1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstddef> 57 #include <cstdint> 58 #include <cstring> 59 #include <iterator> 60 #include <string> 61 #include <tuple> 62 #include <utility> 63 64 using namespace llvm; 65 66 static cl::opt<bool> JumpIsExpensiveOverride( 67 "jump-is-expensive", cl::init(false), 68 cl::desc("Do not create extra branches to split comparison logic."), 69 cl::Hidden); 70 71 static cl::opt<unsigned> MinimumJumpTableEntries 72 ("min-jump-table-entries", cl::init(4), cl::Hidden, 73 cl::desc("Set minimum number of entries to use a jump table.")); 74 75 static cl::opt<unsigned> MaximumJumpTableSize 76 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 77 cl::desc("Set maximum size of jump tables.")); 78 79 /// Minimum jump table density for normal functions. 80 static cl::opt<unsigned> 81 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 82 cl::desc("Minimum density for building a jump table in " 83 "a normal function")); 84 85 /// Minimum jump table density for -Os or -Oz functions. 86 static cl::opt<unsigned> OptsizeJumpTableDensity( 87 "optsize-jump-table-density", cl::init(40), cl::Hidden, 88 cl::desc("Minimum density for building a jump table in " 89 "an optsize function")); 90 91 static bool darwinHasSinCos(const Triple &TT) { 92 assert(TT.isOSDarwin() && "should be called with darwin triple"); 93 // Don't bother with 32 bit x86. 94 if (TT.getArch() == Triple::x86) 95 return false; 96 // Macos < 10.9 has no sincos_stret. 97 if (TT.isMacOSX()) 98 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 99 // iOS < 7.0 has no sincos_stret. 100 if (TT.isiOS()) 101 return !TT.isOSVersionLT(7, 0); 102 // Any other darwin such as WatchOS/TvOS is new enough. 103 return true; 104 } 105 106 // Although this default value is arbitrary, it is not random. It is assumed 107 // that a condition that evaluates the same way by a higher percentage than this 108 // is best represented as control flow. Therefore, the default value N should be 109 // set such that the win from N% correct executions is greater than the loss 110 // from (100 - N)% mispredicted executions for the majority of intended targets. 111 static cl::opt<int> MinPercentageForPredictableBranch( 112 "min-predictable-branch", cl::init(99), 113 cl::desc("Minimum percentage (0-100) that a condition must be either true " 114 "or false to assume that the condition is predictable"), 115 cl::Hidden); 116 117 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 118 #define HANDLE_LIBCALL(code, name) \ 119 setLibcallName(RTLIB::code, name); 120 #include "llvm/IR/RuntimeLibcalls.def" 121 #undef HANDLE_LIBCALL 122 // Initialize calling conventions to their default. 123 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 124 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 125 126 // A few names are different on particular architectures or environments. 127 if (TT.isOSDarwin()) { 128 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 129 // of the gnueabi-style __gnu_*_ieee. 130 // FIXME: What about other targets? 131 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 132 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 133 134 // Some darwins have an optimized __bzero/bzero function. 135 switch (TT.getArch()) { 136 case Triple::x86: 137 case Triple::x86_64: 138 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 139 setLibcallName(RTLIB::BZERO, "__bzero"); 140 break; 141 case Triple::aarch64: 142 setLibcallName(RTLIB::BZERO, "bzero"); 143 break; 144 default: 145 break; 146 } 147 148 if (darwinHasSinCos(TT)) { 149 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 150 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 151 if (TT.isWatchABI()) { 152 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 153 CallingConv::ARM_AAPCS_VFP); 154 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 155 CallingConv::ARM_AAPCS_VFP); 156 } 157 } 158 } else { 159 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 160 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 161 } 162 163 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 164 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 165 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 166 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 167 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 168 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 169 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 170 } 171 172 if (TT.isOSOpenBSD()) { 173 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 174 } 175 } 176 177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 178 /// UNKNOWN_LIBCALL if there is none. 179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 180 if (OpVT == MVT::f16) { 181 if (RetVT == MVT::f32) 182 return FPEXT_F16_F32; 183 } else if (OpVT == MVT::f32) { 184 if (RetVT == MVT::f64) 185 return FPEXT_F32_F64; 186 if (RetVT == MVT::f128) 187 return FPEXT_F32_F128; 188 if (RetVT == MVT::ppcf128) 189 return FPEXT_F32_PPCF128; 190 } else if (OpVT == MVT::f64) { 191 if (RetVT == MVT::f128) 192 return FPEXT_F64_F128; 193 else if (RetVT == MVT::ppcf128) 194 return FPEXT_F64_PPCF128; 195 } else if (OpVT == MVT::f80) { 196 if (RetVT == MVT::f128) 197 return FPEXT_F80_F128; 198 } 199 200 return UNKNOWN_LIBCALL; 201 } 202 203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 204 /// UNKNOWN_LIBCALL if there is none. 205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 206 if (RetVT == MVT::f16) { 207 if (OpVT == MVT::f32) 208 return FPROUND_F32_F16; 209 if (OpVT == MVT::f64) 210 return FPROUND_F64_F16; 211 if (OpVT == MVT::f80) 212 return FPROUND_F80_F16; 213 if (OpVT == MVT::f128) 214 return FPROUND_F128_F16; 215 if (OpVT == MVT::ppcf128) 216 return FPROUND_PPCF128_F16; 217 } else if (RetVT == MVT::f32) { 218 if (OpVT == MVT::f64) 219 return FPROUND_F64_F32; 220 if (OpVT == MVT::f80) 221 return FPROUND_F80_F32; 222 if (OpVT == MVT::f128) 223 return FPROUND_F128_F32; 224 if (OpVT == MVT::ppcf128) 225 return FPROUND_PPCF128_F32; 226 } else if (RetVT == MVT::f64) { 227 if (OpVT == MVT::f80) 228 return FPROUND_F80_F64; 229 if (OpVT == MVT::f128) 230 return FPROUND_F128_F64; 231 if (OpVT == MVT::ppcf128) 232 return FPROUND_PPCF128_F64; 233 } else if (RetVT == MVT::f80) { 234 if (OpVT == MVT::f128) 235 return FPROUND_F128_F80; 236 } 237 238 return UNKNOWN_LIBCALL; 239 } 240 241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 242 /// UNKNOWN_LIBCALL if there is none. 243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 244 if (OpVT == MVT::f32) { 245 if (RetVT == MVT::i32) 246 return FPTOSINT_F32_I32; 247 if (RetVT == MVT::i64) 248 return FPTOSINT_F32_I64; 249 if (RetVT == MVT::i128) 250 return FPTOSINT_F32_I128; 251 } else if (OpVT == MVT::f64) { 252 if (RetVT == MVT::i32) 253 return FPTOSINT_F64_I32; 254 if (RetVT == MVT::i64) 255 return FPTOSINT_F64_I64; 256 if (RetVT == MVT::i128) 257 return FPTOSINT_F64_I128; 258 } else if (OpVT == MVT::f80) { 259 if (RetVT == MVT::i32) 260 return FPTOSINT_F80_I32; 261 if (RetVT == MVT::i64) 262 return FPTOSINT_F80_I64; 263 if (RetVT == MVT::i128) 264 return FPTOSINT_F80_I128; 265 } else if (OpVT == MVT::f128) { 266 if (RetVT == MVT::i32) 267 return FPTOSINT_F128_I32; 268 if (RetVT == MVT::i64) 269 return FPTOSINT_F128_I64; 270 if (RetVT == MVT::i128) 271 return FPTOSINT_F128_I128; 272 } else if (OpVT == MVT::ppcf128) { 273 if (RetVT == MVT::i32) 274 return FPTOSINT_PPCF128_I32; 275 if (RetVT == MVT::i64) 276 return FPTOSINT_PPCF128_I64; 277 if (RetVT == MVT::i128) 278 return FPTOSINT_PPCF128_I128; 279 } 280 return UNKNOWN_LIBCALL; 281 } 282 283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 284 /// UNKNOWN_LIBCALL if there is none. 285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 286 if (OpVT == MVT::f32) { 287 if (RetVT == MVT::i32) 288 return FPTOUINT_F32_I32; 289 if (RetVT == MVT::i64) 290 return FPTOUINT_F32_I64; 291 if (RetVT == MVT::i128) 292 return FPTOUINT_F32_I128; 293 } else if (OpVT == MVT::f64) { 294 if (RetVT == MVT::i32) 295 return FPTOUINT_F64_I32; 296 if (RetVT == MVT::i64) 297 return FPTOUINT_F64_I64; 298 if (RetVT == MVT::i128) 299 return FPTOUINT_F64_I128; 300 } else if (OpVT == MVT::f80) { 301 if (RetVT == MVT::i32) 302 return FPTOUINT_F80_I32; 303 if (RetVT == MVT::i64) 304 return FPTOUINT_F80_I64; 305 if (RetVT == MVT::i128) 306 return FPTOUINT_F80_I128; 307 } else if (OpVT == MVT::f128) { 308 if (RetVT == MVT::i32) 309 return