1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCInstrItineraries.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetLowering.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include <cctype> 32 using namespace llvm; 33 34 static cl::opt<bool> DisableHazardRecognizer( 35 "disable-sched-hazard", cl::Hidden, cl::init(false), 36 cl::desc("Disable hazard detection during preRA scheduling")); 37 38 TargetInstrInfo::~TargetInstrInfo() { 39 } 40 41 const TargetRegisterClass* 42 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 43 const TargetRegisterInfo *TRI, 44 const MachineFunction &MF) const { 45 if (OpNum >= MCID.getNumOperands()) 46 return nullptr; 47 48 short RegClass = MCID.OpInfo[OpNum].RegClass; 49 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 50 return TRI->getPointerRegClass(MF, RegClass); 51 52 // Instructions like INSERT_SUBREG do not have fixed register classes. 53 if (RegClass < 0) 54 return nullptr; 55 56 // Otherwise just look it up normally. 57 return TRI->getRegClass(RegClass); 58 } 59 60 /// insertNoop - Insert a noop into the instruction stream at the specified 61 /// point. 62 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 63 MachineBasicBlock::iterator MI) const { 64 llvm_unreachable("Target didn't implement insertNoop!"); 65 } 66 67 /// Measure the specified inline asm to determine an approximation of its 68 /// length. 69 /// Comments (which run till the next SeparatorString or newline) do not 70 /// count as an instruction. 71 /// Any other non-whitespace text is considered an instruction, with 72 /// multiple instructions separated by SeparatorString or newlines. 73 /// Variable-length instructions are not handled here; this function 74 /// may be overloaded in the target code to do that. 75 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 76 const MCAsmInfo &MAI) const { 77 78 79 // Count the number of instructions in the asm. 80 bool atInsnStart = true; 81 unsigned Length = 0; 82 for (; *Str; ++Str) { 83 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 84 strlen(MAI.getSeparatorString())) == 0) 85 atInsnStart = true; 86 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 87 Length += MAI.getMaxInstLength(); 88 atInsnStart = false; 89 } 90 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 91 strlen(MAI.getCommentString())) == 0) 92 atInsnStart = false; 93 } 94 95 return Length; 96 } 97 98 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 99 /// after it, replacing it with an unconditional branch to NewDest. 100 void 101 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 102 MachineBasicBlock *NewDest) const { 103 MachineBasicBlock *MBB = Tail->getParent(); 104 105 // Remove all the old successors of MBB from the CFG. 106 while (!MBB->succ_empty()) 107 MBB->removeSuccessor(MBB->succ_begin()); 108 109 // Remove all the dead instructions from the end of MBB. 110 MBB->erase(Tail, MBB->end()); 111 112 // If MBB isn't immediately before MBB, insert a branch to it. 113 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 114 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 115 Tail->getDebugLoc()); 116 MBB->addSuccessor(NewDest); 117 } 118 119 // commuteInstruction - The default implementation of this method just exchanges 120 // the two operands returned by findCommutedOpIndices. 121 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 122 bool NewMI) const { 123 const MCInstrDesc &MCID = MI->getDesc(); 124 bool HasDef = MCID.getNumDefs(); 125 if (HasDef && !MI->getOperand(0).isReg()) 126 // No idea how to commute this instruction. Target should implement its own. 127 return nullptr; 128 unsigned Idx1, Idx2; 129 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 130 assert(MI->isCommutable() && "Precondition violation: MI must be commutable."); 131 return nullptr; 132 } 133 134 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 135 "This only knows how to commute register operands so far"); 136 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 137 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 138 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 139 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 140 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 141 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 142 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 143 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 144 // If destination is tied to either of the commuted source register, then 145 // it must be updated. 