1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCInstrItineraries.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include <cctype> 33 using namespace llvm; 34 35 static cl::opt<bool> DisableHazardRecognizer( 36 "disable-sched-hazard", cl::Hidden, cl::init(false), 37 cl::desc("Disable hazard detection during preRA scheduling")); 38 39 TargetInstrInfo::~TargetInstrInfo() { 40 } 41 42 const TargetRegisterClass* 43 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 44 const TargetRegisterInfo *TRI, 45 const MachineFunction &MF) const { 46 if (OpNum >= MCID.getNumOperands()) 47 return nullptr; 48 49 short RegClass = MCID.OpInfo[OpNum].RegClass; 50 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 51 return TRI->getPointerRegClass(MF, RegClass); 52 53 // Instructions like INSERT_SUBREG do not have fixed register classes. 54 if (RegClass < 0) 55 return nullptr; 56 57 // Otherwise just look it up normally. 58 return TRI->getRegClass(RegClass); 59 } 60 61 /// insertNoop - Insert a noop into the instruction stream at the specified 62 /// point. 63 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 64 MachineBasicBlock::iterator MI) const { 65 llvm_unreachable("Target didn't implement insertNoop!"); 66 } 67 68 /// Measure the specified inline asm to determine an approximation of its 69 /// length. 70 /// Comments (which run till the next SeparatorString or newline) do not 71 /// count as an instruction. 72 /// Any other non-whitespace text is considered an instruction, with 73 /// multiple instructions separated by SeparatorString or newlines. 74 /// Variable-length instructions are not handled here; this function 75 /// may be overloaded in the target code to do that. 76 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 77 const MCAsmInfo &MAI) const { 78 79 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Remove all the dead instructions from the end of MBB. 111 MBB->erase(Tail, MBB->end()); 112 113 // If MBB isn't immediately before MBB, insert a branch to it. 114 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 115 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 116 Tail->getDebugLoc()); 117 MBB->addSuccessor(NewDest); 118 } 119 120 // commuteInstruction - The default implementation of this method just exchanges 121 // the two operands returned by findCommutedOpIndices. 122 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 123 bool NewMI) const { 124 const MCInstrDesc &MCID = MI->getDesc(); 125 bool HasDef = MCID.getNumDefs(); 126 if (HasDef && !MI->getOperand(0).isReg()) 127 // No idea how to commute this instruction. Target should implement its own. 128 return nullptr; 129 unsigned Idx1, Idx2; 130 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 131 assert(MI->isCommutable() && "Precondition violation: MI must be commutable."); 132 return nullptr; 133 } 134 135 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 136 "This only knows how to commute register operands so far"); 137 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 138 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 139 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 140 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 141 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 142 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 143 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 144 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 145 // If destination is tied to either of the commuted source register, then 146 // it must be updated. 147 if (HasDef && Reg0 == Reg1 && 148 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 149 Reg2IsKill = false; 150 Reg0 = Reg2; 151 SubReg0 = SubReg2; 152 } else if (HasDef && Reg0 == Reg2 && 153 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 154 Reg1IsKill = false; 155 Reg0 = Reg1; 156 SubReg0 = SubReg1; 157 } 158 159 if (NewMI) { 160 // Create a new instruction. 161 MachineFunction &MF = *MI->getParent()->getParent(); 162 MI = MF.CloneMachineInstr(MI); 163 } 164 165 if (HasDef) { 166 MI->getOperand(0).setReg(Reg0); 167 MI->getOperand(0).setSubReg(SubReg0); 168 } 169 MI->getOperand(Idx2).setReg(Reg1); 170 MI->getOperand(Idx1).setReg(Reg2); 171 MI->getOperand(Idx2).setSubReg(SubReg1); 172 MI->getOperand(Idx1).setSubReg(SubReg2); 173 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 174 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 175 return MI; 176 } 177 178 /// findCommutedOpIndices - If specified MI is commutable, return the two 179 /// operand indices that would swap value. Return true if the instruction 180 /// is not in a form which this routine understands. 