if (RetVT == MVT::ppcf128) 448 return UINTTOFP_I32_PPCF128; 449 } else if (OpVT == MVT::i64) { 450 if (RetVT == MVT::f16) 451 return UINTTOFP_I64_F16; 452 if (RetVT == MVT::f32) 453 return UINTTOFP_I64_F32; 454 if (RetVT == MVT::f64) 455 return UINTTOFP_I64_F64; 456 if (RetVT == MVT::f80) 457 return UINTTOFP_I64_F80; 458 if (RetVT == MVT::f128) 459 return UINTTOFP_I64_F128; 460 if (RetVT == MVT::ppcf128) 461 return UINTTOFP_I64_PPCF128; 462 } else if (OpVT == MVT::i128) { 463 if (RetVT == MVT::f16) 464 return UINTTOFP_I128_F16; 465 if (RetVT == MVT::f32) 466 return UINTTOFP_I128_F32; 467 if (RetVT == MVT::f64) 468 return UINTTOFP_I128_F64; 469 if (RetVT == MVT::f80) 470 return UINTTOFP_I128_F80; 471 if (RetVT == MVT::f128) 472 return UINTTOFP_I128_F128; 473 if (RetVT == MVT::ppcf128) 474 return UINTTOFP_I128_PPCF128; 475 } 476 return UNKNOWN_LIBCALL; 477 } 478 479 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 480 MVT VT) { 481 unsigned ModeN, ModelN; 482 switch (VT.SimpleTy) { 483 case MVT::i8: 484 ModeN = 0; 485 break; 486 case MVT::i16: 487 ModeN = 1; 488 break; 489 case MVT::i32: 490 ModeN = 2; 491 break; 492 case MVT::i64: 493 ModeN = 3; 494 break; 495 case MVT::i128: 496 ModeN = 4; 497 break; 498 default: 499 return UNKNOWN_LIBCALL; 500 } 501 502 switch (Order) { 503 case AtomicOrdering::Monotonic: 504 ModelN = 0; 505 break; 506 case AtomicOrdering::Acquire: 507 ModelN = 1; 508 break; 509 case AtomicOrdering::Release: 510 ModelN = 2; 511 break; 512 case AtomicOrdering::AcquireRelease: 513 case AtomicOrdering::SequentiallyConsistent: 514 ModelN = 3; 515 break; 516 default: 517 return UNKNOWN_LIBCALL; 518 } 519 520 #define LCALLS(A, B) \ 521 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 522 #define LCALL5(A) \ 523 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 524 switch (Opc) { 525 case ISD::ATOMIC_CMP_SWAP: { 526 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 527 return LC[ModeN][ModelN]; 528 } 529 case ISD::ATOMIC_SWAP: { 530 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 531 return LC[ModeN][ModelN]; 532 } 533 case ISD::ATOMIC_LOAD_ADD: { 534 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 535 return LC[ModeN][ModelN]; 536 } 537 case ISD::ATOMIC_LOAD_OR: { 538 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 539 return LC[ModeN][ModelN]; 540 } 541 case ISD::ATOMIC_LOAD_CLR: { 542 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 543 return LC[ModeN][ModelN]; 544 } 545 case ISD::ATOMIC_LOAD_XOR: { 546 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 547 return LC[ModeN][ModelN]; 548 } 549 default: 550 return UNKNOWN_LIBCALL; 551 } 552 #undef LCALLS 553 #undef LCALL5 554 } 555 556 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 557 #define OP_TO_LIBCALL(Name, Enum) \ 558 case Name: \ 559 switch (VT.SimpleTy) { \ 560 default: \ 561 return UNKNOWN_LIBCALL; \ 562 case MVT::i8: \ 563 return Enum##_1; \ 564 case MVT::i16: \ 565 return Enum##_2; \ 566 case MVT::i32: \ 567 return Enum##_4; \ 568 case MVT::i64: \ 569 return Enum##_8; \ 570 case MVT::i128: \ 571 return Enum##_16; \ 572 } 573 574 switch (Opc) { 575 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 576 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 577 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 578 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 579 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 580 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 581 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 582 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 583 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 584 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 585 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 586 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 587 } 588 589 #undef OP_TO_LIBCALL 590 591 return UNKNOWN_LIBCALL; 592 } 593 594 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 595 switch (ElementSize) { 596 case 1: 597 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 598 case 2: 599 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 600 case 4: 601 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 602 case 8: 603 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 604 case 16: 605 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 606 default: 607 return UNKNOWN_LIBCALL; 608 } 609 } 610 611 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 612 switch (ElementSize) { 613 case 1: 614 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 615 case 2: 616 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 617 case 4: 618 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 619 case 8: 620 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 621 case 16: 622 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 623 default: 624 return UNKNOWN_LIBCALL; 625 } 626 } 627 628 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 629 switch (ElementSize) { 630 case 1: 631 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 632 case 2: 633 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 634 case 4: 635 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 636 case 8: 637 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 638 case 16: 639 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 640 default: 641 return UNKNOWN_LIBCALL; 642 } 643 } 644 645 /// InitCmpLibcallCCs - Set default comparison libcall CC. 646 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 647 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 648 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 649 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 650 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 651 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 652 CCs[RTLIB::UNE_F32] = ISD::SETNE; 653 CCs[RTLIB::UNE_F64] = ISD::SETNE; 654 CCs[RTLIB::UNE_F128] = ISD::SETNE; 655 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 656 CCs[RTLIB::OGE_F32] = ISD::SETGE; 657 CCs[RTLIB::OGE_F64] = ISD::SETGE; 658 CCs[RTLIB::OGE_F128] = ISD::SETGE; 659 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 660 CCs[RTLIB::OLT_F32] = ISD::SETLT; 661 CCs[RTLIB::OLT_F64] = ISD::SETLT; 662 CCs[RTLIB::OLT_F128] = ISD::SETLT; 663 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 664 CCs[RTLIB::OLE_F32] = ISD::SETLE; 665 CCs[RTLIB::OLE_F64] = ISD::SETLE; 666 CCs[RTLIB::OLE_F128] = ISD::SETLE; 667 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 668 CCs[RTLIB::OGT_F32] = ISD::SETGT; 669 CCs[RTLIB::OGT_F64] = ISD::SETGT; 670 CCs[RTLIB::OGT_F128] = ISD::SETGT; 671 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 672 CCs[RTLIB::UO_F32] = ISD::SETNE; 673 CCs[RTLIB::UO_F64] = ISD::SETNE; 674 CCs[RTLIB::UO_F128] = ISD::SETNE; 675 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 676 } 677 678 /// NOTE: The TargetMachine owns TLOF. 679 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 680 initActions(); 681 682 // Perform these initializations only once. 683 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 684 MaxLoadsPerMemcmp = 8; 685 MaxGluedStoresPerMemcpy = 0; 686 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 687 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 688 HasMultipleConditionRegisters = false; 689 HasExtractBitsInsn = false; 690 JumpIsExpensive = JumpIsExpensiveOverride; 691 PredictableSelectIsExpensive = false; 692 EnableExtLdPromotion = false; 693 StackPointerRegisterToSaveRestore = 0; 694 BooleanContents = UndefinedBooleanContent; 695 BooleanFloatContents = UndefinedBooleanContent; 696 BooleanVectorContents = UndefinedBooleanContent; 697 SchedPreferenceInfo = Sched::ILP; 698 GatherAllAliasesMaxDepth = 18; 699 IsStrictFPEnabled = DisableStrictNodeMutation; 700 // TODO: the default will be switched to 0 in the next commit, along 701 // with the Target-specific changes necessary. 702 MaxAtomicSizeInBitsSupported = 1024; 703 704 MinCmpXchgSizeInBits = 0; 705 SupportsUnalignedAtomics = false; 706 707 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 708 709 InitLibcalls(TM.getTargetTriple()); 710 InitCmpLibcallCCs(CmpLibcallCCs); 711 } 712 713 void TargetLoweringBase::initActions() { 714 // All operations default to being supported. 715 memset(OpActions, 0, sizeof(OpActions)); 716 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 717 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 718 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 719 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 720 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 721 std::fill(std::begin(TargetDAGCombineArray), 722 std::end(TargetDAGCombineArray), 0); 723 724 for (MVT VT : MVT::fp_valuetypes()) { 725 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 726 if (IntVT.isValid()) { 727 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 728 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 729 } 730 } 731 732 // Set default actions for various operations. 