1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetInstrInfo.h" 14 #include "llvm/ADT/StringExtras.h" 15 #include "llvm/BinaryFormat/Dwarf.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineInstrBuilder.h" 18 #include "llvm/CodeGen/MachineMemOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/MachineScheduler.h" 21 #include "llvm/CodeGen/PseudoSourceValue.h" 22 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/CodeGen/TargetFrameLowering.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetRegisterInfo.h" 27 #include "llvm/CodeGen/TargetSchedule.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCInstrItineraries.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 38 using namespace llvm; 39 40 static cl::opt<bool> DisableHazardRecognizer( 41 "disable-sched-hazard", cl::Hidden, cl::init(false), 42 cl::desc("Disable hazard detection during preRA scheduling")); 43 44 TargetInstrInfo::~TargetInstrInfo() { 45 } 46 47 const TargetRegisterClass* 48 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 49 const TargetRegisterInfo *TRI, 50 const MachineFunction &MF) const { 51 if (OpNum >= MCID.getNumOperands()) 52 return nullptr; 53 54 short RegClass = MCID.OpInfo[OpNum].RegClass; 55 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 56 return TRI->getPointerRegClass(MF, RegClass); 57 58 // Instructions like INSERT_SUBREG do not have fixed register classes. 59 if (RegClass < 0) 60 return nullptr; 61 62 // Otherwise just look it up normally. 63 return TRI->getRegClass(RegClass); 64 } 65 66 /// insertNoop - Insert a noop into the instruction stream at the specified 67 /// point. 68 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 69 MachineBasicBlock::iterator MI) const { 70 llvm_unreachable("Target didn't implement insertNoop!"); 71 } 72 73 /// insertNoops - Insert noops into the instruction stream at the specified 74 /// point. 75 void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB, 76 MachineBasicBlock::iterator MI, 77 unsigned Quantity) const { 78 for (unsigned i = 0; i < Quantity; ++i) 79 insertNoop(MBB, MI); 80 } 81 82 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { 83 return strncmp(Str, MAI.getCommentString().data(), 84 MAI.getCommentString().size()) == 0; 85 } 86 87 /// Measure the specified inline asm to determine an approximation of its 88 /// length. 89 /// Comments (which run till the next SeparatorString or newline) do not 90 /// count as an instruction. 91 /// Any other non-whitespace text is considered an instruction, with 92 /// multiple instructions separated by SeparatorString or newlines. 93 /// Variable-length instructions are not handled here; this function 94 /// may be overloaded in the target code to do that. 95 /// We implement a special case of the .space directive which takes only a 96 /// single integer argument in base 10 that is the size in bytes. This is a 97 /// restricted form of the GAS directive in that we only interpret 98 /// simple--i.e. not a logical or arithmetic expression--size values without 99 /// the optional fill value. This is primarily used for creating arbitrary 100 /// sized inline asm blocks for testing purposes. 101 unsigned TargetInstrInfo::getInlineAsmLength( 102 const char *Str, 103 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { 104 // Count the number of instructions in the asm. 105 bool AtInsnStart = true; 106 unsigned Length = 0; 107 const unsigned MaxInstLength = MAI.getMaxInstLength(STI); 108 for (; *Str; ++Str) { 109 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 110 strlen(MAI.getSeparatorString())) == 0) { 111 AtInsnStart = true; 112 } else if (isAsmComment(Str, MAI)) { 113 // Stop counting as an instruction after a comment until the next 114 // separator. 115 AtInsnStart = false; 116 } 117 118 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { 119 unsigned AddLength = MaxInstLength; 120 if (strncmp(Str, ".space", 6) == 0) { 121 char *EStr; 122 int SpaceSize; 123 SpaceSize = strtol(Str + 6, &EStr, 10); 124 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; 125 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr))) 126 ++EStr; 127 if (*EStr == '\0' || *EStr == '\n' || 128 isAsmComment(EStr, MAI)) // Successfully parsed .space argument 129 AddLength = SpaceSize; 130 } 131 Length += AddLength; 132 AtInsnStart = false; 133 } 134 } 135 136 return Length; 137 } 138 139 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 140 /// after it, replacing it with an unconditional branch to NewDest. 141 void 142 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 143 MachineBasicBlock *NewDest) const { 144 MachineBasicBlock *MBB = Tail->getParent(); 145 146 // Remove all the old successors of MBB from the CFG. 147 while (!MBB->succ_empty()) 148 MBB->removeSuccessor(MBB->succ_begin()); 149 150 // Save off the debug loc before erasing the instruction. 151 DebugLoc DL = Tail->getDebugLoc(); 152 153 // Update call site info and remove all the dead instructions 154 // from the end of MBB. 155 while (Tail != MBB->end()) { 156 auto MI = Tail++; 157 if (MI->shouldUpdateCallSiteInfo()) 158 MBB->getParent()->eraseCallSiteInfo(&*MI); 159 MBB->erase(MI); 160 } 161 162 // If MBB isn't immediately before MBB, insert a branch to it. 163 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 164 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 165 MBB->addSuccessor(NewDest); 166 } 167 168 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 169 bool NewMI, unsigned Idx1, 170 unsigned Idx2) const { 171 const MCInstrDesc &MCID = MI.getDesc(); 172 bool HasDef = MCID.getNumDefs(); 173 if (HasDef && !MI.getOperand(0).isReg()) 174 // No idea how to commute this instruction. Target should implement its own. 175 return nullptr; 176 177 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 178 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 179 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 180 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 181 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 182 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 183 "This only knows how to commute register operands so far"); 184 185 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 186 Register Reg1 = MI.getOperand(Idx1).getReg(); 187 Register Reg2 = MI.getOperand(Idx2).getReg(); 188 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 189 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 190 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 191 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 192 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 193 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 194 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 195 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 196 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 197 // Avoid calling isRenamable for virtual registers since we assert that 198 // renamable property is only queried/set for physical registers. 