1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/CodeGen/TargetSchedule.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCInstrItineraries.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetFrameLowering.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 35 using namespace llvm; 36 37 static cl::opt<bool> DisableHazardRecognizer( 38 "disable-sched-hazard", cl::Hidden, cl::init(false), 39 cl::desc("Disable hazard detection during preRA scheduling")); 40 41 TargetInstrInfo::~TargetInstrInfo() { 42 } 43 44 const TargetRegisterClass* 45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 46 const TargetRegisterInfo *TRI, 47 const MachineFunction &MF) const { 48 if (OpNum >= MCID.getNumOperands()) 49 return nullptr; 50 51 short RegClass = MCID.OpInfo[OpNum].RegClass; 52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 53 return TRI->getPointerRegClass(MF, RegClass); 54 55 // Instructions like INSERT_SUBREG do not have fixed register classes. 56 if (RegClass < 0) 57 return nullptr; 58 59 // Otherwise just look it up normally. 60 return TRI->getRegClass(RegClass); 61 } 62 63 /// insertNoop - Insert a noop into the instruction stream at the specified 64 /// point. 65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 66 MachineBasicBlock::iterator MI) const { 67 llvm_unreachable("Target didn't implement insertNoop!"); 68 } 69 70 /// Measure the specified inline asm to determine an approximation of its 71 /// length. 72 /// Comments (which run till the next SeparatorString or newline) do not 73 /// count as an instruction. 74 /// Any other non-whitespace text is considered an instruction, with 75 /// multiple instructions separated by SeparatorString or newlines. 76 /// Variable-length instructions are not handled here; this function 77 /// may be overloaded in the target code to do that. 78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 79 const MCAsmInfo &MAI) const { 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Save off the debug loc before erasing the instruction. 111 DebugLoc DL = Tail->getDebugLoc(); 112 113 // Remove all the dead instructions from the end of MBB. 114 MBB->erase(Tail, MBB->end()); 115 116 // If MBB isn't immediately before MBB, insert a branch to it. 117 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 118 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 119 MBB->addSuccessor(NewDest); 120 } 121 122 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 123 bool NewMI, unsigned Idx1, 124 unsigned Idx2) const { 125 const MCInstrDesc &MCID = MI.getDesc(); 126 bool HasDef = MCID.getNumDefs(); 127 if (HasDef && !MI.getOperand(0).isReg()) 128 // No idea how to commute this instruction. Target should implement its own. 129 return nullptr; 130 131 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 132 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 133 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 134 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 135 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 136 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 137 "This only knows how to commute register operands so far"); 138 139 unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; 140 unsigned Reg1 = MI.getOperand(Idx1).getReg(); 141 unsigned Reg2 = MI.getOperand(Idx2).getReg(); 142 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 143 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 144 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 145 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 146 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 147 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 148 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 149 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 150 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 151 // If destination is tied to either of the commuted source register, then 152 // it must be updated. 153 if (HasDef && Reg0 == Reg1 && 154 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 155 Reg2IsKill = false; 156 Reg0 = Reg2; 157 SubReg0 = SubReg2; 158 } else if (HasDef && Reg0 == Reg2 && 159 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 160 Reg1IsKill = false; 161 Reg0 = Reg1; 162 SubReg0 = SubReg1; 163 } 164 165 MachineInstr *CommutedMI = nullptr; 166 if (NewMI) { 167 // Create a new instruction. 168 MachineFunction &MF = *MI.getParent()->getParent(); 169 CommutedMI = MF.CloneMachineInstr(&MI); 170 } else { 171 CommutedMI = &MI; 172 } 173 174 if (HasDef) { 175 CommutedMI->getOperand(0).setReg(Reg0); 176 CommutedMI->getOperand(0).setSubReg(SubReg0); 177 } 178 CommutedMI->getOperand(Idx2).setReg(Reg1); 179 CommutedMI->getOperand(Idx1).setReg(Reg2); 180 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 181 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 182 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 183 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 184 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 185 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 186 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 187 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 188 return CommutedMI; 189 } 190 191 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 192 unsigned OpIdx1, 193 unsigned OpIdx2) const { 194 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 195 // any commutable operand, which is done in findCommutedOpIndices() method 196 // called below. 