733 for (MVT VT : MVT::all_valuetypes()) { 734 // Default all indexed load / store to expand. 735 for (unsigned IM = (unsigned)ISD::PRE_INC; 736 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 737 setIndexedLoadAction(IM, VT, Expand); 738 setIndexedStoreAction(IM, VT, Expand); 739 setIndexedMaskedLoadAction(IM, VT, Expand); 740 setIndexedMaskedStoreAction(IM, VT, Expand); 741 } 742 743 // Most backends expect to see the node which just returns the value loaded. 744 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 745 746 // These operations default to expand. 747 setOperationAction(ISD::FGETSIGN, VT, Expand); 748 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 749 setOperationAction(ISD::FMINNUM, VT, Expand); 750 setOperationAction(ISD::FMAXNUM, VT, Expand); 751 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); 752 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); 753 setOperationAction(ISD::FMINIMUM, VT, Expand); 754 setOperationAction(ISD::FMAXIMUM, VT, Expand); 755 setOperationAction(ISD::FMAD, VT, Expand); 756 setOperationAction(ISD::SMIN, VT, Expand); 757 setOperationAction(ISD::SMAX, VT, Expand); 758 setOperationAction(ISD::UMIN, VT, Expand); 759 setOperationAction(ISD::UMAX, VT, Expand); 760 setOperationAction(ISD::ABS, VT, Expand); 761 setOperationAction(ISD::FSHL, VT, Expand); 762 setOperationAction(ISD::FSHR, VT, Expand); 763 setOperationAction(ISD::SADDSAT, VT, Expand); 764 setOperationAction(ISD::UADDSAT, VT, Expand); 765 setOperationAction(ISD::SSUBSAT, VT, Expand); 766 setOperationAction(ISD::USUBSAT, VT, Expand); 767 setOperationAction(ISD::SSHLSAT, VT, Expand); 768 setOperationAction(ISD::USHLSAT, VT, Expand); 769 setOperationAction(ISD::SMULFIX, VT, Expand); 770 setOperationAction(ISD::SMULFIXSAT, VT, Expand); 771 setOperationAction(ISD::UMULFIX, VT, Expand); 772 setOperationAction(ISD::UMULFIXSAT, VT, Expand); 773 setOperationAction(ISD::SDIVFIX, VT, Expand); 774 setOperationAction(ISD::SDIVFIXSAT, VT, Expand); 775 setOperationAction(ISD::UDIVFIX, VT, Expand); 776 setOperationAction(ISD::UDIVFIXSAT, VT, Expand); 777 778 // Overflow operations default to expand 779 setOperationAction(ISD::SADDO, VT, Expand); 780 setOperationAction(ISD::SSUBO, VT, Expand); 781 setOperationAction(ISD::UADDO, VT, Expand); 782 setOperationAction(ISD::USUBO, VT, Expand); 783 setOperationAction(ISD::SMULO, VT, Expand); 784 setOperationAction(ISD::UMULO, VT, Expand); 785 786 // ADDCARRY operations default to expand 787 setOperationAction(ISD::ADDCARRY, VT, Expand); 788 setOperationAction(ISD::SUBCARRY, VT, Expand); 789 setOperationAction(ISD::SETCCCARRY, VT, Expand); 790 setOperationAction(ISD::SADDO_CARRY, VT, Expand); 791 setOperationAction(ISD::SSUBO_CARRY, VT, Expand); 792 793 // ADDC/ADDE/SUBC/SUBE default to expand. 794 setOperationAction(ISD::ADDC, VT, Expand); 795 setOperationAction(ISD::ADDE, VT, Expand); 796 setOperationAction(ISD::SUBC, VT, Expand); 797 setOperationAction(ISD::SUBE, VT, Expand); 798 799 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 800 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 801 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 802 803 setOperationAction(ISD::BITREVERSE, VT, Expand); 804 setOperationAction(ISD::PARITY, VT, Expand); 805 806 // These library functions default to expand. 807 setOperationAction(ISD::FROUND, VT, Expand); 808 setOperationAction(ISD::FROUNDEVEN, VT, Expand); 809 setOperationAction(ISD::FPOWI, VT, Expand); 810 811 // These operations default to expand for vector types. 812 if (VT.isVector()) { 813 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 814 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 815 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 816 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 817 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 818 setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); 819 } 820 821 // Constrained floating-point operations default to expand. 822 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 823 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 824 #include "llvm/IR/ConstrainedOps.def" 825 826 // For most targets @llvm.get.dynamic.area.offset just returns 0. 827 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 828 829 // Vector reduction default to expand. 830 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); 831 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); 832 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); 833 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); 834 setOperationAction(ISD::VECREDUCE_AND, VT, Expand); 835 setOperationAction(ISD::VECREDUCE_OR, VT, Expand); 836 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); 837 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); 838 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); 839 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); 840 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); 841 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); 842 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); 843 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand); 844 setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand); 845 } 846 847 // Most targets ignore the @llvm.prefetch intrinsic. 848 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 849 850 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 851 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 852 853 // ConstantFP nodes default to expand. Targets can either change this to 854 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 855 // to optimize expansions for certain constants. 856 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 857 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 858 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 859 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 860 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 861 862 // These library functions default to expand. 863 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 864 setOperationAction(ISD::FCBRT, VT, Expand); 865 setOperationAction(ISD::FLOG , VT, Expand); 866 setOperationAction(ISD::FLOG2, VT, Expand); 867 setOperationAction(ISD::FLOG10, VT, Expand); 868 setOperationAction(ISD::FEXP , VT, Expand); 869 setOperationAction(ISD::FEXP2, VT, Expand); 870 setOperationAction(ISD::FFLOOR, VT, Expand); 871 setOperationAction(ISD::FNEARBYINT, VT, Expand); 872 setOperationAction(ISD::FCEIL, VT, Expand); 873 setOperationAction(ISD::FRINT, VT, Expand); 874 setOperationAction(ISD::FTRUNC, VT, Expand); 875 setOperationAction(ISD::FROUND, VT, Expand); 876 setOperationAction(ISD::FROUNDEVEN, VT, Expand); 877 setOperationAction(ISD::LROUND, VT, Expand); 878 setOperationAction(ISD::LLROUND, VT, Expand); 879 setOperationAction(ISD::LRINT, VT, Expand); 880 setOperationAction(ISD::LLRINT, VT, Expand); 881 } 882 883 // Default ISD::TRAP to expand (which turns it into abort). 884 setOperationAction(ISD::TRAP, MVT::Other, Expand); 885 886 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 887 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 888 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 889 } 890 891 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 892 EVT) const { 893 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 894 } 895 896 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 897 bool LegalTypes) const { 898 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 899 if (LHSTy.isVector()) 900 return LHSTy; 901 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 902 : getPointerTy(DL); 903 } 904 905 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 906 assert(isTypeLegal(VT)); 907 switch (Op) { 908 default: 909 return false; 910 case ISD::SDIV: 911 case ISD::UDIV: 912 case ISD::SREM: 913 case ISD::UREM: 914 return true; 915 } 916 } 917 918 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 919 unsigned DestAS) const { 920 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 921 } 922 923 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 924 // If the command-line option was specified, ignore this request. 925 if (!JumpIsExpensiveOverride.getNumOccurrences()) 926 JumpIsExpensive = isExpensive; 927 } 928 929 TargetLoweringBase::LegalizeKind 930 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 931 // If this is a simple type, use the ComputeRegisterProp mechanism. 