1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineValueType.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/BranchProbability.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstddef>
58 #include <cstdint>
59 #include <cstring>
60 #include <iterator>
61 #include <string>
62 #include <tuple>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 static cl::opt<bool> JumpIsExpensiveOverride(
68     "jump-is-expensive", cl::init(false),
69     cl::desc("Do not create extra branches to split comparison logic."),
70     cl::Hidden);
71 
72 static cl::opt<unsigned> MinimumJumpTableEntries
73   ("min-jump-table-entries", cl::init(4), cl::Hidden,
74    cl::desc("Set minimum number of entries to use a jump table."));
75 
76 static cl::opt<unsigned> MaximumJumpTableSize
77   ("max-jump-table-size", cl::init(0), cl::Hidden,
78    cl::desc("Set maximum size of jump tables; zero for no limit."));
79 
80 /// Minimum jump table density for normal functions.
81 static cl::opt<unsigned>
82     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
83                      cl::desc("Minimum density for building a jump table in "
84                               "a normal function"));
85 
86 /// Minimum jump table density for -Os or -Oz functions.
87 static cl::opt<unsigned> OptsizeJumpTableDensity(
88     "optsize-jump-table-density", cl::init(40), cl::Hidden,
89     cl::desc("Minimum density for building a jump table in "
90              "an optsize function"));
91 
92 static bool darwinHasSinCos(const Triple &TT) {
93   assert(TT.isOSDarwin() && "should be called with darwin triple");
94   // Don't bother with 32 bit x86.
95   if (TT.getArch() == Triple::x86)
96     return false;
97   // Macos < 10.9 has no sincos_stret.
98   if (TT.isMacOSX())
99     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
100   // iOS < 7.0 has no sincos_stret.
101   if (TT.isiOS())
102     return !TT.isOSVersionLT(7, 0);
103   // Any other darwin such as WatchOS/TvOS is new enough.
104   return true;
105 }
106 
107 // Although this default value is arbitrary, it is not random. It is assumed
108 // that a condition that evaluates the same way by a higher percentage than this
109 // is best represented as control flow. Therefore, the default value N should be
110 // set such that the win from N% correct executions is greater than the loss
111 // from (100 - N)% mispredicted executions for the majority of intended targets.
112 static cl::opt<int> MinPercentageForPredictableBranch(
113     "min-predictable-branch", cl::init(99),
114     cl::desc("Minimum percentage (0-100) that a condition must be either true "
115              "or false to assume that the condition is predictable"),
116     cl::Hidden);
117 
118 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
119 #define HANDLE_LIBCALL(code, name) \
120   setLibcallName(RTLIB::code, name);
121 #include "llvm/CodeGen/RuntimeLibcalls.def"
122 #undef HANDLE_LIBCALL
123   // Initialize calling conventions to their default.
124   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
125     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
126 
127   // A few names are different on particular architectures or environments.
128   if (TT.isOSDarwin()) {
129     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
130     // of the gnueabi-style __gnu_*_ieee.
131     // FIXME: What about other targets?
132     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
133     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
134 
135     // Some darwins have an optimized __bzero/bzero function.
136     switch (TT.getArch()) {
137     case Triple::x86:
138     case Triple::x86_64:
139       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
140         setLibcallName(RTLIB::BZERO, "__bzero");
141       break;
142     case Triple::aarch64:
143       setLibcallName(RTLIB::BZERO, "bzero");
144       break;
145     default:
146       break;
147     }
148 
149     if (darwinHasSinCos(TT)) {
150       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
151       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
152       if (TT.isWatchABI()) {
153         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
154                               CallingConv::ARM_AAPCS_VFP);
155         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
156                               CallingConv::ARM_AAPCS_VFP);
157       }
158     }
159   } else {
160     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
161     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
162   }
163 
164   if (TT.isGNUEnvironment() || TT.isOSFuchsia()) {
165     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
166     setLibcallName(RTLIB::SINCOS_F64, "sincos");
167     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
168     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
169     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
170   }
171 
172   if (TT.isOSOpenBSD()) {
173     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
174   }
175 }
176 
177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
178 /// UNKNOWN_LIBCALL if there is none.
179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
180   if (OpVT == MVT::f16) {
181     if (RetVT == MVT::f32)
182       return FPEXT_F16_F32;
183   } else if (OpVT == MVT::f32) {
184     if (RetVT == MVT::f64)
185       return FPEXT_F32_F64;
186     if (RetVT == MVT::f128)
187       return FPEXT_F32_F128;
188     if (RetVT == MVT::ppcf128)
189       return FPEXT_F32_PPCF128;
190   } else if (OpVT == MVT::f64) {
191     if (RetVT == MVT::f128)
192       return FPEXT_F64_F128;
193     else if (RetVT == MVT::ppcf128)
194       return FPEXT_F64_PPCF128;
195   } else if (OpVT == MVT::f80) {
196     if (RetVT == MVT::f128)
197       return FPEXT_F80_F128;
198   }
199 
200   return UNKNOWN_LIBCALL;
201 }
202 
203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
204 /// UNKNOWN_LIBCALL if there is none.
205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
206   if (RetVT == MVT::f16) {
207     if (OpVT == MVT::f32)
208       return FPROUND_F32_F16;
209     if (OpVT == MVT::f64)
210       return FPROUND_F64_F16;
211     if (OpVT == MVT::f80)
212       return FPROUND_F80_F16;
213     if (OpVT == MVT::f128)
214       return FPROUND_F128_F16;
215     if (OpVT == MVT::ppcf128)
216       return FPROUND_PPCF128_F16;
217   } else if (RetVT == MVT::f32) {
218     if (OpVT == MVT::f64)
219       return FPROUND_F64_F32;
220     if (OpVT == MVT::f80)
221       return FPROUND_F80_F32;
222     if (OpVT == MVT::f128)
223       return FPROUND_F128_F32;
224     if (OpVT == MVT::ppcf128)
225       return FPROUND_PPCF128_F32;
226   } else if (RetVT == MVT::f64) {
227     if (OpVT == MVT::f80)
228       return FPROUND_F80_F64;
229     if (OpVT == MVT::f128)
230       return FPROUND_F128_F64;
231     if (OpVT == MVT::ppcf128)
232       return FPROUND_PPCF128_F64;
233   } else if (RetVT == MVT::f80) {
234     if (OpVT == MVT::f128)
235       return FPROUND_F128_F80;
236   }
237 
238   return UNKNOWN_LIBCALL;
239 }
240 
241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
244   if (OpVT == MVT::f32) {
245     if (RetVT == MVT::i32)
246       return FPTOSINT_F32_I32;
247     if (RetVT == MVT::i64)
248       return FPTOSINT_F32_I64;
249     if (RetVT == MVT::i128)
250       return FPTOSINT_F32_I128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::i32)
253       return FPTOSINT_F64_I32;
254     if (RetVT == MVT::i64)
255       return FPTOSINT_F64_I64;
256     if (RetVT == MVT::i128)
257       return FPTOSINT_F64_I128;
258   } else if (OpVT == MVT::f80) {
259     if (RetVT == MVT::i32)
260       return FPTOSINT_F80_I32;
261     if (RetVT == MVT::i64)
262       return FPTOSINT_F80_I64;
263     if (RetVT == MVT::i128)
264       return FPTOSINT_F80_I128;
265   } else if (OpVT == MVT::f128) {
266     if (RetVT == MVT::i32)
267       return FPTOSINT_F128_I32;
268     if (RetVT == MVT::i64)
269       return FPTOSINT_F128_I64;
270     if (RetVT == MVT::i128)
271       return FPTOSINT_F128_I128;
272   } else if (OpVT == MVT::ppcf128) {
273     if (RetVT == MVT::i32)
274       return FPTOSINT_PPCF128_I32;
275     if (RetVT == MVT::i64)
276       return FPTOSINT_PPCF128_I64;
277     if (RetVT == MVT::i128)
