1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned Length = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0)
86       atInsnStart = true;
87     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
88       Length += MAI.getMaxInstLength();
89       atInsnStart = false;
90     }
91     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
92                                strlen(MAI.getCommentString())) == 0)
93       atInsnStart = false;
94   }
95 
96   return Length;
97 }
98 
99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
100 /// after it, replacing it with an unconditional branch to NewDest.
101 void
102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
103                                          MachineBasicBlock *NewDest) const {
104   MachineBasicBlock *MBB = Tail->getParent();
105 
106   // Remove all the old successors of MBB from the CFG.
107   while (!MBB->succ_empty())
108     MBB->removeSuccessor(MBB->succ_begin());
109 
110   // Save off the debug loc before erasing the instruction.
111   DebugLoc DL = Tail->getDebugLoc();
112 
113   // Remove all the dead instructions from the end of MBB.
114   MBB->erase(Tail, MBB->end());
115 
116   // If MBB isn't immediately before MBB, insert a branch to it.
117   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
118     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
119   MBB->addSuccessor(NewDest);
120 }
121 
122 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
123                                                       bool NewMI, unsigned Idx1,
124                                                       unsigned Idx2) const {
125   const MCInstrDesc &MCID = MI.getDesc();
126   bool HasDef = MCID.getNumDefs();
127   if (HasDef && !MI.getOperand(0).isReg())
128     // No idea how to commute this instruction. Target should implement its own.
129     return nullptr;
130 
131   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
132   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
133   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
134          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
135          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
136   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
137          "This only knows how to commute register operands so far");
138 
139   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
140   unsigned Reg1 = MI.getOperand(Idx1).getReg();
141   unsigned Reg2 = MI.getOperand(Idx2).getReg();
142   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
143   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
144   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
145   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
146   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
147   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
148   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
149   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
150   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
151   // If destination is tied to either of the commuted source register, then
152   // it must be updated.
153   if (HasDef && Reg0 == Reg1 &&
154       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
155     Reg2IsKill = false;
156     Reg0 = Reg2;
157     SubReg0 = SubReg2;
158   } else if (HasDef && Reg0 == Reg2 &&
159              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
160     Reg1IsKill = false;
161     Reg0 = Reg1;
162     SubReg0 = SubReg1;
163   }
164 
165   MachineInstr *CommutedMI = nullptr;
166   if (NewMI) {
167     // Create a new instruction.
168     MachineFunction &MF = *MI.getParent()->getParent();
169     CommutedMI = MF.CloneMachineInstr(&MI);
170   } else {
171     CommutedMI = &MI;
172   }
173 
174   if (HasDef) {
175     CommutedMI->getOperand(0).setReg(Reg0);
176     CommutedMI->getOperand(0).setSubReg(SubReg0);
177   }
178   CommutedMI->getOperand(Idx2).setReg(Reg1);
179   CommutedMI->getOperand(Idx1).setReg(Reg2);
180   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
181   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
182   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
183   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
184   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
185   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
186   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
187   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
188   return CommutedMI;
189 }
190 
191 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
192                                                   unsigned OpIdx1,
193                                                   unsigned OpIdx2) const {
194   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
195   // any commutable operand, which is done in findCommutedOpIndices() method
196   // called below.
197   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
198       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
199     assert(MI.isCommutable() &&
200            "Precondition violation: MI must be commutable.");
201     return nullptr;
202   }
203   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
204 }
205 
206 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
207                                            unsigned &ResultIdx2,
208                                            unsigned CommutableOpIdx1,
209                                            unsigned CommutableOpIdx2) {
210   if (ResultIdx1 == CommuteAnyOperandIndex &&
211       ResultIdx2 == CommuteAnyOperandIndex) {
212     ResultIdx1 = CommutableOpIdx1;
213     ResultIdx2 = CommutableOpIdx2;
214   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
215     if (ResultIdx2 == CommutableOpIdx1)
216       ResultIdx1 = CommutableOpIdx2;
217     else if (ResultIdx2 == CommutableOpIdx2)
218       ResultIdx1 = CommutableOpIdx1;
219     else
220       return false;
221   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
222     if (ResultIdx1 == CommutableOpIdx1)
223       ResultIdx2 = CommutableOpIdx2;
224     else if (ResultIdx1 == CommutableOpIdx2)
225       ResultIdx2 = CommutableOpIdx1;
226     else
227       return false;
228   } else
229     // Check that the result operand indices match the given commutable
230     // operand indices.