932 if (VT.isSimple()) { 933 MVT SVT = VT.getSimpleVT(); 934 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 935 MVT NVT = TransformToType[SVT.SimpleTy]; 936 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 937 938 assert((LA == TypeLegal || LA == TypeSoftenFloat || 939 LA == TypeSoftPromoteHalf || 940 (NVT.isVector() || 941 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 942 "Promote may not follow Expand or Promote"); 943 944 if (LA == TypeSplitVector) 945 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 946 if (LA == TypeScalarizeVector) 947 return LegalizeKind(LA, SVT.getVectorElementType()); 948 return LegalizeKind(LA, NVT); 949 } 950 951 // Handle Extended Scalar Types. 952 if (!VT.isVector()) { 953 assert(VT.isInteger() && "Float types must be simple"); 954 unsigned BitSize = VT.getSizeInBits(); 955 // First promote to a power-of-two size, then expand if necessary. 956 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 957 EVT NVT = VT.getRoundIntegerType(Context); 958 assert(NVT != VT && "Unable to round integer VT"); 959 LegalizeKind NextStep = getTypeConversion(Context, NVT); 960 // Avoid multi-step promotion. 961 if (NextStep.first == TypePromoteInteger) 962 return NextStep; 963 // Return rounded integer type. 964 return LegalizeKind(TypePromoteInteger, NVT); 965 } 966 967 return LegalizeKind(TypeExpandInteger, 968 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 969 } 970 971 // Handle vector types. 972 ElementCount NumElts = VT.getVectorElementCount(); 973 EVT EltVT = VT.getVectorElementType(); 974 975 // Vectors with only one element are always scalarized. 976 if (NumElts.isScalar()) 977 return LegalizeKind(TypeScalarizeVector, EltVT); 978 979 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 980 report_fatal_error("Cannot legalize this vector"); 981 982 // Try to widen vector elements until the element type is a power of two and 983 // promote it to a legal type later on, for example: 984 // <3 x i8> -> <4 x i8> -> <4 x i32> 985 if (EltVT.isInteger()) { 986 // Vectors with a number of elements that is not a power of two are always 987 // widened, for example <3 x i8> -> <4 x i8>. 988 if (!VT.isPow2VectorType()) { 989 NumElts = NumElts.coefficientNextPowerOf2(); 990 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 991 return LegalizeKind(TypeWidenVector, NVT); 992 } 993 994 // Examine the element type. 995 LegalizeKind LK = getTypeConversion(Context, EltVT); 996 997 // If type is to be expanded, split the vector. 998 // <4 x i140> -> <2 x i140> 999 if (LK.first == TypeExpandInteger) 1000 return LegalizeKind(TypeSplitVector, 1001 VT.getHalfNumVectorElementsVT(Context)); 1002 1003 // Promote the integer element types until a legal vector type is found 1004 // or until the element integer type is too big. If a legal type was not 1005 // found, fallback to the usual mechanism of widening/splitting the 1006 // vector. 1007 EVT OldEltVT = EltVT; 1008 while (true) { 1009 // Increase the bitwidth of the element to the next pow-of-two 1010 // (which is greater than 8 bits). 1011 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1012 .getRoundIntegerType(Context); 1013 1014 // Stop trying when getting a non-simple element type. 1015 // Note that vector elements may be greater than legal vector element 1016 // types. Example: X86 XMM registers hold 64bit element on 32bit 1017 // systems. 1018 if (!EltVT.isSimple()) 1019 break; 1020 1021 // Build a new vector type and check if it is legal. 1022 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1023 // Found a legal promoted vector type. 1024 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1025 return LegalizeKind(TypePromoteInteger, 1026 EVT::getVectorVT(Context, EltVT, NumElts)); 1027 } 1028 1029 // Reset the type to the unexpanded type if we did not find a legal vector 1030 // type with a promoted vector element type. 1031 EltVT = OldEltVT; 1032 } 1033 1034 // Try to widen the vector until a legal type is found. 1035 // If there is no wider legal type, split the vector. 1036 while (true) { 1037 // Round up to the next power of 2. 1038 NumElts = NumElts.coefficientNextPowerOf2(); 1039 1040 // If there is no simple vector type with this many elements then there 1041 // cannot be a larger legal vector type. Note that this assumes that 1042 // there are no skipped intermediate vector types in the simple types. 1043 if (!EltVT.isSimple()) 1044 break; 1045 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1046 if (LargerVector == MVT()) 1047 break; 1048 1049 // If this type is legal then widen the vector. 1050 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1051 return LegalizeKind(TypeWidenVector, LargerVector); 1052 } 1053 1054 // Widen odd vectors to next power of two. 1055 if (!VT.isPow2VectorType()) { 1056 EVT NVT = VT.getPow2VectorType(Context); 1057 return LegalizeKind(TypeWidenVector, NVT); 1058 } 1059 1060 // Vectors with illegal element types are expanded. 1061 EVT NVT = EVT::getVectorVT(Context, EltVT, 1062 VT.getVectorElementCount().divideCoefficientBy(2)); 1063 return LegalizeKind(TypeSplitVector, NVT); 1064 } 1065 1066 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1067 unsigned &NumIntermediates, 1068 MVT &RegisterVT, 1069 TargetLoweringBase *TLI) { 1070 // Figure out the right, legal destination reg to copy into. 1071 ElementCount EC = VT.getVectorElementCount(); 1072 MVT EltTy = VT.getVectorElementType(); 1073 1074 unsigned NumVectorRegs = 1; 1075 1076 // Scalable vectors cannot be scalarized, so splitting or widening is 1077 // required. 1078 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1079 llvm_unreachable( 1080 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1081 1082 // FIXME: We don't support non-power-of-2-sized vectors for now. 1083 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1084 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1085 // Split EC to unit size (scalable property is preserved). 1086 NumVectorRegs = EC.getKnownMinValue(); 1087 EC = ElementCount::getFixed(1); 1088 } 1089 1090 // Divide the input until we get to a supported size. This will 1091 // always end up with an EC that represent a scalar or a scalable 1092 // scalar. 1093 while (EC.getKnownMinValue() > 1 && 1094 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1095 EC = EC.divideCoefficientBy(2); 1096 NumVectorRegs <<= 1; 1097 } 1098 1099 NumIntermediates = NumVectorRegs; 1100 1101 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1102 if (!TLI->isTypeLegal(NewVT)) 1103 NewVT = EltTy; 1104 IntermediateVT = NewVT; 1105 1106 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1107 1108 // Convert sizes such as i33 to i64. 1109 if (!isPowerOf2_32(LaneSizeInBits)) 1110 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1111 1112 MVT DestVT = TLI->getRegisterType(NewVT); 1113 RegisterVT = DestVT; 1114 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1115 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1116 1117 // Otherwise, promotion or legal types use the same number of registers as 1118 // the vector decimated to the appropriate level. 1119 return NumVectorRegs; 1120 } 1121 1122 /// isLegalRC - Return true if the value types that can be represented by the 1123 /// specified register class are all legal. 1124 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1125 const TargetRegisterClass &RC) const { 1126 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1127 if (isTypeLegal(*I)) 1128 return true; 1129 return false; 1130 } 1131 1132 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1133 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1134 MachineBasicBlock * 1135 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1136 MachineBasicBlock *MBB) const { 1137 MachineInstr *MI = &InitialMI; 1138 MachineFunction &MF = *MI->getMF(); 1139 MachineFrameInfo &MFI = MF.getFrameInfo(); 1140 1141 // We're handling multiple types of operands here: 1142 // PATCHPOINT MetaArgs - live-in, read only, direct 1143 // STATEPOINT Deopt Spill - live-through, read only, indirect 1144 // STATEPOINT Deopt Alloca - live-through, read only, direct 1145 // (We're currently conservative and mark the deopt slots read/write in 1146 // practice.) 1147 // STATEPOINT GC Spill - live-through, read/write, indirect 1148 // STATEPOINT GC Alloca - live-through, read/write, direct 1149 // The live-in vs live-through is handled already (the live through ones are 1150 // all stack slots), but we need to handle the different type of stackmap 1151 // operands and memory effects here. 1152 1153 if (!llvm::any_of(MI->operands(), 1154 [](MachineOperand &Operand) { return Operand.isFI(); })) 1155 return MBB; 1156 1157 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1158 1159 // Inherit previous memory operands. 