278       return FPTOSINT_PPCF128_I128;
279   }
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOUINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOUINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOUINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOUINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOUINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOUINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOUINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOUINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOUINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOUINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOUINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOUINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOUINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOUINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOUINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::i32) {
329     if (RetVT == MVT::f32)
330       return SINTTOFP_I32_F32;
331     if (RetVT == MVT::f64)
332       return SINTTOFP_I32_F64;
333     if (RetVT == MVT::f80)
334       return SINTTOFP_I32_F80;
335     if (RetVT == MVT::f128)
336       return SINTTOFP_I32_F128;
337     if (RetVT == MVT::ppcf128)
338       return SINTTOFP_I32_PPCF128;
339   } else if (OpVT == MVT::i64) {
340     if (RetVT == MVT::f32)
341       return SINTTOFP_I64_F32;
342     if (RetVT == MVT::f64)
343       return SINTTOFP_I64_F64;
344     if (RetVT == MVT::f80)
345       return SINTTOFP_I64_F80;
346     if (RetVT == MVT::f128)
347       return SINTTOFP_I64_F128;
348     if (RetVT == MVT::ppcf128)
349       return SINTTOFP_I64_PPCF128;
350   } else if (OpVT == MVT::i128) {
351     if (RetVT == MVT::f32)
352       return SINTTOFP_I128_F32;
353     if (RetVT == MVT::f64)
354       return SINTTOFP_I128_F64;
355     if (RetVT == MVT::f80)
356       return SINTTOFP_I128_F80;
357     if (RetVT == MVT::f128)
358       return SINTTOFP_I128_F128;
359     if (RetVT == MVT::ppcf128)
360       return SINTTOFP_I128_PPCF128;
361   }
362   return UNKNOWN_LIBCALL;
363 }
364 
365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
368   if (OpVT == MVT::i32) {
369     if (RetVT == MVT::f32)
370       return UINTTOFP_I32_F32;
371     if (RetVT == MVT::f64)
372       return UINTTOFP_I32_F64;
373     if (RetVT == MVT::f80)
374       return UINTTOFP_I32_F80;
375     if (RetVT == MVT::f128)
376       return UINTTOFP_I32_F128;
377     if (RetVT == MVT::ppcf128)
378       return UINTTOFP_I32_PPCF128;
379   } else if (OpVT == MVT::i64) {
380     if (RetVT == MVT::f32)
381       return UINTTOFP_I64_F32;
382     if (RetVT == MVT::f64)
383       return UINTTOFP_I64_F64;
384     if (RetVT == MVT::f80)
385       return UINTTOFP_I64_F80;
386     if (RetVT == MVT::f128)
387       return UINTTOFP_I64_F128;
388     if (RetVT == MVT::ppcf128)
389       return UINTTOFP_I64_PPCF128;
390   } else if (OpVT == MVT::i128) {
391     if (RetVT == MVT::f32)
392       return UINTTOFP_I128_F32;
393     if (RetVT == MVT::f64)
394       return UINTTOFP_I128_F64;
395     if (RetVT == MVT::f80)
396       return UINTTOFP_I128_F80;
397     if (RetVT == MVT::f128)
398       return UINTTOFP_I128_F128;
399     if (RetVT == MVT::ppcf128)
400       return UINTTOFP_I128_PPCF128;
401   }
402   return UNKNOWN_LIBCALL;
403 }
404 
405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
406 #define OP_TO_LIBCALL(Name, Enum)                                              \
407   case Name:                                                                   \
408     switch (VT.SimpleTy) {                                                     \
409     default:                                                                   \
410       return UNKNOWN_LIBCALL;                                                  \
411     case MVT::i8:                                                              \
412       return Enum##_1;                                                         \
413     case MVT::i16:                                                             \
414       return Enum##_2;                                                         \
415     case MVT::i32:                                                             \
416       return Enum##_4;                                                         \
417     case MVT::i64:                                                             \
418       return Enum##_8;                                                         \
419     case MVT::i128:                                                            \
420       return Enum##_16;                                                        \
421     }
422 
423   switch (Opc) {
424     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
425     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
426     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
427     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
428     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
429     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
430     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
431     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
432     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
433     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
434     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
435     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
436   }
437 
438 #undef OP_TO_LIBCALL
439 
440   return UNKNOWN_LIBCALL;
441 }
442 
443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
444   switch (ElementSize) {
445   case 1:
446     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
447   case 2:
448     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
449   case 4:
450     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
451   case 8:
452     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
453   case 16:
454     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
455   default:
456     return UNKNOWN_LIBCALL;
457   }
458 }
459 
460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
461   switch (ElementSize) {
462   case 1:
463     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
464   case 2:
465     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
466   case 4:
467     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
468   case 8:
469     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
470   case 16:
471     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
472   default:
473     return UNKNOWN_LIBCALL;
474   }
475 }
476 
477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 /// InitCmpLibcallCCs - Set default comparison libcall CC.
495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
500   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
501   CCs[RTLIB::UNE_F32] = ISD::SETNE;
502   CCs[RTLIB::UNE_F64] = ISD::SETNE;
503   CCs[RTLIB::UNE_F128] = ISD::SETNE;
504   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
505   CCs[RTLIB::OGE_F32] = ISD::SETGE;
506   CCs[RTLIB::OGE_F64] = ISD::SETGE;
507   CCs[RTLIB::OGE_F128] = ISD::SETGE;
508   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
509   CCs[RTLIB::OLT_F32] = ISD::SETLT;
510   CCs[RTLIB::OLT_F64] = ISD::SETLT;
511   CCs[RTLIB::OLT_F128] = ISD::SETLT;
512   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
513   CCs[RTLIB::OLE_F32] = ISD::SETLE;
514   CCs[RTLIB::OLE_F64] = ISD::SETLE;
515   CCs[RTLIB::OLE_F128] = ISD::SETLE;
516   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
517   CCs[RTLIB::OGT_F32] = ISD::SETGT;
518   CCs[RTLIB::OGT_F64] = ISD::SETGT;
519   CCs[RTLIB::OGT_F128] = ISD::SETGT;
520   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
521   CCs[RTLIB::UO_F32] = ISD::SETNE;
522   CCs[RTLIB::UO_F64] = ISD::SETNE;
523   CCs[RTLIB::UO_F128] = ISD::SETNE;
524   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
525   CCs[RTLIB::O_F32] = ISD::SETEQ;
526   CCs[RTLIB::O_F64] = ISD::SETEQ;
527   CCs[RTLIB::O_F128] = ISD::SETEQ;
528   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
529 }
530 
531 /// NOTE: The TargetMachine owns TLOF.
532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
533   initActions();
534 
535   // Perform these initializations only once.