FPTOUINT_F128_I32; 310 if (RetVT == MVT::i64) 311 return FPTOUINT_F128_I64; 312 if (RetVT == MVT::i128) 313 return FPTOUINT_F128_I128; 314 } else if (OpVT == MVT::ppcf128) { 315 if (RetVT == MVT::i32) 316 return FPTOUINT_PPCF128_I32; 317 if (RetVT == MVT::i64) 318 return FPTOUINT_PPCF128_I64; 319 if (RetVT == MVT::i128) 320 return FPTOUINT_PPCF128_I128; 321 } 322 return UNKNOWN_LIBCALL; 323 } 324 325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 326 /// UNKNOWN_LIBCALL if there is none. 327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 328 if (OpVT == MVT::i32) { 329 if (RetVT == MVT::f32) 330 return SINTTOFP_I32_F32; 331 if (RetVT == MVT::f64) 332 return SINTTOFP_I32_F64; 333 if (RetVT == MVT::f80) 334 return SINTTOFP_I32_F80; 335 if (RetVT == MVT::f128) 336 return SINTTOFP_I32_F128; 337 if (RetVT == MVT::ppcf128) 338 return SINTTOFP_I32_PPCF128; 339 } else if (OpVT == MVT::i64) { 340 if (RetVT == MVT::f32) 341 return SINTTOFP_I64_F32; 342 if (RetVT == MVT::f64) 343 return SINTTOFP_I64_F64; 344 if (RetVT == MVT::f80) 345 return SINTTOFP_I64_F80; 346 if (RetVT == MVT::f128) 347 return SINTTOFP_I64_F128; 348 if (RetVT == MVT::ppcf128) 349 return SINTTOFP_I64_PPCF128; 350 } else if (OpVT == MVT::i128) { 351 if (RetVT == MVT::f32) 352 return SINTTOFP_I128_F32; 353 if (RetVT == MVT::f64) 354 return SINTTOFP_I128_F64; 355 if (RetVT == MVT::f80) 356 return SINTTOFP_I128_F80; 357 if (RetVT == MVT::f128) 358 return SINTTOFP_I128_F128; 359 if (RetVT == MVT::ppcf128) 360 return SINTTOFP_I128_PPCF128; 361 } 362 return UNKNOWN_LIBCALL; 363 } 364 365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 366 /// UNKNOWN_LIBCALL if there is none. 367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 368 if (OpVT == MVT::i32) { 369 if (RetVT == MVT::f32) 370 return UINTTOFP_I32_F32; 371 if (RetVT == MVT::f64) 372 return UINTTOFP_I32_F64; 373 if (RetVT == MVT::f80) 374 return UINTTOFP_I32_F80; 375 if (RetVT == MVT::f128) 376 return UINTTOFP_I32_F128; 377 if (RetVT == MVT::ppcf128) 378 return UINTTOFP_I32_PPCF128; 379 } else if (OpVT == MVT::i64) { 380 if (RetVT == MVT::f32) 381 return UINTTOFP_I64_F32; 382 if (RetVT == MVT::f64) 383 return UINTTOFP_I64_F64; 384 if (RetVT == MVT::f80) 385 return UINTTOFP_I64_F80; 386 if (RetVT == MVT::f128) 387 return UINTTOFP_I64_F128; 388 if (RetVT == MVT::ppcf128) 389 return UINTTOFP_I64_PPCF128; 390 } else if (OpVT == MVT::i128) { 391 if (RetVT == MVT::f32) 392 return UINTTOFP_I128_F32; 393 if (RetVT == MVT::f64) 394 return UINTTOFP_I128_F64; 395 if (RetVT == MVT::f80) 396 return UINTTOFP_I128_F80; 397 if (RetVT == MVT::f128) 398 return UINTTOFP_I128_F128; 399 if (RetVT == MVT::ppcf128) 400 return UINTTOFP_I128_PPCF128; 401 } 402 return UNKNOWN_LIBCALL; 403 } 404 405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 406 #define OP_TO_LIBCALL(Name, Enum) \ 407 case Name: \ 408 switch (VT.SimpleTy) { \ 409 default: \ 410 return UNKNOWN_LIBCALL; \ 411 case MVT::i8: \ 412 return Enum##_1; \ 413 case MVT::i16: \ 414 return Enum##_2; \ 415 case MVT::i32: \ 416 return Enum##_4; \ 417 case MVT::i64: \ 418 return Enum##_8; \ 419 case MVT::i128: \ 420 return Enum##_16; \ 421 } 422 423 switch (Opc) { 424 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 425 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 426 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 427 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 428 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 429 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 430 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 431 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 432 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 433 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 434 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 435 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 436 } 437 438 #undef OP_TO_LIBCALL 439 440 return UNKNOWN_LIBCALL; 441 } 442 443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 444 switch (ElementSize) { 445 case 1: 446 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 447 case 2: 448 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 449 case 4: 450 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 451 case 8: 452 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 453 case 16: 454 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 455 default: 456 return UNKNOWN_LIBCALL; 457 } 458 } 459 460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 461 switch (ElementSize) { 462 case 1: 463 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 464 case 2: 465 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 466 case 4: 467 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 468 case 8: 469 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 470 case 16: 471 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 472 default: 473 return UNKNOWN_LIBCALL; 474 } 475 } 476 477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 478 switch (ElementSize) { 479 case 1: 480 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 481 case 2: 482 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 483 case 4: 484 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 485 case 8: 486 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 487 case 16: 488 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 489 default: 490 return UNKNOWN_LIBCALL; 491 } 492 } 493 494 /// InitCmpLibcallCCs - Set default comparison libcall CC. 495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 496 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 497 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 498 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 499 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 500 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 501 CCs[RTLIB::UNE_F32] = ISD::SETNE; 502 CCs[RTLIB::UNE_F64] = ISD::SETNE; 503 CCs[RTLIB::UNE_F128] = ISD::SETNE; 504 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 505 CCs[RTLIB::OGE_F32] = ISD::SETGE; 506 CCs[RTLIB::OGE_F64] = ISD::SETGE; 507 CCs[RTLIB::OGE_F128] = ISD::SETGE; 508 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 509 CCs[RTLIB::OLT_F32] = ISD::SETLT; 510 CCs[RTLIB::OLT_F64] = ISD::SETLT; 511 CCs[RTLIB::OLT_F128] = ISD::SETLT; 512 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 513 CCs[RTLIB::OLE_F32] = ISD::SETLE; 514 CCs[RTLIB::OLE_F64] = ISD::SETLE; 515 CCs[RTLIB::OLE_F128] = ISD::SETLE; 516 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 517 CCs[RTLIB::OGT_F32] = ISD::SETGT; 518 CCs[RTLIB::OGT_F64] = ISD::SETGT; 519 CCs[RTLIB::OGT_F128] = ISD::SETGT; 520 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 521 CCs[RTLIB::UO_F32] = ISD::SETNE; 522 CCs[RTLIB::UO_F64] = ISD::SETNE; 523 CCs[RTLIB::UO_F128] = ISD::SETNE; 524 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 525 CCs[RTLIB::O_F32] = ISD::SETEQ; 526 CCs[RTLIB::O_F64] = ISD::SETEQ; 527 CCs[RTLIB::O_F128] = ISD::SETEQ; 528 CCs[RTLIB::O_PPCF128] = ISD::SETEQ; 529 } 530 531 /// NOTE: The TargetMachine owns TLOF. 532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 533 initActions(); 534 535 // Perform these initializations only once. 536 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 537 MaxLoadsPerMemcmp = 8; 538 MaxGluedStoresPerMemcpy = 0; 539 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 540 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 541 UseUnderscoreSetJmp = false; 542 UseUnderscoreLongJmp = false; 543 HasMultipleConditionRegisters = false; 544 HasExtractBitsInsn = false; 545 JumpIsExpensive = JumpIsExpensiveOverride; 546 PredictableSelectIsExpensive = false; 547 EnableExtLdPromotion = false; 548 StackPointerRegisterToSaveRestore = 0; 549 BooleanContents = UndefinedBooleanContent; 550 BooleanFloatContents = UndefinedBooleanContent; 551 BooleanVectorContents = UndefinedBooleanContent; 552 SchedPreferenceInfo = Sched::ILP; 553 JumpBufSize = 0; 554 JumpBufAlignment = 0; 555 MinFunctionAlignment = 0; 556 PrefFunctionAlignment = 0; 557 PrefLoopAlignment = 0; 558 GatherAllAliasesMaxDepth = 18; 559 MinStackArgumentAlignment = 1; 560 // TODO: the default will be switched to 0 in the next commit, along 561 // with the Target-specific changes necessary. 562 MaxAtomicSizeInBitsSupported = 1024; 563 564 MinCmpXchgSizeInBits = 0; 565 SupportsUnalignedAtomics = false; 566 567 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 568 569 InitLibcalls(TM.getTargetTriple()); 570 InitCmpLibcallCCs(CmpLibcallCCs); 571 } 572 573 void TargetLoweringBase::initActions() { 574 // All operations default to being supported. 