181 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 182 unsigned &SrcOpIdx1, 183 unsigned &SrcOpIdx2) const { 184 assert(!MI->isBundle() && 185 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 186 187 const MCInstrDesc &MCID = MI->getDesc(); 188 if (!MCID.isCommutable()) 189 return false; 190 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 191 // is not true, then the target must implement this. 192 SrcOpIdx1 = MCID.getNumDefs(); 193 SrcOpIdx2 = SrcOpIdx1 + 1; 194 if (!MI->getOperand(SrcOpIdx1).isReg() || 195 !MI->getOperand(SrcOpIdx2).isReg()) 196 // No idea. 197 return false; 198 return true; 199 } 200 201 202 bool 203 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 204 if (!MI->isTerminator()) return false; 205 206 // Conditional branch is a special case. 207 if (MI->isBranch() && !MI->isBarrier()) 208 return true; 209 if (!MI->isPredicable()) 210 return true; 211 return !isPredicated(MI); 212 } 213 214 215 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, 216 const SmallVectorImpl<MachineOperand> &Pred) const { 217 bool MadeChange = false; 218 219 assert(!MI->isBundle() && 220 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 221 222 const MCInstrDesc &MCID = MI->getDesc(); 223 if (!MI->isPredicable()) 224 return false; 225 226 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 227 if (MCID.OpInfo[i].isPredicate()) { 228 MachineOperand &MO = MI->getOperand(i); 229 if (MO.isReg()) { 230 MO.setReg(Pred[j].getReg()); 231 MadeChange = true; 232 } else if (MO.isImm()) { 233 MO.setImm(Pred[j].getImm()); 234 MadeChange = true; 235 } else if (MO.isMBB()) { 236 MO.setMBB(Pred[j].getMBB()); 237 MadeChange = true; 238 } 239 ++j; 240 } 241 } 242 return MadeChange; 243 } 244 245 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 246 const MachineMemOperand *&MMO, 247 int &FrameIndex) const { 248 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 249 oe = MI->memoperands_end(); 250 o != oe; 251 ++o) { 252 if ((*o)->isLoad()) { 253 if (const FixedStackPseudoSourceValue *Value = 254 dyn_cast_or_null<FixedStackPseudoSourceValue>( 255 (*o)->getPseudoValue())) { 256 FrameIndex = Value->getFrameIndex(); 257 MMO = *o; 258 return true; 259 } 260 } 261 } 262 return false; 263 } 264 265 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 266 const MachineMemOperand *&MMO, 267 int &FrameIndex) const { 268 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 269 oe = MI->memoperands_end(); 270 o != oe; 271 ++o) { 272 if ((*o)->isStore()) { 273 if (const FixedStackPseudoSourceValue *Value = 274 dyn_cast_or_null<FixedStackPseudoSourceValue>( 275 (*o)->getPseudoValue())) { 276 FrameIndex = Value->getFrameIndex(); 277 MMO = *o; 278 return true; 279 } 280 } 281 } 282 return false; 283 } 284 285 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 286 unsigned SubIdx, unsigned &Size, 287 unsigned &Offset, 288 const TargetMachine *TM) const { 289 if (!SubIdx) { 290 Size = RC->getSize(); 291 Offset = 0; 292 return true; 293 } 294 unsigned BitSize = 295 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxSize(SubIdx); 296 // Convert bit size to byte size to be consistent with 297 // MCRegisterClass::getSize(). 298 if (BitSize % 8) 299 return false; 300 301 int BitOffset = 302 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxOffset(SubIdx); 303 if (BitOffset < 0 || BitOffset % 8) 304 return false; 305 306 Size = BitSize /= 8; 307 Offset = (unsigned)BitOffset / 8; 308 309 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 310 311 if (!TM->getDataLayout()->isLittleEndian()) { 312 Offset = RC->getSize() - (Offset + Size); 313 } 314 return true; 315 } 316 317 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 318 MachineBasicBlock::iterator I, 319 unsigned DestReg, 320 unsigned SubIdx, 321 const MachineInstr *Orig, 322 const TargetRegisterInfo &TRI) const { 323 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 324 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 325 MBB.insert(I, MI); 326 } 327 328 bool 329 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 330 const MachineInstr *MI1, 331 const MachineRegisterInfo *MRI) const { 332 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 333 } 334 335 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 336 MachineFunction &MF) const { 337 assert(!Orig->isNotDuplicable() && 338 "Instruction cannot be duplicated"); 339 return MF.CloneMachineInstr(Orig); 340 } 341 342 // If the COPY instruction in MI can be folded to a stack operation, return 343 // the register class to use. 344 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 345 unsigned FoldIdx) { 346 assert(MI->isCopy() && "MI must be a COPY instruction"); 347 if (MI->getNumOperands() != 2) 348 return nullptr; 349 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 350 351 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 352 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 353 354 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 355 return nullptr; 356 357 unsigned FoldReg = FoldOp.getReg(); 358 unsigned LiveReg = LiveOp.getReg(); 359 360 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 361 "Cannot fold physregs"); 362 363 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 364 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 365 366 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 367 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 368 369 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 370 return RC; 371 372 // FIXME: Allow folding when register classes are memory compatible. 373 return nullptr; 374 } 375 376 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 377 llvm_unreachable("Not a MachO target"); 378 } 379 380 bool TargetInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, 381 ArrayRef<unsigned> Ops) const { 382 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 383 } 384 385 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI, 386 ArrayRef<unsigned> Ops, int FrameIndex, 387 const TargetInstrInfo &TII) { 388 unsigned StartIdx = 0; 389 switch (MI->getOpcode()) { 390 case TargetOpcode::STACKMAP: 391 StartIdx = 2; // Skip ID, nShadowBytes. 392 break; 393 case TargetOpcode::PATCHPOINT: { 394 // For PatchPoint, the call args are not foldable. 395 PatchPointOpers opers(MI); 396 StartIdx = opers.getVarIdx(); 397 break; 398 } 399 default: 400 llvm_unreachable("unexpected stackmap opcode"); 401 } 402 403 // Return false if any operands requested for folding are not foldable (not 404 // part of the stackmap's live values). 405 for (unsigned Op : Ops) { 406 if (Op < StartIdx) 407 return nullptr; 408 } 409 410 MachineInstr *NewMI = 411 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 412 MachineInstrBuilder MIB(MF, NewMI); 413 414 // No need to fold return, the meta data, and function arguments 415 for (unsigned i = 0; i < StartIdx; ++i) 416 MIB.addOperand(MI->getOperand(i)); 417 418 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 419 MachineOperand &MO = MI->getOperand(i); 420 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 421 unsigned SpillSize; 422 unsigned SpillOffset; 423 // Compute the spill slot size and offset. 424 const TargetRegisterClass *RC = 425 MF.getRegInfo().getRegClass(MO.getReg()); 426 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, 427 SpillOffset, &MF.getTarget()); 428 if (!Valid) 429 report_fatal_error("cannot spill patchpoint subregister operand"); 430 MIB.addImm(StackMaps::IndirectMemRefOp); 431 MIB.addImm(SpillSize); 432 MIB.addFrameIndex(FrameIndex); 433 MIB.addImm(SpillOffset); 434 } 435 else 436 MIB.addOperand(MO); 437 } 438 return NewMI; 439 } 440 441 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 442 /// slot into the specified machine instruction for the specified operand(s). 443 /// If this is possible, a new instruction is returned with the specified 444 /// operand folded, otherwise NULL is returned. The client is responsible for 445 /// removing the old instruction and adding the new one in the instruction 446 /// stream. 447 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 448 ArrayRef<unsigned> Ops, 449 int FI) const { 450 unsigned Flags = 0; 451 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 452 if (MI->getOperand(Ops[i]).isDef()) 453 Flags |= MachineMemOperand::MOStore; 454 else 455 Flags |= MachineMemOperand::MOLoad; 456 457 MachineBasicBlock *MBB = MI->getParent(); 458 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 459 MachineFunction &MF = *MBB->getParent(); 460 461 MachineInstr *NewMI = nullptr; 462 463 if (MI->getOpcode() == TargetOpcode::STACKMAP || 464 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 465 // Fold stackmap/patchpoint. 