536   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
537       MaxLoadsPerMemcmp = 8;
538   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
539       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
540   UseUnderscoreSetJmp = false;
541   UseUnderscoreLongJmp = false;
542   HasMultipleConditionRegisters = false;
543   HasExtractBitsInsn = false;
544   JumpIsExpensive = JumpIsExpensiveOverride;
545   PredictableSelectIsExpensive = false;
546   EnableExtLdPromotion = false;
547   HasFloatingPointExceptions = true;
548   StackPointerRegisterToSaveRestore = 0;
549   BooleanContents = UndefinedBooleanContent;
550   BooleanFloatContents = UndefinedBooleanContent;
551   BooleanVectorContents = UndefinedBooleanContent;
552   SchedPreferenceInfo = Sched::ILP;
553   JumpBufSize = 0;
554   JumpBufAlignment = 0;
555   MinFunctionAlignment = 0;
556   PrefFunctionAlignment = 0;
557   PrefLoopAlignment = 0;
558   GatherAllAliasesMaxDepth = 18;
559   MinStackArgumentAlignment = 1;
560   // TODO: the default will be switched to 0 in the next commit, along
561   // with the Target-specific changes necessary.
562   MaxAtomicSizeInBitsSupported = 1024;
563 
564   MinCmpXchgSizeInBits = 0;
565   SupportsUnalignedAtomics = false;
566 
567   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
568 
569   InitLibcalls(TM.getTargetTriple());
570   InitCmpLibcallCCs(CmpLibcallCCs);
571 }
572 
573 void TargetLoweringBase::initActions() {
574   // All operations default to being supported.
575   memset(OpActions, 0, sizeof(OpActions));
576   memset(LoadExtActions, 0, sizeof(LoadExtActions));
577   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
578   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
579   memset(CondCodeActions, 0, sizeof(CondCodeActions));
580   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
581   std::fill(std::begin(TargetDAGCombineArray),
582             std::end(TargetDAGCombineArray), 0);
583 
584   // Set default actions for various operations.
585   for (MVT VT : MVT::all_valuetypes()) {
586     // Default all indexed load / store to expand.
587     for (unsigned IM = (unsigned)ISD::PRE_INC;
588          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
589       setIndexedLoadAction(IM, VT, Expand);
590       setIndexedStoreAction(IM, VT, Expand);
591     }
592 
593     // Most backends expect to see the node which just returns the value loaded.
594     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
595 
596     // These operations default to expand.
597     setOperationAction(ISD::FGETSIGN, VT, Expand);
598     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
599     setOperationAction(ISD::FMINNUM, VT, Expand);
600     setOperationAction(ISD::FMAXNUM, VT, Expand);
601     setOperationAction(ISD::FMINNAN, VT, Expand);
602     setOperationAction(ISD::FMAXNAN, VT, Expand);
603     setOperationAction(ISD::FMAD, VT, Expand);
604     setOperationAction(ISD::SMIN, VT, Expand);
605     setOperationAction(ISD::SMAX, VT, Expand);
606     setOperationAction(ISD::UMIN, VT, Expand);
607     setOperationAction(ISD::UMAX, VT, Expand);
608     setOperationAction(ISD::ABS, VT, Expand);
609 
610     // Overflow operations default to expand
611     setOperationAction(ISD::SADDO, VT, Expand);
612     setOperationAction(ISD::SSUBO, VT, Expand);
613     setOperationAction(ISD::UADDO, VT, Expand);
614     setOperationAction(ISD::USUBO, VT, Expand);
615     setOperationAction(ISD::SMULO, VT, Expand);
616     setOperationAction(ISD::UMULO, VT, Expand);
617 
618     // ADDCARRY operations default to expand
619     setOperationAction(ISD::ADDCARRY, VT, Expand);
620     setOperationAction(ISD::SUBCARRY, VT, Expand);
621     setOperationAction(ISD::SETCCCARRY, VT, Expand);
622 
623     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
624     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
625     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
626 
627     setOperationAction(ISD::BITREVERSE, VT, Expand);
628 
629     // These library functions default to expand.
630     setOperationAction(ISD::FROUND, VT, Expand);
631     setOperationAction(ISD::FPOWI, VT, Expand);
632 
633     // These operations default to expand for vector types.
634     if (VT.isVector()) {
635       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
636       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
637       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
638       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
639     }
640 
641     // For most targets @llvm.get.dynamic.area.offset just returns 0.
642     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
643   }
644 
645   // Most targets ignore the @llvm.prefetch intrinsic.
646   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
647 
648   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
649   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
650 
651   // ConstantFP nodes default to expand.  Targets can either change this to
652   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
653   // to optimize expansions for certain constants.
654   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
655   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
656   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
657   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
658   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
659 
660   // These library functions default to expand.
661   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
662     setOperationAction(ISD::FLOG ,      VT, Expand);
663     setOperationAction(ISD::FLOG2,      VT, Expand);
664     setOperationAction(ISD::FLOG10,     VT, Expand);
665     setOperationAction(ISD::FEXP ,      VT, Expand);
666     setOperationAction(ISD::FEXP2,      VT, Expand);
667     setOperationAction(ISD::FFLOOR,     VT, Expand);
668     setOperationAction(ISD::FNEARBYINT, VT, Expand);
669     setOperationAction(ISD::FCEIL,      VT, Expand);
670     setOperationAction(ISD::FRINT,      VT, Expand);
671     setOperationAction(ISD::FTRUNC,     VT, Expand);
672     setOperationAction(ISD::FROUND,     VT, Expand);
673   }
674 
675   // Default ISD::TRAP to expand (which turns it into abort).
676   setOperationAction(ISD::TRAP, MVT::Other, Expand);
677 
678   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
679   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
680   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
681 }
682 
683 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
684                                                EVT) const {
685   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
686 }
687 
688 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
689                                          bool LegalTypes) const {
690   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
691   if (LHSTy.isVector())
692     return LHSTy;
693   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
694                     : getPointerTy(DL);
695 }
696 
697 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
698   assert(isTypeLegal(VT));
699   switch (Op) {
700   default:
701     return false;
702   case ISD::SDIV:
703   case ISD::UDIV:
704   case ISD::SREM:
705   case ISD::UREM:
706     return true;
707   }
708 }
709 
710 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
711   // If the command-line option was specified, ignore this request.
712   if (!JumpIsExpensiveOverride.getNumOccurrences())
713     JumpIsExpensive = isExpensive;
714 }
715 
716 TargetLoweringBase::LegalizeKind
717 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
718   // If this is a simple type, use the ComputeRegisterProp mechanism.
719   if (VT.isSimple()) {
720     MVT SVT = VT.getSimpleVT();
721     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
722     MVT NVT = TransformToType[SVT.SimpleTy];
723     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
724 
725     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
726             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
727            "Promote may not follow Expand or Promote");
728 
729     if (LA == TypeSplitVector)
730       return LegalizeKind(LA,
731                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
732                                            SVT.getVectorNumElements() / 2));
733     if (LA == TypeScalarizeVector)
734       return LegalizeKind(LA, SVT.getVectorElementType());
735     return LegalizeKind(LA, NVT);
736   }
737 
738   // Handle Extended Scalar Types.
739   if (!VT.isVector()) {
740     assert(VT.isInteger() && "Float types must be simple");
741     unsigned BitSize = VT.getSizeInBits();
742     // First promote to a power-of-two size, then expand if necessary.