199 bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1) 200 ? MI.getOperand(Idx1).isRenamable() 201 : false; 202 bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2) 203 ? MI.getOperand(Idx2).isRenamable() 204 : false; 205 // If destination is tied to either of the commuted source register, then 206 // it must be updated. 207 if (HasDef && Reg0 == Reg1 && 208 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 209 Reg2IsKill = false; 210 Reg0 = Reg2; 211 SubReg0 = SubReg2; 212 } else if (HasDef && Reg0 == Reg2 && 213 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 214 Reg1IsKill = false; 215 Reg0 = Reg1; 216 SubReg0 = SubReg1; 217 } 218 219 MachineInstr *CommutedMI = nullptr; 220 if (NewMI) { 221 // Create a new instruction. 222 MachineFunction &MF = *MI.getMF(); 223 CommutedMI = MF.CloneMachineInstr(&MI); 224 } else { 225 CommutedMI = &MI; 226 } 227 228 if (HasDef) { 229 CommutedMI->getOperand(0).setReg(Reg0); 230 CommutedMI->getOperand(0).setSubReg(SubReg0); 231 } 232 CommutedMI->getOperand(Idx2).setReg(Reg1); 233 CommutedMI->getOperand(Idx1).setReg(Reg2); 234 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 235 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 236 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 237 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 238 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 239 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 240 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 241 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 242 // Avoid calling setIsRenamable for virtual registers since we assert that 243 // renamable property is only queried/set for physical registers. 244 if (Register::isPhysicalRegister(Reg1)) 245 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); 246 if (Register::isPhysicalRegister(Reg2)) 247 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); 248 return CommutedMI; 249 } 250 251 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 252 unsigned OpIdx1, 253 unsigned OpIdx2) const { 254 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 255 // any commutable operand, which is done in findCommutedOpIndices() method 256 // called below. 257 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 258 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 259 assert(MI.isCommutable() && 260 "Precondition violation: MI must be commutable."); 261 return nullptr; 262 } 263 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 264 } 265 266 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 267 unsigned &ResultIdx2, 268 unsigned CommutableOpIdx1, 269 unsigned CommutableOpIdx2) { 270 if (ResultIdx1 == CommuteAnyOperandIndex && 271 ResultIdx2 == CommuteAnyOperandIndex) { 272 ResultIdx1 = CommutableOpIdx1; 273 ResultIdx2 = CommutableOpIdx2; 274 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 275 if (ResultIdx2 == CommutableOpIdx1) 276 ResultIdx1 = CommutableOpIdx2; 277 else if (ResultIdx2 == CommutableOpIdx2) 278 ResultIdx1 = CommutableOpIdx1; 279 else 280 return false; 281 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 282 if (ResultIdx1 == CommutableOpIdx1) 283 ResultIdx2 = CommutableOpIdx2; 284 else if (ResultIdx1 == CommutableOpIdx2) 285 ResultIdx2 = CommutableOpIdx1; 286 else 287 return false; 288 } else 289 // Check that the result operand indices match the given commutable 290 // operand indices. 291 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 292 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 293 294 return true; 295 } 296 297 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 298 unsigned &SrcOpIdx1, 299 unsigned &SrcOpIdx2) const { 300 assert(!MI.isBundle() && 301 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 302 303 const MCInstrDesc &MCID = MI.getDesc(); 304 if (!MCID.isCommutable()) 305 return false; 306 307 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 308 // is not true, then the target must implement this. 309 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 310 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 311 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 312 CommutableOpIdx1, CommutableOpIdx2)) 313 return false; 314 315 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 316 // No idea. 317 return false; 318 return true; 319 } 320 321 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 322 if (!MI.isTerminator()) return false; 323 324 // Conditional branch is a special case. 325 if (MI.isBranch() && !MI.isBarrier()) 326 return true; 327 if (!MI.isPredicable()) 328 return true; 329 return !isPredicated(MI); 330 } 331 332 bool TargetInstrInfo::PredicateInstruction( 333 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 334 bool MadeChange = false; 335 336 assert(!MI.isBundle() && 337 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 338 339 const MCInstrDesc &MCID = MI.getDesc(); 340 if (!MI.isPredicable()) 341 return false; 342 343 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 344 if (MCID.OpInfo[i].isPredicate()) { 345 MachineOperand &MO = MI.getOperand(i); 346 if (MO.isReg()) { 347 MO.setReg(Pred[j].getReg()); 348 MadeChange = true; 349 } else if (MO.isImm()) { 350 MO.setImm(Pred[j].getImm()); 351 MadeChange = true; 352 } else if (MO.isMBB()) { 353 MO.setMBB(Pred[j].getMBB()); 354 MadeChange = true; 355 } 356 ++j; 357 } 358 } 359 return MadeChange; 360 } 361 362 bool TargetInstrInfo::hasLoadFromStackSlot( 363 const MachineInstr &MI, 364 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 365 size_t StartSize = Accesses.size(); 366 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 367 oe = MI.memoperands_end(); 368 o != oe; ++o) { 369 if ((*o)->isLoad() && 370 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 371 Accesses.push_back(*o); 372 } 373 return Accesses.size() != StartSize; 374 } 