231     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
232            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
233 
234   return true;
235 }
236 
237 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
238                                             unsigned &SrcOpIdx1,
239                                             unsigned &SrcOpIdx2) const {
240   assert(!MI.isBundle() &&
241          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
242 
243   const MCInstrDesc &MCID = MI.getDesc();
244   if (!MCID.isCommutable())
245     return false;
246 
247   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
248   // is not true, then the target must implement this.
249   unsigned CommutableOpIdx1 = MCID.getNumDefs();
250   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
251   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
252                             CommutableOpIdx1, CommutableOpIdx2))
253     return false;
254 
255   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
256     // No idea.
257     return false;
258   return true;
259 }
260 
261 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
262   if (!MI.isTerminator()) return false;
263 
264   // Conditional branch is a special case.
265   if (MI.isBranch() && !MI.isBarrier())
266     return true;
267   if (!MI.isPredicable())
268     return true;
269   return !isPredicated(MI);
270 }
271 
272 bool TargetInstrInfo::PredicateInstruction(
273     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
274   bool MadeChange = false;
275 
276   assert(!MI.isBundle() &&
277          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
278 
279   const MCInstrDesc &MCID = MI.getDesc();
280   if (!MI.isPredicable())
281     return false;
282 
283   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
284     if (MCID.OpInfo[i].isPredicate()) {
285       MachineOperand &MO = MI.getOperand(i);
286       if (MO.isReg()) {
287         MO.setReg(Pred[j].getReg());
288         MadeChange = true;
289       } else if (MO.isImm()) {
290         MO.setImm(Pred[j].getImm());
291         MadeChange = true;
292       } else if (MO.isMBB()) {
293         MO.setMBB(Pred[j].getMBB());
294         MadeChange = true;
295       }
296       ++j;
297     }
298   }
299   return MadeChange;
300 }
301 
302 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
303                                            const MachineMemOperand *&MMO,
304                                            int &FrameIndex) const {
305   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
306                                   oe = MI.memoperands_end();
307        o != oe; ++o) {
308     if ((*o)->isLoad()) {
309       if (const FixedStackPseudoSourceValue *Value =
310           dyn_cast_or_null<FixedStackPseudoSourceValue>(
311               (*o)->getPseudoValue())) {
312         FrameIndex = Value->getFrameIndex();
313         MMO = *o;
314         return true;
315       }
316     }
317   }
318   return false;
319 }
320 
321 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
322                                           const MachineMemOperand *&MMO,
323                                           int &FrameIndex) const {
324   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
325                                   oe = MI.memoperands_end();
326        o != oe; ++o) {
327     if ((*o)->isStore()) {
328       if (const FixedStackPseudoSourceValue *Value =
329           dyn_cast_or_null<FixedStackPseudoSourceValue>(
330               (*o)->getPseudoValue())) {
331         FrameIndex = Value->getFrameIndex();
332         MMO = *o;
333         return true;
334       }
335     }
336   }
337   return false;
338 }
339 
340 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
341                                         unsigned SubIdx, unsigned &Size,
342                                         unsigned &Offset,
343                                         const MachineFunction &MF) const {
344   if (!SubIdx) {
345     Size = RC->getSize();
346     Offset = 0;
347     return true;
348   }
349   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
350   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
351   // Convert bit size to byte size to be consistent with
352   // MCRegisterClass::getSize().
353   if (BitSize % 8)
354     return false;
355 
356   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
357   if (BitOffset < 0 || BitOffset % 8)
358     return false;
359 
360   Size = BitSize /= 8;
361   Offset = (unsigned)BitOffset / 8;
362 
363   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
364 
365   if (!MF.getDataLayout().isLittleEndian()) {
366     Offset = RC->getSize() - (Offset + Size);
367   }
368   return true;
369 }
370 
371 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
372                                     MachineBasicBlock::iterator I,
373                                     unsigned DestReg, unsigned SubIdx,
374                                     const MachineInstr &Orig,
375                                     const TargetRegisterInfo &TRI) const {
376   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
377   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
378   MBB.insert(I, MI);
379 }
380 
381 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
382                                        const MachineInstr &MI1,
383                                        const MachineRegisterInfo *MRI) const {
384   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
385 }
386 
387 MachineInstr *TargetInstrInfo::duplicate(MachineInstr &Orig,
388                                          MachineFunction &MF) const {
389   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
390   return MF.CloneMachineInstr(&Orig);
391 }
392 
393 // If the COPY instruction in MI can be folded to a stack operation, return
394 // the register class to use.
