1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLoweringBase class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/MachineValueType.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstddef> 58 #include <cstdint> 59 #include <cstring> 60 #include <iterator> 61 #include <string> 62 #include <tuple> 63 #include <utility> 64 65 using namespace llvm; 66 67 static cl::opt<bool> JumpIsExpensiveOverride( 68 "jump-is-expensive", cl::init(false), 69 cl::desc("Do not create extra branches to split comparison logic."), 70 cl::Hidden); 71 72 static cl::opt<unsigned> MinimumJumpTableEntries 73 ("min-jump-table-entries", cl::init(4), cl::Hidden, 74 cl::desc("Set minimum number of entries to use a jump table.")); 75 76 static cl::opt<unsigned> MaximumJumpTableSize 77 ("max-jump-table-size", cl::init(0), cl::Hidden, 78 cl::desc("Set maximum size of jump tables; zero for no limit.")); 79 80 /// Minimum jump table density for normal functions. 81 static cl::opt<unsigned> 82 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 83 cl::desc("Minimum density for building a jump table in " 84 "a normal function")); 85 86 /// Minimum jump table density for -Os or -Oz functions. 87 static cl::opt<unsigned> OptsizeJumpTableDensity( 88 "optsize-jump-table-density", cl::init(40), cl::Hidden, 89 cl::desc("Minimum density for building a jump table in " 90 "an optsize function")); 91 92 static bool darwinHasSinCos(const Triple &TT) { 93 assert(TT.isOSDarwin() && "should be called with darwin triple"); 94 // Don't bother with 32 bit x86. 95 if (TT.getArch() == Triple::x86) 96 return false; 97 // Macos < 10.9 has no sincos_stret. 98 if (TT.isMacOSX()) 99 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 100 // iOS < 7.0 has no sincos_stret. 101 if (TT.isiOS()) 102 return !TT.isOSVersionLT(7, 0); 103 // Any other darwin such as WatchOS/TvOS is new enough. 104 return true; 105 } 106 107 // Although this default value is arbitrary, it is not random. It is assumed 108 // that a condition that evaluates the same way by a higher percentage than this 109 // is best represented as control flow. Therefore, the default value N should be 110 // set such that the win from N% correct executions is greater than the loss 111 // from (100 - N)% mispredicted executions for the majority of intended targets. 112 static cl::opt<int> MinPercentageForPredictableBranch( 113 "min-predictable-branch", cl::init(99), 114 cl::desc("Minimum percentage (0-100) that a condition must be either true " 115 "or false to assume that the condition is predictable"), 116 cl::Hidden); 117 118 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 119 #define HANDLE_LIBCALL(code, name) \ 120 setLibcallName(RTLIB::code, name); 121 #include "llvm/CodeGen/RuntimeLibcalls.def" 122 #undef HANDLE_LIBCALL 123 // Initialize calling conventions to their default. 124 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 125 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 126 127 // A few names are different on particular architectures or environments. 128 if (TT.isOSDarwin()) { 129 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 130 // of the gnueabi-style __gnu_*_ieee. 131 // FIXME: What about other targets? 132 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 133 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 134 135 // Some darwins have an optimized __bzero/bzero function. 136 switch (TT.getArch()) { 137 case Triple::x86: 138 case Triple::x86_64: 139 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 140 setLibcallName(RTLIB::BZERO, "__bzero"); 141 break; 142 case Triple::aarch64: 143 setLibcallName(RTLIB::BZERO, "bzero"); 144 break; 145 default: 146 break; 147 } 148 149 if (darwinHasSinCos(TT)) { 150 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 151 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 152 if (TT.isWatchABI()) { 153 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 154 CallingConv::ARM_AAPCS_VFP); 155 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 156 CallingConv::ARM_AAPCS_VFP); 157 } 158 } 159 } else { 160 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 161 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 162 } 163 164 if (TT.isGNUEnvironment() || TT.isOSFuchsia()) { 165 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 166 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 167 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 168 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 169 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 170 } 171 172 if (TT.isOSOpenBSD()) { 173 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 174 } 175 } 176 177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 178 /// UNKNOWN_LIBCALL if there is none. 179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 180 if (OpVT == MVT::f16) { 181 if (RetVT == MVT::f32) 182 return FPEXT_F16_F32; 183 } else if (OpVT == MVT::f32) { 184 if (RetVT == MVT::f64) 185 return FPEXT_F32_F64; 186 if (RetVT == MVT::f128) 187 return FPEXT_F32_F128; 188 if (RetVT == MVT::ppcf128) 189 return FPEXT_F32_PPCF128; 190 } else if (OpVT == MVT::f64) { 191 if (RetVT == MVT::f128) 192 return FPEXT_F64_F128; 193 else if (RetVT == MVT::ppcf128) 194 return FPEXT_F64_PPCF128; 195 } else if (OpVT == MVT::f80) { 196 if (RetVT == MVT::f128) 197 return FPEXT_F80_F128; 198 } 199 200 return UNKNOWN_LIBCALL; 201 } 202 203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 204 /// UNKNOWN_LIBCALL if there is none. 205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 206 if (RetVT == MVT::f16) { 207 if (OpVT == MVT::f32) 208 return FPROUND_F32_F16; 209 if (OpVT == MVT::f64) 210 return FPROUND_F64_F16; 211 if (OpVT == MVT::f80) 212 return FPROUND_F80_F16; 213 if (OpVT == MVT::f128) 214 return FPROUND_F128_F16; 215 if (OpVT == MVT::ppcf128) 216 return FPROUND_PPCF128_F16; 217 } else if (RetVT == MVT::f32) { 218 if (OpVT == MVT::f64) 219 return FPROUND_F64_F32; 220 if (OpVT == MVT::f80) 221 return FPROUND_F80_F32; 222 if (OpVT == MVT::f128) 223 return FPROUND_F128_F32; 224 if (OpVT == MVT::ppcf128) 225 return FPROUND_PPCF128_F32; 226 } else if (RetVT == MVT::f64) { 227 if (OpVT == MVT::f80) 228 return FPROUND_F80_F64; 229 if (OpVT == MVT::f128) 230 return FPROUND_F128_F64; 231 if (OpVT == MVT::ppcf128) 232 return FPROUND_PPCF128_F64; 233 } else if (RetVT == MVT::f80) { 234 if (OpVT == MVT::f128) 235 return FPROUND_F128_F80; 236 } 237 238 return UNKNOWN_LIBCALL; 239 } 240 241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 242 /// UNKNOWN_LIBCALL if there is none. 243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 244 if (OpVT == MVT::f32) { 245 if (RetVT == MVT::i32) 246 return FPTOSINT_F32_I32; 247 if (RetVT == MVT::i64) 248 return FPTOSINT_F32_I64; 249 if (RetVT == MVT::i128) 250 return FPTOSINT_F32_I128; 251 } else if (OpVT == MVT::f64) { 252 if (RetVT == MVT::i32) 253 return FPTOSINT_F64_I32; 254 if (RetVT == MVT::i64) 255 return FPTOSINT_F64_I64; 256 if (RetVT == MVT::i128) 257 return FPTOSINT_F64_I128; 258 } else if (OpVT == MVT::f80) { 259 if (RetVT == MVT::i32) 260 return FPTOSINT_F80_I32; 261 if (RetVT == MVT::i64) 262 return FPTOSINT_F80_I64; 263 if (RetVT == MVT::i128) 264 return FPTOSINT_F80_I128; 265 } else if (OpVT == MVT::f128) { 266 if (RetVT == MVT::i32) 267 return FPTOSINT_F128_I32; 268 if (RetVT == MVT::i64) 269 return FPTOSINT_F128_I64; 270 if (RetVT == MVT::i128) 271 return FPTOSINT_F128_I128; 272 } else if (OpVT == MVT::ppcf128) { 273 if (RetVT == MVT::i32) 274 return FPTOSINT_PPCF128_I32; 275 if (RetVT == MVT::i64) 276 return FPTOSINT_PPCF128_I64; 277 if (RetVT == MVT::i128) 278 return FPTOSINT_PPCF128_I128; 279 } 280 return UNKNOWN_LIBCALL; 281 } 282 283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 284 /// UNKNOWN_LIBCALL if there is none. 285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 286 if (OpVT == MVT::f32) { 287 if (RetVT == MVT::i32) 288 return FPTOUINT_F32_I32; 289 if (RetVT == MVT::i64) 290 return FPTOUINT_F32_I64; 291 if (RetVT == MVT::i128) 292 return FPTOUINT_F32_I128; 293 } else if (OpVT == MVT::f64) { 294 if (RetVT == MVT::i32) 295 return