375 376 bool TargetInstrInfo::hasStoreToStackSlot( 377 const MachineInstr &MI, 378 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 379 size_t StartSize = Accesses.size(); 380 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 381 oe = MI.memoperands_end(); 382 o != oe; ++o) { 383 if ((*o)->isStore() && 384 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 385 Accesses.push_back(*o); 386 } 387 return Accesses.size() != StartSize; 388 } 389 390 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 391 unsigned SubIdx, unsigned &Size, 392 unsigned &Offset, 393 const MachineFunction &MF) const { 394 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 395 if (!SubIdx) { 396 Size = TRI->getSpillSize(*RC); 397 Offset = 0; 398 return true; 399 } 400 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 401 // Convert bit size to byte size. 402 if (BitSize % 8) 403 return false; 404 405 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 406 if (BitOffset < 0 || BitOffset % 8) 407 return false; 408 409 Size = BitSize / 8; 410 Offset = (unsigned)BitOffset / 8; 411 412 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); 413 414 if (!MF.getDataLayout().isLittleEndian()) { 415 Offset = TRI->getSpillSize(*RC) - (Offset + Size); 416 } 417 return true; 418 } 419 420 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 421 MachineBasicBlock::iterator I, 422 Register DestReg, unsigned SubIdx, 423 const MachineInstr &Orig, 424 const TargetRegisterInfo &TRI) const { 425 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 426 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 427 MBB.insert(I, MI); 428 } 429 430 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 431 const MachineInstr &MI1, 432 const MachineRegisterInfo *MRI) const { 433 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 434 } 435 436 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, 437 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { 438 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 439 MachineFunction &MF = *MBB.getParent(); 440 return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig); 441 } 442 443 // If the COPY instruction in MI can be folded to a stack operation, return 444 // the register class to use. 445 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 446 unsigned FoldIdx) { 447 assert(MI.isCopy() && "MI must be a COPY instruction"); 448 if (MI.getNumOperands() != 2) 449 return nullptr; 450 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 451 452 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 453 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 454 455 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 456 return nullptr; 457 458 Register FoldReg = FoldOp.getReg(); 459 Register LiveReg = LiveOp.getReg(); 460 461 assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs"); 462 463 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 464 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 465 466 if (Register::isPhysicalRegister(LiveOp.getReg())) 467 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 468 469 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 470 return RC; 471 472 // FIXME: Allow folding when register classes are memory compatible. 473 return nullptr; 474 } 475 476 MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); } 477 478 std::pair<unsigned, unsigned> 479 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const { 480 switch (MI.getOpcode()) { 481 case TargetOpcode::STACKMAP: 482 // StackMapLiveValues are foldable 483 return std::make_pair(0, StackMapOpers(&MI).getVarIdx()); 484 case TargetOpcode::PATCHPOINT: 485 // For PatchPoint, the call args are not foldable (even if reported in the 486 // stackmap e.g. via anyregcc). 487 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx()); 488 case TargetOpcode::STATEPOINT: 489 // For statepoints, fold deopt and gc arguments, but not call arguments. 490 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx()); 491 default: 492 llvm_unreachable("unexpected stackmap opcode"); 493 } 494 } 495 496 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 497 ArrayRef<unsigned> Ops, int FrameIndex, 498 const TargetInstrInfo &TII) { 499 unsigned StartIdx = 0; 500 unsigned NumDefs = 0; 501 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint. 502 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI); 503 504 unsigned DefToFoldIdx = MI.getNumOperands(); 505 506 // Return false if any operands requested for folding are not foldable (not 507 // part of the stackmap's live values). 508 for (unsigned Op : Ops) { 509 if (Op < NumDefs) { 510 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs"); 511 DefToFoldIdx = Op; 512 } else if (Op < StartIdx) { 513 return nullptr; 514 } 515 if (MI.getOperand(Op).isTied()) 516 return nullptr; 517 } 518 519 MachineInstr *NewMI = 520 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 521 MachineInstrBuilder MIB(MF, NewMI); 522 523 // No need to fold return, the meta data, and function arguments 524 for (unsigned i = 0; i < StartIdx; ++i) 525 if (i != DefToFoldIdx) 526 MIB.add(MI.getOperand(i)); 527 528 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) { 529 MachineOperand &MO = MI.getOperand(i); 530 unsigned TiedTo = e; 531 (void)MI.isRegTiedToDefOperand(i, &TiedTo); 532 533 if (is_contained(Ops, i)) { 534 assert(TiedTo == e && "Cannot fold tied operands"); 535 unsigned SpillSize; 536 unsigned SpillOffset; 537 // Compute the spill slot size and offset. 538 const TargetRegisterClass *RC = 539 MF.getRegInfo().getRegClass(MO.getReg()); 540 bool Valid = 541 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 542 if (!Valid) 543 report_fatal_error("cannot spill patchpoint subregister operand"); 544 MIB.addImm(StackMaps::IndirectMemRefOp); 545 MIB.addImm(SpillSize); 546 MIB.addFrameIndex(FrameIndex); 547 MIB.addImm(SpillOffset); 548 } else { 549 MIB.add(MO); 550 if (TiedTo < e) { 551 assert(TiedTo < NumDefs && "Bad tied operand"); 552 if (TiedTo > DefToFoldIdx) 553 --TiedTo; 554 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1); 555 } 556 } 557 } 558 return NewMI; 559 } 560 561 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 562 ArrayRef<unsigned> Ops, int FI, 563 LiveIntervals *LIS, 564 VirtRegMap *VRM) const { 565 auto Flags = MachineMemOperand::MONone; 566 for (unsigned OpIdx : Ops) 567 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore 568 : MachineMemOperand::MOLoad; 569 570 MachineBasicBlock *MBB = MI.getParent(); 571 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 572 MachineFunction &MF = *MBB->getParent(); 573 574 // If we're not folding a load into a subreg, the size of the load is the 575 // size of the spill slot. But if we are, we need to figure out what the 576 // actual load size is. 577 int64_t MemSize = 0; 578 const MachineFrameInfo &MFI = MF.getFrameInfo(); 579 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 580 581 if (Flags & MachineMemOperand::MOStore) { 582 MemSize = MFI.getObjectSize(FI); 583 } else { 584 for (unsigned OpIdx : Ops) { 585 int64_t OpSize = MFI.getObjectSize(FI); 586 587 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { 588 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); 589 if (SubRegSize > 0 && !