1160 MIB.cloneMemRefs(*MI); 1161 1162 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1163 MachineOperand &MO = MI->getOperand(i); 1164 if (!MO.isFI()) { 1165 // Index of Def operand this Use it tied to. 1166 // Since Defs are coming before Uses, if Use is tied, then 1167 // index of Def must be smaller that index of that Use. 1168 // Also, Defs preserve their position in new MI. 1169 unsigned TiedTo = i; 1170 if (MO.isReg() && MO.isTied()) 1171 TiedTo = MI->findTiedOperandIdx(i); 1172 MIB.add(MO); 1173 if (TiedTo < i) 1174 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1175 continue; 1176 } 1177 1178 // foldMemoryOperand builds a new MI after replacing a single FI operand 1179 // with the canonical set of five x86 addressing-mode operands. 1180 int FI = MO.getIndex(); 1181 1182 // Add frame index operands recognized by stackmaps.cpp 1183 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1184 // indirect-mem-ref tag, size, #FI, offset. 1185 // Used for spills inserted by StatepointLowering. This codepath is not 1186 // used for patchpoints/stackmaps at all, for these spilling is done via 1187 // foldMemoryOperand callback only. 1188 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1189 MIB.addImm(StackMaps::IndirectMemRefOp); 1190 MIB.addImm(MFI.getObjectSize(FI)); 1191 MIB.add(MO); 1192 MIB.addImm(0); 1193 } else { 1194 // direct-mem-ref tag, #FI, offset. 1195 // Used by patchpoint, and direct alloca arguments to statepoints 1196 MIB.addImm(StackMaps::DirectMemRefOp); 1197 MIB.add(MO); 1198 MIB.addImm(0); 1199 } 1200 1201 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1202 1203 // Add a new memory operand for this FI. 1204 assert(MFI.getObjectOffset(FI) != -1); 1205 1206 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1207 // PATCHPOINT should be updated to do the same. (TODO) 1208 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1209 auto Flags = MachineMemOperand::MOLoad; 1210 MachineMemOperand *MMO = MF.getMachineMemOperand( 1211 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1212 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1213 MIB->addMemOperand(MF, MMO); 1214 } 1215 } 1216 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1217 MI->eraseFromParent(); 1218 return MBB; 1219 } 1220 1221 MachineBasicBlock * 1222 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, 1223 MachineBasicBlock *MBB) const { 1224 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && 1225 "Called emitXRayCustomEvent on the wrong MI!"); 1226 auto &MF = *MI.getMF(); 1227 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1228 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1229 MIB.add(MI.getOperand(OpIdx)); 1230 1231 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1232 MI.eraseFromParent(); 1233 return MBB; 1234 } 1235 1236 MachineBasicBlock * 1237 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, 1238 MachineBasicBlock *MBB) const { 1239 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && 1240 "Called emitXRayTypedEvent on the wrong MI!"); 1241 auto &MF = *MI.getMF(); 1242 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1243 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1244 MIB.add(MI.getOperand(OpIdx)); 1245 1246 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1247 MI.eraseFromParent(); 1248 return MBB; 1249 } 1250 1251 /// findRepresentativeClass - Return the largest legal super-reg register class 1252 /// of the register class for the specified type and its associated "cost". 1253 // This function is in TargetLowering because it uses RegClassForVT which would 1254 // need to be moved to TargetRegisterInfo and would necessitate moving 1255 // isTypeLegal over as well - a massive change that would just require 1256 // TargetLowering having a TargetRegisterInfo class member that it would use. 1257 std::pair<const TargetRegisterClass *, uint8_t> 1258 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1259 MVT VT) const { 1260 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1261 if (!RC) 1262 return std::make_pair(RC, 0); 1263 1264 // Compute the set of all super-register classes. 1265 BitVector SuperRegRC(TRI->getNumRegClasses()); 1266 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1267 SuperRegRC.setBitsInMask(RCI.getMask()); 1268 1269 // Find the first legal register class with the largest spill size. 1270 const TargetRegisterClass *BestRC = RC; 1271 for (unsigned i : SuperRegRC.set_bits()) { 1272 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1273 // We want the largest possible spill size. 1274 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1275 continue; 1276 if (!isLegalRC(*TRI, *SuperRC)) 1277 continue; 1278 BestRC = SuperRC; 1279 } 1280 return std::make_pair(BestRC, 1); 1281 } 1282 1283 /// computeRegisterProperties - Once all of the register classes are added, 1284 /// this allows us to compute derived properties we expose. 1285 void TargetLoweringBase::computeRegisterProperties( 1286 const TargetRegisterInfo *TRI) { 1287 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1288 "Too many value types for ValueTypeActions to hold!"); 1289 1290 // Everything defaults to needing one register. 1291 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1292 NumRegistersForVT[i] = 1; 1293 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1294 } 1295 // ...except isVoid, which doesn't need any registers. 1296 NumRegistersForVT[MVT::isVoid] = 0; 1297 1298 // Find the largest integer register class. 1299 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1300 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1301 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1302 1303 // Every integer value type larger than this largest register takes twice as 1304 // many registers to represent as the previous ValueType. 1305 for (unsigned ExpandedReg = LargestIntReg + 1; 1306 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1307 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1308 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1309 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1310 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1311 TypeExpandInteger); 1312 } 1313 1314 // Inspect all of the ValueType's smaller than the largest integer 1315 // register to see which ones need promotion. 1316 unsigned LegalIntReg = LargestIntReg; 1317 for (unsigned IntReg = LargestIntReg - 1; 1318 IntReg >= (unsigned)MVT::i1; --IntReg) { 1319 MVT IVT = (MVT::SimpleValueType)IntReg; 1320 if (isTypeLegal(IVT)) { 1321 LegalIntReg = IntReg; 1322 } else { 1323 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1324 (MVT::SimpleValueType)LegalIntReg; 1325 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1326 } 1327 } 1328 1329 // ppcf128 type is really two f64's. 1330 if (!isTypeLegal(MVT::ppcf128)) { 1331 if (isTypeLegal(MVT::f64)) { 1332 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1333 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1334 TransformToType[MVT::ppcf128] = MVT::f64; 1335 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1336 } else { 1337 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1338 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1339 TransformToType[MVT::ppcf128] = MVT::i128; 1340 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1341 } 1342 } 1343 1344 // Decide how to handle f128. If the target does not have native f128 support, 1345 // expand it to i128 and we will be generating soft float library calls. 1346 if (!isTypeLegal(MVT::f128)) { 1347 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1348 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1349 TransformToType[MVT::f128] = MVT::i128; 1350 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1351 } 1352 1353 // Decide how to handle f64. If the target does not have native f64 support, 1354 // expand it to i64 and we will be generating soft float library calls. 1355 if (!isTypeLegal(MVT::f64)) { 1356 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1357 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1358 TransformToType[MVT::f64] = MVT::i64; 1359 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1360 } 1361 1362 // Decide how to handle f32. If the target does not have native f32 support, 1363 // expand it to i32 and we will be generating soft float library calls. 1364 if (!isTypeLegal(MVT::f32)) { 1365 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1366 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1367 TransformToType[MVT::f32] = MVT::i32; 1368 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1369 } 1370 1371 // Decide how to handle f16. If the target does not have native f16 support, 1372 // promote it to f32, because there are no f16 library calls (except for 1373 // conversions). 