575 memset(OpActions, 0, sizeof(OpActions)); 576 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 577 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 578 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 579 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 580 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 581 std::fill(std::begin(TargetDAGCombineArray), 582 std::end(TargetDAGCombineArray), 0); 583 584 for (MVT VT : MVT::fp_valuetypes()) { 585 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 586 if (IntVT.isValid()) { 587 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 588 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 589 } 590 } 591 592 // Set default actions for various operations. 593 for (MVT VT : MVT::all_valuetypes()) { 594 // Default all indexed load / store to expand. 595 for (unsigned IM = (unsigned)ISD::PRE_INC; 596 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 597 setIndexedLoadAction(IM, VT, Expand); 598 setIndexedStoreAction(IM, VT, Expand); 599 } 600 601 // Most backends expect to see the node which just returns the value loaded. 602 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 603 604 // These operations default to expand. 605 setOperationAction(ISD::FGETSIGN, VT, Expand); 606 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 607 setOperationAction(ISD::FMINNUM, VT, Expand); 608 setOperationAction(ISD::FMAXNUM, VT, Expand); 609 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); 610 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); 611 setOperationAction(ISD::FMINIMUM, VT, Expand); 612 setOperationAction(ISD::FMAXIMUM, VT, Expand); 613 setOperationAction(ISD::FMAD, VT, Expand); 614 setOperationAction(ISD::SMIN, VT, Expand); 615 setOperationAction(ISD::SMAX, VT, Expand); 616 setOperationAction(ISD::UMIN, VT, Expand); 617 setOperationAction(ISD::UMAX, VT, Expand); 618 setOperationAction(ISD::ABS, VT, Expand); 619 setOperationAction(ISD::FSHL, VT, Expand); 620 setOperationAction(ISD::FSHR, VT, Expand); 621 setOperationAction(ISD::SADDSAT, VT, Expand); 622 setOperationAction(ISD::UADDSAT, VT, Expand); 623 setOperationAction(ISD::SSUBSAT, VT, Expand); 624 setOperationAction(ISD::USUBSAT, VT, Expand); 625 setOperationAction(ISD::SMULFIX, VT, Expand); 626 setOperationAction(ISD::UMULFIX, VT, Expand); 627 628 // Overflow operations default to expand 629 setOperationAction(ISD::SADDO, VT, Expand); 630 setOperationAction(ISD::SSUBO, VT, Expand); 631 setOperationAction(ISD::UADDO, VT, Expand); 632 setOperationAction(ISD::USUBO, VT, Expand); 633 setOperationAction(ISD::SMULO, VT, Expand); 634 setOperationAction(ISD::UMULO, VT, Expand); 635 636 // ADDCARRY operations default to expand 637 setOperationAction(ISD::ADDCARRY, VT, Expand); 638 setOperationAction(ISD::SUBCARRY, VT, Expand); 639 setOperationAction(ISD::SETCCCARRY, VT, Expand); 640 641 // ADDC/ADDE/SUBC/SUBE default to expand. 642 setOperationAction(ISD::ADDC, VT, Expand); 643 setOperationAction(ISD::ADDE, VT, Expand); 644 setOperationAction(ISD::SUBC, VT, Expand); 645 setOperationAction(ISD::SUBE, VT, Expand); 646 647 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 648 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 649 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 650 651 setOperationAction(ISD::BITREVERSE, VT, Expand); 652 653 // These library functions default to expand. 654 setOperationAction(ISD::FROUND, VT, Expand); 655 setOperationAction(ISD::FPOWI, VT, Expand); 656 657 // These operations default to expand for vector types. 658 if (VT.isVector()) { 659 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 660 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 661 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 662 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 663 } 664 665 // For most targets @llvm.get.dynamic.area.offset just returns 0. 666 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 667 668 // Vector reduction default to expand. 669 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); 670 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); 671 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); 672 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); 673 setOperationAction(ISD::VECREDUCE_AND, VT, Expand); 674 setOperationAction(ISD::VECREDUCE_OR, VT, Expand); 675 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); 676 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); 677 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); 678 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); 679 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); 680 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); 681 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); 682 } 683 684 // Most targets ignore the @llvm.prefetch intrinsic. 685 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 686 687 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 688 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 689 690 // ConstantFP nodes default to expand. Targets can either change this to 691 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 692 // to optimize expansions for certain constants. 693 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 694 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 695 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 696 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 697 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 698 699 // These library functions default to expand. 700 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 701 setOperationAction(ISD::FCBRT, VT, Expand); 702 setOperationAction(ISD::FLOG , VT, Expand); 703 setOperationAction(ISD::FLOG2, VT, Expand); 704 setOperationAction(ISD::FLOG10, VT, Expand); 705 setOperationAction(ISD::FEXP , VT, Expand); 706 setOperationAction(ISD::FEXP2, VT, Expand); 707 setOperationAction(ISD::FFLOOR, VT, Expand); 708 setOperationAction(ISD::FNEARBYINT, VT, Expand); 709 setOperationAction(ISD::FCEIL, VT, Expand); 710 setOperationAction(ISD::FRINT, VT, Expand); 711 setOperationAction(ISD::FTRUNC, VT, Expand); 712 setOperationAction(ISD::FROUND, VT, Expand); 713 } 714 715 // Default ISD::TRAP to expand (which turns it into abort). 716 setOperationAction(ISD::TRAP, MVT::Other, Expand); 717 718 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 719 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 720 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 721 } 722 723 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 724 EVT) const { 725 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 726 } 727 728 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 729 bool LegalTypes) const { 730 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 731 if (LHSTy.isVector()) 732 return LHSTy; 733 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 734 : getPointerTy(DL); 735 } 736 737 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 738 assert(isTypeLegal(VT)); 739 switch (Op) { 740 default: 741 return false; 742 case ISD::SDIV: 743 case ISD::UDIV: 744 case ISD::SREM: 745 case ISD::UREM: 746 return true; 747 } 748 } 749 750 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 751 // If the command-line option was specified, ignore this request. 752 if (!JumpIsExpensiveOverride.getNumOccurrences()) 753 JumpIsExpensive = isExpensive; 754 } 755 756 TargetLoweringBase::LegalizeKind 757 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 758 // If this is a simple type, use the ComputeRegisterProp mechanism. 759 if (VT.isSimple()) { 760 MVT SVT = VT.getSimpleVT(); 761 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 762 MVT NVT = TransformToType[SVT.SimpleTy]; 763 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 764 765 assert((LA == TypeLegal || LA == TypeSoftenFloat || 766 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && 767 "Promote may not follow Expand or Promote"); 768 769 if (LA == TypeSplitVector) 770 return LegalizeKind(LA, 771 EVT::getVectorVT(Context, SVT.getVectorElementType(), 772 SVT.getVectorNumElements() / 2)); 773 if (LA == TypeScalarizeVector) 774 return LegalizeKind(LA, SVT.getVectorElementType()); 775 return LegalizeKind(LA, NVT); 776 } 777 778 // Handle Extended Scalar Types. 