(SubRegSize % 8)) 590 OpSize = SubRegSize / 8; 591 } 592 593 MemSize = std::max(MemSize, OpSize); 594 } 595 } 596 597 assert(MemSize && "Did not expect a zero-sized stack slot"); 598 599 MachineInstr *NewMI = nullptr; 600 601 if (MI.getOpcode() == TargetOpcode::STACKMAP || 602 MI.getOpcode() == TargetOpcode::PATCHPOINT || 603 MI.getOpcode() == TargetOpcode::STATEPOINT) { 604 // Fold stackmap/patchpoint. 605 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 606 if (NewMI) 607 MBB->insert(MI, NewMI); 608 } else { 609 // Ask the target to do the actual folding. 610 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); 611 } 612 613 if (NewMI) { 614 NewMI->setMemRefs(MF, MI.memoperands()); 615 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 616 assert((!(Flags & MachineMemOperand::MOStore) || 617 NewMI->mayStore()) && 618 "Folded a def to a non-store!"); 619 assert((!(Flags & MachineMemOperand::MOLoad) || 620 NewMI->mayLoad()) && 621 "Folded a use to a non-load!"); 622 assert(MFI.getObjectOffset(FI) != -1); 623 MachineMemOperand *MMO = 624 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 625 Flags, MemSize, MFI.getObjectAlign(FI)); 626 NewMI->addMemOperand(MF, MMO); 627 628 // The pass "x86 speculative load hardening" always attaches symbols to 629 // call instructions. We need copy it form old instruction. 630 NewMI->cloneInstrSymbols(MF, MI); 631 632 return NewMI; 633 } 634 635 // Straight COPY may fold as load/store. 636 if (!MI.isCopy() || Ops.size() != 1) 637 return nullptr; 638 639 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 640 if (!RC) 641 return nullptr; 642 643 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 644 MachineBasicBlock::iterator Pos = MI; 645 646 if (Flags == MachineMemOperand::MOStore) 647 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 648 else 649 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 650 return &*--Pos; 651 } 652 653 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 654 ArrayRef<unsigned> Ops, 655 MachineInstr &LoadMI, 656 LiveIntervals *LIS) const { 657 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 658 #ifndef NDEBUG 659 for (unsigned OpIdx : Ops) 660 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); 661 #endif 662 663 MachineBasicBlock &MBB = *MI.getParent(); 664 MachineFunction &MF = *MBB.getParent(); 665 666 // Ask the target to do the actual folding. 667 MachineInstr *NewMI = nullptr; 668 int FrameIndex = 0; 669 670 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 671 MI.getOpcode() == TargetOpcode::PATCHPOINT || 672 MI.getOpcode() == TargetOpcode::STATEPOINT) && 673 isLoadFromStackSlot(LoadMI, FrameIndex)) { 674 // Fold stackmap/patchpoint. 675 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 676 if (NewMI) 677 NewMI = &*MBB.insert(MI, NewMI); 678 } else { 679 // Ask the target to do the actual folding. 680 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 681 } 682 683 if (!NewMI) 684 return nullptr; 685 686 // Copy the memoperands from the load to the folded instruction. 687 if (MI.memoperands_empty()) { 688 NewMI->setMemRefs(MF, LoadMI.memoperands()); 689 } else { 690 // Handle the rare case of folding multiple loads. 691 NewMI->setMemRefs(MF, MI.memoperands()); 692 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 693 E = LoadMI.memoperands_end(); 694 I != E; ++I) { 695 NewMI->addMemOperand(MF, *I); 696 } 697 } 698 return NewMI; 699 } 700 701 bool TargetInstrInfo::hasReassociableOperands( 702 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 703 const MachineOperand &Op1 = Inst.getOperand(1); 704 const MachineOperand &Op2 = Inst.getOperand(2); 705 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 706 707 // We need virtual register definitions for the operands that we will 708 // reassociate. 709 MachineInstr *MI1 = nullptr; 710 MachineInstr *MI2 = nullptr; 711 if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg())) 712 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 713 if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg())) 714 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 715 716 // And they need to be in the trace (otherwise, they won't have a depth). 717 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 718 } 719 720 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 721 bool &Commuted) const { 722 const MachineBasicBlock *MBB = Inst.getParent(); 723 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 724 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 725 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 726 unsigned AssocOpcode = Inst.getOpcode(); 727 728 // If only one operand has the same opcode and it's the second source operand, 729 // the operands must be commuted. 730 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 731 if (Commuted) 732 std::swap(MI1, MI2); 733 734 // 1. The previous instruction must be the same type as Inst. 735 // 2. The previous instruction must also be associative/commutative (this can 736 // be different even for instructions with the same opcode if traits like 737 // fast-math-flags are included). 738 // 3. The previous instruction must have virtual register definitions for its 739 // operands in the same basic block as Inst. 740 // 4. The previous instruction's result must only be used by Inst. 741 return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) && 742 hasReassociableOperands(*MI1, MBB) && 743 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 744 } 745 746 // 1. The operation must be associative and commutative. 