FPTOUINT_F64_I32; 296 if (RetVT == MVT::i64) 297 return FPTOUINT_F64_I64; 298 if (RetVT == MVT::i128) 299 return FPTOUINT_F64_I128; 300 } else if (OpVT == MVT::f80) { 301 if (RetVT == MVT::i32) 302 return FPTOUINT_F80_I32; 303 if (RetVT == MVT::i64) 304 return FPTOUINT_F80_I64; 305 if (RetVT == MVT::i128) 306 return FPTOUINT_F80_I128; 307 } else if (OpVT == MVT::f128) { 308 if (RetVT == MVT::i32) 309 return FPTOUINT_F128_I32; 310 if (RetVT == MVT::i64) 311 return FPTOUINT_F128_I64; 312 if (RetVT == MVT::i128) 313 return FPTOUINT_F128_I128; 314 } else if (OpVT == MVT::ppcf128) { 315 if (RetVT == MVT::i32) 316 return FPTOUINT_PPCF128_I32; 317 if (RetVT == MVT::i64) 318 return FPTOUINT_PPCF128_I64; 319 if (RetVT == MVT::i128) 320 return FPTOUINT_PPCF128_I128; 321 } 322 return UNKNOWN_LIBCALL; 323 } 324 325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 326 /// UNKNOWN_LIBCALL if there is none. 327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 328 if (OpVT == MVT::i32) { 329 if (RetVT == MVT::f32) 330 return SINTTOFP_I32_F32; 331 if (RetVT == MVT::f64) 332 return SINTTOFP_I32_F64; 333 if (RetVT == MVT::f80) 334 return SINTTOFP_I32_F80; 335 if (RetVT == MVT::f128) 336 return SINTTOFP_I32_F128; 337 if (RetVT == MVT::ppcf128) 338 return SINTTOFP_I32_PPCF128; 339 } else if (OpVT == MVT::i64) { 340 if (RetVT == MVT::f32) 341 return SINTTOFP_I64_F32; 342 if (RetVT == MVT::f64) 343 return SINTTOFP_I64_F64; 344 if (RetVT == MVT::f80) 345 return SINTTOFP_I64_F80; 346 if (RetVT == MVT::f128) 347 return SINTTOFP_I64_F128; 348 if (RetVT == MVT::ppcf128) 349 return SINTTOFP_I64_PPCF128; 350 } else if (OpVT == MVT::i128) { 351 if (RetVT == MVT::f32) 352 return SINTTOFP_I128_F32; 353 if (RetVT == MVT::f64) 354 return SINTTOFP_I128_F64; 355 if (RetVT == MVT::f80) 356 return SINTTOFP_I128_F80; 357 if (RetVT == MVT::f128) 358 return SINTTOFP_I128_F128; 359 if (RetVT == MVT::ppcf128) 360 return SINTTOFP_I128_PPCF128; 361 } 362 return UNKNOWN_LIBCALL; 363 } 364 365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 366 /// UNKNOWN_LIBCALL if there is none. 367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 368 if (OpVT == MVT::i32) { 369 if (RetVT == MVT::f32) 370 return UINTTOFP_I32_F32; 371 if (RetVT == MVT::f64) 372 return UINTTOFP_I32_F64; 373 if (RetVT == MVT::f80) 374 return UINTTOFP_I32_F80; 375 if (RetVT == MVT::f128) 376 return UINTTOFP_I32_F128; 377 if (RetVT == MVT::ppcf128) 378 return UINTTOFP_I32_PPCF128; 379 } else if (OpVT == MVT::i64) { 380 if (RetVT == MVT::f32) 381 return UINTTOFP_I64_F32; 382 if (RetVT == MVT::f64) 383 return UINTTOFP_I64_F64; 384 if (RetVT == MVT::f80) 385 return UINTTOFP_I64_F80; 386 if (RetVT == MVT::f128) 387 return UINTTOFP_I64_F128; 388 if (RetVT == MVT::ppcf128) 389 return UINTTOFP_I64_PPCF128; 390 } else if (OpVT == MVT::i128) { 391 if (RetVT == MVT::f32) 392 return UINTTOFP_I128_F32; 393 if (RetVT == MVT::f64) 394 return UINTTOFP_I128_F64; 395 if (RetVT == MVT::f80) 396 return UINTTOFP_I128_F80; 397 if (RetVT == MVT::f128) 398 return UINTTOFP_I128_F128; 399 if (RetVT == MVT::ppcf128) 400 return UINTTOFP_I128_PPCF128; 401 } 402 return UNKNOWN_LIBCALL; 403 } 404 405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 406 #define OP_TO_LIBCALL(Name, Enum) \ 407 case Name: \ 408 switch (VT.SimpleTy) { \ 409 default: \ 410 return UNKNOWN_LIBCALL; \ 411 case MVT::i8: \ 412 return Enum##_1; \ 413 case MVT::i16: \ 414 return Enum##_2; \ 415 case MVT::i32: \ 416 return Enum##_4; \ 417 case MVT::i64: \ 418 return Enum##_8; \ 419 case MVT::i128: \ 420 return Enum##_16; \ 421 } 422 423 switch (Opc) { 424 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 425 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 426 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 427 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 428 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 429 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 430 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 431 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 432 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 433 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 434 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 435 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 436 } 437 438 #undef OP_TO_LIBCALL 439 440 return UNKNOWN_LIBCALL; 441 } 442 443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 444 switch (ElementSize) { 445 case 1: 446 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 447 case 2: 448 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 449 case 4: 450 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 451 case 8: 452 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 453 case 16: 454 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 455 default: 456 return UNKNOWN_LIBCALL; 457 } 458 } 459 460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 461 switch (ElementSize) { 462 case 1: 463 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 464 case 2: 465 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 466 case 4: 467 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 468 case 8: 469 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 470 case 16: 471 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 472 default: 473 return UNKNOWN_LIBCALL; 474 } 475 } 476 477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 478 switch (ElementSize) { 479 case 1: 480 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 481 case 2: 482 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 483 case 4: 484 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 485 case 8: 486 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 487 case 16: 488 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 489 default: 490 return UNKNOWN_LIBCALL; 491 } 492 } 493 494 /// InitCmpLibcallCCs - Set default comparison libcall CC. 495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 496 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 497 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 498 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 499 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 500 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 501 CCs[RTLIB::UNE_F32] = ISD::SETNE; 502 CCs[RTLIB::UNE_F64] = ISD::SETNE; 503 CCs[RTLIB::UNE_F128] = ISD::SETNE; 504 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 505 CCs[RTLIB::OGE_F32] = ISD::SETGE; 506 CCs[RTLIB::OGE_F64] = ISD::SETGE; 507 CCs[RTLIB::OGE_F128] = ISD::SETGE; 508 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 509 CCs[RTLIB::OLT_F32] = ISD::SETLT; 510 CCs[RTLIB::OLT_F64] = ISD::SETLT; 511 CCs[RTLIB::OLT_F128] = ISD::SETLT; 512 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 513 CCs[RTLIB::OLE_F32] = ISD::SETLE; 514 CCs[RTLIB::OLE_F64] = ISD::SETLE; 515 CCs[RTLIB::OLE_F128] = ISD::SETLE; 516 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 517 CCs[RTLIB::OGT_F32] = ISD::SETGT; 518 CCs[RTLIB::OGT_F64] = ISD::SETGT; 519 CCs[RTLIB::OGT_F128] = ISD::SETGT; 520 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 521 CCs[RTLIB::UO_F32] = ISD::SETNE; 522 CCs[RTLIB::UO_F64] = ISD::SETNE; 523 CCs[RTLIB::UO_F128] = ISD::SETNE; 524 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 525 CCs[RTLIB::O_F32] = ISD::SETEQ; 526 CCs[RTLIB::O_F64] = ISD::SETEQ; 527 CCs[RTLIB::O_F128] = ISD::SETEQ; 528 CCs[RTLIB::O_PPCF128] = ISD::SETEQ; 529 } 530 531 /// NOTE: The TargetMachine owns TLOF. 532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 533 initActions(); 534 535 // Perform these initializations only once. 536 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 537 MaxLoadsPerMemcmp = 8; 538 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 539 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 540 UseUnderscoreSetJmp = false; 541 UseUnderscoreLongJmp = false; 542 HasMultipleConditionRegisters = false; 543 HasExtractBitsInsn = false; 544 JumpIsExpensive = JumpIsExpensiveOverride; 545 PredictableSelectIsExpensive = false; 546 EnableExtLdPromotion = false; 547 HasFloatingPointExceptions = true; 548 StackPointerRegisterToSaveRestore = 0; 549 BooleanContents = UndefinedBooleanContent; 550 BooleanFloatContents = UndefinedBooleanContent; 551 BooleanVectorContents = UndefinedBooleanContent; 552 SchedPreferenceInfo = Sched::ILP; 553 JumpBufSize = 0; 554 JumpBufAlignment = 0; 555 MinFunctionAlignment = 0; 556 PrefFunctionAlignment = 0; 557 PrefLoopAlignment = 0; 558 GatherAllAliasesMaxDepth = 18; 559 MinStackArgumentAlignment = 1; 560 // TODO: the default will be switched to 0 in the next commit, along 561 // with the Target-specific changes necessary. 