395 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
396                                               unsigned FoldIdx) {
397   assert(MI.isCopy() && "MI must be a COPY instruction");
398   if (MI.getNumOperands() != 2)
399     return nullptr;
400   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
401 
402   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
403   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
404 
405   if (FoldOp.getSubReg() || LiveOp.getSubReg())
406     return nullptr;
407 
408   unsigned FoldReg = FoldOp.getReg();
409   unsigned LiveReg = LiveOp.getReg();
410 
411   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
412          "Cannot fold physregs");
413 
414   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
415   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
416 
417   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
418     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
419 
420   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
421     return RC;
422 
423   // FIXME: Allow folding when register classes are memory compatible.
424   return nullptr;
425 }
426 
427 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
428   llvm_unreachable("Not a MachO target");
429 }
430 
431 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
432                                     ArrayRef<unsigned> Ops, int FrameIndex,
433                                     const TargetInstrInfo &TII) {
434   unsigned StartIdx = 0;
435   switch (MI.getOpcode()) {
436   case TargetOpcode::STACKMAP:
437     StartIdx = 2; // Skip ID, nShadowBytes.
438     break;
439   case TargetOpcode::PATCHPOINT: {
440     // For PatchPoint, the call args are not foldable.
441     PatchPointOpers opers(&MI);
442     StartIdx = opers.getVarIdx();
443     break;
444   }
445   default:
446     llvm_unreachable("unexpected stackmap opcode");
447   }
448 
449   // Return false if any operands requested for folding are not foldable (not
450   // part of the stackmap's live values).
451   for (unsigned Op : Ops) {
452     if (Op < StartIdx)
453       return nullptr;
454   }
455 
456   MachineInstr *NewMI =
457       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
458   MachineInstrBuilder MIB(MF, NewMI);
459 
460   // No need to fold return, the meta data, and function arguments
461   for (unsigned i = 0; i < StartIdx; ++i)
462     MIB.addOperand(MI.getOperand(i));
463 
464   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
465     MachineOperand &MO = MI.getOperand(i);
466     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
467       unsigned SpillSize;
468       unsigned SpillOffset;
469       // Compute the spill slot size and offset.
470       const TargetRegisterClass *RC =
471         MF.getRegInfo().getRegClass(MO.getReg());
472       bool Valid =
473           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
474       if (!Valid)
475         report_fatal_error("cannot spill patchpoint subregister operand");
476       MIB.addImm(StackMaps::IndirectMemRefOp);
477       MIB.addImm(SpillSize);
478       MIB.addFrameIndex(FrameIndex);
479       MIB.addImm(SpillOffset);
480     }
481     else
482       MIB.addOperand(MO);
483   }
484   return NewMI;
485 }
486 
487 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
488 /// slot into the specified machine instruction for the specified operand(s).
489 /// If this is possible, a new instruction is returned with the specified
490 /// operand folded, otherwise NULL is returned. The client is responsible for
491 /// removing the old instruction and adding the new one in the instruction
492 /// stream.
493 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
494                                                  ArrayRef<unsigned> Ops, int FI,
495                                                  LiveIntervals *LIS) const {
496   unsigned Flags = 0;
497   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
498     if (MI.getOperand(Ops[i]).isDef())
499       Flags |= MachineMemOperand::MOStore;
500     else
501       Flags |= MachineMemOperand::MOLoad;
502 
503   MachineBasicBlock *MBB = MI.getParent();
504   assert(MBB && "foldMemoryOperand needs an inserted instruction");
505   MachineFunction &MF = *MBB->getParent();
506 
507   MachineInstr *NewMI = nullptr;
508 
509   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
510       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
511     // Fold stackmap/patchpoint.
512     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
513     if (NewMI)
514       MBB->insert(MI, NewMI);
515   } else {
516     // Ask the target to do the actual folding.