747 // 2. The instruction must have virtual register definitions for its 748 // operands in the same basic block. 749 // 3. The instruction must have a reassociable sibling. 750 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 751 bool &Commuted) const { 752 return isAssociativeAndCommutative(Inst) && 753 hasReassociableOperands(Inst, Inst.getParent()) && 754 hasReassociableSibling(Inst, Commuted); 755 } 756 757 // The concept of the reassociation pass is that these operations can benefit 758 // from this kind of transformation: 759 // 760 // A = ? op ? 761 // B = A op X (Prev) 762 // C = B op Y (Root) 763 // --> 764 // A = ? op ? 765 // B = X op Y 766 // C = A op B 767 // 768 // breaking the dependency between A and B, allowing them to be executed in 769 // parallel (or back-to-back in a pipeline) instead of depending on each other. 770 771 // FIXME: This has the potential to be expensive (compile time) while not 772 // improving the code at all. Some ways to limit the overhead: 773 // 1. Track successful transforms; bail out if hit rate gets too low. 774 // 2. Only enable at -O3 or some other non-default optimization level. 775 // 3. Pre-screen pattern candidates here: if an operand of the previous 776 // instruction is known to not increase the critical path, then don't match 777 // that pattern. 778 bool TargetInstrInfo::getMachineCombinerPatterns( 779 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 780 bool DoRegPressureReduce) const { 781 bool Commute; 782 if (isReassociationCandidate(Root, Commute)) { 783 // We found a sequence of instructions that may be suitable for a 784 // reassociation of operands to increase ILP. Specify each commutation 785 // possibility for the Prev instruction in the sequence and let the 786 // machine combiner decide if changing the operands is worthwhile. 787 if (Commute) { 788 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 789 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 790 } else { 791 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 792 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 793 } 794 return true; 795 } 796 797 return false; 798 } 799 800 /// Return true when a code sequence can improve loop throughput. 801 bool 802 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 803 return false; 804 } 805 806 /// Attempt the reassociation transformation to reduce critical path length. 807 /// See the above comments before getMachineCombinerPatterns(). 808 void TargetInstrInfo::reassociateOps( 809 MachineInstr &Root, MachineInstr &Prev, 810 MachineCombinerPattern Pattern, 811 SmallVectorImpl<MachineInstr *> &InsInstrs, 812 SmallVectorImpl<MachineInstr *> &DelInstrs, 813 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 814 MachineFunction *MF = Root.getMF(); 815 MachineRegisterInfo &MRI = MF->getRegInfo(); 816 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 817 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 818 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 819 820 // This array encodes the operand index for each parameter because the 821 // operands may be commuted. Each row corresponds to a pattern value, 822 // and each column specifies the index of A, B, X, Y. 823 unsigned OpIdx[4][4] = { 824 { 1, 1, 2, 2 }, 825 { 1, 2, 2, 1 }, 826 { 2, 1, 1, 2 }, 827 { 2, 2, 1, 1 } 828 }; 829 830 int Row; 831 switch (Pattern) { 832 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 833 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 834 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 835 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 836 default: llvm_unreachable("unexpected MachineCombinerPattern"); 837 } 838 839 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 840 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 841 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 842 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 843 MachineOperand &OpC = Root.getOperand(0); 844 845 Register RegA = OpA.getReg(); 846 Register RegB = OpB.getReg(); 847 Register RegX = OpX.getReg(); 848 Register RegY = OpY.getReg(); 849 Register RegC = OpC.getReg(); 850 851 if (Register::isVirtualRegister(RegA)) 852 MRI.constrainRegClass(RegA, RC); 853 if (Register::isVirtualRegister(RegB)) 854 MRI.constrainRegClass(RegB, RC); 855 if (Register::isVirtualRegister(RegX)) 856 MRI.constrainRegClass(RegX, RC); 857 if (Register::isVirtualRegister(RegY)) 858 MRI.constrainRegClass(RegY, RC); 859 if (Register::isVirtualRegister(RegC)) 860 MRI.constrainRegClass(RegC, RC); 861 862 // Create a new virtual register for the result of (X op Y) instead of 863 // recycling RegB because the MachineCombiner's computation of the critical 864 // path requires a new register definition rather than an existing one. 865 Register NewVR = MRI.createVirtualRegister(RC); 866 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 867 868 unsigned Opcode = Root.getOpcode(); 869 bool KillA = OpA.isKill(); 870 bool KillX = OpX.isKill(); 871 bool KillY = OpY.isKill(); 872 873 // Create new instructions for insertion. 874 MachineInstrBuilder MIB1 = 875 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 876 .addReg(RegX, getKillRegState(KillX)) 877 .addReg(RegY, getKillRegState(KillY)) 878 .setMIFlags(Prev.getFlags()); 879 MachineInstrBuilder MIB2 = 880 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 881 .addReg(RegA, getKillRegState(KillA)) 882 .addReg(NewVR, getKillRegState(true)) 883 .setMIFlags(Root.getFlags()); 884 885 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 886 887 // Record new instructions for insertion and old instructions for deletion. 888 InsInstrs.push_back(MIB1); 889 InsInstrs.push_back(MIB2); 890 DelInstrs.push_back(&Prev); 891 DelInstrs.push_back(&Root); 892 } 893 894 void TargetInstrInfo::genAlternativeCodeSequence( 895 MachineInstr &Root, MachineCombinerPattern Pattern, 896 SmallVectorImpl<MachineInstr *> &InsInstrs, 897 SmallVectorImpl<MachineInstr *> &DelInstrs, 898 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 899 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); 900 901 // Select the previous instruction in the sequence based on the input pattern. 