146 if (HasDef && Reg0 == Reg1 && 147 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 148 Reg2IsKill = false; 149 Reg0 = Reg2; 150 SubReg0 = SubReg2; 151 } else if (HasDef && Reg0 == Reg2 && 152 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 153 Reg1IsKill = false; 154 Reg0 = Reg1; 155 SubReg0 = SubReg1; 156 } 157 158 if (NewMI) { 159 // Create a new instruction. 160 MachineFunction &MF = *MI->getParent()->getParent(); 161 MI = MF.CloneMachineInstr(MI); 162 } 163 164 if (HasDef) { 165 MI->getOperand(0).setReg(Reg0); 166 MI->getOperand(0).setSubReg(SubReg0); 167 } 168 MI->getOperand(Idx2).setReg(Reg1); 169 MI->getOperand(Idx1).setReg(Reg2); 170 MI->getOperand(Idx2).setSubReg(SubReg1); 171 MI->getOperand(Idx1).setSubReg(SubReg2); 172 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 173 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 174 return MI; 175 } 176 177 /// findCommutedOpIndices - If specified MI is commutable, return the two 178 /// operand indices that would swap value. Return true if the instruction 179 /// is not in a form which this routine understands. 180 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 181 unsigned &SrcOpIdx1, 182 unsigned &SrcOpIdx2) const { 183 assert(!MI->isBundle() && 184 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 185 186 const MCInstrDesc &MCID = MI->getDesc(); 187 if (!MCID.isCommutable()) 188 return false; 189 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 190 // is not true, then the target must implement this. 191 SrcOpIdx1 = MCID.getNumDefs(); 192 SrcOpIdx2 = SrcOpIdx1 + 1; 193 if (!MI->getOperand(SrcOpIdx1).isReg() || 194 !MI->getOperand(SrcOpIdx2).isReg()) 195 // No idea. 196 return false; 197 return true; 198 } 199 200 201 bool 202 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 203 if (!MI->isTerminator()) return false; 204 205 // Conditional branch is a special case. 206 if (MI->isBranch() && !MI->isBarrier()) 207 return true; 208 if (!MI->isPredicable()) 209 return true; 210 return !isPredicated(MI); 211 } 212 213 214 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, 215 const SmallVectorImpl<MachineOperand> &Pred) const { 216 bool MadeChange = false; 217 218 assert(!MI->isBundle() && 219 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 220 221 const MCInstrDesc &MCID = MI->getDesc(); 222 if (!MI->isPredicable()) 223 return false; 224 225 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 226 if (MCID.OpInfo[i].isPredicate()) { 227 MachineOperand &MO = MI->getOperand(i); 228 if (MO.isReg()) { 229 MO.setReg(Pred[j].getReg()); 230 MadeChange = true; 231 } else if (MO.isImm()) { 232 MO.setImm(Pred[j].getImm()); 233 MadeChange = true; 234 } else if (MO.isMBB()) { 235 MO.setMBB(Pred[j].getMBB()); 236 MadeChange = true; 237 } 238 ++j; 239 } 240 } 241 return MadeChange; 242 } 243 244 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 245 const MachineMemOperand *&MMO, 246 int &FrameIndex) const { 247 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 248 oe = MI->memoperands_end(); 249 o != oe; 250 ++o) { 251 if ((*o)->isLoad()) { 252 if (const FixedStackPseudoSourceValue *Value = 253 dyn_cast_or_null<FixedStackPseudoSourceValue>( 254 (*o)->getPseudoValue())) { 255 FrameIndex = Value->getFrameIndex(); 256 MMO = *o; 257 return true; 258 } 259 } 260 } 261 return false; 262 } 263 264 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 265 const MachineMemOperand *&MMO, 266 int &FrameIndex) const { 267 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 268 oe = MI->memoperands_end(); 269 o != oe; 270 ++o) { 271 if ((*o)->isStore()) { 272 if (const FixedStackPseudoSourceValue *Value = 273 dyn_cast_or_null<FixedStackPseudoSourceValue>( 274 (*o)->getPseudoValue())) { 275 FrameIndex = Value->getFrameIndex(); 276 MMO = *o; 277 return true; 278 } 279 } 280 } 281 return false; 282 } 283 284 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 285 unsigned SubIdx, unsigned &Size, 286 unsigned &Offset, 287 const TargetMachine *TM) const { 288 if (!SubIdx) { 289 Size = RC->getSize(); 290 Offset = 0; 291 return true; 292 } 293 unsigned BitSize = 294 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxSize(SubIdx); 295 // Convert bit size to byte size to be consistent with 296 // MCRegisterClass::getSize(). 