517     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
518   }
519 
520   if (NewMI) {
521     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
522     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
523     assert((!(Flags & MachineMemOperand::MOStore) ||
524             NewMI->mayStore()) &&
525            "Folded a def to a non-store!");
526     assert((!(Flags & MachineMemOperand::MOLoad) ||
527             NewMI->mayLoad()) &&
528            "Folded a use to a non-load!");
529     const MachineFrameInfo &MFI = *MF.getFrameInfo();
530     assert(MFI.getObjectOffset(FI) != -1);
531     MachineMemOperand *MMO = MF.getMachineMemOperand(
532         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
533         MFI.getObjectAlignment(FI));
534     NewMI->addMemOperand(MF, MMO);
535 
536     return NewMI;
537   }
538 
539   // Straight COPY may fold as load/store.
540   if (!MI.isCopy() || Ops.size() != 1)
541     return nullptr;
542 
543   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
544   if (!RC)
545     return nullptr;
546 
547   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
548   MachineBasicBlock::iterator Pos = MI;
549   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
550 
551   if (Flags == MachineMemOperand::MOStore)
552     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
553   else
554     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
555   return --Pos;
556 }
557 
558 bool TargetInstrInfo::hasReassociableOperands(
559     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
560   const MachineOperand &Op1 = Inst.getOperand(1);
561   const MachineOperand &Op2 = Inst.getOperand(2);
562   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
563 
564   // We need virtual register definitions for the operands that we will
565   // reassociate.
566   MachineInstr *MI1 = nullptr;
567   MachineInstr *MI2 = nullptr;
568   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
569     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
570   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
571     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
572 
573   // And they need to be in the trace (otherwise, they won't have a depth).
574   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
575 }
576 
577 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
578                                              bool &Commuted) const {
579   const MachineBasicBlock *MBB = Inst.getParent();
580   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
581   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
582   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
583   unsigned AssocOpcode = Inst.getOpcode();
584 
585   // If only one operand has the same opcode and it's the second source operand,
586   // the operands must be commuted.
587   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
588   if (Commuted)
589     std::swap(MI1, MI2);
590 
591   // 1. The previous instruction must be the same type as Inst.
592   // 2. The previous instruction must have virtual register definitions for its
593   //    operands in the same basic block as Inst.
594   // 3. The previous instruction's result must only be used by Inst.
595   return MI1->getOpcode() == AssocOpcode &&
596          hasReassociableOperands(*MI1, MBB) &&
597          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
598 }
599 
600 // 1. The operation must be associative and commutative.
601 // 2. The instruction must have virtual register definitions for its
602 //    operands in the same basic block.
603 // 3. The instruction must have a reassociable sibling.
604 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
605                                                bool &Commuted) const {
606   return isAssociativeAndCommutative(Inst) &&
607          hasReassociableOperands(Inst, Inst.getParent()) &&
608          hasReassociableSibling(Inst, Commuted);
609 }
610 
611 // The concept of the reassociation pass is that these operations can benefit
612 // from this kind of transformation:
613 //
614 // A = ? op ?
615 // B = A op X (Prev)
616 // C = B op Y (Root)
617 // -->
618 // A = ? op ?
619 // B = X op Y
620 // C = A op B
621 //
622 // breaking the dependency between A and B, allowing them to be executed in
623 // parallel (or back-to-back in a pipeline) instead of depending on each other.
624 
625 // FIXME: This has the potential to be expensive (compile time) while not
626 // improving the code at all. Some ways to limit the overhead:
627 // 1. Track successful transforms; bail out if hit rate gets too low.
628 // 2. Only enable at -O3 or some other non-default optimization level.
629 // 3. Pre-screen pattern candidates here: if an operand of the previous
630 //    instruction is known to not increase the critical path, then don't match
631 //    that pattern.
632 bool TargetInstrInfo::getMachineCombinerPatterns(
633     MachineInstr &Root,
634     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
635   bool Commute;
636   if (isReassociationCandidate(Root, Commute)) {
637     // We found a sequence of instructions that may be suitable for a
638     // reassociation of operands to increase ILP. Specify each commutation
639     // possibility for the Prev instruction in the sequence and let the
640     // machine combiner decide if changing the operands is worthwhile.
641     if (Commute) {
642       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
643       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
644     } else {
645       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
646       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
647     }
648     return true;
649   }
650 
651   return false;
652 }
653 /// Return true when a code sequence can improve loop throughput.
654 bool
655 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
656   return false;
657 }
658 /// Attempt the reassociation transformation to reduce critical path length.
659 /// See the above comments before getMachineCombinerPatterns().