562 MaxAtomicSizeInBitsSupported = 1024; 563 564 MinCmpXchgSizeInBits = 0; 565 SupportsUnalignedAtomics = false; 566 567 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 568 569 InitLibcalls(TM.getTargetTriple()); 570 InitCmpLibcallCCs(CmpLibcallCCs); 571 } 572 573 void TargetLoweringBase::initActions() { 574 // All operations default to being supported. 575 memset(OpActions, 0, sizeof(OpActions)); 576 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 577 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 578 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 579 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 580 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 581 std::fill(std::begin(TargetDAGCombineArray), 582 std::end(TargetDAGCombineArray), 0); 583 584 // Set default actions for various operations. 585 for (MVT VT : MVT::all_valuetypes()) { 586 // Default all indexed load / store to expand. 587 for (unsigned IM = (unsigned)ISD::PRE_INC; 588 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 589 setIndexedLoadAction(IM, VT, Expand); 590 setIndexedStoreAction(IM, VT, Expand); 591 } 592 593 // Most backends expect to see the node which just returns the value loaded. 594 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 595 596 // These operations default to expand. 597 setOperationAction(ISD::FGETSIGN, VT, Expand); 598 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 599 setOperationAction(ISD::FMINNUM, VT, Expand); 600 setOperationAction(ISD::FMAXNUM, VT, Expand); 601 setOperationAction(ISD::FMINNAN, VT, Expand); 602 setOperationAction(ISD::FMAXNAN, VT, Expand); 603 setOperationAction(ISD::FMAD, VT, Expand); 604 setOperationAction(ISD::SMIN, VT, Expand); 605 setOperationAction(ISD::SMAX, VT, Expand); 606 setOperationAction(ISD::UMIN, VT, Expand); 607 setOperationAction(ISD::UMAX, VT, Expand); 608 setOperationAction(ISD::ABS, VT, Expand); 609 610 // Overflow operations default to expand 611 setOperationAction(ISD::SADDO, VT, Expand); 612 setOperationAction(ISD::SSUBO, VT, Expand); 613 setOperationAction(ISD::UADDO, VT, Expand); 614 setOperationAction(ISD::USUBO, VT, Expand); 615 setOperationAction(ISD::SMULO, VT, Expand); 616 setOperationAction(ISD::UMULO, VT, Expand); 617 618 // ADDCARRY operations default to expand 619 setOperationAction(ISD::ADDCARRY, VT, Expand); 620 setOperationAction(ISD::SUBCARRY, VT, Expand); 621 setOperationAction(ISD::SETCCCARRY, VT, Expand); 622 623 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 624 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 625 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 626 627 setOperationAction(ISD::BITREVERSE, VT, Expand); 628 629 // These library functions default to expand. 630 setOperationAction(ISD::FROUND, VT, Expand); 631 setOperationAction(ISD::FPOWI, VT, Expand); 632 633 // These operations default to expand for vector types. 634 if (VT.isVector()) { 635 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 636 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 637 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 638 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 639 } 640 641 // For most targets @llvm.get.dynamic.area.offset just returns 0. 642 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 643 } 644 645 // Most targets ignore the @llvm.prefetch intrinsic. 646 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 647 648 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 649 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 650 651 // ConstantFP nodes default to expand. Targets can either change this to 652 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 653 // to optimize expansions for certain constants. 654 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 655 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 656 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 657 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 658 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 659 660 // These library functions default to expand. 661 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 662 setOperationAction(ISD::FLOG , VT, Expand); 663 setOperationAction(ISD::FLOG2, VT, Expand); 664 setOperationAction(ISD::FLOG10, VT, Expand); 665 setOperationAction(ISD::FEXP , VT, Expand); 666 setOperationAction(ISD::FEXP2, VT, Expand); 667 setOperationAction(ISD::FFLOOR, VT, Expand); 668 setOperationAction(ISD::FNEARBYINT, VT, Expand); 669 setOperationAction(ISD::FCEIL, VT, Expand); 670 setOperationAction(ISD::FRINT, VT, Expand); 671 setOperationAction(ISD::FTRUNC, VT, Expand); 672 setOperationAction(ISD::FROUND, VT, Expand); 673 } 674 675 // Default ISD::TRAP to expand (which turns it into abort). 676 setOperationAction(ISD::TRAP, MVT::Other, Expand); 677 678 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 679 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 680 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 681 } 682 683 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 684 EVT) const { 685 return MVT::getIntegerVT(8 * DL.getPointerSize(0)); 686 } 687 688 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 689 bool LegalTypes) const { 690 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 691 if (LHSTy.isVector()) 692 return LHSTy; 693 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 694 : getPointerTy(DL); 695 } 696 697 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 698 assert(isTypeLegal(VT)); 699 switch (Op) { 700 default: 701 return false; 702 case ISD::SDIV: 703 case ISD::UDIV: 704 case ISD::SREM: 705 case ISD::UREM: 706 return true; 707 } 708 } 709 710 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 711 // If the command-line option was specified, ignore this request. 712 if (!JumpIsExpensiveOverride.getNumOccurrences()) 713 JumpIsExpensive = isExpensive; 714 } 715 716 TargetLoweringBase::LegalizeKind 717 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 718 // If this is a simple type, use the ComputeRegisterProp mechanism. 719 if (VT.isSimple()) { 720 MVT SVT = VT.getSimpleVT(); 721 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 722 MVT NVT = TransformToType[SVT.SimpleTy]; 723 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 724 725 assert((LA == TypeLegal || LA == TypeSoftenFloat || 726 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && 727 "Promote may not follow Expand or Promote"); 728 729 if (LA == TypeSplitVector) 730 return LegalizeKind(LA, 731 EVT::getVectorVT(Context, SVT.getVectorElementType(), 732 SVT.getVectorNumElements() / 2)); 733 if (LA == TypeScalarizeVector) 734 return LegalizeKind(LA, SVT.getVectorElementType()); 735 return LegalizeKind(LA, NVT); 736 } 737 738 // Handle Extended Scalar Types. 739 if (!VT.isVector()) { 740 assert(VT.isInteger() && "Float types must be simple"); 741 unsigned BitSize = VT.getSizeInBits(); 742 // First promote to a power-of-two size, then expand if necessary. 743 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 744 EVT NVT = VT.getRoundIntegerType(Context); 745 assert(NVT != VT && "Unable to round integer VT"); 746 LegalizeKind NextStep = getTypeConversion(Context, NVT); 747 // Avoid multi-step promotion. 748 if (NextStep.first == TypePromoteInteger) 749 return NextStep; 750 // Return rounded integer type. 751 return LegalizeKind(TypePromoteInteger, NVT); 752 } 753 754 return LegalizeKind(TypeExpandInteger, 755 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 756 } 757 758 // Handle vector types. 