297 if (BitSize % 8) 298 return false; 299 300 int BitOffset = 301 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxOffset(SubIdx); 302 if (BitOffset < 0 || BitOffset % 8) 303 return false; 304 305 Size = BitSize /= 8; 306 Offset = (unsigned)BitOffset / 8; 307 308 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 309 310 if (!TM->getSubtargetImpl()->getDataLayout()->isLittleEndian()) { 311 Offset = RC->getSize() - (Offset + Size); 312 } 313 return true; 314 } 315 316 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 317 MachineBasicBlock::iterator I, 318 unsigned DestReg, 319 unsigned SubIdx, 320 const MachineInstr *Orig, 321 const TargetRegisterInfo &TRI) const { 322 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 323 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 324 MBB.insert(I, MI); 325 } 326 327 bool 328 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 329 const MachineInstr *MI1, 330 const MachineRegisterInfo *MRI) const { 331 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 332 } 333 334 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 335 MachineFunction &MF) const { 336 assert(!Orig->isNotDuplicable() && 337 "Instruction cannot be duplicated"); 338 return MF.CloneMachineInstr(Orig); 339 } 340 341 // If the COPY instruction in MI can be folded to a stack operation, return 342 // the register class to use. 343 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 344 unsigned FoldIdx) { 345 assert(MI->isCopy() && "MI must be a COPY instruction"); 346 if (MI->getNumOperands() != 2) 347 return nullptr; 348 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 349 350 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 351 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 352 353 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 354 return nullptr; 355 356 unsigned FoldReg = FoldOp.getReg(); 357 unsigned LiveReg = LiveOp.getReg(); 358 359 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 360 "Cannot fold physregs"); 361 362 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 363 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 364 365 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 366 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 367 368 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 369 return RC; 370 371 // FIXME: Allow folding when register classes are memory compatible. 372 return nullptr; 373 } 374 375 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 376 llvm_unreachable("Not a MachO target"); 377 } 378 379 bool TargetInstrInfo:: 380 canFoldMemoryOperand(const MachineInstr *MI, 381 const SmallVectorImpl<unsigned> &Ops) const { 382 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 383 } 384 385 static MachineInstr* foldPatchpoint(MachineFunction &MF, 386 MachineInstr *MI, 387 const SmallVectorImpl<unsigned> &Ops, 388 int FrameIndex, 389 const TargetInstrInfo &TII) { 390 unsigned StartIdx = 0; 391 switch (MI->getOpcode()) { 392 case TargetOpcode::STACKMAP: 393 StartIdx = 2; // Skip ID, nShadowBytes. 394 break; 395 case TargetOpcode::PATCHPOINT: { 396 // For PatchPoint, the call args are not foldable. 397 PatchPointOpers opers(MI); 398 StartIdx = opers.getVarIdx(); 399 break; 400 } 401 default: 402 llvm_unreachable("unexpected stackmap opcode"); 403 } 404 405 // Return false if any operands requested for folding are not foldable (not 406 // part of the stackmap's live values). 407 for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end(); 408 I != E; ++I) { 409 if (*I < StartIdx) 410 return nullptr; 411 } 412 413 MachineInstr *NewMI = 414 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 415 MachineInstrBuilder MIB(MF, NewMI); 416 417 // No need to fold return, the meta data, and function arguments 418 for (unsigned i = 0; i < StartIdx; ++i) 419 MIB.addOperand(MI->getOperand(i)); 420 421 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 422 MachineOperand &MO = MI->getOperand(i); 423 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 424 unsigned SpillSize; 425 unsigned SpillOffset; 426 // Compute the spill slot size and offset. 427 const TargetRegisterClass *RC = 428 MF.getRegInfo().getRegClass(MO.getReg()); 429 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, 430 SpillOffset, &MF.getTarget()); 431 if (!Valid) 432 report_fatal_error("cannot spill patchpoint subregister operand"); 433 MIB.addImm(StackMaps::IndirectMemRefOp); 434 MIB.addImm(SpillSize); 435 MIB.addFrameIndex(FrameIndex); 436 MIB.addImm(SpillOffset); 437 } 438 else 439 MIB.addOperand(MO); 440 } 441 return NewMI; 442 } 443 444 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 445 /// slot into the specified machine instruction for the specified operand(s). 