197 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 198 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 199 assert(MI.isCommutable() && 200 "Precondition violation: MI must be commutable."); 201 return nullptr; 202 } 203 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 204 } 205 206 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 207 unsigned &ResultIdx2, 208 unsigned CommutableOpIdx1, 209 unsigned CommutableOpIdx2) { 210 if (ResultIdx1 == CommuteAnyOperandIndex && 211 ResultIdx2 == CommuteAnyOperandIndex) { 212 ResultIdx1 = CommutableOpIdx1; 213 ResultIdx2 = CommutableOpIdx2; 214 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 215 if (ResultIdx2 == CommutableOpIdx1) 216 ResultIdx1 = CommutableOpIdx2; 217 else if (ResultIdx2 == CommutableOpIdx2) 218 ResultIdx1 = CommutableOpIdx1; 219 else 220 return false; 221 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 222 if (ResultIdx1 == CommutableOpIdx1) 223 ResultIdx2 = CommutableOpIdx2; 224 else if (ResultIdx1 == CommutableOpIdx2) 225 ResultIdx2 = CommutableOpIdx1; 226 else 227 return false; 228 } else 229 // Check that the result operand indices match the given commutable 230 // operand indices. 231 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 232 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 233 234 return true; 235 } 236 237 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, 238 unsigned &SrcOpIdx1, 239 unsigned &SrcOpIdx2) const { 240 assert(!MI.isBundle() && 241 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 242 243 const MCInstrDesc &MCID = MI.getDesc(); 244 if (!MCID.isCommutable()) 245 return false; 246 247 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 248 // is not true, then the target must implement this. 249 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 250 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 251 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 252 CommutableOpIdx1, CommutableOpIdx2)) 253 return false; 254 255 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 256 // No idea. 257 return false; 258 return true; 259 } 260 261 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 262 if (!MI.isTerminator()) return false; 263 264 // Conditional branch is a special case. 265 if (MI.isBranch() && !MI.isBarrier()) 266 return true; 267 if (!MI.isPredicable()) 268 return true; 269 return !isPredicated(MI); 270 } 271 272 bool TargetInstrInfo::PredicateInstruction( 273 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 274 bool MadeChange = false; 275 276 assert(!MI.isBundle() && 277 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 278 279 const MCInstrDesc &MCID = MI.getDesc(); 280 if (!MI.isPredicable()) 281 return false; 282 283 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 284 if (MCID.OpInfo[i].isPredicate()) { 285 MachineOperand &MO = MI.getOperand(i); 286 if (MO.isReg()) { 287 MO.setReg(Pred[j].getReg()); 288 MadeChange = true; 289 } else if (MO.isImm()) { 290 MO.setImm(Pred[j].getImm()); 291 MadeChange = true; 292 } else if (MO.isMBB()) { 293 MO.setMBB(Pred[j].getMBB()); 294 MadeChange = true; 295 } 296 ++j; 297 } 298 } 299 return MadeChange; 300 } 301 302 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI, 303 const MachineMemOperand *&MMO, 304 int &FrameIndex) const { 305 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 306 oe = MI.memoperands_end(); 307 o != oe; ++o) { 308 if ((*o)->isLoad()) { 309 if (const FixedStackPseudoSourceValue *Value = 310 dyn_cast_or_null<FixedStackPseudoSourceValue>( 311 (*o)->getPseudoValue())) { 312 FrameIndex = Value->getFrameIndex(); 313 MMO = *o; 314 return true; 315 } 316 } 317 } 318 return false; 319 } 320 321 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI, 322 const MachineMemOperand *&MMO, 323 int &FrameIndex) const { 324 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 325 oe = MI.memoperands_end(); 326 o != oe; ++o) { 327 if ((*o)->isStore()) { 328 if (const FixedStackPseudoSourceValue *Value = 329 dyn_cast_or_null<FixedStackPseudoSourceValue>( 330 (*o)->getPseudoValue())) { 331 FrameIndex = Value->getFrameIndex(); 332 MMO = *o; 333 return true; 334 } 335 } 336 } 337 return false; 338 } 339 340 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 341 unsigned SubIdx, unsigned &Size, 342 unsigned &Offset, 343 const MachineFunction &MF) const { 344 if (!SubIdx) { 345 Size = RC->getSize(); 346 Offset = 0; 347 return true; 348 } 349 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 350 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 351 // Convert bit size to byte size to be consistent with 352 // MCRegisterClass::getSize(). 