779 if (!VT.isVector()) { 780 assert(VT.isInteger() && "Float types must be simple"); 781 unsigned BitSize = VT.getSizeInBits(); 782 // First promote to a power-of-two size, then expand if necessary. 783 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 784 EVT NVT = VT.getRoundIntegerType(Context); 785 assert(NVT != VT && "Unable to round integer VT"); 786 LegalizeKind NextStep = getTypeConversion(Context, NVT); 787 // Avoid multi-step promotion. 788 if (NextStep.first == TypePromoteInteger) 789 return NextStep; 790 // Return rounded integer type. 791 return LegalizeKind(TypePromoteInteger, NVT); 792 } 793 794 return LegalizeKind(TypeExpandInteger, 795 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 796 } 797 798 // Handle vector types. 799 unsigned NumElts = VT.getVectorNumElements(); 800 EVT EltVT = VT.getVectorElementType(); 801 802 // Vectors with only one element are always scalarized. 803 if (NumElts == 1) 804 return LegalizeKind(TypeScalarizeVector, EltVT); 805 806 // Try to widen vector elements until the element type is a power of two and 807 // promote it to a legal type later on, for example: 808 // <3 x i8> -> <4 x i8> -> <4 x i32> 809 if (EltVT.isInteger()) { 810 // Vectors with a number of elements that is not a power of two are always 811 // widened, for example <3 x i8> -> <4 x i8>. 812 if (!VT.isPow2VectorType()) { 813 NumElts = (unsigned)NextPowerOf2(NumElts); 814 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 815 return LegalizeKind(TypeWidenVector, NVT); 816 } 817 818 // Examine the element type. 819 LegalizeKind LK = getTypeConversion(Context, EltVT); 820 821 // If type is to be expanded, split the vector. 822 // <4 x i140> -> <2 x i140> 823 if (LK.first == TypeExpandInteger) 824 return LegalizeKind(TypeSplitVector, 825 EVT::getVectorVT(Context, EltVT, NumElts / 2)); 826 827 // Promote the integer element types until a legal vector type is found 828 // or until the element integer type is too big. If a legal type was not 829 // found, fallback to the usual mechanism of widening/splitting the 830 // vector. 831 EVT OldEltVT = EltVT; 832 while (true) { 833 // Increase the bitwidth of the element to the next pow-of-two 834 // (which is greater than 8 bits). 835 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 836 .getRoundIntegerType(Context); 837 838 // Stop trying when getting a non-simple element type. 839 // Note that vector elements may be greater than legal vector element 840 // types. Example: X86 XMM registers hold 64bit element on 32bit 841 // systems. 842 if (!EltVT.isSimple()) 843 break; 844 845 // Build a new vector type and check if it is legal. 846 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 847 // Found a legal promoted vector type. 848 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 849 return LegalizeKind(TypePromoteInteger, 850 EVT::getVectorVT(Context, EltVT, NumElts)); 851 } 852 853 // Reset the type to the unexpanded type if we did not find a legal vector 854 // type with a promoted vector element type. 855 EltVT = OldEltVT; 856 } 857 858 // Try to widen the vector until a legal type is found. 859 // If there is no wider legal type, split the vector. 860 while (true) { 861 // Round up to the next power of 2. 862 NumElts = (unsigned)NextPowerOf2(NumElts); 863 864 // If there is no simple vector type with this many elements then there 865 // cannot be a larger legal vector type. Note that this assumes that 866 // there are no skipped intermediate vector types in the simple types. 867 if (!EltVT.isSimple()) 868 break; 869 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 870 if (LargerVector == MVT()) 871 break; 872 873 // If this type is legal then widen the vector. 874 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 875 return LegalizeKind(TypeWidenVector, LargerVector); 876 } 877 878 // Widen odd vectors to next power of two. 879 if (!VT.isPow2VectorType()) { 880 EVT NVT = VT.getPow2VectorType(Context); 881 return LegalizeKind(TypeWidenVector, NVT); 882 } 883 884 // Vectors with illegal element types are expanded. 885 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); 886 return LegalizeKind(TypeSplitVector, NVT); 887 } 888 889 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 890 unsigned &NumIntermediates, 891 MVT &RegisterVT, 892 TargetLoweringBase *TLI) { 893 // Figure out the right, legal destination reg to copy into. 894 unsigned NumElts = VT.getVectorNumElements(); 895 MVT EltTy = VT.getVectorElementType(); 896 897 unsigned NumVectorRegs = 1; 898 899 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 900 // could break down into LHS/RHS like LegalizeDAG does. 901 if (!isPowerOf2_32(NumElts)) { 902 NumVectorRegs = NumElts; 903 NumElts = 1; 904 } 905 906 // Divide the input until we get to a supported size. This will always 907 // end with a scalar if the target doesn't support vectors. 908 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 909 NumElts >>= 1; 910 NumVectorRegs <<= 1; 911 } 912 913 NumIntermediates = NumVectorRegs; 914 915 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 916 if (!TLI->isTypeLegal(NewVT)) 917 NewVT = EltTy; 918 IntermediateVT = NewVT; 919 920 unsigned NewVTSize = NewVT.getSizeInBits(); 921 922 // Convert sizes such as i33 to i64. 923 if (!isPowerOf2_32(NewVTSize)) 924 NewVTSize = NextPowerOf2(NewVTSize); 925 926 MVT DestVT = TLI->getRegisterType(NewVT); 927 RegisterVT = DestVT; 928 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 929 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 930 931 // Otherwise, promotion or legal types use the same number of registers as 932 // the vector decimated to the appropriate level. 933 return NumVectorRegs; 934 } 935 936 /// isLegalRC - Return true if the value types that can be represented by the 937 /// specified register class are all legal. 938 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 939 const TargetRegisterClass &RC) const { 940 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 941 if (isTypeLegal(*I)) 942 return true; 943 return false; 944 } 945 946 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 947 /// sequence of memory operands that is recognized by PrologEpilogInserter. 948 MachineBasicBlock * 949 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 950 MachineBasicBlock *MBB) const { 951 MachineInstr *MI = &InitialMI; 952 MachineFunction &MF = *MI->getMF(); 953 MachineFrameInfo &MFI = MF.getFrameInfo(); 954 955 // We're handling multiple types of operands here: 956 // PATCHPOINT MetaArgs - live-in, read only, direct 957 // STATEPOINT Deopt Spill - live-through, read only, indirect 958 // STATEPOINT Deopt Alloca - live-through, read only, direct 959 // (We're currently conservative and mark the deopt slots read/write in 960 // practice.) 961 // STATEPOINT GC Spill - live-through, read/write, indirect 962 // STATEPOINT GC Alloca - live-through, read/write, direct 963 // The live-in vs live-through is handled already (the live through ones are 964 // all stack slots), but we need to handle the different type of stackmap 965 // operands and memory effects here. 966 967 // MI changes inside this loop as we grow operands. 968 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 969 MachineOperand &MO = MI->getOperand(OperIdx); 970 if (!MO.isFI()) 971 continue; 972 973 // foldMemoryOperand builds a new MI after replacing a single FI operand 974 // with the canonical set of five x86 addressing-mode operands. 975 int FI = MO.getIndex(); 976 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 977 978 // Copy operands before the frame-index. 979 for (unsigned i = 0; i < OperIdx; ++i) 980 MIB.add(MI->getOperand(i)); 981 // Add frame index operands recognized by stackmaps.cpp 982 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 983 // indirect-mem-ref tag, size, #FI, offset. 984 // Used for spills inserted by StatepointLowering. This codepath is not 985 // used for patchpoints/stackmaps at all, for these spilling is done via 986 // foldMemoryOperand callback only. 987 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 988 MIB.addImm(StackMaps::IndirectMemRefOp); 989 MIB.addImm(MFI.getObjectSize(FI)); 990 MIB.add(MI->getOperand(OperIdx)); 991 MIB.addImm(0); 992 } else { 993 // direct-mem-ref tag, #FI, offset. 994 // Used by patchpoint, and direct alloca arguments to statepoints 995 MIB.addImm(StackMaps::DirectMemRefOp); 996 MIB.add(MI->getOperand(OperIdx)); 997 MIB.addImm(0); 998 } 999 // Copy the operands after the frame index. 