743     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
744       EVT NVT = VT.getRoundIntegerType(Context);
745       assert(NVT != VT && "Unable to round integer VT");
746       LegalizeKind NextStep = getTypeConversion(Context, NVT);
747       // Avoid multi-step promotion.
748       if (NextStep.first == TypePromoteInteger)
749         return NextStep;
750       // Return rounded integer type.
751       return LegalizeKind(TypePromoteInteger, NVT);
752     }
753 
754     return LegalizeKind(TypeExpandInteger,
755                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
756   }
757 
758   // Handle vector types.
759   unsigned NumElts = VT.getVectorNumElements();
760   EVT EltVT = VT.getVectorElementType();
761 
762   // Vectors with only one element are always scalarized.
763   if (NumElts == 1)
764     return LegalizeKind(TypeScalarizeVector, EltVT);
765 
766   // Try to widen vector elements until the element type is a power of two and
767   // promote it to a legal type later on, for example:
768   // <3 x i8> -> <4 x i8> -> <4 x i32>
769   if (EltVT.isInteger()) {
770     // Vectors with a number of elements that is not a power of two are always
771     // widened, for example <3 x i8> -> <4 x i8>.
772     if (!VT.isPow2VectorType()) {
773       NumElts = (unsigned)NextPowerOf2(NumElts);
774       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
775       return LegalizeKind(TypeWidenVector, NVT);
776     }
777 
778     // Examine the element type.
779     LegalizeKind LK = getTypeConversion(Context, EltVT);
780 
781     // If type is to be expanded, split the vector.
782     //  <4 x i140> -> <2 x i140>
783     if (LK.first == TypeExpandInteger)
784       return LegalizeKind(TypeSplitVector,
785                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
786 
787     // Promote the integer element types until a legal vector type is found
788     // or until the element integer type is too big. If a legal type was not
789     // found, fallback to the usual mechanism of widening/splitting the
790     // vector.
791     EVT OldEltVT = EltVT;
792     while (true) {
793       // Increase the bitwidth of the element to the next pow-of-two
794       // (which is greater than 8 bits).
795       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
796                   .getRoundIntegerType(Context);
797 
798       // Stop trying when getting a non-simple element type.
799       // Note that vector elements may be greater than legal vector element
800       // types. Example: X86 XMM registers hold 64bit element on 32bit
801       // systems.
802       if (!EltVT.isSimple())
803         break;
804 
805       // Build a new vector type and check if it is legal.
806       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
807       // Found a legal promoted vector type.
808       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
809         return LegalizeKind(TypePromoteInteger,
810                             EVT::getVectorVT(Context, EltVT, NumElts));
811     }
812 
813     // Reset the type to the unexpanded type if we did not find a legal vector
814     // type with a promoted vector element type.
815     EltVT = OldEltVT;
816   }
817 
818   // Try to widen the vector until a legal type is found.
819   // If there is no wider legal type, split the vector.
820   while (true) {
821     // Round up to the next power of 2.
822     NumElts = (unsigned)NextPowerOf2(NumElts);
823 
824     // If there is no simple vector type with this many elements then there
825     // cannot be a larger legal vector type.  Note that this assumes that
826     // there are no skipped intermediate vector types in the simple types.
827     if (!EltVT.isSimple())
828       break;
829     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
830     if (LargerVector == MVT())
831       break;
832 
833     // If this type is legal then widen the vector.
834     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
835       return LegalizeKind(TypeWidenVector, LargerVector);
836   }
837 
838   // Widen odd vectors to next power of two.
839   if (!VT.isPow2VectorType()) {
840     EVT NVT = VT.getPow2VectorType(Context);
841     return LegalizeKind(TypeWidenVector, NVT);
842   }
843 
844   // Vectors with illegal element types are expanded.
845   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
846   return LegalizeKind(TypeSplitVector, NVT);
847 }
848 
849 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
850                                           unsigned &NumIntermediates,
851                                           MVT &RegisterVT,
852                                           TargetLoweringBase *TLI) {
853   // Figure out the right, legal destination reg to copy into.
854   unsigned NumElts = VT.getVectorNumElements();
855   MVT EltTy = VT.getVectorElementType();
856 
857   unsigned NumVectorRegs = 1;
858 
859   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
860   // could break down into LHS/RHS like LegalizeDAG does.
861   if (!isPowerOf2_32(NumElts)) {
862     NumVectorRegs = NumElts;
863     NumElts = 1;
864   }
865 
866   // Divide the input until we get to a supported size.  This will always
867   // end with a scalar if the target doesn't support vectors.
868   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
869     NumElts >>= 1;
870     NumVectorRegs <<= 1;
871   }
872 
873   NumIntermediates = NumVectorRegs;
874 
875   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
876   if (!TLI->isTypeLegal(NewVT))
877     NewVT = EltTy;
878   IntermediateVT = NewVT;
879 
880   unsigned NewVTSize = NewVT.getSizeInBits();
881 
882   // Convert sizes such as i33 to i64.
883   if (!isPowerOf2_32(NewVTSize))
884     NewVTSize = NextPowerOf2(NewVTSize);
885 
886   MVT DestVT = TLI->getRegisterType(NewVT);
887   RegisterVT = DestVT;
888   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
889     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
890 
891   // Otherwise, promotion or legal types use the same number of registers as
892   // the vector decimated to the appropriate level.
893   return NumVectorRegs;
894 }
895 
896 /// isLegalRC - Return true if the value types that can be represented by the
897 /// specified register class are all legal.
898 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
899                                    const TargetRegisterClass &RC) const {
900   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
901     if (isTypeLegal(*I))
902       return true;
903   return false;
904 }
905 
906 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
907 /// sequence of memory operands that is recognized by PrologEpilogInserter.
908 MachineBasicBlock *
909 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
910                                    MachineBasicBlock *MBB) const {
911   MachineInstr *MI = &InitialMI;
912   MachineFunction &MF = *MI->getMF();
913   MachineFrameInfo &MFI = MF.getFrameInfo();
914 
915   // We're handling multiple types of operands here:
916   // PATCHPOINT MetaArgs - live-in, read only, direct
917   // STATEPOINT Deopt Spill - live-through, read only, indirect
918   // STATEPOINT Deopt Alloca - live-through, read only, direct
919   // (We're currently conservative and mark the deopt slots read/write in
920   // practice.)
921   // STATEPOINT GC Spill - live-through, read/write, indirect
922   // STATEPOINT GC Alloca - live-through, read/write, direct
923   // The live-in vs live-through is handled already (the live through ones are
924   // all stack slots), but we need to handle the different type of stackmap
925   // operands and memory effects here.
926 
927   // MI changes inside this loop as we grow operands.
928   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
929     MachineOperand &MO = MI->getOperand(OperIdx);
930     if (!MO.isFI())
931       continue;
932 
933     // foldMemoryOperand builds a new MI after replacing a single FI operand
934     // with the canonical set of five x86 addressing-mode operands.
935     int FI = MO.getIndex();
936     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
937 
938     // Copy operands before the frame-index.
939     for (unsigned i = 0; i < OperIdx; ++i)
940       MIB.add(MI->getOperand(i));
941     // Add frame index operands recognized by stackmaps.cpp
942     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
943       // indirect-mem-ref tag, size, #FI, offset.