446 /// If this is possible, a new instruction is returned with the specified 447 /// operand folded, otherwise NULL is returned. The client is responsible for 448 /// removing the old instruction and adding the new one in the instruction 449 /// stream. 450 MachineInstr* 451 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 452 const SmallVectorImpl<unsigned> &Ops, 453 int FI) const { 454 unsigned Flags = 0; 455 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 456 if (MI->getOperand(Ops[i]).isDef()) 457 Flags |= MachineMemOperand::MOStore; 458 else 459 Flags |= MachineMemOperand::MOLoad; 460 461 MachineBasicBlock *MBB = MI->getParent(); 462 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 463 MachineFunction &MF = *MBB->getParent(); 464 465 MachineInstr *NewMI = nullptr; 466 467 if (MI->getOpcode() == TargetOpcode::STACKMAP || 468 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 469 // Fold stackmap/patchpoint. 470 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 471 } else { 472 // Ask the target to do the actual folding. 473 NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI); 474 } 475 476 if (NewMI) { 477 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 478 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 479 assert((!(Flags & MachineMemOperand::MOStore) || 480 NewMI->mayStore()) && 481 "Folded a def to a non-store!"); 482 assert((!(Flags & MachineMemOperand::MOLoad) || 483 NewMI->mayLoad()) && 484 "Folded a use to a non-load!"); 485 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 486 assert(MFI.getObjectOffset(FI) != -1); 487 MachineMemOperand *MMO = 488 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 489 Flags, MFI.getObjectSize(FI), 490 MFI.getObjectAlignment(FI)); 491 NewMI->addMemOperand(MF, MMO); 492 493 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 494 return MBB->insert(MI, NewMI); 495 } 496 497 // Straight COPY may fold as load/store. 498 if (!MI->isCopy() || Ops.size() != 1) 499 return nullptr; 500 501 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 502 if (!RC) 503 return nullptr; 504 505 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 506 MachineBasicBlock::iterator Pos = MI; 507 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 508 509 if (Flags == MachineMemOperand::MOStore) 510 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 511 else 512 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 513 return --Pos; 514 } 515 516 /// foldMemoryOperand - Same as the previous version except it allows folding 517 /// of any load and store from / to any address, not just from a specific 518 /// stack slot. 519 MachineInstr* 520 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 521 const SmallVectorImpl<unsigned> &Ops, 522 MachineInstr* LoadMI) const { 523 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 524 #ifndef NDEBUG 525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 526 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 527 #endif 528 MachineBasicBlock &MBB = *MI->getParent(); 529 MachineFunction &MF = *MBB.getParent(); 530 531 // Ask the target to do the actual folding. 532 MachineInstr *NewMI = nullptr; 533 int FrameIndex = 0; 534 535 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 536 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 537 isLoadFromStackSlot(LoadMI, FrameIndex)) { 538 // Fold stackmap/patchpoint. 539 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 540 } else { 541 // Ask the target to do the actual folding. 542 NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 543 } 544 545 if (!NewMI) return nullptr; 546 547 NewMI = MBB.insert(MI, NewMI); 548 549 // Copy the memoperands from the load to the folded instruction. 550 if (MI->memoperands_empty()) { 551 NewMI->setMemRefs(LoadMI->memoperands_begin(), 552 LoadMI->memoperands_end()); 553 } 554 else { 555 // Handle the rare case of folding multiple loads. 