466 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 467 } else { 468 // Ask the target to do the actual folding. 469 NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI); 470 } 471 472 if (NewMI) { 473 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 474 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 475 assert((!(Flags & MachineMemOperand::MOStore) || 476 NewMI->mayStore()) && 477 "Folded a def to a non-store!"); 478 assert((!(Flags & MachineMemOperand::MOLoad) || 479 NewMI->mayLoad()) && 480 "Folded a use to a non-load!"); 481 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 482 assert(MFI.getObjectOffset(FI) != -1); 483 MachineMemOperand *MMO = 484 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 485 Flags, MFI.getObjectSize(FI), 486 MFI.getObjectAlignment(FI)); 487 NewMI->addMemOperand(MF, MMO); 488 489 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 490 return MBB->insert(MI, NewMI); 491 } 492 493 // Straight COPY may fold as load/store. 494 if (!MI->isCopy() || Ops.size() != 1) 495 return nullptr; 496 497 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 498 if (!RC) 499 return nullptr; 500 501 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 502 MachineBasicBlock::iterator Pos = MI; 503 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 504 505 if (Flags == MachineMemOperand::MOStore) 506 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 507 else 508 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 509 return --Pos; 510 } 511 512 /// foldMemoryOperand - Same as the previous version except it allows folding 513 /// of any load and store from / to any address, not just from a specific 514 /// stack slot. 515 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 516 ArrayRef<unsigned> Ops, 517 MachineInstr *LoadMI) const { 518 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 519 #ifndef NDEBUG 520 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 521 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 522 #endif 523 MachineBasicBlock &MBB = *MI->getParent(); 524 MachineFunction &MF = *MBB.getParent(); 525 526 // Ask the target to do the actual folding. 527 MachineInstr *NewMI = nullptr; 528 int FrameIndex = 0; 529 530 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 531 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 532 isLoadFromStackSlot(LoadMI, FrameIndex)) { 533 // Fold stackmap/patchpoint. 534 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 535 } else { 536 // Ask the target to do the actual folding. 537 NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 538 } 539 540 if (!NewMI) return nullptr; 541 542 NewMI = MBB.insert(MI, NewMI); 543 544 // Copy the memoperands from the load to the folded instruction. 545 if (MI->memoperands_empty()) { 546 NewMI->setMemRefs(LoadMI->memoperands_begin(), 547 LoadMI->memoperands_end()); 548 } 549 else { 550 // Handle the rare case of folding multiple loads. 551 NewMI->setMemRefs(MI->memoperands_begin(), 552 MI->memoperands_end()); 553 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 554 E = LoadMI->memoperands_end(); I != E; ++I) { 555 NewMI->addMemOperand(MF, *I); 556 } 557 } 558 return NewMI; 559 } 560 561 bool TargetInstrInfo:: 562 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 563 AliasAnalysis *AA) const { 564 const MachineFunction &MF = *MI->getParent()->getParent(); 565 const MachineRegisterInfo &MRI = MF.getRegInfo(); 566 567 // Remat clients assume operand 0 is the defined register. 568 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 569 return false; 570 unsigned DefReg = MI->getOperand(0).getReg(); 571 572 // A sub-register definition can only be rematerialized if the instruction 573 // doesn't read the other parts of the register. Otherwise it is really a 574 // read-modify-write operation on the full virtual register which cannot be 575 // moved safely. 