660 void TargetInstrInfo::reassociateOps(
661     MachineInstr &Root, MachineInstr &Prev,
662     MachineCombinerPattern Pattern,
663     SmallVectorImpl<MachineInstr *> &InsInstrs,
664     SmallVectorImpl<MachineInstr *> &DelInstrs,
665     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
666   MachineFunction *MF = Root.getParent()->getParent();
667   MachineRegisterInfo &MRI = MF->getRegInfo();
668   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
669   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
670   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
671 
672   // This array encodes the operand index for each parameter because the
673   // operands may be commuted. Each row corresponds to a pattern value,
674   // and each column specifies the index of A, B, X, Y.
675   unsigned OpIdx[4][4] = {
676     { 1, 1, 2, 2 },
677     { 1, 2, 2, 1 },
678     { 2, 1, 1, 2 },
679     { 2, 2, 1, 1 }
680   };
681 
682   int Row;
683   switch (Pattern) {
684   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
685   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
686   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
687   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
688   default: llvm_unreachable("unexpected MachineCombinerPattern");
689   }
690 
691   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
692   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
693   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
694   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
695   MachineOperand &OpC = Root.getOperand(0);
696 
697   unsigned RegA = OpA.getReg();
698   unsigned RegB = OpB.getReg();
699   unsigned RegX = OpX.getReg();
700   unsigned RegY = OpY.getReg();
701   unsigned RegC = OpC.getReg();
702 
703   if (TargetRegisterInfo::isVirtualRegister(RegA))
704     MRI.constrainRegClass(RegA, RC);
705   if (TargetRegisterInfo::isVirtualRegister(RegB))
706     MRI.constrainRegClass(RegB, RC);
707   if (TargetRegisterInfo::isVirtualRegister(RegX))
708     MRI.constrainRegClass(RegX, RC);
709   if (TargetRegisterInfo::isVirtualRegister(RegY))
710     MRI.constrainRegClass(RegY, RC);
711   if (TargetRegisterInfo::isVirtualRegister(RegC))
712     MRI.constrainRegClass(RegC, RC);
713 
714   // Create a new virtual register for the result of (X op Y) instead of
715   // recycling RegB because the MachineCombiner's computation of the critical
716   // path requires a new register definition rather than an existing one.
717   unsigned NewVR = MRI.createVirtualRegister(RC);
718   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
719 
720   unsigned Opcode = Root.getOpcode();
721   bool KillA = OpA.isKill();
722   bool KillX = OpX.isKill();
723   bool KillY = OpY.isKill();
724 
725   // Create new instructions for insertion.
726   MachineInstrBuilder MIB1 =
727       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
728           .addReg(RegX, getKillRegState(KillX))
729           .addReg(RegY, getKillRegState(KillY));
730   MachineInstrBuilder MIB2 =
731       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
732           .addReg(RegA, getKillRegState(KillA))
733           .addReg(NewVR, getKillRegState(true));
734 
735   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
736 
737   // Record new instructions for insertion and old instructions for deletion.
738   InsInstrs.push_back(MIB1);
739   InsInstrs.push_back(MIB2);
740   DelInstrs.push_back(&Prev);
741   DelInstrs.push_back(&Root);
742 }
743 
744 void TargetInstrInfo::genAlternativeCodeSequence(
745     MachineInstr &Root, MachineCombinerPattern Pattern,
746     SmallVectorImpl<MachineInstr *> &InsInstrs,
747     SmallVectorImpl<MachineInstr *> &DelInstrs,
748     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
749   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
750 
751   // Select the previous instruction in the sequence based on the input pattern.
752   MachineInstr *Prev = nullptr;
753   switch (Pattern) {
754   case MachineCombinerPattern::REASSOC_AX_BY:
755   case MachineCombinerPattern::REASSOC_XA_BY:
756     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
757     break;
758   case MachineCombinerPattern::REASSOC_AX_YB:
759   case MachineCombinerPattern::REASSOC_XA_YB:
760     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
761     break;
762   default:
763     break;
764   }
765 
766   assert(Prev && "Unknown pattern for machine combiner");
767 
768   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
769 }
770 
771 /// foldMemoryOperand - Same as the previous version except it allows folding
772 /// of any load and store from / to any address, not just from a specific
773 /// stack slot.