1374 if (!isTypeLegal(MVT::f16)) { 1375 // Allow targets to control how we legalize half. 1376 if (softPromoteHalfType()) { 1377 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1378 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1379 TransformToType[MVT::f16] = MVT::f32; 1380 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1381 } else { 1382 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1383 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1384 TransformToType[MVT::f16] = MVT::f32; 1385 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1386 } 1387 } 1388 1389 // Loop over all of the vector value types to see which need transformations. 1390 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1391 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1392 MVT VT = (MVT::SimpleValueType) i; 1393 if (isTypeLegal(VT)) 1394 continue; 1395 1396 MVT EltVT = VT.getVectorElementType(); 1397 ElementCount EC = VT.getVectorElementCount(); 1398 bool IsLegalWiderType = false; 1399 bool IsScalable = VT.isScalableVector(); 1400 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1401 switch (PreferredAction) { 1402 case TypePromoteInteger: { 1403 MVT::SimpleValueType EndVT = IsScalable ? 1404 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1405 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1406 // Try to promote the elements of integer vectors. If no legal 1407 // promotion was found, fall through to the widen-vector method. 1408 for (unsigned nVT = i + 1; 1409 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1410 MVT SVT = (MVT::SimpleValueType) nVT; 1411 // Promote vectors of integers to vectors with the same number 1412 // of elements, with a wider element type. 1413 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1414 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1415 TransformToType[i] = SVT; 1416 RegisterTypeForVT[i] = SVT; 1417 NumRegistersForVT[i] = 1; 1418 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1419 IsLegalWiderType = true; 1420 break; 1421 } 1422 } 1423 if (IsLegalWiderType) 1424 break; 1425 LLVM_FALLTHROUGH; 1426 } 1427 1428 case TypeWidenVector: 1429 if (isPowerOf2_32(EC.getKnownMinValue())) { 1430 // Try to widen the vector. 1431 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1432 MVT SVT = (MVT::SimpleValueType) nVT; 1433 if (SVT.getVectorElementType() == EltVT && 1434 SVT.isScalableVector() == IsScalable && 1435 SVT.getVectorElementCount().getKnownMinValue() > 1436 EC.getKnownMinValue() && 1437 isTypeLegal(SVT)) { 1438 TransformToType[i] = SVT; 1439 RegisterTypeForVT[i] = SVT; 1440 NumRegistersForVT[i] = 1; 1441 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1442 IsLegalWiderType = true; 1443 break; 1444 } 1445 } 1446 if (IsLegalWiderType) 1447 break; 1448 } else { 1449 // Only widen to the next power of 2 to keep consistency with EVT. 1450 MVT NVT = VT.getPow2VectorType(); 1451 if (isTypeLegal(NVT)) { 1452 TransformToType[i] = NVT; 1453 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1454 RegisterTypeForVT[i] = NVT; 1455 NumRegistersForVT[i] = 1; 1456 break; 1457 } 1458 } 1459 LLVM_FALLTHROUGH; 1460 1461 case TypeSplitVector: 1462 case TypeScalarizeVector: { 1463 MVT IntermediateVT; 1464 MVT RegisterVT; 1465 unsigned NumIntermediates; 1466 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1467 NumIntermediates, RegisterVT, this); 1468 NumRegistersForVT[i] = NumRegisters; 1469 assert(NumRegistersForVT[i] == NumRegisters && 1470 "NumRegistersForVT size cannot represent NumRegisters!"); 1471 RegisterTypeForVT[i] = RegisterVT; 1472 1473 MVT NVT = VT.getPow2VectorType(); 1474 if (NVT == VT) { 1475 // Type is already a power of 2. The default action is to split. 1476 TransformToType[i] = MVT::Other; 1477 if (PreferredAction == TypeScalarizeVector) 1478 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1479 else if (PreferredAction == TypeSplitVector) 1480 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1481 else if (EC.getKnownMinValue() > 1) 1482 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1483 else 1484 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1485 ? TypeScalarizeScalableVector 1486 : TypeScalarizeVector); 1487 } else { 1488 TransformToType[i] = NVT; 1489 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1490 } 1491 break; 1492 } 1493 default: 1494 llvm_unreachable("Unknown vector legalization action!"); 1495 } 1496 } 1497 1498 // Determine the 'representative' register class for each value type. 1499 // An representative register class is the largest (meaning one which is 1500 // not a sub-register class / subreg register class) legal register class for 1501 // a group of value types. For example, on i386, i8, i16, and i32 1502 // representative would be GR32; while on x86_64 it's GR64. 1503 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1504 const TargetRegisterClass* RRC; 1505 uint8_t Cost; 1506 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1507 RepRegClassForVT[i] = RRC; 1508 RepRegClassCostForVT[i] = Cost; 1509 } 1510 } 1511 1512 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1513 EVT VT) const { 1514 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1515 return getPointerTy(DL).SimpleTy; 1516 } 1517 1518 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1519 return MVT::i32; // return the default value 1520 } 1521 1522 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1523 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1524 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1525 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1526 /// 1527 /// This method returns the number of registers needed, and the VT for each 1528 /// register. It also returns the VT and quantity of the intermediate values 1529 /// before they are promoted/expanded. 1530 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1531 EVT &IntermediateVT, 1532 unsigned &NumIntermediates, 1533 MVT &RegisterVT) const { 1534 ElementCount EltCnt = VT.getVectorElementCount(); 1535 1536 // If there is a wider vector type with the same element type as this one, 1537 // or a promoted vector type that has the same number of elements which 1538 // are wider, then we should convert to that legal vector type. 1539 // This handles things like <2 x float> -> <4 x float> and 1540 // <4 x i1> -> <4 x i32>. 1541 LegalizeTypeAction TA = getTypeAction(Context, VT); 1542 if (EltCnt.getKnownMinValue() != 1 && 1543 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1544 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1545 if (isTypeLegal(RegisterEVT)) { 1546 IntermediateVT = RegisterEVT; 1547 RegisterVT = RegisterEVT.getSimpleVT(); 1548 NumIntermediates = 1; 1549 return 1; 1550 } 1551 } 1552 1553 // Figure out the right, legal destination reg to copy into. 1554 EVT EltTy = VT.getVectorElementType(); 1555 1556 unsigned NumVectorRegs = 1; 1557 1558 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1559 // types like done elsewhere in SelectionDAG. 1560 if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) { 1561 LegalizeKind LK; 1562 EVT PartVT = VT; 1563 do { 1564 // Iterate until we've found a legal (part) type to hold VT. 1565 LK = getTypeConversion(Context, PartVT); 1566 PartVT = LK.second; 1567 } while (LK.first != TypeLegal); 1568 1569 NumIntermediates = VT.getVectorElementCount().getKnownMinValue() / 1570 PartVT.getVectorElementCount().getKnownMinValue(); 1571 1572 // FIXME: This code needs to be extended to handle more complex vector 1573 // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only 1574 // supported cases are vectors that are broken down into equal parts 1575 // such as nxv6i64 -> 3 x nxv2i64. 1576 assert((PartVT.getVectorElementCount() * NumIntermediates) == 1577 VT.getVectorElementCount() && 1578 "Expected an integer multiple of PartVT"); 1579 IntermediateVT = PartVT; 1580 RegisterVT = getRegisterType(Context, IntermediateVT); 1581 return NumIntermediates; 1582 } 1583 1584 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1585 // we could break down into LHS/RHS like LegalizeDAG does. 1586 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1587 NumVectorRegs = EltCnt.getKnownMinValue(); 1588 EltCnt = ElementCount::getFixed(1); 1589 } 1590 1591 // Divide the input until we get to a supported size. This will always 1592 // end with a scalar if the target doesn't support vectors. 1593 while (EltCnt.getKnownMinValue() > 1 && 1594 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1595 EltCnt = EltCnt.divideCoefficientBy(2); 1596 NumVectorRegs <<= 1; 1597 } 1598 1599 NumIntermediates = NumVectorRegs; 1600 1601 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1602 if (!isTypeLegal(NewVT)) 1603 NewVT = EltTy; 1604 IntermediateVT = NewVT; 1605 1606 MVT DestVT = getRegisterType(Context, NewVT); 1607 RegisterVT = DestVT; 1608 1609 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1610 TypeSize NewVTSize = NewVT.getSizeInBits(); 1611 // Convert sizes such as i33 to i64. 