1000 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 1001 MIB.add(MI->getOperand(i)); 1002 1003 // Inherit previous memory operands. 1004 MIB.cloneMemRefs(*MI); 1005 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1006 1007 // Add a new memory operand for this FI. 1008 assert(MFI.getObjectOffset(FI) != -1); 1009 1010 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1011 // PATCHPOINT should be updated to do the same. (TODO) 1012 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1013 auto Flags = MachineMemOperand::MOLoad; 1014 MachineMemOperand *MMO = MF.getMachineMemOperand( 1015 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1016 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); 1017 MIB->addMemOperand(MF, MMO); 1018 } 1019 1020 // Replace the instruction and update the operand index. 1021 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1022 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 1023 MI->eraseFromParent(); 1024 MI = MIB; 1025 } 1026 return MBB; 1027 } 1028 1029 MachineBasicBlock * 1030 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, 1031 MachineBasicBlock *MBB) const { 1032 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && 1033 "Called emitXRayCustomEvent on the wrong MI!"); 1034 auto &MF = *MI.getMF(); 1035 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1036 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1037 MIB.add(MI.getOperand(OpIdx)); 1038 1039 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1040 MI.eraseFromParent(); 1041 return MBB; 1042 } 1043 1044 MachineBasicBlock * 1045 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, 1046 MachineBasicBlock *MBB) const { 1047 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && 1048 "Called emitXRayTypedEvent on the wrong MI!"); 1049 auto &MF = *MI.getMF(); 1050 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1051 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1052 MIB.add(MI.getOperand(OpIdx)); 1053 1054 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1055 MI.eraseFromParent(); 1056 return MBB; 1057 } 1058 1059 /// findRepresentativeClass - Return the largest legal super-reg register class 1060 /// of the register class for the specified type and its associated "cost". 1061 // This function is in TargetLowering because it uses RegClassForVT which would 1062 // need to be moved to TargetRegisterInfo and would necessitate moving 1063 // isTypeLegal over as well - a massive change that would just require 1064 // TargetLowering having a TargetRegisterInfo class member that it would use. 1065 std::pair<const TargetRegisterClass *, uint8_t> 1066 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1067 MVT VT) const { 1068 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1069 if (!RC) 1070 return std::make_pair(RC, 0); 1071 1072 // Compute the set of all super-register classes. 1073 BitVector SuperRegRC(TRI->getNumRegClasses()); 1074 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1075 SuperRegRC.setBitsInMask(RCI.getMask()); 1076 1077 // Find the first legal register class with the largest spill size. 1078 const TargetRegisterClass *BestRC = RC; 1079 for (unsigned i : SuperRegRC.set_bits()) { 1080 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1081 // We want the largest possible spill size. 1082 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1083 continue; 1084 if (!isLegalRC(*TRI, *SuperRC)) 1085 continue; 1086 BestRC = SuperRC; 1087 } 1088 return std::make_pair(BestRC, 1); 1089 } 1090 1091 /// computeRegisterProperties - Once all of the register classes are added, 1092 /// this allows us to compute derived properties we expose. 1093 void TargetLoweringBase::computeRegisterProperties( 1094 const TargetRegisterInfo *TRI) { 1095 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1096 "Too many value types for ValueTypeActions to hold!"); 1097 1098 // Everything defaults to needing one register. 1099 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1100 NumRegistersForVT[i] = 1; 1101 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1102 } 1103 // ...except isVoid, which doesn't need any registers. 1104 NumRegistersForVT[MVT::isVoid] = 0; 1105 1106 // Find the largest integer register class. 1107 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1108 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1109 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1110 1111 // Every integer value type larger than this largest register takes twice as 1112 // many registers to represent as the previous ValueType. 1113 for (unsigned ExpandedReg = LargestIntReg + 1; 1114 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1115 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1116 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1117 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1118 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1119 TypeExpandInteger); 1120 } 1121 1122 // Inspect all of the ValueType's smaller than the largest integer 1123 // register to see which ones need promotion. 1124 unsigned LegalIntReg = LargestIntReg; 1125 for (unsigned IntReg = LargestIntReg - 1; 1126 IntReg >= (unsigned)MVT::i1; --IntReg) { 1127 MVT IVT = (MVT::SimpleValueType)IntReg; 1128 if (isTypeLegal(IVT)) { 1129 LegalIntReg = IntReg; 1130 } else { 1131 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1132 (MVT::SimpleValueType)LegalIntReg; 1133 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1134 } 1135 } 1136 1137 // ppcf128 type is really two f64's. 1138 if (!isTypeLegal(MVT::ppcf128)) { 1139 if (isTypeLegal(MVT::f64)) { 1140 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1141 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1142 TransformToType[MVT::ppcf128] = MVT::f64; 1143 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1144 } else { 1145 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1146 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1147 TransformToType[MVT::ppcf128] = MVT::i128; 1148 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1149 } 1150 } 1151 1152 // Decide how to handle f128. If the target does not have native f128 support, 1153 // expand it to i128 and we will be generating soft float library calls. 1154 if (!isTypeLegal(MVT::f128)) { 1155 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1156 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1157 TransformToType[MVT::f128] = MVT::i128; 1158 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1159 } 1160 1161 // Decide how to handle f64. If the target does not have native f64 support, 1162 // expand it to i64 and we will be generating soft float library calls. 1163 if (!isTypeLegal(MVT::f64)) { 1164 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1165 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1166 TransformToType[MVT::f64] = MVT::i64; 1167 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1168 } 1169 1170 // Decide how to handle f32. If the target does not have native f32 support, 1171 // expand it to i32 and we will be generating soft float library calls. 1172 if (!isTypeLegal(MVT::f32)) { 1173 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1174 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1175 TransformToType[MVT::f32] = MVT::i32; 1176 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1177 } 1178 1179 // Decide how to handle f16. If the target does not have native f16 support, 1180 // promote it to f32, because there are no f16 library calls (except for 1181 // conversions). 1182 if (!isTypeLegal(MVT::f16)) { 1183 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1184 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1185 TransformToType[MVT::f16] = MVT::f32; 1186 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1187 } 1188 1189 // Loop over all of the vector value types to see which need transformations. 1190 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1191 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1192 MVT VT = (MVT::SimpleValueType) i; 1193 if (isTypeLegal(VT)) 1194 continue; 1195 1196 MVT EltVT = VT.getVectorElementType(); 1197 unsigned NElts = VT.getVectorNumElements(); 1198 bool IsLegalWiderType = false; 1199 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1200 switch (PreferredAction) { 1201 case TypePromoteInteger: 1202 // Try to promote the elements of integer vectors. If no legal 1203 // promotion was found, fall through to the widen-vector method. 