774 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
775                                                  ArrayRef<unsigned> Ops,
776                                                  MachineInstr &LoadMI,
777                                                  LiveIntervals *LIS) const {
778   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
779 #ifndef NDEBUG
780   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
781     assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!");
782 #endif
783   MachineBasicBlock &MBB = *MI.getParent();
784   MachineFunction &MF = *MBB.getParent();
785 
786   // Ask the target to do the actual folding.
787   MachineInstr *NewMI = nullptr;
788   int FrameIndex = 0;
789 
790   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
791        MI.getOpcode() == TargetOpcode::PATCHPOINT) &&
792       isLoadFromStackSlot(LoadMI, FrameIndex)) {
793     // Fold stackmap/patchpoint.
794     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
795     if (NewMI)
796       NewMI = MBB.insert(MI, NewMI);
797   } else {
798     // Ask the target to do the actual folding.
799     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
800   }
801 
802   if (!NewMI) return nullptr;
803 
804   // Copy the memoperands from the load to the folded instruction.
805   if (MI.memoperands_empty()) {
806     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
807   }
808   else {
809     // Handle the rare case of folding multiple loads.
810     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
811     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
812                                     E = LoadMI.memoperands_end();
813          I != E; ++I) {
814       NewMI->addMemOperand(MF, *I);
815     }
816   }
817   return NewMI;
818 }
819 
820 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
821     const MachineInstr &MI, AliasAnalysis *AA) const {
822   const MachineFunction &MF = *MI.getParent()->getParent();
823   const MachineRegisterInfo &MRI = MF.getRegInfo();
824 
825   // Remat clients assume operand 0 is the defined register.
826   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
827     return false;
828   unsigned DefReg = MI.getOperand(0).getReg();
829 
830   // A sub-register definition can only be rematerialized if the instruction
831   // doesn't read the other parts of the register.  Otherwise it is really a
832   // read-modify-write operation on the full virtual register which cannot be
833   // moved safely.
834   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
835       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
836     return false;
837 
838   // A load from a fixed stack slot can be rematerialized. This may be
839   // redundant with subsequent checks, but it's target-independent,
840   // simple, and a common case.
841   int FrameIdx = 0;
842   if (isLoadFromStackSlot(MI, FrameIdx) &&
843       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
844     return true;
845 
846   // Avoid instructions obviously unsafe for remat.
847   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
848     return false;
849 
850   // Don't remat inline asm. We have no idea how expensive it is
851   // even if it's side effect free.
852   if (MI.isInlineAsm())
853     return false;
854 
855   // Avoid instructions which load from potentially varying memory.
856   if (MI.mayLoad() && !MI.isInvariantLoad(AA))
857     return false;
858 
859   // If any of the registers accessed are non-constant, conservatively assume
860   // the instruction is not rematerializable.
861   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
862     const MachineOperand &MO = MI.getOperand(i);
863     if (!MO.isReg()) continue;
864     unsigned Reg = MO.getReg();
865     if (Reg == 0)
866       continue;
867 
868     // Check for a well-behaved physical register.
869     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
870       if (MO.isUse()) {
871         // If the physreg has no defs anywhere, it's just an ambient register
872         // and we can freely move its uses. Alternatively, if it's allocatable,
873         // it could get allocated to something with a def during allocation.
874         if (!MRI.isConstantPhysReg(Reg, MF))
875           return false;
876       } else {
877         // A physreg def. We can't remat it.
878         return false;
879       }
880       continue;
881     }
882 
883     // Only allow one virtual-register def.  There may be multiple defs of the
884     // same virtual register, though.
885     if (MO.isDef() && Reg != DefReg)
886       return false;
887 
888     // Don't allow any virtual-register uses. Rematting an instruction with
889     // virtual register uses would length the live ranges of the uses, which
890     // is not necessarily a good idea, certainly not "trivial".
891     if (MO.isUse())
892       return false;
893   }
894 
895   // Everything checked out.
896   return true;
897 }
898 
899 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
900   const MachineFunction *MF = MI.getParent()->getParent();
901   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
902   bool StackGrowsDown =
903     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
904 
905   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
906   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
907 
908   if (MI.getOpcode() != FrameSetupOpcode &&
909       MI.getOpcode() != FrameDestroyOpcode)
910     return 0;
911 
912   int SPAdj = MI.getOperand(0).getImm();
913   SPAdj = TFI->alignSPAdjust(SPAdj);
914 
915   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
916       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
917     SPAdj = -SPAdj;
918 
919   return SPAdj;
920 }
921 
922 /// isSchedulingBoundary - Test if the given instruction should be
923 /// considered a scheduling boundary. This primarily includes labels
924 /// and terminators.