1612 if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) 1613 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1614 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1615 } 1616 1617 // Otherwise, promotion or legal types use the same number of registers as 1618 // the vector decimated to the appropriate level. 1619 return NumVectorRegs; 1620 } 1621 1622 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1623 uint64_t NumCases, 1624 uint64_t Range, 1625 ProfileSummaryInfo *PSI, 1626 BlockFrequencyInfo *BFI) const { 1627 // FIXME: This function check the maximum table size and density, but the 1628 // minimum size is not checked. It would be nice if the minimum size is 1629 // also combined within this function. Currently, the minimum size check is 1630 // performed in findJumpTable() in SelectionDAGBuiler and 1631 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1632 const bool OptForSize = 1633 SI->getParent()->getParent()->hasOptSize() || 1634 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1635 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1636 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1637 1638 // Check whether the number of cases is small enough and 1639 // the range is dense enough for a jump table. 1640 return (OptForSize || Range <= MaxJumpTableSize) && 1641 (NumCases * 100 >= Range * MinDensity); 1642 } 1643 1644 /// Get the EVTs and ArgFlags collections that represent the legalized return 1645 /// type of the given function. This does not require a DAG or a return value, 1646 /// and is suitable for use before any DAGs for the function are constructed. 1647 /// TODO: Move this out of TargetLowering.cpp. 1648 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1649 AttributeList attr, 1650 SmallVectorImpl<ISD::OutputArg> &Outs, 1651 const TargetLowering &TLI, const DataLayout &DL) { 1652 SmallVector<EVT, 4> ValueVTs; 1653 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1654 unsigned NumValues = ValueVTs.size(); 1655 if (NumValues == 0) return; 1656 1657 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1658 EVT VT = ValueVTs[j]; 1659 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1660 1661 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1662 ExtendKind = ISD::SIGN_EXTEND; 1663 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1664 ExtendKind = ISD::ZERO_EXTEND; 1665 1666 // FIXME: C calling convention requires the return type to be promoted to 1667 // at least 32-bit. But this is not necessary for non-C calling 1668 // conventions. The frontend should mark functions whose return values 1669 // require promoting with signext or zeroext attributes. 1670 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1671 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1672 if (VT.bitsLT(MinVT)) 1673 VT = MinVT; 1674 } 1675 1676 unsigned NumParts = 1677 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1678 MVT PartVT = 1679 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1680 1681 // 'inreg' on function refers to return value 1682 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1683 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1684 Flags.setInReg(); 1685 1686 // Propagate extension type if any 1687 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1688 Flags.setSExt(); 1689 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1690 Flags.setZExt(); 1691 1692 for (unsigned i = 0; i < NumParts; ++i) 1693 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1694 } 1695 } 1696 1697 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1698 /// function arguments in the caller parameter area. This is the actual 1699 /// alignment, not its logarithm. 1700 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1701 const DataLayout &DL) const { 1702 return DL.getABITypeAlign(Ty).value(); 1703 } 1704 1705 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1706 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1707 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1708 // Check if the specified alignment is sufficient based on the data layout. 1709 // TODO: While using the data layout works in practice, a better solution 1710 // would be to implement this check directly (make this a virtual function). 1711 // For example, the ABI alignment may change based on software platform while 1712 // this function should only be affected by hardware implementation. 1713 Type *Ty = VT.getTypeForEVT(Context); 1714 if (Alignment >= DL.getABITypeAlign(Ty)) { 1715 // Assume that an access that meets the ABI-specified alignment is fast. 1716 if (Fast != nullptr) 1717 *Fast = true; 1718 return true; 1719 } 1720 1721 // This is a misaligned access. 1722 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags, 1723 Fast); 1724 } 1725 1726 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1727 LLVMContext &Context, const DataLayout &DL, EVT VT, 1728 const MachineMemOperand &MMO, bool *Fast) const { 1729 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1730 MMO.getAlign(), MMO.getFlags(), Fast); 1731 } 1732 1733 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1734 const DataLayout &DL, EVT VT, 1735 unsigned AddrSpace, Align Alignment, 1736 MachineMemOperand::Flags Flags, 1737 bool *Fast) const { 1738 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1739 Flags, Fast); 1740 } 1741 1742 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1743 const DataLayout &DL, EVT VT, 1744 const MachineMemOperand &MMO, 1745 bool *Fast) const { 1746 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1747 MMO.getFlags(), Fast); 1748 } 1749 1750 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1751 return BranchProbability(MinPercentageForPredictableBranch, 100); 1752 } 1753 1754 //===----------------------------------------------------------------------===// 1755 // TargetTransformInfo Helpers 1756 //===----------------------------------------------------------------------===// 1757 1758 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1759 enum InstructionOpcodes { 1760 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1761 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1762 #include "llvm/IR/Instruction.def" 1763 }; 1764 switch (static_cast<InstructionOpcodes>(Opcode)) { 1765 case Ret: return 0; 1766 case Br: return 0; 1767 case Switch: return 0; 1768 case IndirectBr: return 0; 1769 case Invoke: return 0; 1770 case CallBr: return 0; 1771 case Resume: return 0; 1772 case Unreachable: return 0; 1773 case CleanupRet: return 0; 1774 case CatchRet: return 0; 1775 case CatchPad: return 0; 1776 case CatchSwitch: return 0; 1777 case CleanupPad: return 0; 1778 case FNeg: return ISD::FNEG; 1779 case Add: return ISD::ADD; 1780 case FAdd: return ISD::FADD; 1781 case Sub: return ISD::SUB; 1782 case FSub: return ISD::FSUB; 1783 case Mul: return ISD::MUL; 1784 case FMul: return ISD::FMUL; 1785 case UDiv: return ISD::UDIV; 1786 case SDiv: return ISD::SDIV; 1787 case FDiv: return ISD::FDIV; 1788 case URem: return ISD::UREM; 1789 case SRem: return ISD::SREM; 1790 case FRem: return ISD::FREM; 1791 case Shl: return ISD::SHL; 1792 case LShr: return ISD::SRL; 1793 case AShr: return ISD::SRA; 1794 case And: return ISD::AND; 1795 case Or: return ISD::OR; 1796 case Xor: return ISD::XOR; 1797 case Alloca: return 0; 1798 case Load: return ISD::LOAD; 1799 case Store: return ISD::STORE; 1800 case GetElementPtr: return 0; 1801 case Fence: return 0; 1802 case AtomicCmpXchg: return 0; 1803 case AtomicRMW: return 0; 1804 case Trunc: return ISD::TRUNCATE; 1805 case ZExt: return ISD::ZERO_EXTEND; 1806 case SExt: return ISD::SIGN_EXTEND; 1807 case FPToUI: return ISD::FP_TO_UINT; 1808 case FPToSI: return ISD::FP_TO_SINT; 1809 case UIToFP: return ISD::UINT_TO_FP; 1810 case SIToFP: return ISD::SINT_TO_FP; 1811 case FPTrunc: return ISD::FP_ROUND; 1812 case FPExt: return ISD::FP_EXTEND; 1813 case PtrToInt: return ISD::BITCAST; 1814 case IntToPtr: return ISD::BITCAST; 1815 case BitCast: return ISD::BITCAST; 1816 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1817 case ICmp: return ISD::SETCC; 1818 case FCmp: return ISD::SETCC; 1819 case PHI: return 0; 1820 case Call: return 0; 1821 case Select: return ISD::SELECT; 1822 case UserOp1: return 0; 1823 case UserOp2: return 0; 1824 case VAArg: return 0; 1825 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1826 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1827 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1828 case ExtractValue: return ISD::MERGE_VALUES; 1829 case InsertValue: return ISD::MERGE_VALUES; 1830 case LandingPad: return 0; 1831 case Freeze: return ISD::FREEZE; 1832 } 1833 1834 llvm_unreachable("Unknown instruction type encountered!"); 1835 } 1836 1837 std::pair<int, MVT> 1838 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1839 Type *Ty) const { 1840 LLVMContext &C = Ty->getContext(); 1841 EVT MTy = getValueType(DL, Ty); 1842 1843 int Cost = 1; 1844 // We keep legalizing the type until we find a legal kind. We assume that 1845 // the only operation that costs anything is the split. After splitting 1846 // we need to handle two types. 