353 if (BitSize % 8) 354 return false; 355 356 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 357 if (BitOffset < 0 || BitOffset % 8) 358 return false; 359 360 Size = BitSize /= 8; 361 Offset = (unsigned)BitOffset / 8; 362 363 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 364 365 if (!MF.getDataLayout().isLittleEndian()) { 366 Offset = RC->getSize() - (Offset + Size); 367 } 368 return true; 369 } 370 371 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 372 MachineBasicBlock::iterator I, 373 unsigned DestReg, unsigned SubIdx, 374 const MachineInstr &Orig, 375 const TargetRegisterInfo &TRI) const { 376 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 377 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 378 MBB.insert(I, MI); 379 } 380 381 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 382 const MachineInstr &MI1, 383 const MachineRegisterInfo *MRI) const { 384 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 385 } 386 387 MachineInstr *TargetInstrInfo::duplicate(MachineInstr &Orig, 388 MachineFunction &MF) const { 389 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 390 return MF.CloneMachineInstr(&Orig); 391 } 392 393 // If the COPY instruction in MI can be folded to a stack operation, return 394 // the register class to use. 395 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 396 unsigned FoldIdx) { 397 assert(MI.isCopy() && "MI must be a COPY instruction"); 398 if (MI.getNumOperands() != 2) 399 return nullptr; 400 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 401 402 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 403 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 404 405 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 406 return nullptr; 407 408 unsigned FoldReg = FoldOp.getReg(); 409 unsigned LiveReg = LiveOp.getReg(); 410 411 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 412 "Cannot fold physregs"); 413 414 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 415 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 416 417 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 418 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 419 420 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 421 return RC; 422 423 // FIXME: Allow folding when register classes are memory compatible. 424 return nullptr; 425 } 426 427 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 428 llvm_unreachable("Not a MachO target"); 429 } 430 431 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 432 ArrayRef<unsigned> Ops, int FrameIndex, 433 const TargetInstrInfo &TII) { 434 unsigned StartIdx = 0; 435 switch (MI.getOpcode()) { 436 case TargetOpcode::STACKMAP: 437 StartIdx = 2; // Skip ID, nShadowBytes. 438 break; 439 case TargetOpcode::PATCHPOINT: { 440 // For PatchPoint, the call args are not foldable. 441 PatchPointOpers opers(&MI); 442 StartIdx = opers.getVarIdx(); 443 break; 444 } 445 default: 446 llvm_unreachable("unexpected stackmap opcode"); 447 } 448 449 // Return false if any operands requested for folding are not foldable (not 450 // part of the stackmap's live values). 451 for (unsigned Op : Ops) { 452 if (Op < StartIdx) 453 return nullptr; 454 } 455 456 MachineInstr *NewMI = 457 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 458 MachineInstrBuilder MIB(MF, NewMI); 459 460 // No need to fold return, the meta data, and function arguments 461 for (unsigned i = 0; i < StartIdx; ++i) 462 MIB.addOperand(MI.getOperand(i)); 463 464 for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { 465 MachineOperand &MO = MI.getOperand(i); 466 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 467 unsigned SpillSize; 468 unsigned SpillOffset; 469 // Compute the spill slot size and offset. 470 const TargetRegisterClass *RC = 471 MF.getRegInfo().getRegClass(MO.getReg()); 472 bool Valid = 473 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 474 if (!Valid) 475 report_fatal_error("cannot spill patchpoint subregister operand"); 476 MIB.addImm(StackMaps::IndirectMemRefOp); 477 MIB.addImm(SpillSize); 478 MIB.addFrameIndex(FrameIndex); 479 MIB.addImm(SpillOffset); 480 } 481 else 482 MIB.addOperand(MO); 483 } 484 return NewMI; 485 } 486 487 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 488 /// slot into the specified machine instruction for the specified operand(s). 489 /// If this is possible, a new instruction is returned with the specified 490 /// operand folded, otherwise NULL is returned. The client is responsible for 491 /// removing the old instruction and adding the new one in the instruction 492 /// stream. 493 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 494 ArrayRef<unsigned> Ops, int FI, 495 LiveIntervals *LIS) const { 496 unsigned Flags = 0; 497 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 498 if (MI.getOperand(Ops[i]).isDef()) 499 Flags |= MachineMemOperand::MOStore; 500 else 501 Flags |= MachineMemOperand::MOLoad; 502 503 MachineBasicBlock *MBB = MI.getParent(); 504 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 505 MachineFunction &MF = *MBB->getParent(); 506 507 MachineInstr *NewMI = nullptr; 508 509 if (MI.getOpcode() == TargetOpcode::STACKMAP || 510 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 511 // Fold stackmap/patchpoint. 