944       // Used for spills inserted by StatepointLowering.  This codepath is not
945       // used for patchpoints/stackmaps at all, for these spilling is done via
946       // foldMemoryOperand callback only.
947       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
948       MIB.addImm(StackMaps::IndirectMemRefOp);
949       MIB.addImm(MFI.getObjectSize(FI));
950       MIB.add(MI->getOperand(OperIdx));
951       MIB.addImm(0);
952     } else {
953       // direct-mem-ref tag, #FI, offset.
954       // Used by patchpoint, and direct alloca arguments to statepoints
955       MIB.addImm(StackMaps::DirectMemRefOp);
956       MIB.add(MI->getOperand(OperIdx));
957       MIB.addImm(0);
958     }
959     // Copy the operands after the frame index.
960     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
961       MIB.add(MI->getOperand(i));
962 
963     // Inherit previous memory operands.
964     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
965     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
966 
967     // Add a new memory operand for this FI.
968     assert(MFI.getObjectOffset(FI) != -1);
969 
970     auto Flags = MachineMemOperand::MOLoad;
971     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
972       Flags |= MachineMemOperand::MOStore;
973       Flags |= MachineMemOperand::MOVolatile;
974     }
975     MachineMemOperand *MMO = MF.getMachineMemOperand(
976         MachinePointerInfo::getFixedStack(MF, FI), Flags,
977         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
978     MIB->addMemOperand(MF, MMO);
979 
980     // Replace the instruction and update the operand index.
981     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
982     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
983     MI->eraseFromParent();
984     MI = MIB;
985   }
986   return MBB;
987 }
988 
989 MachineBasicBlock *
990 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
991                                         MachineBasicBlock *MBB) const {
992   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
993          "Called emitXRayCustomEvent on the wrong MI!");
994   auto &MF = *MI.getMF();
995   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
996   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
997     MIB.add(MI.getOperand(OpIdx));
998 
999   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1000   MI.eraseFromParent();
1001   return MBB;
1002 }
1003 
1004 /// findRepresentativeClass - Return the largest legal super-reg register class
1005 /// of the register class for the specified type and its associated "cost".
1006 // This function is in TargetLowering because it uses RegClassForVT which would
1007 // need to be moved to TargetRegisterInfo and would necessitate moving
1008 // isTypeLegal over as well - a massive change that would just require
1009 // TargetLowering having a TargetRegisterInfo class member that it would use.
1010 std::pair<const TargetRegisterClass *, uint8_t>
1011 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1012                                             MVT VT) const {
1013   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1014   if (!RC)
1015     return std::make_pair(RC, 0);
1016 
1017   // Compute the set of all super-register classes.
1018   BitVector SuperRegRC(TRI->getNumRegClasses());
1019   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1020     SuperRegRC.setBitsInMask(RCI.getMask());
1021 
1022   // Find the first legal register class with the largest spill size.
1023   const TargetRegisterClass *BestRC = RC;
1024   for (unsigned i : SuperRegRC.set_bits()) {
1025     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1026     // We want the largest possible spill size.
1027     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1028       continue;
1029     if (!isLegalRC(*TRI, *SuperRC))
1030       continue;
1031     BestRC = SuperRC;
1032   }
1033   return std::make_pair(BestRC, 1);
1034 }
1035 
1036 /// computeRegisterProperties - Once all of the register classes are added,
1037 /// this allows us to compute derived properties we expose.
1038 void TargetLoweringBase::computeRegisterProperties(
1039     const TargetRegisterInfo *TRI) {
1040   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1041                 "Too many value types for ValueTypeActions to hold!");
1042 
1043   // Everything defaults to needing one register.
1044   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1045     NumRegistersForVT[i] = 1;
1046     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1047   }
1048   // ...except isVoid, which doesn't need any registers.
1049   NumRegistersForVT[MVT::isVoid] = 0;
1050 
1051   // Find the largest integer register class.
1052   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1053   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1054     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1055 
1056   // Every integer value type larger than this largest register takes twice as
1057   // many registers to represent as the previous ValueType.
1058   for (unsigned ExpandedReg = LargestIntReg + 1;
1059        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1060     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1061     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1062     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1063     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1064                                    TypeExpandInteger);
1065   }
1066 
1067   // Inspect all of the ValueType's smaller than the largest integer
1068   // register to see which ones need promotion.
1069   unsigned LegalIntReg = LargestIntReg;
1070   for (unsigned IntReg = LargestIntReg - 1;
1071        IntReg >= (unsigned)MVT::i1; --IntReg) {
1072     MVT IVT = (MVT::SimpleValueType)IntReg;
1073     if (isTypeLegal(IVT)) {
1074       LegalIntReg = IntReg;
1075     } else {
1076       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1077         (const MVT::SimpleValueType)LegalIntReg;
1078       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1079     }
1080   }
1081 
1082   // ppcf128 type is really two f64's.
1083   if (!isTypeLegal(MVT::ppcf128)) {
1084     if (isTypeLegal(MVT::f64)) {
1085       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1086       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1087       TransformToType[MVT::ppcf128] = MVT::f64;
1088       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1089     } else {
1090       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1091       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1092       TransformToType[MVT::ppcf128] = MVT::i128;
1093       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1094     }
1095   }
1096 
1097   // Decide how to handle f128. If the target does not have native f128 support,
1098   // expand it to i128 and we will be generating soft float library calls.
1099   if (!isTypeLegal(MVT::f128)) {
1100     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1101     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1102     TransformToType[MVT::f128] = MVT::i128;
1103     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1104   }
1105 
1106   // Decide how to handle f64. If the target does not have native f64 support,
1107   // expand it to i64 and we will be generating soft float library calls.
1108   if (!isTypeLegal(MVT::f64)) {
1109     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1110     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1111     TransformToType[MVT::f64] = MVT::i64;
1112     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1113   }
1114 
1115   // Decide how to handle f32. If the target does not have native f32 support,
1116   // expand it to i32 and we will be generating soft float library calls.
1117   if (!isTypeLegal(MVT::f32)) {
1118     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1119     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1120     TransformToType[MVT::f32] = MVT::i32;
1121     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1122   }
1123 
1124   // Decide how to handle f16. If the target does not have native f16 support,
1125   // promote it to f32, because there are no f16 library calls (except for
1126   // conversions).
1127   if (!isTypeLegal(MVT::f16)) {
1128     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1129     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1130     TransformToType[MVT::f16] = MVT::f32;
1131     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1132   }
1133 
1134   // Loop over all of the vector value types to see which need transformations.
1135   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1136        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1137     MVT VT = (MVT::SimpleValueType) i;
1138     if (isTypeLegal(VT))
1139       continue;
1140 
1141     MVT EltVT = VT.getVectorElementType();
1142     unsigned NElts = VT.getVectorNumElements();
1143     bool IsLegalWiderType = false;
1144     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1145     switch (PreferredAction) {
1146     case TypePromoteInteger:
1147       // Try to promote the elements of integer vectors. If no legal
1148       // promotion was found, fall through to the widen-vector method.
1149       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1150         MVT SVT = (MVT::SimpleValueType) nVT;
1151         // Promote vectors of integers to vectors with the same number
1152         // of elements, with a wider element type.