925 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
926                                            const MachineBasicBlock *MBB,
927                                            const MachineFunction &MF) const {
928   // Terminators and labels can't be scheduled around.
929   if (MI.isTerminator() || MI.isPosition())
930     return true;
931 
932   // Don't attempt to schedule around any instruction that defines
933   // a stack-oriented pointer, as it's unlikely to be profitable. This
934   // saves compile time, because it doesn't require every single
935   // stack slot reference to depend on the instruction that does the
936   // modification.
937   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
938   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
939   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
940 }
941 
942 // Provide a global flag for disabling the PreRA hazard recognizer that targets
943 // may choose to honor.
944 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
945   return !DisableHazardRecognizer;
946 }
947 
948 // Default implementation of CreateTargetRAHazardRecognizer.
949 ScheduleHazardRecognizer *TargetInstrInfo::
950 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
951                              const ScheduleDAG *DAG) const {
952   // Dummy hazard recognizer allows all instructions to issue.
953   return new ScheduleHazardRecognizer();
954 }
955 
956 // Default implementation of CreateTargetMIHazardRecognizer.
957 ScheduleHazardRecognizer *TargetInstrInfo::
958 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
959                                const ScheduleDAG *DAG) const {
960   return (ScheduleHazardRecognizer *)
961     new ScoreboardHazardRecognizer(II, DAG, "misched");
962 }
963 
964 // Default implementation of CreateTargetPostRAHazardRecognizer.
965 ScheduleHazardRecognizer *TargetInstrInfo::
966 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
967                                    const ScheduleDAG *DAG) const {
968   return (ScheduleHazardRecognizer *)
969     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
970 }
971 
972 //===----------------------------------------------------------------------===//
973 //  SelectionDAG latency interface.
974 //===----------------------------------------------------------------------===//
975 
976 int
977 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
978                                    SDNode *DefNode, unsigned DefIdx,
979                                    SDNode *UseNode, unsigned UseIdx) const {
980   if (!ItinData || ItinData->isEmpty())
981     return -1;
982 
983   if (!DefNode->isMachineOpcode())
984     return -1;
985 
986   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
987   if (!UseNode->isMachineOpcode())
988     return ItinData->getOperandCycle(DefClass, DefIdx);
989   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
990   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
991 }
992 
993 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
994                                      SDNode *N) const {
995   if (!ItinData || ItinData->isEmpty())
996     return 1;
997 
998   if (!N->isMachineOpcode())
999     return 1;
1000 
1001   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1002 }
1003 
1004 //===----------------------------------------------------------------------===//
1005 //  MachineInstr latency interface.
1006 //===----------------------------------------------------------------------===//
1007 
1008 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1009                                          const MachineInstr &MI) const {
1010   if (!ItinData || ItinData->isEmpty())
1011     return 1;
1012 
1013   unsigned Class = MI.getDesc().getSchedClass();
1014   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1015   if (UOps >= 0)
1016     return UOps;
1017 
1018   // The # of u-ops is dynamically determined. The specific target should
1019   // override this function to return the right number.
1020   return 1;
1021 }
1022 
1023 /// Return the default expected latency for a def based on it's opcode.
1024 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1025                                             const MachineInstr &DefMI) const {
1026   if (DefMI.isTransient())
1027     return 0;
1028   if (DefMI.mayLoad())
1029     return SchedModel.LoadLatency;
1030   if (isHighLatencyDef(DefMI.getOpcode()))
1031     return SchedModel.HighLatency;
1032   return 1;
1033 }
1034 
1035 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1036   return 0;
1037 }
1038 
1039 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1040                                           const MachineInstr &MI,
1041                                           unsigned *PredCost) const {
1042   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1043   // still have a MinLatency property, which getStageLatency checks.
1044   if (!ItinData)
1045     return MI.mayLoad() ? 2 : 1;
1046 
1047   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1048 }
1049 
1050 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1051                                        const MachineInstr &DefMI,
1052                                        unsigned DefIdx) const {
1053   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1054   if (!ItinData || ItinData->isEmpty())
1055     return false;
1056 
1057   unsigned DefClass = DefMI.getDesc().getSchedClass();
1058   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1059   return (DefCycle != -1 && DefCycle <= 1);
1060 }
1061 
1062 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1063 /// itinerary. This may be overriden by the target.