902 MachineInstr *Prev = nullptr; 903 switch (Pattern) { 904 case MachineCombinerPattern::REASSOC_AX_BY: 905 case MachineCombinerPattern::REASSOC_XA_BY: 906 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 907 break; 908 case MachineCombinerPattern::REASSOC_AX_YB: 909 case MachineCombinerPattern::REASSOC_XA_YB: 910 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 911 break; 912 default: 913 break; 914 } 915 916 assert(Prev && "Unknown pattern for machine combiner"); 917 918 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 919 } 920 921 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 922 const MachineInstr &MI, AAResults *AA) const { 923 const MachineFunction &MF = *MI.getMF(); 924 const MachineRegisterInfo &MRI = MF.getRegInfo(); 925 926 // Remat clients assume operand 0 is the defined register. 927 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 928 return false; 929 Register DefReg = MI.getOperand(0).getReg(); 930 931 // A sub-register definition can only be rematerialized if the instruction 932 // doesn't read the other parts of the register. Otherwise it is really a 933 // read-modify-write operation on the full virtual register which cannot be 934 // moved safely. 935 if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() && 936 MI.readsVirtualRegister(DefReg)) 937 return false; 938 939 // A load from a fixed stack slot can be rematerialized. This may be 940 // redundant with subsequent checks, but it's target-independent, 941 // simple, and a common case. 942 int FrameIdx = 0; 943 if (isLoadFromStackSlot(MI, FrameIdx) && 944 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) 945 return true; 946 947 // Avoid instructions obviously unsafe for remat. 948 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || 949 MI.hasUnmodeledSideEffects()) 950 return false; 951 952 // Don't remat inline asm. We have no idea how expensive it is 953 // even if it's side effect free. 954 if (MI.isInlineAsm()) 955 return false; 956 957 // Avoid instructions which load from potentially varying memory. 958 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) 959 return false; 960 961 // If any of the registers accessed are non-constant, conservatively assume 962 // the instruction is not rematerializable. 963 for (const MachineOperand &MO : MI.operands()) { 964 if (!MO.isReg()) continue; 965 Register Reg = MO.getReg(); 966 if (Reg == 0) 967 continue; 968 969 // Check for a well-behaved physical register. 970 if (Register::isPhysicalRegister(Reg)) { 971 if (MO.isUse()) { 972 // If the physreg has no defs anywhere, it's just an ambient register 973 // and we can freely move its uses. Alternatively, if it's allocatable, 974 // it could get allocated to something with a def during allocation. 975 if (!MRI.isConstantPhysReg(Reg)) 976 return false; 977 } else { 978 // A physreg def. We can't remat it. 979 return false; 980 } 981 continue; 982 } 983 984 // Only allow one virtual-register def. There may be multiple defs of the 985 // same virtual register, though. 986 if (MO.isDef() && Reg != DefReg) 987 return false; 988 989 // Don't allow any virtual-register uses. Rematting an instruction with 990 // virtual register uses would length the live ranges of the uses, which 991 // is not necessarily a good idea, certainly not "trivial". 992 if (MO.isUse()) 993 return false; 994 } 995 996 // Everything checked out. 997 return true; 998 } 999 1000 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 1001 const MachineFunction *MF = MI.getMF(); 1002 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 1003 bool StackGrowsDown = 1004 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 1005 1006 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 1007 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 1008 1009 if (!isFrameInstr(MI)) 1010 return 0; 1011 1012 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); 1013 1014 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 1015 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 1016 SPAdj = -SPAdj; 1017 1018 return SPAdj; 1019 } 1020 1021 /// isSchedulingBoundary - Test if the given instruction should be 1022 /// considered a scheduling boundary. This primarily includes labels 1023 /// and terminators. 1024 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1025 const MachineBasicBlock *MBB, 1026 const MachineFunction &MF) const { 1027 // Terminators and labels can't be scheduled around. 1028 if (MI.isTerminator() || MI.isPosition()) 1029 return true; 1030 1031 // INLINEASM_BR can jump to another block 1032 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 1033 return true; 1034 1035 // Don't attempt to schedule around any instruction that defines 1036 // a stack-oriented pointer, as it's unlikely to be profitable. This 1037 // saves compile time, because it doesn't require every single 1038 // stack slot reference to depend on the instruction that does the 1039 // modification. 1040 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1041 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1042 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 1043 } 1044 1045 // Provide a global flag for disabling the PreRA hazard recognizer that targets 1046 // may choose to honor. 1047 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 1048 return !DisableHazardRecognizer; 1049 } 1050 1051 // Default implementation of CreateTargetRAHazardRecognizer. 1052 ScheduleHazardRecognizer *TargetInstrInfo:: 1053 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1054 const ScheduleDAG *DAG) const { 1055 // Dummy hazard recognizer allows all instructions to issue. 1056 return new ScheduleHazardRecognizer(); 1057 } 1058 1059 // Default implementation of CreateTargetMIHazardRecognizer. 1060 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( 1061 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 1062 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); 1063 } 1064 1065 // Default implementation of CreateTargetPostRAHazardRecognizer. 1066 ScheduleHazardRecognizer *TargetInstrInfo:: 1067 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 1068 const ScheduleDAG *DAG) const { 1069 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 1070 } 1071 1072 // Default implementation of getMemOperandWithOffset. 1073 bool TargetInstrInfo::getMemOperandWithOffset( 1074 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, 1075 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { 1076 SmallVector<const MachineOperand *, 4> BaseOps; 1077 unsigned Width; 1078 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, 1079 Width, TRI) || 1080 BaseOps.size() != 1) 1081 return false; 1082 BaseOp = BaseOps.front(); 1083 return true; 1084 } 1085 1086 //===----------------------------------------------------------------------===// 1087 // SelectionDAG latency interface. 