512 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 513 if (NewMI) 514 MBB->insert(MI, NewMI); 515 } else { 516 // Ask the target to do the actual folding. 517 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); 518 } 519 520 if (NewMI) { 521 NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 522 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 523 assert((!(Flags & MachineMemOperand::MOStore) || 524 NewMI->mayStore()) && 525 "Folded a def to a non-store!"); 526 assert((!(Flags & MachineMemOperand::MOLoad) || 527 NewMI->mayLoad()) && 528 "Folded a use to a non-load!"); 529 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 530 assert(MFI.getObjectOffset(FI) != -1); 531 MachineMemOperand *MMO = MF.getMachineMemOperand( 532 MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI), 533 MFI.getObjectAlignment(FI)); 534 NewMI->addMemOperand(MF, MMO); 535 536 return NewMI; 537 } 538 539 // Straight COPY may fold as load/store. 540 if (!MI.isCopy() || Ops.size() != 1) 541 return nullptr; 542 543 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 544 if (!RC) 545 return nullptr; 546 547 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 548 MachineBasicBlock::iterator Pos = MI; 549 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 550 551 if (Flags == MachineMemOperand::MOStore) 552 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 553 else 554 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 555 return --Pos; 556 } 557 558 bool TargetInstrInfo::hasReassociableOperands( 559 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 560 const MachineOperand &Op1 = Inst.getOperand(1); 561 const MachineOperand &Op2 = Inst.getOperand(2); 562 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 563 564 // We need virtual register definitions for the operands that we will 565 // reassociate. 566 MachineInstr *MI1 = nullptr; 567 MachineInstr *MI2 = nullptr; 568 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 569 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 570 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 571 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 572 573 // And they need to be in the trace (otherwise, they won't have a depth). 574 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 575 } 576 577 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 578 bool &Commuted) const { 579 const MachineBasicBlock *MBB = Inst.getParent(); 580 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 581 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 582 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 583 unsigned AssocOpcode = Inst.getOpcode(); 584 585 // If only one operand has the same opcode and it's the second source operand, 586 // the operands must be commuted. 587 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 588 if (Commuted) 589 std::swap(MI1, MI2); 590 591 // 1. The previous instruction must be the same type as Inst. 592 // 2. The previous instruction must have virtual register definitions for its 593 // operands in the same basic block as Inst. 594 // 3. The previous instruction's result must only be used by Inst. 595 return MI1->getOpcode() == AssocOpcode && 596 hasReassociableOperands(*MI1, MBB) && 597 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 598 } 599 600 // 1. The operation must be associative and commutative. 601 // 2. The instruction must have virtual register definitions for its 602 // operands in the same basic block. 603 // 3. The instruction must have a reassociable sibling. 604 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 605 bool &Commuted) const { 606 return isAssociativeAndCommutative(Inst) && 607 hasReassociableOperands(Inst, Inst.getParent()) && 608 hasReassociableSibling(Inst, Commuted); 609 } 610 611 // The concept of the reassociation pass is that these operations can benefit 612 // from this kind of transformation: 613 // 614 // A = ? op ? 615 // B = A op X (Prev) 616 // C = B op Y (Root) 617 // --> 618 // A = ? op ? 619 // B = X op Y 620 // C = A op B 621 // 622 // breaking the dependency between A and B, allowing them to be executed in 623 // parallel (or back-to-back in a pipeline) instead of depending on each other. 624 625 // FIXME: This has the potential to be expensive (compile time) while not 626 // improving the code at all. Some ways to limit the overhead: 627 // 1. Track successful transforms; bail out if hit rate gets too low. 628 // 2. Only enable at -O3 or some other non-default optimization level. 629 // 3. Pre-screen pattern candidates here: if an operand of the previous 630 // instruction is known to not increase the critical path, then don't match 631 // that pattern. 632 bool TargetInstrInfo::getMachineCombinerPatterns( 633 MachineInstr &Root, 634 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 635 bool Commute; 636 if (isReassociationCandidate(Root, Commute)) { 637 // We found a sequence of instructions that may be suitable for a 638 // reassociation of operands to increase ILP. Specify each commutation 639 // possibility for the Prev instruction in the sequence and let the 640 // machine combiner decide if changing the operands is worthwhile. 