1153         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1154             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1155           TransformToType[i] = SVT;
1156           RegisterTypeForVT[i] = SVT;
1157           NumRegistersForVT[i] = 1;
1158           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1159           IsLegalWiderType = true;
1160           break;
1161         }
1162       }
1163       if (IsLegalWiderType)
1164         break;
1165       LLVM_FALLTHROUGH;
1166 
1167     case TypeWidenVector:
1168       // Try to widen the vector.
1169       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1170         MVT SVT = (MVT::SimpleValueType) nVT;
1171         if (SVT.getVectorElementType() == EltVT
1172             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1173           TransformToType[i] = SVT;
1174           RegisterTypeForVT[i] = SVT;
1175           NumRegistersForVT[i] = 1;
1176           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1177           IsLegalWiderType = true;
1178           break;
1179         }
1180       }
1181       if (IsLegalWiderType)
1182         break;
1183       LLVM_FALLTHROUGH;
1184 
1185     case TypeSplitVector:
1186     case TypeScalarizeVector: {
1187       MVT IntermediateVT;
1188       MVT RegisterVT;
1189       unsigned NumIntermediates;
1190       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1191           NumIntermediates, RegisterVT, this);
1192       RegisterTypeForVT[i] = RegisterVT;
1193 
1194       MVT NVT = VT.getPow2VectorType();
1195       if (NVT == VT) {
1196         // Type is already a power of 2.  The default action is to split.
1197         TransformToType[i] = MVT::Other;
1198         if (PreferredAction == TypeScalarizeVector)
1199           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1200         else if (PreferredAction == TypeSplitVector)
1201           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1202         else
1203           // Set type action according to the number of elements.
1204           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1205                                                         : TypeSplitVector);
1206       } else {
1207         TransformToType[i] = NVT;
1208         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1209       }
1210       break;
1211     }
1212     default:
1213       llvm_unreachable("Unknown vector legalization action!");
1214     }
1215   }
1216 
1217   // Determine the 'representative' register class for each value type.
1218   // An representative register class is the largest (meaning one which is
1219   // not a sub-register class / subreg register class) legal register class for
1220   // a group of value types. For example, on i386, i8, i16, and i32
1221   // representative would be GR32; while on x86_64 it's GR64.
1222   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1223     const TargetRegisterClass* RRC;
1224     uint8_t Cost;
1225     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1226     RepRegClassForVT[i] = RRC;
1227     RepRegClassCostForVT[i] = Cost;
1228   }
1229 }
1230 
1231 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1232                                            EVT VT) const {
1233   assert(!VT.isVector() && "No default SetCC type for vectors!");
1234   return getPointerTy(DL).SimpleTy;
1235 }
1236 
1237 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1238   return MVT::i32; // return the default value
1239 }
1240 
1241 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1242 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1243 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1244 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1245 ///
1246 /// This method returns the number of registers needed, and the VT for each
1247 /// register.  It also returns the VT and quantity of the intermediate values
1248 /// before they are promoted/expanded.
1249 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1250                                                 EVT &IntermediateVT,
1251                                                 unsigned &NumIntermediates,
1252                                                 MVT &RegisterVT) const {
1253   unsigned NumElts = VT.getVectorNumElements();
1254 
1255   // If there is a wider vector type with the same element type as this one,
1256   // or a promoted vector type that has the same number of elements which
1257   // are wider, then we should convert to that legal vector type.
1258   // This handles things like <2 x float> -> <4 x float> and
1259   // <4 x i1> -> <4 x i32>.
1260   LegalizeTypeAction TA = getTypeAction(Context, VT);
1261   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1262     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1263     if (isTypeLegal(RegisterEVT)) {
1264       IntermediateVT = RegisterEVT;
1265       RegisterVT = RegisterEVT.getSimpleVT();
1266       NumIntermediates = 1;
1267       return 1;
1268     }
1269   }
1270 
1271   // Figure out the right, legal destination reg to copy into.
1272   EVT EltTy = VT.getVectorElementType();
1273 
1274   unsigned NumVectorRegs = 1;
1275 
1276   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1277   // could break down into LHS/RHS like LegalizeDAG does.
1278   if (!isPowerOf2_32(NumElts)) {
1279     NumVectorRegs = NumElts;
1280     NumElts = 1;
1281   }
1282 
1283   // Divide the input until we get to a supported size.  This will always
1284   // end with a scalar if the target doesn't support vectors.
1285   while (NumElts > 1 && !isTypeLegal(
1286                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1287     NumElts >>= 1;
1288     NumVectorRegs <<= 1;
1289   }
1290 
1291   NumIntermediates = NumVectorRegs;
1292 
1293   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1294   if (!isTypeLegal(NewVT))
1295     NewVT = EltTy;
1296   IntermediateVT = NewVT;
1297 
1298   MVT DestVT = getRegisterType(Context, NewVT);
1299   RegisterVT = DestVT;
1300   unsigned NewVTSize = NewVT.getSizeInBits();
1301 
1302   // Convert sizes such as i33 to i64.
1303   if (!isPowerOf2_32(NewVTSize))
1304     NewVTSize = NextPowerOf2(NewVTSize);
1305 
1306   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1307     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1308 
1309   // Otherwise, promotion or legal types use the same number of registers as
1310   // the vector decimated to the appropriate level.
1311   return NumVectorRegs;
1312 }
1313 
1314 /// Get the EVTs and ArgFlags collections that represent the legalized return
1315 /// type of the given function.  This does not require a DAG or a return value,
1316 /// and is suitable for use before any DAGs for the function are constructed.
1317 /// TODO: Move this out of TargetLowering.cpp.
1318 void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr,
1319                          SmallVectorImpl<ISD::OutputArg> &Outs,
1320                          const TargetLowering &TLI, const DataLayout &DL) {
1321   SmallVector<EVT, 4> ValueVTs;
1322   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1323   unsigned NumValues = ValueVTs.size();
1324   if (NumValues == 0) return;
1325 
1326   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1327     EVT VT = ValueVTs[j];
1328     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1329 
1330     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1331       ExtendKind = ISD::SIGN_EXTEND;
1332     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1333       ExtendKind = ISD::ZERO_EXTEND;
1334 
1335     // FIXME: C calling convention requires the return type to be promoted to
1336     // at least 32-bit. But this is not necessary for non-C calling
1337     // conventions. The frontend should mark functions whose return values
1338     // require promoting with signext or zeroext attributes.
1339     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1340       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1341       if (VT.bitsLT(MinVT))
1342         VT = MinVT;
1343     }
1344 
1345     unsigned NumParts =
1346         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), VT);
1347     MVT PartVT =
1348         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), VT);
1349 
1350     // 'inreg' on function refers to return value
1351     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1352     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1353       Flags.setInReg();
1354 
1355     // Propagate extension type if any
1356     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1357       Flags.setSExt();
1358     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1359       Flags.setZExt();
1360 
1361     for (unsigned i = 0; i < NumParts; ++i)
1362       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1363   }
1364 }
1365 
1366 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1367 /// function arguments in the caller parameter area.  This is the actual
1368 /// alignment, not its logarithm.
1369 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1370                                                    const DataLayout &DL) const {
1371   return DL.getABITypeAlignment(Ty);
1372 }
1373 
1374 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1375                                             const DataLayout &DL, EVT VT,
1376                                             unsigned AddrSpace,
1377                                             unsigned Alignment,
1378                                             bool *Fast) const {
1379   // Check if the specified alignment is sufficient based on the data layout.