759 unsigned NumElts = VT.getVectorNumElements(); 760 EVT EltVT = VT.getVectorElementType(); 761 762 // Vectors with only one element are always scalarized. 763 if (NumElts == 1) 764 return LegalizeKind(TypeScalarizeVector, EltVT); 765 766 // Try to widen vector elements until the element type is a power of two and 767 // promote it to a legal type later on, for example: 768 // <3 x i8> -> <4 x i8> -> <4 x i32> 769 if (EltVT.isInteger()) { 770 // Vectors with a number of elements that is not a power of two are always 771 // widened, for example <3 x i8> -> <4 x i8>. 772 if (!VT.isPow2VectorType()) { 773 NumElts = (unsigned)NextPowerOf2(NumElts); 774 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 775 return LegalizeKind(TypeWidenVector, NVT); 776 } 777 778 // Examine the element type. 779 LegalizeKind LK = getTypeConversion(Context, EltVT); 780 781 // If type is to be expanded, split the vector. 782 // <4 x i140> -> <2 x i140> 783 if (LK.first == TypeExpandInteger) 784 return LegalizeKind(TypeSplitVector, 785 EVT::getVectorVT(Context, EltVT, NumElts / 2)); 786 787 // Promote the integer element types until a legal vector type is found 788 // or until the element integer type is too big. If a legal type was not 789 // found, fallback to the usual mechanism of widening/splitting the 790 // vector. 791 EVT OldEltVT = EltVT; 792 while (true) { 793 // Increase the bitwidth of the element to the next pow-of-two 794 // (which is greater than 8 bits). 795 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 796 .getRoundIntegerType(Context); 797 798 // Stop trying when getting a non-simple element type. 799 // Note that vector elements may be greater than legal vector element 800 // types. Example: X86 XMM registers hold 64bit element on 32bit 801 // systems. 802 if (!EltVT.isSimple()) 803 break; 804 805 // Build a new vector type and check if it is legal. 806 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 807 // Found a legal promoted vector type. 808 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 809 return LegalizeKind(TypePromoteInteger, 810 EVT::getVectorVT(Context, EltVT, NumElts)); 811 } 812 813 // Reset the type to the unexpanded type if we did not find a legal vector 814 // type with a promoted vector element type. 815 EltVT = OldEltVT; 816 } 817 818 // Try to widen the vector until a legal type is found. 819 // If there is no wider legal type, split the vector. 820 while (true) { 821 // Round up to the next power of 2. 822 NumElts = (unsigned)NextPowerOf2(NumElts); 823 824 // If there is no simple vector type with this many elements then there 825 // cannot be a larger legal vector type. Note that this assumes that 826 // there are no skipped intermediate vector types in the simple types. 827 if (!EltVT.isSimple()) 828 break; 829 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 830 if (LargerVector == MVT()) 831 break; 832 833 // If this type is legal then widen the vector. 834 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 835 return LegalizeKind(TypeWidenVector, LargerVector); 836 } 837 838 // Widen odd vectors to next power of two. 839 if (!VT.isPow2VectorType()) { 840 EVT NVT = VT.getPow2VectorType(Context); 841 return LegalizeKind(TypeWidenVector, NVT); 842 } 843 844 // Vectors with illegal element types are expanded. 845 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); 846 return LegalizeKind(TypeSplitVector, NVT); 847 } 848 849 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 850 unsigned &NumIntermediates, 851 MVT &RegisterVT, 852 TargetLoweringBase *TLI) { 853 // Figure out the right, legal destination reg to copy into. 854 unsigned NumElts = VT.getVectorNumElements(); 855 MVT EltTy = VT.getVectorElementType(); 856 857 unsigned NumVectorRegs = 1; 858 859 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 860 // could break down into LHS/RHS like LegalizeDAG does. 861 if (!isPowerOf2_32(NumElts)) { 862 NumVectorRegs = NumElts; 863 NumElts = 1; 864 } 865 866 // Divide the input until we get to a supported size. This will always 867 // end with a scalar if the target doesn't support vectors. 868 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 869 NumElts >>= 1; 870 NumVectorRegs <<= 1; 871 } 872 873 NumIntermediates = NumVectorRegs; 874 875 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 876 if (!TLI->isTypeLegal(NewVT)) 877 NewVT = EltTy; 878 IntermediateVT = NewVT; 879 880 unsigned NewVTSize = NewVT.getSizeInBits(); 881 882 // Convert sizes such as i33 to i64. 883 if (!isPowerOf2_32(NewVTSize)) 884 NewVTSize = NextPowerOf2(NewVTSize); 885 886 MVT DestVT = TLI->getRegisterType(NewVT); 887 RegisterVT = DestVT; 888 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 889 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 890 891 // Otherwise, promotion or legal types use the same number of registers as 892 // the vector decimated to the appropriate level. 893 return NumVectorRegs; 894 } 895 896 /// isLegalRC - Return true if the value types that can be represented by the 897 /// specified register class are all legal. 898 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 899 const TargetRegisterClass &RC) const { 900 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 901 if (isTypeLegal(*I)) 902 return true; 903 return false; 904 } 905 906 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 907 /// sequence of memory operands that is recognized by PrologEpilogInserter. 908 MachineBasicBlock * 909 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 910 MachineBasicBlock *MBB) const { 911 MachineInstr *MI = &InitialMI; 912 MachineFunction &MF = *MI->getMF(); 913 MachineFrameInfo &MFI = MF.getFrameInfo(); 914 915 // We're handling multiple types of operands here: 916 // PATCHPOINT MetaArgs - live-in, read only, direct 917 // STATEPOINT Deopt Spill - live-through, read only, indirect 918 // STATEPOINT Deopt Alloca - live-through, read only, direct 919 // (We're currently conservative and mark the deopt slots read/write in 920 // practice.) 921 // STATEPOINT GC Spill - live-through, read/write, indirect 922 // STATEPOINT GC Alloca - live-through, read/write, direct 923 // The live-in vs live-through is handled already (the live through ones are 924 // all stack slots), but we need to handle the different type of stackmap 925 // operands and memory effects here. 926 927 // MI changes inside this loop as we grow operands. 928 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 929 MachineOperand &MO = MI->getOperand(OperIdx); 930 if (!MO.isFI()) 931 continue; 932 933 // foldMemoryOperand builds a new MI after replacing a single FI operand 934 // with the canonical set of five x86 addressing-mode operands. 935 int FI = MO.getIndex(); 936 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 937 938 // Copy operands before the frame-index. 939 for (unsigned i = 0; i < OperIdx; ++i) 940 MIB.add(MI->getOperand(i)); 941 // Add frame index operands recognized by stackmaps.cpp 942 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 943 // indirect-mem-ref tag, size, #FI, offset. 944 // Used for spills inserted by StatepointLowering. This codepath is not 945 // used for patchpoints/stackmaps at all, for these spilling is done via 946 // foldMemoryOperand callback only. 947 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 948 MIB.addImm(StackMaps::IndirectMemRefOp); 949 MIB.addImm(MFI.getObjectSize(FI)); 950 MIB.add(MI->getOperand(OperIdx)); 951 MIB.addImm(0); 952 } else { 953 // direct-mem-ref tag, #FI, offset. 954 // Used by patchpoint, and direct alloca arguments to statepoints 955 MIB.addImm(StackMaps::DirectMemRefOp); 956 MIB.add(MI->getOperand(OperIdx)); 957 MIB.addImm(0); 958 } 959 // Copy the operands after the frame index. 960 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 961 MIB.add(MI->getOperand(i)); 962 963 // Inherit previous memory operands. 