576 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 577 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 578 return false; 579 580 // A load from a fixed stack slot can be rematerialized. This may be 581 // redundant with subsequent checks, but it's target-independent, 582 // simple, and a common case. 583 int FrameIdx = 0; 584 if (isLoadFromStackSlot(MI, FrameIdx) && 585 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 586 return true; 587 588 // Avoid instructions obviously unsafe for remat. 589 if (MI->isNotDuplicable() || MI->mayStore() || 590 MI->hasUnmodeledSideEffects()) 591 return false; 592 593 // Don't remat inline asm. We have no idea how expensive it is 594 // even if it's side effect free. 595 if (MI->isInlineAsm()) 596 return false; 597 598 // Avoid instructions which load from potentially varying memory. 599 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 600 return false; 601 602 // If any of the registers accessed are non-constant, conservatively assume 603 // the instruction is not rematerializable. 604 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 605 const MachineOperand &MO = MI->getOperand(i); 606 if (!MO.isReg()) continue; 607 unsigned Reg = MO.getReg(); 608 if (Reg == 0) 609 continue; 610 611 // Check for a well-behaved physical register. 612 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 613 if (MO.isUse()) { 614 // If the physreg has no defs anywhere, it's just an ambient register 615 // and we can freely move its uses. Alternatively, if it's allocatable, 616 // it could get allocated to something with a def during allocation. 617 if (!MRI.isConstantPhysReg(Reg, MF)) 618 return false; 619 } else { 620 // A physreg def. We can't remat it. 621 return false; 622 } 623 continue; 624 } 625 626 // Only allow one virtual-register def. There may be multiple defs of the 627 // same virtual register, though. 628 if (MO.isDef() && Reg != DefReg) 629 return false; 630 631 // Don't allow any virtual-register uses. Rematting an instruction with 632 // virtual register uses would length the live ranges of the uses, which 633 // is not necessarily a good idea, certainly not "trivial". 634 if (MO.isUse()) 635 return false; 636 } 637 638 // Everything checked out. 639 return true; 640 } 641 642 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { 643 const MachineFunction *MF = MI->getParent()->getParent(); 644 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 645 bool StackGrowsDown = 646 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 647 648 int FrameSetupOpcode = getCallFrameSetupOpcode(); 649 int FrameDestroyOpcode = getCallFrameDestroyOpcode(); 650 651 if (MI->getOpcode() != FrameSetupOpcode && 652 MI->getOpcode() != FrameDestroyOpcode) 653 return 0; 654 655 int SPAdj = MI->getOperand(0).getImm(); 656 657 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || 658 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) 659 SPAdj = -SPAdj; 660 661 return SPAdj; 662 } 663 664 /// isSchedulingBoundary - Test if the given instruction should be 665 /// considered a scheduling boundary. This primarily includes labels 666 /// and terminators. 667 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 668 const MachineBasicBlock *MBB, 669 const MachineFunction &MF) const { 670 // Terminators and labels can't be scheduled around. 671 if (MI->isTerminator() || MI->isPosition()) 672 return true; 673 674 // Don't attempt to schedule around any instruction that defines 675 // a stack-oriented pointer, as it's unlikely to be profitable. This 676 // saves compile time, because it doesn't require every single 677 // stack slot reference to depend on the instruction that does the 678 // modification. 679 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 680 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 681 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) 682 return true; 683 684 return false; 685 } 686 687 // Provide a global flag for disabling the PreRA hazard recognizer that targets 688 // may choose to honor. 689 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 690 return !DisableHazardRecognizer; 691 } 692 693 // Default implementation of CreateTargetRAHazardRecognizer. 694 ScheduleHazardRecognizer *TargetInstrInfo:: 695 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 696 const ScheduleDAG *DAG) const { 697 // Dummy hazard recognizer allows all instructions to issue. 698 return new ScheduleHazardRecognizer(); 699 } 700 701 // Default implementation of CreateTargetMIHazardRecognizer. 