641 if (Commute) { 642 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 643 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 644 } else { 645 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 646 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 647 } 648 return true; 649 } 650 651 return false; 652 } 653 /// Return true when a code sequence can improve loop throughput. 654 bool 655 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 656 return false; 657 } 658 /// Attempt the reassociation transformation to reduce critical path length. 659 /// See the above comments before getMachineCombinerPatterns(). 660 void TargetInstrInfo::reassociateOps( 661 MachineInstr &Root, MachineInstr &Prev, 662 MachineCombinerPattern Pattern, 663 SmallVectorImpl<MachineInstr *> &InsInstrs, 664 SmallVectorImpl<MachineInstr *> &DelInstrs, 665 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 666 MachineFunction *MF = Root.getParent()->getParent(); 667 MachineRegisterInfo &MRI = MF->getRegInfo(); 668 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 669 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 670 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 671 672 // This array encodes the operand index for each parameter because the 673 // operands may be commuted. Each row corresponds to a pattern value, 674 // and each column specifies the index of A, B, X, Y. 675 unsigned OpIdx[4][4] = { 676 { 1, 1, 2, 2 }, 677 { 1, 2, 2, 1 }, 678 { 2, 1, 1, 2 }, 679 { 2, 2, 1, 1 } 680 }; 681 682 int Row; 683 switch (Pattern) { 684 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 685 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 686 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 687 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 688 default: llvm_unreachable("unexpected MachineCombinerPattern"); 689 } 690 691 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 692 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 693 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 694 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 695 MachineOperand &OpC = Root.getOperand(0); 696 697 unsigned RegA = OpA.getReg(); 698 unsigned RegB = OpB.getReg(); 699 unsigned RegX = OpX.getReg(); 700 unsigned RegY = OpY.getReg(); 701 unsigned RegC = OpC.getReg(); 702 703 if (TargetRegisterInfo::isVirtualRegister(RegA)) 704 MRI.constrainRegClass(RegA, RC); 705 if (TargetRegisterInfo::isVirtualRegister(RegB)) 706 MRI.constrainRegClass(RegB, RC); 707 if (TargetRegisterInfo::isVirtualRegister(RegX)) 708 MRI.constrainRegClass(RegX, RC); 709 if (TargetRegisterInfo::isVirtualRegister(RegY)) 710 MRI.constrainRegClass(RegY, RC); 711 if (TargetRegisterInfo::isVirtualRegister(RegC)) 712 MRI.constrainRegClass(RegC, RC); 713 714 // Create a new virtual register for the result of (X op Y) instead of 715 // recycling RegB because the MachineCombiner's computation of the critical 716 // path requires a new register definition rather than an existing one. 717 unsigned NewVR = MRI.createVirtualRegister(RC); 718 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 719 720 unsigned Opcode = Root.getOpcode(); 721 bool KillA = OpA.isKill(); 722 bool KillX = OpX.isKill(); 723 bool KillY = OpY.isKill(); 724 725 // Create new instructions for insertion. 726 MachineInstrBuilder MIB1 = 727 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 728 .addReg(RegX, getKillRegState(KillX)) 729 .addReg(RegY, getKillRegState(KillY)); 730 MachineInstrBuilder MIB2 = 731 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 732 .addReg(RegA, getKillRegState(KillA)) 733 .addReg(NewVR, getKillRegState(true)); 734 735 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 736 737 // Record new instructions for insertion and old instructions for deletion. 738 InsInstrs.push_back(MIB1); 739 InsInstrs.push_back(MIB2); 740 DelInstrs.push_back(&Prev); 741 DelInstrs.push_back(&Root); 742 } 743 744 void TargetInstrInfo::genAlternativeCodeSequence( 745 MachineInstr &Root, MachineCombinerPattern Pattern, 746 SmallVectorImpl<MachineInstr *> &InsInstrs, 747 SmallVectorImpl<MachineInstr *> &DelInstrs, 748 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 749 MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo(); 750 751 // Select the previous instruction in the sequence based on the input pattern. 