964 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 965 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 966 967 // Add a new memory operand for this FI. 968 assert(MFI.getObjectOffset(FI) != -1); 969 970 auto Flags = MachineMemOperand::MOLoad; 971 if (MI->getOpcode() == TargetOpcode::STATEPOINT) { 972 Flags |= MachineMemOperand::MOStore; 973 Flags |= MachineMemOperand::MOVolatile; 974 } 975 MachineMemOperand *MMO = MF.getMachineMemOperand( 976 MachinePointerInfo::getFixedStack(MF, FI), Flags, 977 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); 978 MIB->addMemOperand(MF, MMO); 979 980 // Replace the instruction and update the operand index. 981 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 982 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 983 MI->eraseFromParent(); 984 MI = MIB; 985 } 986 return MBB; 987 } 988 989 MachineBasicBlock * 990 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, 991 MachineBasicBlock *MBB) const { 992 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && 993 "Called emitXRayCustomEvent on the wrong MI!"); 994 auto &MF = *MI.getMF(); 995 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 996 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 997 MIB.add(MI.getOperand(OpIdx)); 998 999 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1000 MI.eraseFromParent(); 1001 return MBB; 1002 } 1003 1004 /// findRepresentativeClass - Return the largest legal super-reg register class 1005 /// of the register class for the specified type and its associated "cost". 1006 // This function is in TargetLowering because it uses RegClassForVT which would 1007 // need to be moved to TargetRegisterInfo and would necessitate moving 1008 // isTypeLegal over as well - a massive change that would just require 1009 // TargetLowering having a TargetRegisterInfo class member that it would use. 1010 std::pair<const TargetRegisterClass *, uint8_t> 1011 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1012 MVT VT) const { 1013 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1014 if (!RC) 1015 return std::make_pair(RC, 0); 1016 1017 // Compute the set of all super-register classes. 1018 BitVector SuperRegRC(TRI->getNumRegClasses()); 1019 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1020 SuperRegRC.setBitsInMask(RCI.getMask()); 1021 1022 // Find the first legal register class with the largest spill size. 1023 const TargetRegisterClass *BestRC = RC; 1024 for (unsigned i : SuperRegRC.set_bits()) { 1025 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1026 // We want the largest possible spill size. 1027 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1028 continue; 1029 if (!isLegalRC(*TRI, *SuperRC)) 1030 continue; 1031 BestRC = SuperRC; 1032 } 1033 return std::make_pair(BestRC, 1); 1034 } 1035 1036 /// computeRegisterProperties - Once all of the register classes are added, 1037 /// this allows us to compute derived properties we expose. 1038 void TargetLoweringBase::computeRegisterProperties( 1039 const TargetRegisterInfo *TRI) { 1040 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1041 "Too many value types for ValueTypeActions to hold!"); 1042 1043 // Everything defaults to needing one register. 1044 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1045 NumRegistersForVT[i] = 1; 1046 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1047 } 1048 // ...except isVoid, which doesn't need any registers. 1049 NumRegistersForVT[MVT::isVoid] = 0; 1050 1051 // Find the largest integer register class. 1052 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1053 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1054 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1055 1056 // Every integer value type larger than this largest register takes twice as 1057 // many registers to represent as the previous ValueType. 1058 for (unsigned ExpandedReg = LargestIntReg + 1; 1059 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1060 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1061 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1062 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1063 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1064 TypeExpandInteger); 1065 } 1066 1067 // Inspect all of the ValueType's smaller than the largest integer 1068 // register to see which ones need promotion. 1069 unsigned LegalIntReg = LargestIntReg; 1070 for (unsigned IntReg = LargestIntReg - 1; 1071 IntReg >= (unsigned)MVT::i1; --IntReg) { 1072 MVT IVT = (MVT::SimpleValueType)IntReg; 1073 if (isTypeLegal(IVT)) { 1074 LegalIntReg = IntReg; 1075 } else { 1076 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1077 (const MVT::SimpleValueType)LegalIntReg; 1078 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1079 } 1080 } 1081 1082 // ppcf128 type is really two f64's. 1083 if (!isTypeLegal(MVT::ppcf128)) { 1084 if (isTypeLegal(MVT::f64)) { 1085 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1086 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1087 TransformToType[MVT::ppcf128] = MVT::f64; 1088 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1089 } else { 1090 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1091 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1092 TransformToType[MVT::ppcf128] = MVT::i128; 1093 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1094 } 1095 } 1096 1097 // Decide how to handle f128. If the target does not have native f128 support, 1098 // expand it to i128 and we will be generating soft float library calls. 1099 if (!isTypeLegal(MVT::f128)) { 1100 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1101 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1102 TransformToType[MVT::f128] = MVT::i128; 1103 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1104 } 1105 1106 // Decide how to handle f64. If the target does not have native f64 support, 1107 // expand it to i64 and we will be generating soft float library calls. 1108 if (!isTypeLegal(MVT::f64)) { 1109 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1110 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1111 TransformToType[MVT::f64] = MVT::i64; 1112 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1113 } 1114 1115 // Decide how to handle f32. If the target does not have native f32 support, 1116 // expand it to i32 and we will be generating soft float library calls. 1117 if (!isTypeLegal(MVT::f32)) { 1118 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1119 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1120 TransformToType[MVT::f32] = MVT::i32; 1121 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1122 } 1123 1124 // Decide how to handle f16. If the target does not have native f16 support, 1125 // promote it to f32, because there are no f16 library calls (except for 1126 // conversions). 1127 if (!isTypeLegal(MVT::f16)) { 1128 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1129 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1130 TransformToType[MVT::f16] = MVT::f32; 1131 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1132 } 1133 1134 // Loop over all of the vector value types to see which need transformations. 1135 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1136 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1137 MVT VT = (MVT::SimpleValueType) i; 1138 if (isTypeLegal(VT)) 1139 continue; 1140 1141 MVT EltVT = VT.getVectorElementType(); 1142 unsigned NElts = VT.getVectorNumElements(); 1143 bool IsLegalWiderType = false; 1144 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1145 switch (PreferredAction) { 1146 case TypePromoteInteger: 1147 // Try to promote the elements of integer vectors. If no legal 1148 // promotion was found, fall through to the widen-vector method. 1149 for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { 1150 MVT SVT = (MVT::SimpleValueType) nVT; 1151 // Promote vectors of integers to vectors with the same number 1152 // of elements, with a wider element type. 1153 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && 1154 SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { 1155 TransformToType[i] = SVT; 1156 RegisterTypeForVT[i] = SVT; 1157 NumRegistersForVT[i] = 1; 1158 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1159 IsLegalWiderType = true; 1160 break; 1161 } 1162 } 1163 if (IsLegalWiderType) 1164 break; 1165 LLVM_FALLTHROUGH; 1166 1167 case TypeWidenVector: 1168 // Try to widen the vector. 