702 ScheduleHazardRecognizer *TargetInstrInfo:: 703 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 704 const ScheduleDAG *DAG) const { 705 return (ScheduleHazardRecognizer *) 706 new ScoreboardHazardRecognizer(II, DAG, "misched"); 707 } 708 709 // Default implementation of CreateTargetPostRAHazardRecognizer. 710 ScheduleHazardRecognizer *TargetInstrInfo:: 711 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 712 const ScheduleDAG *DAG) const { 713 return (ScheduleHazardRecognizer *) 714 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // SelectionDAG latency interface. 719 //===----------------------------------------------------------------------===// 720 721 int 722 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 723 SDNode *DefNode, unsigned DefIdx, 724 SDNode *UseNode, unsigned UseIdx) const { 725 if (!ItinData || ItinData->isEmpty()) 726 return -1; 727 728 if (!DefNode->isMachineOpcode()) 729 return -1; 730 731 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 732 if (!UseNode->isMachineOpcode()) 733 return ItinData->getOperandCycle(DefClass, DefIdx); 734 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 735 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 736 } 737 738 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 739 SDNode *N) const { 740 if (!ItinData || ItinData->isEmpty()) 741 return 1; 742 743 if (!N->isMachineOpcode()) 744 return 1; 745 746 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 747 } 748 749 //===----------------------------------------------------------------------===// 750 // MachineInstr latency interface. 751 //===----------------------------------------------------------------------===// 752 753 unsigned 754 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 755 const MachineInstr *MI) const { 756 if (!ItinData || ItinData->isEmpty()) 757 return 1; 758 759 unsigned Class = MI->getDesc().getSchedClass(); 760 int UOps = ItinData->Itineraries[Class].NumMicroOps; 761 if (UOps >= 0) 762 return UOps; 763 764 // The # of u-ops is dynamically determined. The specific target should 765 // override this function to return the right number. 766 return 1; 767 } 768 769 /// Return the default expected latency for a def based on it's opcode. 770 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 771 const MachineInstr *DefMI) const { 772 if (DefMI->isTransient()) 773 return 0; 774 if (DefMI->mayLoad()) 775 return SchedModel.LoadLatency; 776 if (isHighLatencyDef(DefMI->getOpcode())) 777 return SchedModel.HighLatency; 778 return 1; 779 } 780 781 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { 782 return 0; 783 } 784 785 unsigned TargetInstrInfo:: 786 getInstrLatency(const InstrItineraryData *ItinData, 787 const MachineInstr *MI, 788 unsigned *PredCost) const { 789 // Default to one cycle for no itinerary. However, an "empty" itinerary may 790 // still have a MinLatency property, which getStageLatency checks. 791 if (!ItinData) 792 return MI->mayLoad() ? 2 : 1; 793 794 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 795 } 796 797 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, 798 const MachineInstr *DefMI, 799 unsigned DefIdx) const { 800 if (!ItinData || ItinData->isEmpty()) 801 return false; 802 803 unsigned DefClass = DefMI->getDesc().getSchedClass(); 804 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 805 return (DefCycle != -1 && DefCycle <= 1); 806 } 807 808 /// Both DefMI and UseMI must be valid. By default, call directly to the 809 /// itinerary. This may be overriden by the target. 810 int TargetInstrInfo:: 811 getOperandLatency(const InstrItineraryData *ItinData, 812 const MachineInstr *DefMI, unsigned DefIdx, 813 const MachineInstr *UseMI, unsigned UseIdx) const { 814 unsigned DefClass = DefMI->getDesc().getSchedClass(); 815 unsigned UseClass = UseMI->getDesc().getSchedClass(); 816 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 817 } 818 819 /// If we can determine the operand latency from the def only, without itinerary 820 /// lookup, do so. Otherwise return -1. 821 int TargetInstrInfo::computeDefOperandLatency( 822 const InstrItineraryData *ItinData, 823 const MachineInstr *DefMI) const { 824 825 // Let the target hook getInstrLatency handle missing itineraries. 