1847 while (true) { 1848 LegalizeKind LK = getTypeConversion(C, MTy); 1849 1850 if (LK.first == TypeLegal) 1851 return std::make_pair(Cost, MTy.getSimpleVT()); 1852 1853 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1854 Cost *= 2; 1855 1856 // Do not loop with f128 type. 1857 if (MTy == LK.second) 1858 return std::make_pair(Cost, MTy.getSimpleVT()); 1859 1860 // Keep legalizing the type. 1861 MTy = LK.second; 1862 } 1863 } 1864 1865 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1866 bool UseTLS) const { 1867 // compiler-rt provides a variable with a magic name. Targets that do not 1868 // link with compiler-rt may also provide such a variable. 1869 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1870 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1871 auto UnsafeStackPtr = 1872 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1873 1874 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1875 1876 if (!UnsafeStackPtr) { 1877 auto TLSModel = UseTLS ? 1878 GlobalValue::InitialExecTLSModel : 1879 GlobalValue::NotThreadLocal; 1880 // The global variable is not defined yet, define it ourselves. 1881 // We use the initial-exec TLS model because we do not support the 1882 // variable living anywhere other than in the main executable. 1883 UnsafeStackPtr = new GlobalVariable( 1884 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1885 UnsafeStackPtrVar, nullptr, TLSModel); 1886 } else { 1887 // The variable exists, check its type and attributes. 1888 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1889 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1890 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1891 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1892 (UseTLS ? "" : "not ") + "be thread-local"); 1893 } 1894 return UnsafeStackPtr; 1895 } 1896 1897 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1898 if (!TM.getTargetTriple().isAndroid()) 1899 return getDefaultSafeStackPointerLocation(IRB, true); 1900 1901 // Android provides a libc function to retrieve the address of the current 1902 // thread's unsafe stack pointer. 1903 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1904 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1905 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1906 StackPtrTy->getPointerTo(0)); 1907 return IRB.CreateCall(Fn); 1908 } 1909 1910 //===----------------------------------------------------------------------===// 1911 // Loop Strength Reduction hooks 1912 //===----------------------------------------------------------------------===// 1913 1914 /// isLegalAddressingMode - Return true if the addressing mode represented 1915 /// by AM is legal for this target, for a load/store of the specified type. 1916 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1917 const AddrMode &AM, Type *Ty, 1918 unsigned AS, Instruction *I) const { 1919 // The default implementation of this implements a conservative RISCy, r+r and 1920 // r+i addr mode. 1921 1922 // Allows a sign-extended 16-bit immediate field. 1923 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1924 return false; 1925 1926 // No global is ever allowed as a base. 1927 if (AM.BaseGV) 1928 return false; 1929 1930 // Only support r+r, 1931 switch (AM.Scale) { 1932 case 0: // "r+i" or just "i", depending on HasBaseReg. 1933 break; 1934 case 1: 1935 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1936 return false; 1937 // Otherwise we have r+r or r+i. 1938 break; 1939 case 2: 1940 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1941 return false; 1942 // Allow 2*r as r+r. 1943 break; 1944 default: // Don't allow n * r 1945 return false; 1946 } 1947 1948 return true; 1949 } 1950 1951 //===----------------------------------------------------------------------===// 1952 // Stack Protector 1953 //===----------------------------------------------------------------------===// 1954 1955 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1956 // so that SelectionDAG handle SSP. 1957 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1958 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1959 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1960 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1961 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1962 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1963 G->setVisibility(GlobalValue::HiddenVisibility); 1964 return C; 1965 } 1966 return nullptr; 1967 } 1968 1969 // Currently only support "standard" __stack_chk_guard. 1970 // TODO: add LOAD_STACK_GUARD support. 1971 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1972 if (!M.getNamedValue("__stack_chk_guard")) { 1973 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1974 GlobalVariable::ExternalLinkage, nullptr, 1975 "__stack_chk_guard"); 1976 if (TM.getRelocationModel() == Reloc::Static && 1977 !TM.getTargetTriple().isWindowsGNUEnvironment()) 1978 GV->setDSOLocal(true); 1979 } 1980 } 1981 1982 // Currently only support "standard" __stack_chk_guard. 1983 // TODO: add LOAD_STACK_GUARD support. 1984 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1985 return M.getNamedValue("__stack_chk_guard"); 1986 } 1987 1988 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1989 return nullptr; 1990 } 1991 1992 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1993 return MinimumJumpTableEntries; 1994 } 1995 1996 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1997 MinimumJumpTableEntries = Val; 1998 } 1999 2000 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2001 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2002 } 2003 2004 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2005 return MaximumJumpTableSize; 2006 } 2007 2008 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2009 MaximumJumpTableSize = Val; 2010 } 2011 2012 bool TargetLoweringBase::isJumpTableRelative() const { 2013 return getTargetMachine().isPositionIndependent(); 2014 } 2015 2016 //===----------------------------------------------------------------------===// 2017 // Reciprocal Estimates 2018 //===----------------------------------------------------------------------===// 2019 2020 /// Get the reciprocal estimate attribute string for a function that will 2021 /// override the target defaults. 2022 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2023 const Function &F = MF.getFunction(); 2024 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2025 } 2026 2027 /// Construct a string for the given reciprocal operation of the given type. 2028 /// This string should match the corresponding option to the front-end's 2029 /// "-mrecip" flag assuming those strings have been passed through in an 2030 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2031 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2032 std::string Name = VT.isVector() ? "vec-" : ""; 2033 2034 Name += IsSqrt ? "sqrt" : "div"; 2035 2036 // TODO: Handle "half" or other float types? 2037 if (VT.getScalarType() == MVT::f64) { 2038 Name += "d"; 2039 } else { 2040 assert(VT.getScalarType() == MVT::f32 && 2041 "Unexpected FP type for reciprocal estimate"); 2042 Name += "f"; 2043 } 2044 2045 return Name; 2046 } 2047 2048 /// Return the character position and value (a single numeric character) of a 2049 /// customized refinement operation in the input string if it exists. Return 2050 /// false if there is no customized refinement step count. 2051 static bool parseRefinementStep(StringRef In, size_t &Position, 2052 uint8_t &Value) { 2053 const char RefStepToken = ':'; 2054 Position = In.find(RefStepToken); 2055 if (Position == StringRef::npos) 2056 return false; 2057 2058 StringRef RefStepString = In.substr(Position + 1); 2059 // Allow exactly one numeric character for the additional refinement 2060 // step parameter. 2061 if (RefStepString.size() == 1) { 2062 char RefStepChar = RefStepString[0]; 2063 if (RefStepChar >= '0' && RefStepChar <= '9') { 2064 Value = RefStepChar - '0'; 2065 return true; 2066 } 2067 } 2068 report_fatal_error("Invalid refinement step for -recip."); 2069 } 2070 2071 /// For the input attribute string, return one of the ReciprocalEstimate enum 2072 /// status values (enabled, disabled, or not specified) for this operation on 2073 /// the specified data type. 2074 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2075 if (Override.empty()) 2076 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2077 2078 SmallVector<StringRef, 4> OverrideVector; 2079 Override.split(OverrideVector, ','); 2080 unsigned NumArgs = OverrideVector.size(); 2081 2082 // Check if "all", "none", or "default" was specified. 