1204 for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { 1205 MVT SVT = (MVT::SimpleValueType) nVT; 1206 // Promote vectors of integers to vectors with the same number 1207 // of elements, with a wider element type. 1208 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && 1209 SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { 1210 TransformToType[i] = SVT; 1211 RegisterTypeForVT[i] = SVT; 1212 NumRegistersForVT[i] = 1; 1213 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1214 IsLegalWiderType = true; 1215 break; 1216 } 1217 } 1218 if (IsLegalWiderType) 1219 break; 1220 LLVM_FALLTHROUGH; 1221 1222 case TypeWidenVector: 1223 // Try to widen the vector. 1224 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1225 MVT SVT = (MVT::SimpleValueType) nVT; 1226 if (SVT.getVectorElementType() == EltVT 1227 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { 1228 TransformToType[i] = SVT; 1229 RegisterTypeForVT[i] = SVT; 1230 NumRegistersForVT[i] = 1; 1231 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1232 IsLegalWiderType = true; 1233 break; 1234 } 1235 } 1236 if (IsLegalWiderType) 1237 break; 1238 LLVM_FALLTHROUGH; 1239 1240 case TypeSplitVector: 1241 case TypeScalarizeVector: { 1242 MVT IntermediateVT; 1243 MVT RegisterVT; 1244 unsigned NumIntermediates; 1245 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1246 NumIntermediates, RegisterVT, this); 1247 RegisterTypeForVT[i] = RegisterVT; 1248 1249 MVT NVT = VT.getPow2VectorType(); 1250 if (NVT == VT) { 1251 // Type is already a power of 2. The default action is to split. 1252 TransformToType[i] = MVT::Other; 1253 if (PreferredAction == TypeScalarizeVector) 1254 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1255 else if (PreferredAction == TypeSplitVector) 1256 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1257 else 1258 // Set type action according to the number of elements. 1259 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector 1260 : TypeSplitVector); 1261 } else { 1262 TransformToType[i] = NVT; 1263 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1264 } 1265 break; 1266 } 1267 default: 1268 llvm_unreachable("Unknown vector legalization action!"); 1269 } 1270 } 1271 1272 // Determine the 'representative' register class for each value type. 1273 // An representative register class is the largest (meaning one which is 1274 // not a sub-register class / subreg register class) legal register class for 1275 // a group of value types. For example, on i386, i8, i16, and i32 1276 // representative would be GR32; while on x86_64 it's GR64. 1277 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1278 const TargetRegisterClass* RRC; 1279 uint8_t Cost; 1280 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1281 RepRegClassForVT[i] = RRC; 1282 RepRegClassCostForVT[i] = Cost; 1283 } 1284 } 1285 1286 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1287 EVT VT) const { 1288 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1289 return getPointerTy(DL).SimpleTy; 1290 } 1291 1292 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1293 return MVT::i32; // return the default value 1294 } 1295 1296 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1297 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1298 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1299 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1300 /// 1301 /// This method returns the number of registers needed, and the VT for each 1302 /// register. It also returns the VT and quantity of the intermediate values 1303 /// before they are promoted/expanded. 1304 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1305 EVT &IntermediateVT, 1306 unsigned &NumIntermediates, 1307 MVT &RegisterVT) const { 1308 unsigned NumElts = VT.getVectorNumElements(); 1309 1310 // If there is a wider vector type with the same element type as this one, 1311 // or a promoted vector type that has the same number of elements which 1312 // are wider, then we should convert to that legal vector type. 1313 // This handles things like <2 x float> -> <4 x float> and 1314 // <4 x i1> -> <4 x i32>. 1315 LegalizeTypeAction TA = getTypeAction(Context, VT); 1316 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1317 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1318 if (isTypeLegal(RegisterEVT)) { 1319 IntermediateVT = RegisterEVT; 1320 RegisterVT = RegisterEVT.getSimpleVT(); 1321 NumIntermediates = 1; 1322 return 1; 1323 } 1324 } 1325 1326 // Figure out the right, legal destination reg to copy into. 1327 EVT EltTy = VT.getVectorElementType(); 1328 1329 unsigned NumVectorRegs = 1; 1330 1331 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1332 // could break down into LHS/RHS like LegalizeDAG does. 1333 if (!isPowerOf2_32(NumElts)) { 1334 NumVectorRegs = NumElts; 1335 NumElts = 1; 1336 } 1337 1338 // Divide the input until we get to a supported size. This will always 1339 // end with a scalar if the target doesn't support vectors. 1340 while (NumElts > 1 && !isTypeLegal( 1341 EVT::getVectorVT(Context, EltTy, NumElts))) { 1342 NumElts >>= 1; 1343 NumVectorRegs <<= 1; 1344 } 1345 1346 NumIntermediates = NumVectorRegs; 1347 1348 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1349 if (!isTypeLegal(NewVT)) 1350 NewVT = EltTy; 1351 IntermediateVT = NewVT; 1352 1353 MVT DestVT = getRegisterType(Context, NewVT); 1354 RegisterVT = DestVT; 1355 unsigned NewVTSize = NewVT.getSizeInBits(); 1356 1357 // Convert sizes such as i33 to i64. 1358 if (!isPowerOf2_32(NewVTSize)) 1359 NewVTSize = NextPowerOf2(NewVTSize); 1360 1361 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1362 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1363 1364 // Otherwise, promotion or legal types use the same number of registers as 1365 // the vector decimated to the appropriate level. 1366 return NumVectorRegs; 1367 } 1368 1369 /// Get the EVTs and ArgFlags collections that represent the legalized return 1370 /// type of the given function. This does not require a DAG or a return value, 1371 /// and is suitable for use before any DAGs for the function are constructed. 1372 /// TODO: Move this out of TargetLowering.cpp. 1373 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1374 AttributeList attr, 1375 SmallVectorImpl<ISD::OutputArg> &Outs, 1376 const TargetLowering &TLI, const DataLayout &DL) { 1377 SmallVector<EVT, 4> ValueVTs; 1378 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1379 unsigned NumValues = ValueVTs.size(); 1380 if (NumValues == 0) return; 1381 1382 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1383 EVT VT = ValueVTs[j]; 1384 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1385 1386 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1387 ExtendKind = ISD::SIGN_EXTEND; 1388 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1389 ExtendKind = ISD::ZERO_EXTEND; 1390 1391 // FIXME: C calling convention requires the return type to be promoted to 1392 // at least 32-bit. But this is not necessary for non-C calling 1393 // conventions. The frontend should mark functions whose return values 1394 // require promoting with signext or zeroext attributes. 1395 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1396 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1397 if (VT.bitsLT(MinVT)) 1398 VT = MinVT; 1399 } 1400 1401 unsigned NumParts = 1402 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1403 MVT PartVT = 1404 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1405 1406 // 'inreg' on function refers to return value 1407 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1408 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1409 Flags.setInReg(); 1410 1411 // Propagate extension type if any 1412 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1413 Flags.setSExt(); 1414 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1415 Flags.setZExt(); 1416 1417 for (unsigned i = 0; i < NumParts; ++i) 1418 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); 1419 } 1420 } 1421 1422 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1423 /// function arguments in the caller parameter area. This is the actual 1424 /// alignment, not its logarithm. 