826 if (!ItinData) 827 return getInstrLatency(ItinData, DefMI); 828 829 if(ItinData->isEmpty()) 830 return defaultDefLatency(ItinData->SchedModel, DefMI); 831 832 // ...operand lookup required 833 return -1; 834 } 835 836 /// computeOperandLatency - Compute and return the latency of the given data 837 /// dependent def and use when the operand indices are already known. UseMI may 838 /// be NULL for an unknown use. 839 /// 840 /// FindMin may be set to get the minimum vs. expected latency. Minimum 841 /// latency is used for scheduling groups, while expected latency is for 842 /// instruction cost and critical path. 843 /// 844 /// Depending on the subtarget's itinerary properties, this may or may not need 845 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 846 /// UseIdx to compute min latency. 847 unsigned TargetInstrInfo:: 848 computeOperandLatency(const InstrItineraryData *ItinData, 849 const MachineInstr *DefMI, unsigned DefIdx, 850 const MachineInstr *UseMI, unsigned UseIdx) const { 851 852 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 853 if (DefLatency >= 0) 854 return DefLatency; 855 856 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 857 858 int OperLatency = 0; 859 if (UseMI) 860 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 861 else { 862 unsigned DefClass = DefMI->getDesc().getSchedClass(); 863 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 864 } 865 if (OperLatency >= 0) 866 return OperLatency; 867 868 // No operand latency was found. 869 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 870 871 // Expected latency is the max of the stage latency and itinerary props. 872 InstrLatency = std::max(InstrLatency, 873 defaultDefLatency(ItinData->SchedModel, DefMI)); 874 return InstrLatency; 875 } 876 877 bool TargetInstrInfo::getRegSequenceInputs( 878 const MachineInstr &MI, unsigned DefIdx, 879 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 880 assert((MI.isRegSequence() || 881 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 882 883 if (!MI.isRegSequence()) 884 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 885 886 // We are looking at: 887 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 888 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 889 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 890 OpIdx += 2) { 891 const MachineOperand &MOReg = MI.getOperand(OpIdx); 892 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 893 assert(MOSubIdx.isImm() && 894 "One of the subindex of the reg_sequence is not an immediate"); 895 // Record Reg:SubReg, SubIdx. 896 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 897 (unsigned)MOSubIdx.getImm())); 898 } 899 return true; 900 } 901 902 bool TargetInstrInfo::getExtractSubregInputs( 903 const MachineInstr &MI, unsigned DefIdx, 904 RegSubRegPairAndIdx &InputReg) const { 905 assert((MI.isExtractSubreg() || 906 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 907 908 if (!MI.isExtractSubreg()) 909 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 910 911 // We are looking at: 912 // Def = EXTRACT_SUBREG v0.sub1, sub0. 913 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 914 const MachineOperand &MOReg = MI.getOperand(1); 915 const MachineOperand &MOSubIdx = MI.getOperand(2); 916 assert(MOSubIdx.isImm() && 917 "The subindex of the extract_subreg is not an immediate"); 918 919 InputReg.Reg = MOReg.getReg(); 920 InputReg.SubReg = MOReg.getSubReg(); 921 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 922 return true; 923 } 924 925 bool TargetInstrInfo::getInsertSubregInputs( 926 const MachineInstr &MI, unsigned DefIdx, 927 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 928 assert((MI.isInsertSubreg() || 929 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 930 931 if (!MI.isInsertSubreg()) 932 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 933 934 // We are looking at: 935 // Def = INSERT_SEQUENCE v0, v1, sub0. 936 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 937 const MachineOperand &MOBaseReg = MI.getOperand(1); 938 const MachineOperand &MOInsertedReg = MI.getOperand(2); 939 const MachineOperand &MOSubIdx = MI.getOperand(3); 940 assert(MOSubIdx.isImm() && 941 "One of the subindex of the reg_sequence is not an immediate"); 942 BaseReg.Reg = MOBaseReg.getReg(); 943 BaseReg.SubReg = MOBaseReg.getSubReg(); 944 945 InsertedReg.Reg = MOInsertedReg.getReg(); 946 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 947 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 948 return true; 949 } 950