556 NewMI->setMemRefs(MI->memoperands_begin(), 557 MI->memoperands_end()); 558 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 559 E = LoadMI->memoperands_end(); I != E; ++I) { 560 NewMI->addMemOperand(MF, *I); 561 } 562 } 563 return NewMI; 564 } 565 566 bool TargetInstrInfo:: 567 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 568 AliasAnalysis *AA) const { 569 const MachineFunction &MF = *MI->getParent()->getParent(); 570 const MachineRegisterInfo &MRI = MF.getRegInfo(); 571 572 // Remat clients assume operand 0 is the defined register. 573 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 574 return false; 575 unsigned DefReg = MI->getOperand(0).getReg(); 576 577 // A sub-register definition can only be rematerialized if the instruction 578 // doesn't read the other parts of the register. Otherwise it is really a 579 // read-modify-write operation on the full virtual register which cannot be 580 // moved safely. 581 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 582 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 583 return false; 584 585 // A load from a fixed stack slot can be rematerialized. This may be 586 // redundant with subsequent checks, but it's target-independent, 587 // simple, and a common case. 588 int FrameIdx = 0; 589 if (isLoadFromStackSlot(MI, FrameIdx) && 590 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 591 return true; 592 593 // Avoid instructions obviously unsafe for remat. 594 if (MI->isNotDuplicable() || MI->mayStore() || 595 MI->hasUnmodeledSideEffects()) 596 return false; 597 598 // Don't remat inline asm. We have no idea how expensive it is 599 // even if it's side effect free. 600 if (MI->isInlineAsm()) 601 return false; 602 603 // Avoid instructions which load from potentially varying memory. 604 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 605 return false; 606 607 // If any of the registers accessed are non-constant, conservatively assume 608 // the instruction is not rematerializable. 609 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 610 const MachineOperand &MO = MI->getOperand(i); 611 if (!MO.isReg()) continue; 612 unsigned Reg = MO.getReg(); 613 if (Reg == 0) 614 continue; 615 616 // Check for a well-behaved physical register. 617 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 618 if (MO.isUse()) { 619 // If the physreg has no defs anywhere, it's just an ambient register 620 // and we can freely move its uses. Alternatively, if it's allocatable, 621 // it could get allocated to something with a def during allocation. 622 if (!MRI.isConstantPhysReg(Reg, MF)) 623 return false; 624 } else { 625 // A physreg def. We can't remat it. 626 return false; 627 } 628 continue; 629 } 630 631 // Only allow one virtual-register def. There may be multiple defs of the 632 // same virtual register, though. 633 if (MO.isDef() && Reg != DefReg) 634 return false; 635 636 // Don't allow any virtual-register uses. Rematting an instruction with 637 // virtual register uses would length the live ranges of the uses, which 638 // is not necessarily a good idea, certainly not "trivial". 639 if (MO.isUse()) 640 return false; 641 } 642 643 // Everything checked out. 644 return true; 645 } 646 647 /// isSchedulingBoundary - Test if the given instruction should be 648 /// considered a scheduling boundary. This primarily includes labels 649 /// and terminators. 650 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 651 const MachineBasicBlock *MBB, 652 const MachineFunction &MF) const { 653 // Terminators and labels can't be scheduled around. 654 if (MI->isTerminator() || MI->isPosition()) 655 return true; 656 657 // Don't attempt to schedule around any instruction that defines 658 // a stack-oriented pointer, as it's unlikely to be profitable. This 659 // saves compile time, because it doesn't require every single 660 // stack slot reference to depend on the instruction that does the 661 // modification. 662 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 663 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 664 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) 665 return true; 666 667 return false; 668 } 669 670 // Provide a global flag for disabling the PreRA hazard recognizer that targets 671 // may choose to honor. 672 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 673 return !DisableHazardRecognizer; 674 } 675 676 // Default implementation of CreateTargetRAHazardRecognizer. 677 ScheduleHazardRecognizer *TargetInstrInfo:: 678 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 679 const ScheduleDAG *DAG) const { 680 // Dummy hazard recognizer allows all instructions to issue. 