752 MachineInstr *Prev = nullptr; 753 switch (Pattern) { 754 case MachineCombinerPattern::REASSOC_AX_BY: 755 case MachineCombinerPattern::REASSOC_XA_BY: 756 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 757 break; 758 case MachineCombinerPattern::REASSOC_AX_YB: 759 case MachineCombinerPattern::REASSOC_XA_YB: 760 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 761 break; 762 default: 763 break; 764 } 765 766 assert(Prev && "Unknown pattern for machine combiner"); 767 768 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 769 } 770 771 /// foldMemoryOperand - Same as the previous version except it allows folding 772 /// of any load and store from / to any address, not just from a specific 773 /// stack slot. 774 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 775 ArrayRef<unsigned> Ops, 776 MachineInstr &LoadMI, 777 LiveIntervals *LIS) const { 778 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 779 #ifndef NDEBUG 780 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 781 assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!"); 782 #endif 783 MachineBasicBlock &MBB = *MI.getParent(); 784 MachineFunction &MF = *MBB.getParent(); 785 786 // Ask the target to do the actual folding. 787 MachineInstr *NewMI = nullptr; 788 int FrameIndex = 0; 789 790 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 791 MI.getOpcode() == TargetOpcode::PATCHPOINT) && 792 isLoadFromStackSlot(LoadMI, FrameIndex)) { 793 // Fold stackmap/patchpoint. 794 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 795 if (NewMI) 796 NewMI = MBB.insert(MI, NewMI); 797 } else { 798 // Ask the target to do the actual folding. 799 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 800 } 801 802 if (!NewMI) return nullptr; 803 804 // Copy the memoperands from the load to the folded instruction. 805 if (MI.memoperands_empty()) { 806 NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end()); 807 } 808 else { 809 // Handle the rare case of folding multiple loads. 810 NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 811 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 812 E = LoadMI.memoperands_end(); 813 I != E; ++I) { 814 NewMI->addMemOperand(MF, *I); 815 } 816 } 817 return NewMI; 818 } 819 820 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 821 const MachineInstr &MI, AliasAnalysis *AA) const { 822 const MachineFunction &MF = *MI.getParent()->getParent(); 823 const MachineRegisterInfo &MRI = MF.getRegInfo(); 824 825 // Remat clients assume operand 0 is the defined register. 826 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 827 return false; 828 unsigned DefReg = MI.getOperand(0).getReg(); 829 830 // A sub-register definition can only be rematerialized if the instruction 831 // doesn't read the other parts of the register. Otherwise it is really a 832 // read-modify-write operation on the full virtual register which cannot be 833 // moved safely. 834 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 835 MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) 836 return false; 837 838 // A load from a fixed stack slot can be rematerialized. This may be 839 // redundant with subsequent checks, but it's target-independent, 840 // simple, and a common case. 841 int FrameIdx = 0; 842 if (isLoadFromStackSlot(MI, FrameIdx) && 843 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 844 return true; 845 846 // Avoid instructions obviously unsafe for remat. 847 if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects()) 848 return false; 849 850 // Don't remat inline asm. We have no idea how expensive it is 851 // even if it's side effect free. 852 if (MI.isInlineAsm()) 853 return false; 854 855 // Avoid instructions which load from potentially varying memory. 856 if (MI.mayLoad() && !MI.isInvariantLoad(AA)) 857 return false; 858 859 // If any of the registers accessed are non-constant, conservatively assume 860 // the instruction is not rematerializable. 861 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 862 const MachineOperand &MO = MI.getOperand(i); 863 if (!MO.isReg()) continue; 864 unsigned Reg = MO.getReg(); 865 if (Reg == 0) 866 continue; 867 868 // Check for a well-behaved physical register. 869 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 870 if (MO.isUse()) { 871 // If the physreg has no defs anywhere, it's just an ambient register 872 // and we can freely move its uses. Alternatively, if it's allocatable, 873 // it could get allocated to something with a def during allocation. 874 if (!MRI.isConstantPhysReg(Reg, MF)) 875 return false; 876 } else { 877 // A physreg def. We can't remat it. 878 return false; 879 } 880 continue; 881 } 882 883 // Only allow one virtual-register def. There may be multiple defs of the 884 // same virtual register, though. 885 if (MO.isDef() && Reg != DefReg) 886 return false; 887 888 // Don't allow any virtual-register uses. Rematting an instruction with 889 // virtual register uses would length the live ranges of the uses, which 890 // is not necessarily a good idea, certainly not "trivial". 891 if (MO.isUse()) 892 return false; 893 } 894 895 // Everything checked out. 896 return true; 897 } 898 899 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 900 const MachineFunction *MF = MI.getParent()->getParent(); 901 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 902 bool StackGrowsDown = 903 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 904 905 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 906 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 907 908 if (MI.getOpcode() != FrameSetupOpcode && 909 MI.getOpcode() != FrameDestroyOpcode) 910 return 0; 911 912 int SPAdj = MI.getOperand(0).getImm(); 913 SPAdj = TFI->alignSPAdjust(SPAdj); 914 915 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 916 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 917 SPAdj = -SPAdj; 918 919 return SPAdj; 920 } 921 922 /// isSchedulingBoundary - Test if the given instruction should be 923 /// considered a scheduling boundary. This primarily includes labels 924 /// and terminators. 