1169 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1170 MVT SVT = (MVT::SimpleValueType) nVT; 1171 if (SVT.getVectorElementType() == EltVT 1172 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { 1173 TransformToType[i] = SVT; 1174 RegisterTypeForVT[i] = SVT; 1175 NumRegistersForVT[i] = 1; 1176 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1177 IsLegalWiderType = true; 1178 break; 1179 } 1180 } 1181 if (IsLegalWiderType) 1182 break; 1183 LLVM_FALLTHROUGH; 1184 1185 case TypeSplitVector: 1186 case TypeScalarizeVector: { 1187 MVT IntermediateVT; 1188 MVT RegisterVT; 1189 unsigned NumIntermediates; 1190 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1191 NumIntermediates, RegisterVT, this); 1192 RegisterTypeForVT[i] = RegisterVT; 1193 1194 MVT NVT = VT.getPow2VectorType(); 1195 if (NVT == VT) { 1196 // Type is already a power of 2. The default action is to split. 1197 TransformToType[i] = MVT::Other; 1198 if (PreferredAction == TypeScalarizeVector) 1199 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1200 else if (PreferredAction == TypeSplitVector) 1201 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1202 else 1203 // Set type action according to the number of elements. 1204 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector 1205 : TypeSplitVector); 1206 } else { 1207 TransformToType[i] = NVT; 1208 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1209 } 1210 break; 1211 } 1212 default: 1213 llvm_unreachable("Unknown vector legalization action!"); 1214 } 1215 } 1216 1217 // Determine the 'representative' register class for each value type. 1218 // An representative register class is the largest (meaning one which is 1219 // not a sub-register class / subreg register class) legal register class for 1220 // a group of value types. For example, on i386, i8, i16, and i32 1221 // representative would be GR32; while on x86_64 it's GR64. 1222 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1223 const TargetRegisterClass* RRC; 1224 uint8_t Cost; 1225 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1226 RepRegClassForVT[i] = RRC; 1227 RepRegClassCostForVT[i] = Cost; 1228 } 1229 } 1230 1231 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1232 EVT VT) const { 1233 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1234 return getPointerTy(DL).SimpleTy; 1235 } 1236 1237 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1238 return MVT::i32; // return the default value 1239 } 1240 1241 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1242 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1243 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1244 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1245 /// 1246 /// This method returns the number of registers needed, and the VT for each 1247 /// register. It also returns the VT and quantity of the intermediate values 1248 /// before they are promoted/expanded. 1249 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1250 EVT &IntermediateVT, 1251 unsigned &NumIntermediates, 1252 MVT &RegisterVT) const { 1253 unsigned NumElts = VT.getVectorNumElements(); 1254 1255 // If there is a wider vector type with the same element type as this one, 1256 // or a promoted vector type that has the same number of elements which 1257 // are wider, then we should convert to that legal vector type. 1258 // This handles things like <2 x float> -> <4 x float> and 1259 // <4 x i1> -> <4 x i32>. 1260 LegalizeTypeAction TA = getTypeAction(Context, VT); 1261 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1262 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1263 if (isTypeLegal(RegisterEVT)) { 1264 IntermediateVT = RegisterEVT; 1265 RegisterVT = RegisterEVT.getSimpleVT(); 1266 NumIntermediates = 1; 1267 return 1; 1268 } 1269 } 1270 1271 // Figure out the right, legal destination reg to copy into. 1272 EVT EltTy = VT.getVectorElementType(); 1273 1274 unsigned NumVectorRegs = 1; 1275 1276 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1277 // could break down into LHS/RHS like LegalizeDAG does. 1278 if (!isPowerOf2_32(NumElts)) { 1279 NumVectorRegs = NumElts; 1280 NumElts = 1; 1281 } 1282 1283 // Divide the input until we get to a supported size. This will always 1284 // end with a scalar if the target doesn't support vectors. 1285 while (NumElts > 1 && !isTypeLegal( 1286 EVT::getVectorVT(Context, EltTy, NumElts))) { 1287 NumElts >>= 1; 1288 NumVectorRegs <<= 1; 1289 } 1290 1291 NumIntermediates = NumVectorRegs; 1292 1293 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1294 if (!isTypeLegal(NewVT)) 1295 NewVT = EltTy; 1296 IntermediateVT = NewVT; 1297 1298 MVT DestVT = getRegisterType(Context, NewVT); 1299 RegisterVT = DestVT; 1300 unsigned NewVTSize = NewVT.getSizeInBits(); 1301 1302 // Convert sizes such as i33 to i64. 1303 if (!isPowerOf2_32(NewVTSize)) 1304 NewVTSize = NextPowerOf2(NewVTSize); 1305 1306 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1307 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1308 1309 // Otherwise, promotion or legal types use the same number of registers as 1310 // the vector decimated to the appropriate level. 1311 return NumVectorRegs; 1312 } 1313 1314 /// Get the EVTs and ArgFlags collections that represent the legalized return 1315 /// type of the given function. This does not require a DAG or a return value, 1316 /// and is suitable for use before any DAGs for the function are constructed. 1317 /// TODO: Move this out of TargetLowering.cpp. 1318 void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr, 1319 SmallVectorImpl<ISD::OutputArg> &Outs, 1320 const TargetLowering &TLI, const DataLayout &DL) { 1321 SmallVector<EVT, 4> ValueVTs; 1322 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1323 unsigned NumValues = ValueVTs.size(); 1324 if (NumValues == 0) return; 1325 1326 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1327 EVT VT = ValueVTs[j]; 1328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1329 1330 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1331 ExtendKind = ISD::SIGN_EXTEND; 1332 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1333 ExtendKind = ISD::ZERO_EXTEND; 1334 1335 // FIXME: C calling convention requires the return type to be promoted to 1336 // at least 32-bit. But this is not necessary for non-C calling 1337 // conventions. The frontend should mark functions whose return values 1338 // require promoting with signext or zeroext attributes. 1339 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1340 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1341 if (VT.bitsLT(MinVT)) 1342 VT = MinVT; 1343 } 1344 1345 unsigned NumParts = 1346 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), VT); 1347 MVT PartVT = 1348 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), VT); 1349 1350 // 'inreg' on function refers to return value 1351 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1352 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1353 Flags.setInReg(); 1354 1355 // Propagate extension type if any 1356 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1357 Flags.setSExt(); 1358 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1359 Flags.setZExt(); 1360 1361 for (unsigned i = 0; i < NumParts; ++i) 1362 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); 1363 } 1364 } 1365 1366 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1367 /// function arguments in the caller parameter area. This is the actual 1368 /// alignment, not its logarithm. 1369 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1370 const DataLayout &DL) const { 1371 return DL.getABITypeAlignment(Ty); 1372 } 1373 1374 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1375 const DataLayout &DL, EVT VT, 1376 unsigned AddrSpace, 1377 unsigned Alignment, 1378 bool *Fast) const { 1379 // Check if the specified alignment is sufficient based on the data layout. 1380 // TODO: While using the data layout works in practice, a better solution 1381 // would be to implement this check directly (make this a virtual function). 1382 // For example, the ABI alignment may change based on software platform while 1383 // this function should only be affected by hardware implementation. 