1380   // TODO: While using the data layout works in practice, a better solution
1381   // would be to implement this check directly (make this a virtual function).
1382   // For example, the ABI alignment may change based on software platform while
1383   // this function should only be affected by hardware implementation.
1384   Type *Ty = VT.getTypeForEVT(Context);
1385   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1386     // Assume that an access that meets the ABI-specified alignment is fast.
1387     if (Fast != nullptr)
1388       *Fast = true;
1389     return true;
1390   }
1391 
1392   // This is a misaligned access.
1393   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1394 }
1395 
1396 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1397   return BranchProbability(MinPercentageForPredictableBranch, 100);
1398 }
1399 
1400 //===----------------------------------------------------------------------===//
1401 //  TargetTransformInfo Helpers
1402 //===----------------------------------------------------------------------===//
1403 
1404 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1405   enum InstructionOpcodes {
1406 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1407 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1408 #include "llvm/IR/Instruction.def"
1409   };
1410   switch (static_cast<InstructionOpcodes>(Opcode)) {
1411   case Ret:            return 0;
1412   case Br:             return 0;
1413   case Switch:         return 0;
1414   case IndirectBr:     return 0;
1415   case Invoke:         return 0;
1416   case Resume:         return 0;
1417   case Unreachable:    return 0;
1418   case CleanupRet:     return 0;
1419   case CatchRet:       return 0;
1420   case CatchPad:       return 0;
1421   case CatchSwitch:    return 0;
1422   case CleanupPad:     return 0;
1423   case Add:            return ISD::ADD;
1424   case FAdd:           return ISD::FADD;
1425   case Sub:            return ISD::SUB;
1426   case FSub:           return ISD::FSUB;
1427   case Mul:            return ISD::MUL;
1428   case FMul:           return ISD::FMUL;
1429   case UDiv:           return ISD::UDIV;
1430   case SDiv:           return ISD::SDIV;
1431   case FDiv:           return ISD::FDIV;
1432   case URem:           return ISD::UREM;
1433   case SRem:           return ISD::SREM;
1434   case FRem:           return ISD::FREM;
1435   case Shl:            return ISD::SHL;
1436   case LShr:           return ISD::SRL;
1437   case AShr:           return ISD::SRA;
1438   case And:            return ISD::AND;
1439   case Or:             return ISD::OR;
1440   case Xor:            return ISD::XOR;
1441   case Alloca:         return 0;
1442   case Load:           return ISD::LOAD;
1443   case Store:          return ISD::STORE;
1444   case GetElementPtr:  return 0;
1445   case Fence:          return 0;
1446   case AtomicCmpXchg:  return 0;
1447   case AtomicRMW:      return 0;
1448   case Trunc:          return ISD::TRUNCATE;
1449   case ZExt:           return ISD::ZERO_EXTEND;
1450   case SExt:           return ISD::SIGN_EXTEND;
1451   case FPToUI:         return ISD::FP_TO_UINT;
1452   case FPToSI:         return ISD::FP_TO_SINT;
1453   case UIToFP:         return ISD::UINT_TO_FP;
1454   case SIToFP:         return ISD::SINT_TO_FP;
1455   case FPTrunc:        return ISD::FP_ROUND;
1456   case FPExt:          return ISD::FP_EXTEND;
1457   case PtrToInt:       return ISD::BITCAST;
1458   case IntToPtr:       return ISD::BITCAST;
1459   case BitCast:        return ISD::BITCAST;
1460   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1461   case ICmp:           return ISD::SETCC;
1462   case FCmp:           return ISD::SETCC;
1463   case PHI:            return 0;
1464   case Call:           return 0;
1465   case Select:         return ISD::SELECT;
1466   case UserOp1:        return 0;
1467   case UserOp2:        return 0;
1468   case VAArg:          return 0;
1469   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1470   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1471   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1472   case ExtractValue:   return ISD::MERGE_VALUES;
1473   case InsertValue:    return ISD::MERGE_VALUES;
1474   case LandingPad:     return 0;
1475   }
1476 
1477   llvm_unreachable("Unknown instruction type encountered!");
1478 }
1479 
1480 std::pair<int, MVT>
1481 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1482                                             Type *Ty) const {
1483   LLVMContext &C = Ty->getContext();
1484   EVT MTy = getValueType(DL, Ty);
1485 
1486   int Cost = 1;
1487   // We keep legalizing the type until we find a legal kind. We assume that
1488   // the only operation that costs anything is the split. After splitting
1489   // we need to handle two types.
1490   while (true) {
1491     LegalizeKind LK = getTypeConversion(C, MTy);
1492 
1493     if (LK.first == TypeLegal)
1494       return std::make_pair(Cost, MTy.getSimpleVT());
1495 
1496     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1497       Cost *= 2;
1498 
1499     // Do not loop with f128 type.
1500     if (MTy == LK.second)
1501       return std::make_pair(Cost, MTy.getSimpleVT());
1502 
1503     // Keep legalizing the type.
1504     MTy = LK.second;
1505   }
1506 }
1507 
1508 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1509                                                               bool UseTLS) const {
1510   // compiler-rt provides a variable with a magic name.  Targets that do not
1511   // link with compiler-rt may also provide such a variable.
1512   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1513   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1514   auto UnsafeStackPtr =
1515       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1516 
1517   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1518 
1519   if (!UnsafeStackPtr) {
1520     auto TLSModel = UseTLS ?
1521         GlobalValue::InitialExecTLSModel :
1522         GlobalValue::NotThreadLocal;
1523     // The global variable is not defined yet, define it ourselves.
1524     // We use the initial-exec TLS model because we do not support the
1525     // variable living anywhere other than in the main executable.
1526     UnsafeStackPtr = new GlobalVariable(
1527         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1528         UnsafeStackPtrVar, nullptr, TLSModel);
1529   } else {
1530     // The variable exists, check its type and attributes.
1531     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1532       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1533     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1534       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1535                          (UseTLS ? "" : "not ") + "be thread-local");
1536   }
1537   return UnsafeStackPtr;
1538 }
1539 
1540 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1541   if (!TM.getTargetTriple().isAndroid())
1542     return getDefaultSafeStackPointerLocation(IRB, true);
1543 
1544   // Android provides a libc function to retrieve the address of the current
1545   // thread's unsafe stack pointer.
1546   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1547   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1548   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1549                                      StackPtrTy->getPointerTo(0));
1550   return IRB.CreateCall(Fn);
1551 }
1552 
1553 //===----------------------------------------------------------------------===//
1554 //  Loop Strength Reduction hooks
1555 //===----------------------------------------------------------------------===//
1556 
1557 /// isLegalAddressingMode - Return true if the addressing mode represented
1558 /// by AM is legal for this target, for a load/store of the specified type.
1559 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1560                                                const AddrMode &AM, Type *Ty,
1561                                                unsigned AS, Instruction *I) const {
1562   // The default implementation of this implements a conservative RISCy, r+r and
1563   // r+i addr mode.
1564 
1565   // Allows a sign-extended 16-bit immediate field.
1566   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1567     return false;
1568 
1569   // No global is ever allowed as a base.
1570   if (AM.BaseGV)
1571     return false;
1572 
1573   // Only support r+r,
1574   switch (AM.Scale) {
1575   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1576     break;
1577   case 1:
1578     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1579       return false;
1580     // Otherwise we have r+r or r+i.