925 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 926 const MachineBasicBlock *MBB, 927 const MachineFunction &MF) const { 928 // Terminators and labels can't be scheduled around. 929 if (MI.isTerminator() || MI.isPosition()) 930 return true; 931 932 // Don't attempt to schedule around any instruction that defines 933 // a stack-oriented pointer, as it's unlikely to be profitable. This 934 // saves compile time, because it doesn't require every single 935 // stack slot reference to depend on the instruction that does the 936 // modification. 937 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 938 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 939 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 940 } 941 942 // Provide a global flag for disabling the PreRA hazard recognizer that targets 943 // may choose to honor. 944 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 945 return !DisableHazardRecognizer; 946 } 947 948 // Default implementation of CreateTargetRAHazardRecognizer. 949 ScheduleHazardRecognizer *TargetInstrInfo:: 950 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 951 const ScheduleDAG *DAG) const { 952 // Dummy hazard recognizer allows all instructions to issue. 953 return new ScheduleHazardRecognizer(); 954 } 955 956 // Default implementation of CreateTargetMIHazardRecognizer. 957 ScheduleHazardRecognizer *TargetInstrInfo:: 958 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 959 const ScheduleDAG *DAG) const { 960 return (ScheduleHazardRecognizer *) 961 new ScoreboardHazardRecognizer(II, DAG, "misched"); 962 } 963 964 // Default implementation of CreateTargetPostRAHazardRecognizer. 965 ScheduleHazardRecognizer *TargetInstrInfo:: 966 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 967 const ScheduleDAG *DAG) const { 968 return (ScheduleHazardRecognizer *) 969 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 970 } 971 972 //===----------------------------------------------------------------------===// 973 // SelectionDAG latency interface. 974 //===----------------------------------------------------------------------===// 975 976 int 977 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 978 SDNode *DefNode, unsigned DefIdx, 979 SDNode *UseNode, unsigned UseIdx) const { 980 if (!ItinData || ItinData->isEmpty()) 981 return -1; 982 983 if (!DefNode->isMachineOpcode()) 984 return -1; 985 986 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 987 if (!UseNode->isMachineOpcode()) 988 return ItinData->getOperandCycle(DefClass, DefIdx); 989 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 990 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 991 } 992 993 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 994 SDNode *N) const { 995 if (!ItinData || ItinData->isEmpty()) 996 return 1; 997 998 if (!N->isMachineOpcode()) 999 return 1; 1000 1001 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1002 } 1003 1004 //===----------------------------------------------------------------------===// 1005 // MachineInstr latency interface. 1006 //===----------------------------------------------------------------------===// 1007 1008 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1009 const MachineInstr &MI) const { 1010 if (!ItinData || ItinData->isEmpty()) 1011 return 1; 1012 1013 unsigned Class = MI.getDesc().getSchedClass(); 1014 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1015 if (UOps >= 0) 1016 return UOps; 1017 1018 // The # of u-ops is dynamically determined. The specific target should 1019 // override this function to return the right number. 1020 return 1; 1021 } 1022 1023 /// Return the default expected latency for a def based on it's opcode. 1024 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1025 const MachineInstr &DefMI) const { 1026 if (DefMI.isTransient()) 1027 return 0; 1028 if (DefMI.mayLoad()) 1029 return SchedModel.LoadLatency; 1030 if (isHighLatencyDef(DefMI.getOpcode())) 1031 return SchedModel.HighLatency; 1032 return 1; 1033 } 1034 1035 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1036 return 0; 1037 } 1038 1039 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1040 const MachineInstr &MI, 1041 unsigned *PredCost) const { 1042 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1043 // still have a MinLatency property, which getStageLatency checks. 1044 if (!ItinData) 1045 return MI.mayLoad() ? 