1384 Type *Ty = VT.getTypeForEVT(Context); 1385 if (Alignment >= DL.getABITypeAlignment(Ty)) { 1386 // Assume that an access that meets the ABI-specified alignment is fast. 1387 if (Fast != nullptr) 1388 *Fast = true; 1389 return true; 1390 } 1391 1392 // This is a misaligned access. 1393 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); 1394 } 1395 1396 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1397 return BranchProbability(MinPercentageForPredictableBranch, 100); 1398 } 1399 1400 //===----------------------------------------------------------------------===// 1401 // TargetTransformInfo Helpers 1402 //===----------------------------------------------------------------------===// 1403 1404 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1405 enum InstructionOpcodes { 1406 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1407 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1408 #include "llvm/IR/Instruction.def" 1409 }; 1410 switch (static_cast<InstructionOpcodes>(Opcode)) { 1411 case Ret: return 0; 1412 case Br: return 0; 1413 case Switch: return 0; 1414 case IndirectBr: return 0; 1415 case Invoke: return 0; 1416 case Resume: return 0; 1417 case Unreachable: return 0; 1418 case CleanupRet: return 0; 1419 case CatchRet: return 0; 1420 case CatchPad: return 0; 1421 case CatchSwitch: return 0; 1422 case CleanupPad: return 0; 1423 case Add: return ISD::ADD; 1424 case FAdd: return ISD::FADD; 1425 case Sub: return ISD::SUB; 1426 case FSub: return ISD::FSUB; 1427 case Mul: return ISD::MUL; 1428 case FMul: return ISD::FMUL; 1429 case UDiv: return ISD::UDIV; 1430 case SDiv: return ISD::SDIV; 1431 case FDiv: return ISD::FDIV; 1432 case URem: return ISD::UREM; 1433 case SRem: return ISD::SREM; 1434 case FRem: return ISD::FREM; 1435 case Shl: return ISD::SHL; 1436 case LShr: return ISD::SRL; 1437 case AShr: return ISD::SRA; 1438 case And: return ISD::AND; 1439 case Or: return ISD::OR; 1440 case Xor: return ISD::XOR; 1441 case Alloca: return 0; 1442 case Load: return ISD::LOAD; 1443 case Store: return ISD::STORE; 1444 case GetElementPtr: return 0; 1445 case Fence: return 0; 1446 case AtomicCmpXchg: return 0; 1447 case AtomicRMW: return 0; 1448 case Trunc: return ISD::TRUNCATE; 1449 case ZExt: return ISD::ZERO_EXTEND; 1450 case SExt: return ISD::SIGN_EXTEND; 1451 case FPToUI: return ISD::FP_TO_UINT; 1452 case FPToSI: return ISD::FP_TO_SINT; 1453 case UIToFP: return ISD::UINT_TO_FP; 1454 case SIToFP: return ISD::SINT_TO_FP; 1455 case FPTrunc: return ISD::FP_ROUND; 1456 case FPExt: return ISD::FP_EXTEND; 1457 case PtrToInt: return ISD::BITCAST; 1458 case IntToPtr: return ISD::BITCAST; 1459 case BitCast: return ISD::BITCAST; 1460 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1461 case ICmp: return ISD::SETCC; 1462 case FCmp: return ISD::SETCC; 1463 case PHI: return 0; 1464 case Call: return 0; 1465 case Select: return ISD::SELECT; 1466 case UserOp1: return 0; 1467 case UserOp2: return 0; 1468 case VAArg: return 0; 1469 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1470 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1471 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1472 case ExtractValue: return ISD::MERGE_VALUES; 1473 case InsertValue: return ISD::MERGE_VALUES; 1474 case LandingPad: return 0; 1475 } 1476 1477 llvm_unreachable("Unknown instruction type encountered!"); 1478 } 1479 1480 std::pair<int, MVT> 1481 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1482 Type *Ty) const { 1483 LLVMContext &C = Ty->getContext(); 1484 EVT MTy = getValueType(DL, Ty); 1485 1486 int Cost = 1; 1487 // We keep legalizing the type until we find a legal kind. We assume that 1488 // the only operation that costs anything is the split. After splitting 1489 // we need to handle two types. 1490 while (true) { 1491 LegalizeKind LK = getTypeConversion(C, MTy); 1492 1493 if (LK.first == TypeLegal) 1494 return std::make_pair(Cost, MTy.getSimpleVT()); 1495 1496 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1497 Cost *= 2; 1498 1499 // Do not loop with f128 type. 1500 if (MTy == LK.second) 1501 return std::make_pair(Cost, MTy.getSimpleVT()); 1502 1503 // Keep legalizing the type. 1504 MTy = LK.second; 1505 } 1506 } 1507 1508 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1509 bool UseTLS) const { 1510 // compiler-rt provides a variable with a magic name. Targets that do not 1511 // link with compiler-rt may also provide such a variable. 1512 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1513 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1514 auto UnsafeStackPtr = 1515 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1516 1517 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1518 1519 if (!UnsafeStackPtr) { 1520 auto TLSModel = UseTLS ? 1521 GlobalValue::InitialExecTLSModel : 1522 GlobalValue::NotThreadLocal; 1523 // The global variable is not defined yet, define it ourselves. 1524 // We use the initial-exec TLS model because we do not support the 1525 // variable living anywhere other than in the main executable. 1526 UnsafeStackPtr = new GlobalVariable( 1527 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1528 UnsafeStackPtrVar, nullptr, TLSModel); 1529 } else { 1530 // The variable exists, check its type and attributes. 1531 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1532 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1533 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1534 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1535 (UseTLS ? "" : "not ") + "be thread-local"); 1536 } 1537 return UnsafeStackPtr; 1538 } 1539 1540 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1541 if (!TM.getTargetTriple().isAndroid()) 1542 return getDefaultSafeStackPointerLocation(IRB, true); 1543 1544 // Android provides a libc function to retrieve the address of the current 1545 // thread's unsafe stack pointer. 1546 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1547 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1548 Value *Fn = M->getOrInsertFunction("__safestack_pointer_address", 1549 StackPtrTy->getPointerTo(0)); 1550 return IRB.CreateCall(Fn); 1551 } 1552 1553 //===----------------------------------------------------------------------===// 1554 // Loop Strength Reduction hooks 1555 //===----------------------------------------------------------------------===// 1556 1557 /// isLegalAddressingMode - Return true if the addressing mode represented 1558 /// by AM is legal for this target, for a load/store of the specified type. 1559 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1560 const AddrMode &AM, Type *Ty, 1561 unsigned AS, Instruction *I) const { 1562 // The default implementation of this implements a conservative RISCy, r+r and 1563 // r+i addr mode. 1564 1565 // Allows a sign-extended 16-bit immediate field. 1566 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1567 return false; 1568 1569 // No global is ever allowed as a base. 1570 if (AM.BaseGV) 1571 return false; 1572 1573 // Only support r+r, 1574 switch (AM.Scale) { 1575 case 0: // "r+i" or just "i", depending on HasBaseReg. 1576 break; 1577 case 1: 1578 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1579 return false; 1580 // Otherwise we have r+r or r+i. 1581 break; 1582 case 2: 1583 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1584 return false; 1585 // Allow 2*r as r+r. 1586 break; 1587 default: // Don't allow n * r 1588 return false; 1589 } 1590 1591 return true; 1592 } 1593 1594 //===----------------------------------------------------------------------===// 1595 // Stack Protector 1596 //===----------------------------------------------------------------------===// 1597 1598 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1599 // so that SelectionDAG handle SSP. 1600 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1601 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1602 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1603 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1604 return M.getOrInsertGlobal("__guard_local", PtrTy); 1605 } 1606 return nullptr; 1607 } 1608 1609 // Currently only support "standard" __stack_chk_guard. 