1088 //===----------------------------------------------------------------------===// 1089 1090 int 1091 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1092 SDNode *DefNode, unsigned DefIdx, 1093 SDNode *UseNode, unsigned UseIdx) const { 1094 if (!ItinData || ItinData->isEmpty()) 1095 return -1; 1096 1097 if (!DefNode->isMachineOpcode()) 1098 return -1; 1099 1100 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 1101 if (!UseNode->isMachineOpcode()) 1102 return ItinData->getOperandCycle(DefClass, DefIdx); 1103 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 1104 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1105 } 1106 1107 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1108 SDNode *N) const { 1109 if (!ItinData || ItinData->isEmpty()) 1110 return 1; 1111 1112 if (!N->isMachineOpcode()) 1113 return 1; 1114 1115 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1116 } 1117 1118 //===----------------------------------------------------------------------===// 1119 // MachineInstr latency interface. 1120 //===----------------------------------------------------------------------===// 1121 1122 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1123 const MachineInstr &MI) const { 1124 if (!ItinData || ItinData->isEmpty()) 1125 return 1; 1126 1127 unsigned Class = MI.getDesc().getSchedClass(); 1128 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1129 if (UOps >= 0) 1130 return UOps; 1131 1132 // The # of u-ops is dynamically determined. The specific target should 1133 // override this function to return the right number. 1134 return 1; 1135 } 1136 1137 /// Return the default expected latency for a def based on it's opcode. 1138 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1139 const MachineInstr &DefMI) const { 1140 if (DefMI.isTransient()) 1141 return 0; 1142 if (DefMI.mayLoad()) 1143 return SchedModel.LoadLatency; 1144 if (isHighLatencyDef(DefMI.getOpcode())) 1145 return SchedModel.HighLatency; 1146 return 1; 1147 } 1148 1149 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1150 return 0; 1151 } 1152 1153 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1154 const MachineInstr &MI, 1155 unsigned *PredCost) const { 1156 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1157 // still have a MinLatency property, which getStageLatency checks. 1158 if (!ItinData) 1159 return MI.mayLoad() ? 2 : 1; 1160 1161 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1162 } 1163 1164 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1165 const MachineInstr &DefMI, 1166 unsigned DefIdx) const { 1167 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1168 if (!ItinData || ItinData->isEmpty()) 1169 return false; 1170 1171 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1172 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1173 return (DefCycle != -1 && DefCycle <= 1); 1174 } 1175 1176 Optional<ParamLoadedValue> 1177 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, 1178 Register Reg) const { 1179 const MachineFunction *MF = MI.getMF(); 1180 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1181 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); 1182 int64_t Offset; 1183 bool OffsetIsScalable; 1184 1185 // To simplify the sub-register handling, verify that we only need to 1186 // consider physical registers. 1187 assert(MF->getProperties().hasProperty( 1188 MachineFunctionProperties::Property::NoVRegs)); 1189 1190 if (auto DestSrc = isCopyInstr(MI)) { 1191 Register DestReg = DestSrc->Destination->getReg(); 1192 1193 // If the copy destination is the forwarding reg, describe the forwarding 1194 // reg using the copy source as the backup location. Example: 1195 // 1196 // x0 = MOV x7 1197 // call callee(x0) ; x0 described as x7 1198 if (Reg == DestReg) 1199 return ParamLoadedValue(*DestSrc->Source, Expr); 1200 1201 // Cases where super- or sub-registers needs to be described should 1202 // be handled by the target's hook implementation. 1203 assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) && 1204 "TargetInstrInfo::describeLoadedValue can't describe super- or " 1205 "sub-regs for copy instructions"); 1206 return None; 1207 } else if (auto RegImm = isAddImmediate(MI, Reg)) { 1208 Register SrcReg = RegImm->Reg; 1209 Offset = RegImm->Imm; 1210 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); 1211 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 1212 } else if (MI.hasOneMemOperand()) { 1213 // Only describe memory which provably does not escape the function. As 1214 // described in llvm.org/PR43343, escaped memory may be clobbered by the 1215 // callee (or by another thread). 1216 const auto &TII = MF->getSubtarget().getInstrInfo(); 1217 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1218 const MachineMemOperand *MMO = MI.memoperands()[0]; 1219 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1220 1221 // If the address points to "special" memory (e.g. a spill slot), it's 1222 // sufficient to check that it isn't aliased by any high-level IR value. 1223 if (!PSV || PSV->mayAlias(&MFI)) 1224 return None; 1225 1226 const MachineOperand *BaseOp; 1227 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, 1228 TRI)) 1229 return None; 1230 1231 // FIXME: Scalable offsets are not yet handled in the offset code below. 1232 if (OffsetIsScalable) 1233 return None; 1234 1235 // TODO: Can currently only handle mem instructions with a single define. 1236 // An example from the x86 target: 1237 // ... 1238 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx 1239 // ... 1240 // 1241 if (MI.getNumExplicitDefs() != 1) 1242 return None; 1243 1244 // TODO: In what way do we need to take Reg into consideration here? 1245 1246 SmallVector<uint64_t, 8> Ops; 1247 DIExpression::appendOffset(Ops, Offset); 1248 Ops.push_back(dwarf::DW_OP_deref_size); 1249 Ops.push_back(MMO->getSize()); 1250 Expr = DIExpression::prependOpcodes(Expr, Ops); 1251 return ParamLoadedValue(*BaseOp, Expr); 1252 } 1253 1254 return None; 1255 } 1256 1257 /// Both DefMI and UseMI must be valid. By default, call directly to the 1258 /// itinerary. This may be overriden by the target. 