681 return new ScheduleHazardRecognizer(); 682 } 683 684 // Default implementation of CreateTargetMIHazardRecognizer. 685 ScheduleHazardRecognizer *TargetInstrInfo:: 686 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 687 const ScheduleDAG *DAG) const { 688 return (ScheduleHazardRecognizer *) 689 new ScoreboardHazardRecognizer(II, DAG, "misched"); 690 } 691 692 // Default implementation of CreateTargetPostRAHazardRecognizer. 693 ScheduleHazardRecognizer *TargetInstrInfo:: 694 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 695 const ScheduleDAG *DAG) const { 696 return (ScheduleHazardRecognizer *) 697 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // SelectionDAG latency interface. 702 //===----------------------------------------------------------------------===// 703 704 int 705 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 706 SDNode *DefNode, unsigned DefIdx, 707 SDNode *UseNode, unsigned UseIdx) const { 708 if (!ItinData || ItinData->isEmpty()) 709 return -1; 710 711 if (!DefNode->isMachineOpcode()) 712 return -1; 713 714 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 715 if (!UseNode->isMachineOpcode()) 716 return ItinData->getOperandCycle(DefClass, DefIdx); 717 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 718 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 719 } 720 721 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 722 SDNode *N) const { 723 if (!ItinData || ItinData->isEmpty()) 724 return 1; 725 726 if (!N->isMachineOpcode()) 727 return 1; 728 729 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 730 } 731 732 //===----------------------------------------------------------------------===// 733 // MachineInstr latency interface. 734 //===----------------------------------------------------------------------===// 735 736 unsigned 737 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 738 const MachineInstr *MI) const { 739 if (!ItinData || ItinData->isEmpty()) 740 return 1; 741 742 unsigned Class = MI->getDesc().getSchedClass(); 743 int UOps = ItinData->Itineraries[Class].NumMicroOps; 744 if (UOps >= 0) 745 return UOps; 746 747 // The # of u-ops is dynamically determined. The specific target should 748 // override this function to return the right number. 749 return 1; 750 } 751 752 /// Return the default expected latency for a def based on it's opcode. 753 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 754 const MachineInstr *DefMI) const { 755 if (DefMI->isTransient()) 756 return 0; 757 if (DefMI->mayLoad()) 758 return SchedModel.LoadLatency; 759 if (isHighLatencyDef(DefMI->getOpcode())) 760 return SchedModel.HighLatency; 761 return 1; 762 } 763 764 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { 765 return 0; 766 } 767 768 unsigned TargetInstrInfo:: 769 getInstrLatency(const InstrItineraryData *ItinData, 770 const MachineInstr *MI, 771 unsigned *PredCost) const { 772 // Default to one cycle for no itinerary. However, an "empty" itinerary may 773 // still have a MinLatency property, which getStageLatency checks. 774 if (!ItinData) 775 return MI->mayLoad() ? 2 : 1; 776 777 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 778 } 779 780 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, 781 const MachineInstr *DefMI, 782 unsigned DefIdx) const { 783 if (!ItinData || ItinData->isEmpty()) 784 return false; 785 786 unsigned DefClass = DefMI->getDesc().getSchedClass(); 787 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 788 return (DefCycle != -1 && DefCycle <= 1); 789 } 790 791 /// Both DefMI and UseMI must be valid. By default, call directly to the 792 /// itinerary. This may be overriden by the target. 793 int TargetInstrInfo:: 794 getOperandLatency(const InstrItineraryData *ItinData, 795 const MachineInstr *DefMI, unsigned DefIdx, 796 const MachineInstr *UseMI, unsigned UseIdx) const { 797 unsigned DefClass = DefMI->getDesc().getSchedClass(); 798 unsigned UseClass = UseMI->getDesc().getSchedClass(); 799 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 800 } 801 802 /// If we can determine the operand latency from the def only, without itinerary 803 /// lookup, do so. Otherwise return -1. 804 int TargetInstrInfo::computeDefOperandLatency( 805 const InstrItineraryData *ItinData, 806 const MachineInstr *DefMI) const { 807 808 // Let the target hook getInstrLatency handle missing itineraries. 