1610 // TODO: add LOAD_STACK_GUARD support. 1611 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1612 M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext())); 1613 } 1614 1615 // Currently only support "standard" __stack_chk_guard. 1616 // TODO: add LOAD_STACK_GUARD support. 1617 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1618 return M.getGlobalVariable("__stack_chk_guard", true); 1619 } 1620 1621 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1622 return nullptr; 1623 } 1624 1625 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1626 return MinimumJumpTableEntries; 1627 } 1628 1629 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1630 MinimumJumpTableEntries = Val; 1631 } 1632 1633 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 1634 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 1635 } 1636 1637 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 1638 return MaximumJumpTableSize; 1639 } 1640 1641 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 1642 MaximumJumpTableSize = Val; 1643 } 1644 1645 //===----------------------------------------------------------------------===// 1646 // Reciprocal Estimates 1647 //===----------------------------------------------------------------------===// 1648 1649 /// Get the reciprocal estimate attribute string for a function that will 1650 /// override the target defaults. 1651 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 1652 const Function &F = MF.getFunction(); 1653 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 1654 } 1655 1656 /// Construct a string for the given reciprocal operation of the given type. 1657 /// This string should match the corresponding option to the front-end's 1658 /// "-mrecip" flag assuming those strings have been passed through in an 1659 /// attribute string. For example, "vec-divf" for a division of a vXf32. 1660 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 1661 std::string Name = VT.isVector() ? "vec-" : ""; 1662 1663 Name += IsSqrt ? "sqrt" : "div"; 1664 1665 // TODO: Handle "half" or other float types? 1666 if (VT.getScalarType() == MVT::f64) { 1667 Name += "d"; 1668 } else { 1669 assert(VT.getScalarType() == MVT::f32 && 1670 "Unexpected FP type for reciprocal estimate"); 1671 Name += "f"; 1672 } 1673 1674 return Name; 1675 } 1676 1677 /// Return the character position and value (a single numeric character) of a 1678 /// customized refinement operation in the input string if it exists. Return 1679 /// false if there is no customized refinement step count. 1680 static bool parseRefinementStep(StringRef In, size_t &Position, 1681 uint8_t &Value) { 1682 const char RefStepToken = ':'; 1683 Position = In.find(RefStepToken); 1684 if (Position == StringRef::npos) 1685 return false; 1686 1687 StringRef RefStepString = In.substr(Position + 1); 1688 // Allow exactly one numeric character for the additional refinement 1689 // step parameter. 1690 if (RefStepString.size() == 1) { 1691 char RefStepChar = RefStepString[0]; 1692 if (RefStepChar >= '0' && RefStepChar <= '9') { 1693 Value = RefStepChar - '0'; 1694 return true; 1695 } 1696 } 1697 report_fatal_error("Invalid refinement step for -recip."); 1698 } 1699 1700 /// For the input attribute string, return one of the ReciprocalEstimate enum 1701 /// status values (enabled, disabled, or not specified) for this operation on 1702 /// the specified data type. 1703 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 1704 if (Override.empty()) 1705 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1706 1707 SmallVector<StringRef, 4> OverrideVector; 1708 SplitString(Override, OverrideVector, ","); 1709 unsigned NumArgs = OverrideVector.size(); 1710 1711 // Check if "all", "none", or "default" was specified. 1712 if (NumArgs == 1) { 1713 // Look for an optional setting of the number of refinement steps needed 1714 // for this type of reciprocal operation. 1715 size_t RefPos; 1716 uint8_t RefSteps; 1717 if (parseRefinementStep(Override, RefPos, RefSteps)) { 1718 // Split the string for further processing. 1719 Override = Override.substr(0, RefPos); 1720 } 1721 1722 // All reciprocal types are enabled. 1723 if (Override == "all") 1724 return TargetLoweringBase::ReciprocalEstimate::Enabled; 1725 1726 // All reciprocal types are disabled. 1727 if (Override == "none") 1728 return TargetLoweringBase::ReciprocalEstimate::Disabled; 1729 1730 // Target defaults for enablement are used. 1731 if (Override == "default") 1732 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1733 } 1734 1735 // The attribute string may omit the size suffix ('f'/'d'). 1736 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1737 std::string VTNameNoSize = VTName; 1738 VTNameNoSize.pop_back(); 1739 static const char DisabledPrefix = '!'; 1740 1741 for (StringRef RecipType : OverrideVector) { 1742 size_t RefPos; 1743 uint8_t RefSteps; 1744 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 1745 RecipType = RecipType.substr(0, RefPos); 1746 1747 // Ignore the disablement token for string matching. 1748 bool IsDisabled = RecipType[0] == DisabledPrefix; 1749 if (IsDisabled) 1750 RecipType = RecipType.substr(1); 1751 1752 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1753 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 1754 : TargetLoweringBase::ReciprocalEstimate::Enabled; 1755 } 1756 1757 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1758 } 1759 1760 /// For the input attribute string, return the customized refinement step count 1761 /// for this operation on the specified data type. If the step count does not 1762 /// exist, return the ReciprocalEstimate enum value for unspecified. 1763 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 1764 if (Override.empty()) 1765 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1766 1767 SmallVector<StringRef, 4> OverrideVector; 1768 SplitString(Override, OverrideVector, ","); 1769 unsigned NumArgs = OverrideVector.size(); 1770 1771 // Check if "all", "default", or "none" was specified. 1772 if (NumArgs == 1) { 1773 // Look for an optional setting of the number of refinement steps needed 1774 // for this type of reciprocal operation. 1775 size_t RefPos; 1776 uint8_t RefSteps; 1777 if (!parseRefinementStep(Override, RefPos, RefSteps)) 1778 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1779 1780 // Split the string for further processing. 1781 Override = Override.substr(0, RefPos); 1782 assert(Override != "none" && 1783 "Disabled reciprocals, but specifed refinement steps?"); 1784 1785 // If this is a general override, return the specified number of steps. 1786 if (Override == "all" || Override == "default") 1787 return RefSteps; 1788 } 1789 1790 // The attribute string may omit the size suffix ('f'/'d'). 1791 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1792 std::string VTNameNoSize = VTName; 1793 VTNameNoSize.pop_back(); 1794 1795 for (StringRef RecipType : OverrideVector) { 1796 size_t RefPos; 1797 uint8_t RefSteps; 1798 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 1799 continue; 1800 1801 RecipType = RecipType.substr(0, RefPos); 1802 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1803 return RefSteps; 1804 } 1805 1806 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1807 } 1808 1809 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 1810 MachineFunction &MF) const { 1811 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 1812 } 1813 1814 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 1815 MachineFunction &MF) const { 1816 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 1817 } 1818 1819 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 1820 MachineFunction &MF) const { 1821 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 1822 } 1823 1824 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 1825 MachineFunction &MF) const { 1826 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 1827 } 1828 1829 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 1830 MF.getRegInfo().freezeReservedRegs(MF); 1831 } 1832