2 : 1; 1046 1047 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1048 } 1049 1050 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1051 const MachineInstr &DefMI, 1052 unsigned DefIdx) const { 1053 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1054 if (!ItinData || ItinData->isEmpty()) 1055 return false; 1056 1057 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1058 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1059 return (DefCycle != -1 && DefCycle <= 1); 1060 } 1061 1062 /// Both DefMI and UseMI must be valid. By default, call directly to the 1063 /// itinerary. This may be overriden by the target. 1064 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1065 const MachineInstr &DefMI, 1066 unsigned DefIdx, 1067 const MachineInstr &UseMI, 1068 unsigned UseIdx) const { 1069 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1070 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1071 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1072 } 1073 1074 /// If we can determine the operand latency from the def only, without itinerary 1075 /// lookup, do so. Otherwise return -1. 1076 int TargetInstrInfo::computeDefOperandLatency( 1077 const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { 1078 1079 // Let the target hook getInstrLatency handle missing itineraries. 1080 if (!ItinData) 1081 return getInstrLatency(ItinData, DefMI); 1082 1083 if(ItinData->isEmpty()) 1084 return defaultDefLatency(ItinData->SchedModel, DefMI); 1085 1086 // ...operand lookup required 1087 return -1; 1088 } 1089 1090 unsigned TargetInstrInfo::computeOperandLatency( 1091 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 1092 unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { 1093 1094 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 1095 if (DefLatency >= 0) 1096 return DefLatency; 1097 1098 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 1099 1100 int OperLatency = 0; 1101 if (UseMI) 1102 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, *UseMI, UseIdx); 1103 else { 1104 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1105 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 1106 } 1107 if (OperLatency >= 0) 1108 return OperLatency; 1109 1110 // No operand latency was found. 1111 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 1112 1113 // Expected latency is the max of the stage latency and itinerary props. 1114 InstrLatency = std::max(InstrLatency, 1115 defaultDefLatency(ItinData->SchedModel, DefMI)); 1116 return InstrLatency; 1117 } 1118 1119 bool TargetInstrInfo::getRegSequenceInputs( 1120 const MachineInstr &MI, unsigned DefIdx, 1121 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1122 assert((MI.isRegSequence() || 1123 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1124 1125 if (!MI.isRegSequence()) 1126 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1127 1128 // We are looking at: 1129 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1130 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1131 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1132 OpIdx += 2) { 1133 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1134 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1135 assert(MOSubIdx.isImm() && 1136 "One of the subindex of the reg_sequence is not an immediate"); 1137 // Record Reg:SubReg, SubIdx. 1138 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1139 (unsigned)MOSubIdx.getImm())); 1140 } 1141 return true; 1142 } 1143 1144 bool TargetInstrInfo::getExtractSubregInputs( 1145 const MachineInstr &MI, unsigned DefIdx, 1146 RegSubRegPairAndIdx &InputReg) const { 1147 assert((MI.isExtractSubreg() || 1148 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1149 1150 if (!MI.isExtractSubreg()) 1151 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1152 1153 // We are looking at: 1154 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1155 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1156 const MachineOperand &MOReg = MI.getOperand(1); 1157 const MachineOperand &MOSubIdx = MI.getOperand(2); 1158 assert(MOSubIdx.isImm() && 1159 "The subindex of the extract_subreg is not an immediate"); 1160 1161 InputReg.Reg = MOReg.getReg(); 1162 InputReg.SubReg = MOReg.getSubReg(); 1163 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1164 return true; 1165 } 1166 1167 bool TargetInstrInfo::getInsertSubregInputs( 1168 const MachineInstr &MI, unsigned DefIdx, 1169 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1170 assert((MI.isInsertSubreg() || 1171 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1172 1173 if (!MI.isInsertSubreg()) 1174 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1175 1176 // We are looking at: 1177 // Def = INSERT_SEQUENCE v0, v1, sub0. 1178 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1179 const MachineOperand &MOBaseReg = MI.getOperand(1); 1180 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1181 const MachineOperand &MOSubIdx = MI.getOperand(3); 1182 assert(MOSubIdx.isImm() && 1183 "One of the subindex of the reg_sequence is not an immediate"); 1184 BaseReg.Reg = MOBaseReg.getReg(); 1185 BaseReg.SubReg = MOBaseReg.getSubReg(); 1186 1187 InsertedReg.Reg = MOInsertedReg.getReg(); 1188 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1189 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1190 return true; 1191 } 1192