1425 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1426 const DataLayout &DL) const { 1427 return DL.getABITypeAlignment(Ty); 1428 } 1429 1430 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1431 const DataLayout &DL, EVT VT, 1432 unsigned AddrSpace, 1433 unsigned Alignment, 1434 bool *Fast) const { 1435 // Check if the specified alignment is sufficient based on the data layout. 1436 // TODO: While using the data layout works in practice, a better solution 1437 // would be to implement this check directly (make this a virtual function). 1438 // For example, the ABI alignment may change based on software platform while 1439 // this function should only be affected by hardware implementation. 1440 Type *Ty = VT.getTypeForEVT(Context); 1441 if (Alignment >= DL.getABITypeAlignment(Ty)) { 1442 // Assume that an access that meets the ABI-specified alignment is fast. 1443 if (Fast != nullptr) 1444 *Fast = true; 1445 return true; 1446 } 1447 1448 // This is a misaligned access. 1449 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); 1450 } 1451 1452 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1453 return BranchProbability(MinPercentageForPredictableBranch, 100); 1454 } 1455 1456 //===----------------------------------------------------------------------===// 1457 // TargetTransformInfo Helpers 1458 //===----------------------------------------------------------------------===// 1459 1460 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1461 enum InstructionOpcodes { 1462 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1463 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1464 #include "llvm/IR/Instruction.def" 1465 }; 1466 switch (static_cast<InstructionOpcodes>(Opcode)) { 1467 case Ret: return 0; 1468 case Br: return 0; 1469 case Switch: return 0; 1470 case IndirectBr: return 0; 1471 case Invoke: return 0; 1472 case CallBr: return 0; 1473 case Resume: return 0; 1474 case Unreachable: return 0; 1475 case CleanupRet: return 0; 1476 case CatchRet: return 0; 1477 case CatchPad: return 0; 1478 case CatchSwitch: return 0; 1479 case CleanupPad: return 0; 1480 case FNeg: return ISD::FNEG; 1481 case Add: return ISD::ADD; 1482 case FAdd: return ISD::FADD; 1483 case Sub: return ISD::SUB; 1484 case FSub: return ISD::FSUB; 1485 case Mul: return ISD::MUL; 1486 case FMul: return ISD::FMUL; 1487 case UDiv: return ISD::UDIV; 1488 case SDiv: return ISD::SDIV; 1489 case FDiv: return ISD::FDIV; 1490 case URem: return ISD::UREM; 1491 case SRem: return ISD::SREM; 1492 case FRem: return ISD::FREM; 1493 case Shl: return ISD::SHL; 1494 case LShr: return ISD::SRL; 1495 case AShr: return ISD::SRA; 1496 case And: return ISD::AND; 1497 case Or: return ISD::OR; 1498 case Xor: return ISD::XOR; 1499 case Alloca: return 0; 1500 case Load: return ISD::LOAD; 1501 case Store: return ISD::STORE; 1502 case GetElementPtr: return 0; 1503 case Fence: return 0; 1504 case AtomicCmpXchg: return 0; 1505 case AtomicRMW: return 0; 1506 case Trunc: return ISD::TRUNCATE; 1507 case ZExt: return ISD::ZERO_EXTEND; 1508 case SExt: return ISD::SIGN_EXTEND; 1509 case FPToUI: return ISD::FP_TO_UINT; 1510 case FPToSI: return ISD::FP_TO_SINT; 1511 case UIToFP: return ISD::UINT_TO_FP; 1512 case SIToFP: return ISD::SINT_TO_FP; 1513 case FPTrunc: return ISD::FP_ROUND; 1514 case FPExt: return ISD::FP_EXTEND; 1515 case PtrToInt: return ISD::BITCAST; 1516 case IntToPtr: return ISD::BITCAST; 1517 case BitCast: return ISD::BITCAST; 1518 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1519 case ICmp: return ISD::SETCC; 1520 case FCmp: return ISD::SETCC; 1521 case PHI: return 0; 1522 case Call: return 0; 1523 case Select: return ISD::SELECT; 1524 case UserOp1: return 0; 1525 case UserOp2: return 0; 1526 case VAArg: return 0; 1527 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1528 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1529 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1530 case ExtractValue: return ISD::MERGE_VALUES; 1531 case InsertValue: return ISD::MERGE_VALUES; 1532 case LandingPad: return 0; 1533 } 1534 1535 llvm_unreachable("Unknown instruction type encountered!"); 1536 } 1537 1538 std::pair<int, MVT> 1539 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1540 Type *Ty) const { 1541 LLVMContext &C = Ty->getContext(); 1542 EVT MTy = getValueType(DL, Ty); 1543 1544 int Cost = 1; 1545 // We keep legalizing the type until we find a legal kind. We assume that 1546 // the only operation that costs anything is the split. After splitting 1547 // we need to handle two types. 1548 while (true) { 1549 LegalizeKind LK = getTypeConversion(C, MTy); 1550 1551 if (LK.first == TypeLegal) 1552 return std::make_pair(Cost, MTy.getSimpleVT()); 1553 1554 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1555 Cost *= 2; 1556 1557 // Do not loop with f128 type. 1558 if (MTy == LK.second) 1559 return std::make_pair(Cost, MTy.getSimpleVT()); 1560 1561 // Keep legalizing the type. 1562 MTy = LK.second; 1563 } 1564 } 1565 1566 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1567 bool UseTLS) const { 1568 // compiler-rt provides a variable with a magic name. Targets that do not 1569 // link with compiler-rt may also provide such a variable. 1570 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1571 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1572 auto UnsafeStackPtr = 1573 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1574 1575 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1576 1577 if (!UnsafeStackPtr) { 1578 auto TLSModel = UseTLS ? 1579 GlobalValue::InitialExecTLSModel : 1580 GlobalValue::NotThreadLocal; 1581 // The global variable is not defined yet, define it ourselves. 1582 // We use the initial-exec TLS model because we do not support the 1583 // variable living anywhere other than in the main executable. 1584 UnsafeStackPtr = new GlobalVariable( 1585 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1586 UnsafeStackPtrVar, nullptr, TLSModel); 1587 } else { 1588 // The variable exists, check its type and attributes. 1589 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1590 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1591 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1592 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1593 (UseTLS ? "" : "not ") + "be thread-local"); 1594 } 1595 return UnsafeStackPtr; 1596 } 1597 1598 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1599 if (!TM.getTargetTriple().isAndroid()) 1600 return getDefaultSafeStackPointerLocation(IRB, true); 1601 1602 // Android provides a libc function to retrieve the address of the current 1603 // thread's unsafe stack pointer. 1604 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1605 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1606 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1607 StackPtrTy->getPointerTo(0)); 1608 return IRB.CreateCall(Fn); 1609 } 1610 1611 //===----------------------------------------------------------------------===// 1612 // Loop Strength Reduction hooks 1613 //===----------------------------------------------------------------------===// 1614 1615 /// isLegalAddressingMode - Return true if the addressing mode represented 1616 /// by AM is legal for this target, for a load/store of the specified type. 1617 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1618 const AddrMode &AM, Type *Ty, 1619 unsigned AS, Instruction *I) const { 1620 // The default implementation of this implements a conservative RISCy, r+r and 1621 // r+i addr mode. 1622 1623 // Allows a sign-extended 16-bit immediate field. 1624 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1625 return false; 1626 1627 // No global is ever allowed as a base. 1628 if (AM.BaseGV) 1629 return false; 1630 1631 // Only support r+r, 1632 switch (AM.Scale) { 1633 case 0: // "r+i" or just "i", depending on HasBaseReg. 1634 break; 1635 case 1: 1636 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1637 return false; 1638 // Otherwise we have r+r or r+i. 1639 break; 1640 case 2: 1641 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1642 return false; 1643 // Allow 2*r as r+r. 1644 break; 1645 default: // Don't allow n * r 1646 return false; 1647 } 1648 1649 return true; 1650 } 1651 1652 //===----------------------------------------------------------------------===// 1653 // Stack Protector 1654 //===----------------------------------------------------------------------===// 1655 1656 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1657 // so that SelectionDAG handle SSP. 1658 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1659 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1660 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1661 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1662 return M.getOrInsertGlobal("__guard_local", PtrTy); 1663 } 1664 return nullptr; 1665 } 1666 1667 // Currently only support "standard" __stack_chk_guard. 