1581     break;
1582   case 2:
1583     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1584       return false;
1585     // Allow 2*r as r+r.
1586     break;
1587   default: // Don't allow n * r
1588     return false;
1589   }
1590 
1591   return true;
1592 }
1593 
1594 //===----------------------------------------------------------------------===//
1595 //  Stack Protector
1596 //===----------------------------------------------------------------------===//
1597 
1598 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1599 // so that SelectionDAG handle SSP.
1600 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1601   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1602     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1603     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1604     return M.getOrInsertGlobal("__guard_local", PtrTy);
1605   }
1606   return nullptr;
1607 }
1608 
1609 // Currently only support "standard" __stack_chk_guard.
1610 // TODO: add LOAD_STACK_GUARD support.
1611 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1612   M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
1613 }
1614 
1615 // Currently only support "standard" __stack_chk_guard.
1616 // TODO: add LOAD_STACK_GUARD support.
1617 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1618   return M.getGlobalVariable("__stack_chk_guard", true);
1619 }
1620 
1621 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1622   return nullptr;
1623 }
1624 
1625 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1626   return MinimumJumpTableEntries;
1627 }
1628 
1629 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1630   MinimumJumpTableEntries = Val;
1631 }
1632 
1633 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1634   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1635 }
1636 
1637 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1638   return MaximumJumpTableSize;
1639 }
1640 
1641 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1642   MaximumJumpTableSize = Val;
1643 }
1644 
1645 //===----------------------------------------------------------------------===//
1646 //  Reciprocal Estimates
1647 //===----------------------------------------------------------------------===//
1648 
1649 /// Get the reciprocal estimate attribute string for a function that will
1650 /// override the target defaults.
1651 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1652   const Function &F = MF.getFunction();
1653   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1654 }
1655 
1656 /// Construct a string for the given reciprocal operation of the given type.
1657 /// This string should match the corresponding option to the front-end's
1658 /// "-mrecip" flag assuming those strings have been passed through in an
1659 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1660 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1661   std::string Name = VT.isVector() ? "vec-" : "";
1662 
1663   Name += IsSqrt ? "sqrt" : "div";
1664 
1665   // TODO: Handle "half" or other float types?
1666   if (VT.getScalarType() == MVT::f64) {
1667     Name += "d";
1668   } else {
1669     assert(VT.getScalarType() == MVT::f32 &&
1670            "Unexpected FP type for reciprocal estimate");
1671     Name += "f";
1672   }
1673 
1674   return Name;
1675 }
1676 
1677 /// Return the character position and value (a single numeric character) of a
1678 /// customized refinement operation in the input string if it exists. Return
1679 /// false if there is no customized refinement step count.
1680 static bool parseRefinementStep(StringRef In, size_t &Position,
1681                                 uint8_t &Value) {
1682   const char RefStepToken = ':';
1683   Position = In.find(RefStepToken);
1684   if (Position == StringRef::npos)
1685     return false;
1686 
1687   StringRef RefStepString = In.substr(Position + 1);
1688   // Allow exactly one numeric character for the additional refinement
1689   // step parameter.
1690   if (RefStepString.size() == 1) {
1691     char RefStepChar = RefStepString[0];
1692     if (RefStepChar >= '0' && RefStepChar <= '9') {
1693       Value = RefStepChar - '0';
1694       return true;
1695     }
1696   }
1697   report_fatal_error("Invalid refinement step for -recip.");
1698 }
1699 
1700 /// For the input attribute string, return one of the ReciprocalEstimate enum
1701 /// status values (enabled, disabled, or not specified) for this operation on
1702 /// the specified data type.
1703 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1704   if (Override.empty())
1705     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1706 
1707   SmallVector<StringRef, 4> OverrideVector;
1708   SplitString(Override, OverrideVector, ",");
1709   unsigned NumArgs = OverrideVector.size();
1710 
1711   // Check if "all", "none", or "default" was specified.
1712   if (NumArgs == 1) {
1713     // Look for an optional setting of the number of refinement steps needed
1714     // for this type of reciprocal operation.
1715     size_t RefPos;
1716     uint8_t RefSteps;
1717     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1718       // Split the string for further processing.
1719       Override = Override.substr(0, RefPos);
1720     }
1721 
1722     // All reciprocal types are enabled.
1723     if (Override == "all")
1724       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1725 
1726     // All reciprocal types are disabled.
1727     if (Override == "none")
1728       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1729 
1730     // Target defaults for enablement are used.
1731     if (Override == "default")
1732       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1733   }
1734 
1735   // The attribute string may omit the size suffix ('f'/'d').
1736   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1737   std::string VTNameNoSize = VTName;
1738   VTNameNoSize.pop_back();
1739   static const char DisabledPrefix = '!';
1740 
1741   for (StringRef RecipType : OverrideVector) {
1742     size_t RefPos;
1743     uint8_t RefSteps;
1744     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1745       RecipType = RecipType.substr(0, RefPos);
1746 
1747     // Ignore the disablement token for string matching.
1748     bool IsDisabled = RecipType[0] == DisabledPrefix;
1749     if (IsDisabled)
1750       RecipType = RecipType.substr(1);
1751 
1752     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1753       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1754                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1755   }
1756 
1757   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1758 }
1759 
1760 /// For the input attribute string, return the customized refinement step count
1761 /// for this operation on the specified data type. If the step count does not
1762 /// exist, return the ReciprocalEstimate enum value for unspecified.
1763 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1764   if (Override.empty())
1765     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1766 
1767   SmallVector<StringRef, 4> OverrideVector;
1768   SplitString(Override, OverrideVector, ",");
1769   unsigned NumArgs = OverrideVector.size();
1770 
1771   // Check if "all", "default", or "none" was specified.
1772   if (NumArgs == 1) {
1773     // Look for an optional setting of the number of refinement steps needed
1774     // for this type of reciprocal operation.
1775     size_t RefPos;
1776     uint8_t RefSteps;
1777     if (!parseRefinementStep(Override, RefPos, RefSteps))
1778       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1779 
1780     // Split the string for further processing.
1781     Override = Override.substr(0, RefPos);
1782     assert(Override != "none" &&
1783            "Disabled reciprocals, but specifed refinement steps?");
1784 
1785     // If this is a general override, return the specified number of steps.
1786     if (Override == "all" || Override == "default")
1787       return RefSteps;
1788   }
1789 
1790   // The attribute string may omit the size suffix ('f'/'d').
1791   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1792   std::string VTNameNoSize = VTName;
1793   VTNameNoSize.pop_back();
1794 
1795   for (StringRef RecipType : OverrideVector) {
1796     size_t RefPos;
1797     uint8_t RefSteps;
1798     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1799       continue;
1800 
1801     RecipType = RecipType.substr(0, RefPos);
1802     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1803       return RefSteps;
1804   }
1805 
1806   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1807 }
1808 
1809 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1810                                                     MachineFunction &MF) const {
1811   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1812 }
1813 
1814 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1815                                                    MachineFunction &MF) const {
1816   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1817 }
1818 
1819 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1820                                                MachineFunction &MF) const {
1821   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1822 }
1823 
1824 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1825                                               MachineFunction &MF) const {
1826   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1827 }
1828 
1829 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1830   MF.getRegInfo().freezeReservedRegs(MF);
1831 }
1832