2083 if (NumArgs == 1) { 2084 // Look for an optional setting of the number of refinement steps needed 2085 // for this type of reciprocal operation. 2086 size_t RefPos; 2087 uint8_t RefSteps; 2088 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2089 // Split the string for further processing. 2090 Override = Override.substr(0, RefPos); 2091 } 2092 2093 // All reciprocal types are enabled. 2094 if (Override == "all") 2095 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2096 2097 // All reciprocal types are disabled. 2098 if (Override == "none") 2099 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2100 2101 // Target defaults for enablement are used. 2102 if (Override == "default") 2103 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2104 } 2105 2106 // The attribute string may omit the size suffix ('f'/'d'). 2107 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2108 std::string VTNameNoSize = VTName; 2109 VTNameNoSize.pop_back(); 2110 static const char DisabledPrefix = '!'; 2111 2112 for (StringRef RecipType : OverrideVector) { 2113 size_t RefPos; 2114 uint8_t RefSteps; 2115 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2116 RecipType = RecipType.substr(0, RefPos); 2117 2118 // Ignore the disablement token for string matching. 2119 bool IsDisabled = RecipType[0] == DisabledPrefix; 2120 if (IsDisabled) 2121 RecipType = RecipType.substr(1); 2122 2123 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2124 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2125 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2126 } 2127 2128 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2129 } 2130 2131 /// For the input attribute string, return the customized refinement step count 2132 /// for this operation on the specified data type. If the step count does not 2133 /// exist, return the ReciprocalEstimate enum value for unspecified. 2134 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2135 if (Override.empty()) 2136 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2137 2138 SmallVector<StringRef, 4> OverrideVector; 2139 Override.split(OverrideVector, ','); 2140 unsigned NumArgs = OverrideVector.size(); 2141 2142 // Check if "all", "default", or "none" was specified. 2143 if (NumArgs == 1) { 2144 // Look for an optional setting of the number of refinement steps needed 2145 // for this type of reciprocal operation. 2146 size_t RefPos; 2147 uint8_t RefSteps; 2148 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2149 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2150 2151 // Split the string for further processing. 2152 Override = Override.substr(0, RefPos); 2153 assert(Override != "none" && 2154 "Disabled reciprocals, but specifed refinement steps?"); 2155 2156 // If this is a general override, return the specified number of steps. 2157 if (Override == "all" || Override == "default") 2158 return RefSteps; 2159 } 2160 2161 // The attribute string may omit the size suffix ('f'/'d'). 2162 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2163 std::string VTNameNoSize = VTName; 2164 VTNameNoSize.pop_back(); 2165 2166 for (StringRef RecipType : OverrideVector) { 2167 size_t RefPos; 2168 uint8_t RefSteps; 2169 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2170 continue; 2171 2172 RecipType = RecipType.substr(0, RefPos); 2173 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2174 return RefSteps; 2175 } 2176 2177 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2178 } 2179 2180 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2181 MachineFunction &MF) const { 2182 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2183 } 2184 2185 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2186 MachineFunction &MF) const { 2187 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2188 } 2189 2190 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2191 MachineFunction &MF) const { 2192 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2193 } 2194 2195 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2196 MachineFunction &MF) const { 2197 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2198 } 2199 2200 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2201 MF.getRegInfo().freezeReservedRegs(MF); 2202 } 2203 2204 MachineMemOperand::Flags 2205 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, 2206 const DataLayout &DL) const { 2207 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2208 if (LI.isVolatile()) 2209 Flags |= MachineMemOperand::MOVolatile; 2210 2211 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2212 Flags |= MachineMemOperand::MONonTemporal; 2213 2214 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2215 Flags |= MachineMemOperand::MOInvariant; 2216 2217 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) 2218 Flags |= MachineMemOperand::MODereferenceable; 2219 2220 Flags |= getTargetMMOFlags(LI); 2221 return Flags; 2222 } 2223 2224 MachineMemOperand::Flags 2225 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2226 const DataLayout &DL) const { 2227 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2228 2229 if (SI.isVolatile()) 2230 Flags |= MachineMemOperand::MOVolatile; 2231 2232 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2233 Flags |= MachineMemOperand::MONonTemporal; 2234 2235 // FIXME: Not preserving dereferenceable 2236 Flags |= getTargetMMOFlags(SI); 2237 return Flags; 2238 } 2239 2240 MachineMemOperand::Flags 2241 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2242 const DataLayout &DL) const { 2243 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2244 2245 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2246 if (RMW->isVolatile()) 2247 Flags |= MachineMemOperand::MOVolatile; 2248 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2249 if (CmpX->isVolatile()) 2250 Flags |= MachineMemOperand::MOVolatile; 2251 } else 2252 llvm_unreachable("not an atomic instruction"); 2253 2254 // FIXME: Not preserving dereferenceable 2255 Flags |= getTargetMMOFlags(AI); 2256 return Flags; 2257 } 2258 2259 //===----------------------------------------------------------------------===// 2260 // GlobalISel Hooks 2261 //===----------------------------------------------------------------------===// 2262 2263 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2264 const TargetTransformInfo *TTI) const { 2265 auto &MF = *MI.getMF(); 2266 auto &MRI = MF.getRegInfo(); 2267 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2268 // this helper function computes the maximum number of uses we should consider 2269 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2270 // break even in terms of code size when the original MI has 2 users vs 2271 // choosing to potentially spill. Any more than 2 users we we have a net code 2272 // size increase. This doesn't take into account register pressure though. 2273 auto maxUses = [](unsigned RematCost) { 2274 // A cost of 1 means remats are basically free. 2275 if (RematCost == 1) 2276 return UINT_MAX; 2277 if (RematCost == 2) 2278 return 2U; 2279 2280 // Remat is too expensive, only sink if there's one user. 2281 if (RematCost > 2) 2282 return 1U; 2283 llvm_unreachable("Unexpected remat cost"); 2284 }; 2285 2286 // Helper to walk through uses and terminate if we've reached a limit. Saves 2287 // us spending time traversing uses if all we want to know is if it's >= min. 2288 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { 2289 unsigned NumUses = 0; 2290 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); 2291 for (; UI != UE && NumUses < MaxUses; ++UI) { 2292 NumUses++; 2293 } 2294 // If we haven't reached the end yet then there are more than MaxUses users. 2295 return UI == UE; 2296 }; 2297 2298 switch (MI.getOpcode()) { 2299 default: 2300 return false; 2301 // Constants-like instructions should be close to their users. 2302 // We don't want long live-ranges for them. 2303 case TargetOpcode::G_CONSTANT: 2304 case TargetOpcode::G_FCONSTANT: 2305 case TargetOpcode::G_FRAME_INDEX: 2306 case TargetOpcode::G_INTTOPTR: 2307 return true; 2308 case TargetOpcode::G_GLOBAL_VALUE: { 2309 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2310 Register Reg = MI.getOperand(0).getReg(); 2311 unsigned MaxUses = maxUses(RematCost); 2312 if (MaxUses == UINT_MAX) 2313 return true; // Remats are "free" so always localize. 2314 bool B = isUsesAtMost(Reg, MaxUses); 2315 return B; 2316 } 2317 } 2318 } 2319