1668 // TODO: add LOAD_STACK_GUARD support. 1669 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1670 if (!M.getNamedValue("__stack_chk_guard")) 1671 new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1672 GlobalVariable::ExternalLinkage, 1673 nullptr, "__stack_chk_guard"); 1674 } 1675 1676 // Currently only support "standard" __stack_chk_guard. 1677 // TODO: add LOAD_STACK_GUARD support. 1678 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1679 return M.getNamedValue("__stack_chk_guard"); 1680 } 1681 1682 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1683 return nullptr; 1684 } 1685 1686 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1687 return MinimumJumpTableEntries; 1688 } 1689 1690 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1691 MinimumJumpTableEntries = Val; 1692 } 1693 1694 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 1695 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 1696 } 1697 1698 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 1699 return MaximumJumpTableSize; 1700 } 1701 1702 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 1703 MaximumJumpTableSize = Val; 1704 } 1705 1706 //===----------------------------------------------------------------------===// 1707 // Reciprocal Estimates 1708 //===----------------------------------------------------------------------===// 1709 1710 /// Get the reciprocal estimate attribute string for a function that will 1711 /// override the target defaults. 1712 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 1713 const Function &F = MF.getFunction(); 1714 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 1715 } 1716 1717 /// Construct a string for the given reciprocal operation of the given type. 1718 /// This string should match the corresponding option to the front-end's 1719 /// "-mrecip" flag assuming those strings have been passed through in an 1720 /// attribute string. For example, "vec-divf" for a division of a vXf32. 1721 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 1722 std::string Name = VT.isVector() ? "vec-" : ""; 1723 1724 Name += IsSqrt ? "sqrt" : "div"; 1725 1726 // TODO: Handle "half" or other float types? 1727 if (VT.getScalarType() == MVT::f64) { 1728 Name += "d"; 1729 } else { 1730 assert(VT.getScalarType() == MVT::f32 && 1731 "Unexpected FP type for reciprocal estimate"); 1732 Name += "f"; 1733 } 1734 1735 return Name; 1736 } 1737 1738 /// Return the character position and value (a single numeric character) of a 1739 /// customized refinement operation in the input string if it exists. Return 1740 /// false if there is no customized refinement step count. 1741 static bool parseRefinementStep(StringRef In, size_t &Position, 1742 uint8_t &Value) { 1743 const char RefStepToken = ':'; 1744 Position = In.find(RefStepToken); 1745 if (Position == StringRef::npos) 1746 return false; 1747 1748 StringRef RefStepString = In.substr(Position + 1); 1749 // Allow exactly one numeric character for the additional refinement 1750 // step parameter. 1751 if (RefStepString.size() == 1) { 1752 char RefStepChar = RefStepString[0]; 1753 if (RefStepChar >= '0' && RefStepChar <= '9') { 1754 Value = RefStepChar - '0'; 1755 return true; 1756 } 1757 } 1758 report_fatal_error("Invalid refinement step for -recip."); 1759 } 1760 1761 /// For the input attribute string, return one of the ReciprocalEstimate enum 1762 /// status values (enabled, disabled, or not specified) for this operation on 1763 /// the specified data type. 1764 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 1765 if (Override.empty()) 1766 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1767 1768 SmallVector<StringRef, 4> OverrideVector; 1769 Override.split(OverrideVector, ','); 1770 unsigned NumArgs = OverrideVector.size(); 1771 1772 // Check if "all", "none", or "default" was specified. 1773 if (NumArgs == 1) { 1774 // Look for an optional setting of the number of refinement steps needed 1775 // for this type of reciprocal operation. 1776 size_t RefPos; 1777 uint8_t RefSteps; 1778 if (parseRefinementStep(Override, RefPos, RefSteps)) { 1779 // Split the string for further processing. 1780 Override = Override.substr(0, RefPos); 1781 } 1782 1783 // All reciprocal types are enabled. 1784 if (Override == "all") 1785 return TargetLoweringBase::ReciprocalEstimate::Enabled; 1786 1787 // All reciprocal types are disabled. 1788 if (Override == "none") 1789 return TargetLoweringBase::ReciprocalEstimate::Disabled; 1790 1791 // Target defaults for enablement are used. 1792 if (Override == "default") 1793 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1794 } 1795 1796 // The attribute string may omit the size suffix ('f'/'d'). 1797 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1798 std::string VTNameNoSize = VTName; 1799 VTNameNoSize.pop_back(); 1800 static const char DisabledPrefix = '!'; 1801 1802 for (StringRef RecipType : OverrideVector) { 1803 size_t RefPos; 1804 uint8_t RefSteps; 1805 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 1806 RecipType = RecipType.substr(0, RefPos); 1807 1808 // Ignore the disablement token for string matching. 1809 bool IsDisabled = RecipType[0] == DisabledPrefix; 1810 if (IsDisabled) 1811 RecipType = RecipType.substr(1); 1812 1813 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1814 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 1815 : TargetLoweringBase::ReciprocalEstimate::Enabled; 1816 } 1817 1818 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1819 } 1820 1821 /// For the input attribute string, return the customized refinement step count 1822 /// for this operation on the specified data type. If the step count does not 1823 /// exist, return the ReciprocalEstimate enum value for unspecified. 1824 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 1825 if (Override.empty()) 1826 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1827 1828 SmallVector<StringRef, 4> OverrideVector; 1829 Override.split(OverrideVector, ','); 1830 unsigned NumArgs = OverrideVector.size(); 1831 1832 // Check if "all", "default", or "none" was specified. 1833 if (NumArgs == 1) { 1834 // Look for an optional setting of the number of refinement steps needed 1835 // for this type of reciprocal operation. 1836 size_t RefPos; 1837 uint8_t RefSteps; 1838 if (!parseRefinementStep(Override, RefPos, RefSteps)) 1839 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1840 1841 // Split the string for further processing. 1842 Override = Override.substr(0, RefPos); 1843 assert(Override != "none" && 1844 "Disabled reciprocals, but specifed refinement steps?"); 1845 1846 // If this is a general override, return the specified number of steps. 1847 if (Override == "all" || Override == "default") 1848 return RefSteps; 1849 } 1850 1851 // The attribute string may omit the size suffix ('f'/'d'). 1852 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1853 std::string VTNameNoSize = VTName; 1854 VTNameNoSize.pop_back(); 1855 1856 for (StringRef RecipType : OverrideVector) { 1857 size_t RefPos; 1858 uint8_t RefSteps; 1859 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 1860 continue; 1861 1862 RecipType = RecipType.substr(0, RefPos); 1863 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1864 return RefSteps; 1865 } 1866 1867 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1868 } 1869 1870 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 1871 MachineFunction &MF) const { 1872 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 1873 } 1874 1875 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 1876 MachineFunction &MF) const { 1877 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 1878 } 1879 1880 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 1881 MachineFunction &MF) const { 1882 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 1883 } 1884 1885 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 1886 MachineFunction &MF) const { 1887 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 1888 } 1889 1890 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 1891 MF.getRegInfo().freezeReservedRegs(MF); 1892 } 1893