1259 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1260 const MachineInstr &DefMI, 1261 unsigned DefIdx, 1262 const MachineInstr &UseMI, 1263 unsigned UseIdx) const { 1264 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1265 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1266 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1267 } 1268 1269 bool TargetInstrInfo::getRegSequenceInputs( 1270 const MachineInstr &MI, unsigned DefIdx, 1271 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1272 assert((MI.isRegSequence() || 1273 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1274 1275 if (!MI.isRegSequence()) 1276 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1277 1278 // We are looking at: 1279 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1280 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1281 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1282 OpIdx += 2) { 1283 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1284 if (MOReg.isUndef()) 1285 continue; 1286 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1287 assert(MOSubIdx.isImm() && 1288 "One of the subindex of the reg_sequence is not an immediate"); 1289 // Record Reg:SubReg, SubIdx. 1290 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1291 (unsigned)MOSubIdx.getImm())); 1292 } 1293 return true; 1294 } 1295 1296 bool TargetInstrInfo::getExtractSubregInputs( 1297 const MachineInstr &MI, unsigned DefIdx, 1298 RegSubRegPairAndIdx &InputReg) const { 1299 assert((MI.isExtractSubreg() || 1300 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1301 1302 if (!MI.isExtractSubreg()) 1303 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1304 1305 // We are looking at: 1306 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1307 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1308 const MachineOperand &MOReg = MI.getOperand(1); 1309 if (MOReg.isUndef()) 1310 return false; 1311 const MachineOperand &MOSubIdx = MI.getOperand(2); 1312 assert(MOSubIdx.isImm() && 1313 "The subindex of the extract_subreg is not an immediate"); 1314 1315 InputReg.Reg = MOReg.getReg(); 1316 InputReg.SubReg = MOReg.getSubReg(); 1317 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1318 return true; 1319 } 1320 1321 bool TargetInstrInfo::getInsertSubregInputs( 1322 const MachineInstr &MI, unsigned DefIdx, 1323 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1324 assert((MI.isInsertSubreg() || 1325 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1326 1327 if (!MI.isInsertSubreg()) 1328 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1329 1330 // We are looking at: 1331 // Def = INSERT_SEQUENCE v0, v1, sub0. 1332 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1333 const MachineOperand &MOBaseReg = MI.getOperand(1); 1334 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1335 if (MOInsertedReg.isUndef()) 1336 return false; 1337 const MachineOperand &MOSubIdx = MI.getOperand(3); 1338 assert(MOSubIdx.isImm() && 1339 "One of the subindex of the reg_sequence is not an immediate"); 1340 BaseReg.Reg = MOBaseReg.getReg(); 1341 BaseReg.SubReg = MOBaseReg.getSubReg(); 1342 1343 InsertedReg.Reg = MOInsertedReg.getReg(); 1344 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1345 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1346 return true; 1347 } 1348 1349 // Returns a MIRPrinter comment for this machine operand. 1350 std::string TargetInstrInfo::createMIROperandComment( 1351 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 1352 const TargetRegisterInfo *TRI) const { 1353 1354 if (!MI.isInlineAsm()) 1355 return ""; 1356 1357 std::string Flags; 1358 raw_string_ostream OS(Flags); 1359 1360 if (OpIdx == InlineAsm::MIOp_ExtraInfo) { 1361 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1362 unsigned ExtraInfo = Op.getImm(); 1363 bool First = true; 1364 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { 1365 if (!First) 1366 OS << " "; 1367 First = false; 1368 OS << Info; 1369 } 1370 1371 return OS.str(); 1372 } 1373 1374 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); 1375 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) 1376 return ""; 1377 1378 assert(Op.isImm() && "Expected flag operand to be an immediate"); 1379 // Pretty print the inline asm operand descriptor. 1380 unsigned Flag = Op.getImm(); 1381 unsigned Kind = InlineAsm::getKind(Flag); 1382 OS << InlineAsm::getKindName(Kind); 1383 1384 unsigned RCID = 0; 1385 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1386 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1387 if (TRI) { 1388 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1389 } else 1390 OS << ":RC" << RCID; 1391 } 1392 1393 if (InlineAsm::isMemKind(Flag)) { 1394 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1395 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1396 } 1397 1398 unsigned TiedTo = 0; 1399 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1400 OS << " tiedto:$" << TiedTo; 1401 1402 return OS.str(); 1403 } 1404 1405 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {} 1406 1407 void TargetInstrInfo::mergeOutliningCandidateAttributes( 1408 Function &F, std::vector<outliner::Candidate> &Candidates) const { 1409 // Include target features from an arbitrary candidate for the outlined 1410 // function. This makes sure the outlined function knows what kinds of 1411 // instructions are going into it. This is fine, since all parent functions 1412 // must necessarily support the instructions that are in the outlined region. 1413 outliner::Candidate &FirstCand = Candidates.front(); 1414 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1415 if (ParentFn.hasFnAttribute("target-features")) 1416 F.addFnAttr(ParentFn.getFnAttribute("target-features")); 1417 1418 // Set nounwind, so we don't generate eh_frame. 1419 if (llvm::all_of(Candidates, [](const outliner::Candidate &C) { 1420 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind); 1421 })) 1422 F.addFnAttr(Attribute::NoUnwind); 1423 } 1424 1425 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 1426 unsigned &Flags) const { 1427 // Some instrumentations create special TargetOpcode at the start which 1428 // expands to special code sequences which must be present. 1429 auto First = MBB.getFirstNonDebugInstr(); 1430 if (First != MBB.end() && 1431 (First->getOpcode() == TargetOpcode::FENTRY_CALL || 1432 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)) 1433 return false; 1434 1435 return true; 1436 } 1437