1064 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1065                                        const MachineInstr &DefMI,
1066                                        unsigned DefIdx,
1067                                        const MachineInstr &UseMI,
1068                                        unsigned UseIdx) const {
1069   unsigned DefClass = DefMI.getDesc().getSchedClass();
1070   unsigned UseClass = UseMI.getDesc().getSchedClass();
1071   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1072 }
1073 
1074 /// If we can determine the operand latency from the def only, without itinerary
1075 /// lookup, do so. Otherwise return -1.
1076 int TargetInstrInfo::computeDefOperandLatency(
1077     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1078 
1079   // Let the target hook getInstrLatency handle missing itineraries.
1080   if (!ItinData)
1081     return getInstrLatency(ItinData, DefMI);
1082 
1083   if(ItinData->isEmpty())
1084     return defaultDefLatency(ItinData->SchedModel, DefMI);
1085 
1086   // ...operand lookup required
1087   return -1;
1088 }
1089 
1090 unsigned TargetInstrInfo::computeOperandLatency(
1091     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
1092     unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const {
1093 
1094   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1095   if (DefLatency >= 0)
1096     return DefLatency;
1097 
1098   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1099 
1100   int OperLatency = 0;
1101   if (UseMI)
1102     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, *UseMI, UseIdx);
1103   else {
1104     unsigned DefClass = DefMI.getDesc().getSchedClass();
1105     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1106   }
1107   if (OperLatency >= 0)
1108     return OperLatency;
1109 
1110   // No operand latency was found.
1111   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1112 
1113   // Expected latency is the max of the stage latency and itinerary props.
1114   InstrLatency = std::max(InstrLatency,
1115                           defaultDefLatency(ItinData->SchedModel, DefMI));
1116   return InstrLatency;
1117 }
1118 
1119 bool TargetInstrInfo::getRegSequenceInputs(
1120     const MachineInstr &MI, unsigned DefIdx,
1121     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1122   assert((MI.isRegSequence() ||
1123           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1124 
1125   if (!MI.isRegSequence())
1126     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1127 
1128   // We are looking at:
1129   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1130   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1131   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1132        OpIdx += 2) {
1133     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1134     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1135     assert(MOSubIdx.isImm() &&
1136            "One of the subindex of the reg_sequence is not an immediate");
1137     // Record Reg:SubReg, SubIdx.
1138     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1139                                             (unsigned)MOSubIdx.getImm()));
1140   }
1141   return true;
1142 }
1143 
1144 bool TargetInstrInfo::getExtractSubregInputs(
1145     const MachineInstr &MI, unsigned DefIdx,
1146     RegSubRegPairAndIdx &InputReg) const {
1147   assert((MI.isExtractSubreg() ||
1148       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1149 
1150   if (!MI.isExtractSubreg())
1151     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1152 
1153   // We are looking at:
1154   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1155   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1156   const MachineOperand &MOReg = MI.getOperand(1);
1157   const MachineOperand &MOSubIdx = MI.getOperand(2);
1158   assert(MOSubIdx.isImm() &&
1159          "The subindex of the extract_subreg is not an immediate");
1160 
1161   InputReg.Reg = MOReg.getReg();
1162   InputReg.SubReg = MOReg.getSubReg();
1163   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1164   return true;
1165 }
1166 
1167 bool TargetInstrInfo::getInsertSubregInputs(
1168     const MachineInstr &MI, unsigned DefIdx,
1169     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1170   assert((MI.isInsertSubreg() ||
1171       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1172 
1173   if (!MI.isInsertSubreg())
1174     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1175 
1176   // We are looking at:
1177   // Def = INSERT_SEQUENCE v0, v1, sub0.
1178   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1179   const MachineOperand &MOBaseReg = MI.getOperand(1);
1180   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1181   const MachineOperand &MOSubIdx = MI.getOperand(3);
1182   assert(MOSubIdx.isImm() &&
1183          "One of the subindex of the reg_sequence is not an immediate");
1184   BaseReg.Reg = MOBaseReg.getReg();
1185   BaseReg.SubReg = MOBaseReg.getSubReg();
1186 
1187   InsertedReg.Reg = MOInsertedReg.getReg();
1188   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1189   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1190   return true;
1191 }
1192