809 if (!ItinData) 810 return getInstrLatency(ItinData, DefMI); 811 812 if(ItinData->isEmpty()) 813 return defaultDefLatency(ItinData->SchedModel, DefMI); 814 815 // ...operand lookup required 816 return -1; 817 } 818 819 /// computeOperandLatency - Compute and return the latency of the given data 820 /// dependent def and use when the operand indices are already known. UseMI may 821 /// be NULL for an unknown use. 822 /// 823 /// FindMin may be set to get the minimum vs. expected latency. Minimum 824 /// latency is used for scheduling groups, while expected latency is for 825 /// instruction cost and critical path. 826 /// 827 /// Depending on the subtarget's itinerary properties, this may or may not need 828 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 829 /// UseIdx to compute min latency. 830 unsigned TargetInstrInfo:: 831 computeOperandLatency(const InstrItineraryData *ItinData, 832 const MachineInstr *DefMI, unsigned DefIdx, 833 const MachineInstr *UseMI, unsigned UseIdx) const { 834 835 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 836 if (DefLatency >= 0) 837 return DefLatency; 838 839 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 840 841 int OperLatency = 0; 842 if (UseMI) 843 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 844 else { 845 unsigned DefClass = DefMI->getDesc().getSchedClass(); 846 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 847 } 848 if (OperLatency >= 0) 849 return OperLatency; 850 851 // No operand latency was found. 852 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 853 854 // Expected latency is the max of the stage latency and itinerary props. 855 InstrLatency = std::max(InstrLatency, 856 defaultDefLatency(ItinData->SchedModel, DefMI)); 857 return InstrLatency; 858 } 859 860 bool TargetInstrInfo::getRegSequenceInputs( 861 const MachineInstr &MI, unsigned DefIdx, 862 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 863 assert((MI.isRegSequence() || 864 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 865 866 if (!MI.isRegSequence()) 867 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 868 869 // We are looking at: 870 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 871 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 872 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 873 OpIdx += 2) { 874 const MachineOperand &MOReg = MI.getOperand(OpIdx); 875 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 876 assert(MOSubIdx.isImm() && 877 "One of the subindex of the reg_sequence is not an immediate"); 878 // Record Reg:SubReg, SubIdx. 879 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 880 (unsigned)MOSubIdx.getImm())); 881 } 882 return true; 883 } 884 885 bool TargetInstrInfo::getExtractSubregInputs( 886 const MachineInstr &MI, unsigned DefIdx, 887 RegSubRegPairAndIdx &InputReg) const { 888 assert((MI.isExtractSubreg() || 889 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 890 891 if (!MI.isExtractSubreg()) 892 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 893 894 // We are looking at: 895 // Def = EXTRACT_SUBREG v0.sub1, sub0. 896 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 897 const MachineOperand &MOReg = MI.getOperand(1); 898 const MachineOperand &MOSubIdx = MI.getOperand(2); 899 assert(MOSubIdx.isImm() && 900 "The subindex of the extract_subreg is not an immediate"); 901 902 InputReg.Reg = MOReg.getReg(); 903 InputReg.SubReg = MOReg.getSubReg(); 904 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 905 return true; 906 } 907 908 bool TargetInstrInfo::getInsertSubregInputs( 909 const MachineInstr &MI, unsigned DefIdx, 910 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 911 assert((MI.isInsertSubreg() || 912 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 913 914 if (!MI.isInsertSubreg()) 915 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 916 917 // We are looking at: 918 // Def = INSERT_SEQUENCE v0, v1, sub0. 919 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 920 const MachineOperand &MOBaseReg = MI.getOperand(1); 921 const MachineOperand &MOInsertedReg = MI.getOperand(2); 922 const MachineOperand &MOSubIdx = MI.getOperand(3); 923 assert(MOSubIdx.isImm() && 924 "One of the subindex of the reg_sequence is not an immediate"); 925 BaseReg.Reg = MOBaseReg.getReg(); 926 BaseReg.SubReg = MOBaseReg.getSubReg(); 927 928 InsertedReg.Reg = MOInsertedReg.getReg(); 929 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 930 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 931 return true; 932 } 933