1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned InstCount = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0) {
86       atInsnStart = true;
87     } else if (strncmp(Str, MAI.getCommentString().data(),
88                        MAI.getCommentString().size()) == 0) {
89       // Stop counting as an instruction after a comment until the next
90       // separator.
91       atInsnStart = false;
92     }
93 
94     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
95       ++InstCount;
96       atInsnStart = false;
97     }
98   }
99 
100   return InstCount * MAI.getMaxInstLength();
101 }
102 
103 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
104 /// after it, replacing it with an unconditional branch to NewDest.
105 void
106 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
107                                          MachineBasicBlock *NewDest) const {
108   MachineBasicBlock *MBB = Tail->getParent();
109 
110   // Remove all the old successors of MBB from the CFG.
111   while (!MBB->succ_empty())
112     MBB->removeSuccessor(MBB->succ_begin());
113 
114   // Save off the debug loc before erasing the instruction.
115   DebugLoc DL = Tail->getDebugLoc();
116 
117   // Remove all the dead instructions from the end of MBB.
118   MBB->erase(Tail, MBB->end());
119 
120   // If MBB isn't immediately before MBB, insert a branch to it.
121   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
122     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
123   MBB->addSuccessor(NewDest);
124 }
125 
126 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
127                                                       bool NewMI, unsigned Idx1,
128                                                       unsigned Idx2) const {
129   const MCInstrDesc &MCID = MI.getDesc();
130   bool HasDef = MCID.getNumDefs();
131   if (HasDef && !MI.getOperand(0).isReg())
132     // No idea how to commute this instruction. Target should implement its own.
133     return nullptr;
134 
135   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
136   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
137   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
138          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
139          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
140   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
141          "This only knows how to commute register operands so far");
142 
143   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
144   unsigned Reg1 = MI.getOperand(Idx1).getReg();
145   unsigned Reg2 = MI.getOperand(Idx2).getReg();
146   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
147   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
148   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
149   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
150   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
151   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
152   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
153   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
154   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
155   // If destination is tied to either of the commuted source register, then
156   // it must be updated.
157   if (HasDef && Reg0 == Reg1 &&
158       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
159     Reg2IsKill = false;
160     Reg0 = Reg2;
161     SubReg0 = SubReg2;
162   } else if (HasDef && Reg0 == Reg2 &&
163              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
164     Reg1IsKill = false;
165     Reg0 = Reg1;
166     SubReg0 = SubReg1;
167   }
168 
169   MachineInstr *CommutedMI = nullptr;
170   if (NewMI) {
171     // Create a new instruction.
172     MachineFunction &MF = *MI.getParent()->getParent();
173     CommutedMI = MF.CloneMachineInstr(&MI);
174   } else {
175     CommutedMI = &MI;
176   }
177 
178   if (HasDef) {
179     CommutedMI->getOperand(0).setReg(Reg0);
180     CommutedMI->getOperand(0).setSubReg(SubReg0);
181   }
182   CommutedMI->getOperand(Idx2).setReg(Reg1);
183   CommutedMI->getOperand(Idx1).setReg(Reg2);
184   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
185   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
186   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
187   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
188   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
189   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
190   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
191   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
192   return CommutedMI;
193 }
194 
195 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
196                                                   unsigned OpIdx1,
197                                                   unsigned OpIdx2) const {
198   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
199   // any commutable operand, which is done in findCommutedOpIndices() method
200   // called below.
201   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
202       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
203     assert(MI.isCommutable() &&
204            "Precondition violation: MI must be commutable.");
205     return nullptr;
206   }
207   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
208 }
209 
210 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
211                                            unsigned &ResultIdx2,
212                                            unsigned CommutableOpIdx1,
213                                            unsigned CommutableOpIdx2) {
214   if (ResultIdx1 == CommuteAnyOperandIndex &&
215       ResultIdx2 == CommuteAnyOperandIndex) {
216     ResultIdx1 = CommutableOpIdx1;
217     ResultIdx2 = CommutableOpIdx2;
218   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
219     if (ResultIdx2 == CommutableOpIdx1)
220       ResultIdx1 = CommutableOpIdx2;
221     else if (ResultIdx2 == CommutableOpIdx2)
222       ResultIdx1 = CommutableOpIdx1;
223     else
224       return false;
225   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
226     if (ResultIdx1 == CommutableOpIdx1)
227       ResultIdx2 = CommutableOpIdx2;
228     else if (ResultIdx1 == CommutableOpIdx2)
229       ResultIdx2 = CommutableOpIdx1;
230     else
231       return false;
232   } else
233     // Check that the result operand indices match the given commutable
234     // operand indices.
235     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
236            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
237 
238   return true;
239 }
240 
241 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
242                                             unsigned &SrcOpIdx1,
243                                             unsigned &SrcOpIdx2) const {
244   assert(!MI.isBundle() &&
245          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
246 
247   const MCInstrDesc &MCID = MI.getDesc();
248   if (!MCID.isCommutable())
249     return false;
250 
251   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
252   // is not true, then the target must implement this.
253   unsigned CommutableOpIdx1 = MCID.getNumDefs();
254   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
255   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
256                             CommutableOpIdx1, CommutableOpIdx2))
257     return false;
258 
259   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
260     // No idea.
261     return false;
262   return true;
263 }
264 
265 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
266   if (!MI.isTerminator()) return false;
267 
268   // Conditional branch is a special case.
269   if (MI.isBranch() && !MI.isBarrier())
270     return true;
271   if (!MI.isPredicable())
272     return true;
273   return !isPredicated(MI);
274 }
275 
276 bool TargetInstrInfo::PredicateInstruction(
277     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
278   bool MadeChange = false;
279 
280   assert(!MI.isBundle() &&
281          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
282 
283   const MCInstrDesc &MCID = MI.getDesc();
284   if (!MI.isPredicable())
285     return false;
286 
287   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
288     if (MCID.OpInfo[i].isPredicate()) {
289       MachineOperand &MO = MI.getOperand(i);
290       if (MO.isReg()) {
291         MO.setReg(Pred[j].getReg());
292         MadeChange = true;
293       } else if (MO.isImm()) {
294         MO.setImm(Pred[j].getImm());
295         MadeChange = true;
296       } else if (MO.isMBB()) {
297         MO.setMBB(Pred[j].getMBB());
298         MadeChange = true;
299       }
300       ++j;
301     }
302   }
303   return MadeChange;
304 }
305 
306 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
307                                            const MachineMemOperand *&MMO,
308                                            int &FrameIndex) const {
309   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
310                                   oe = MI.memoperands_end();
311        o != oe; ++o) {
312     if ((*o)->isLoad()) {
313       if (const FixedStackPseudoSourceValue *Value =
314           dyn_cast_or_null<FixedStackPseudoSourceValue>(
315               (*o)->getPseudoValue())) {
316         FrameIndex = Value->getFrameIndex();
317         MMO = *o;
318         return true;
319       }
320     }
321   }
322   return false;
323 }
324 
325 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
326                                           const MachineMemOperand *&MMO,
327                                           int &FrameIndex) const {
328   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
329                                   oe = MI.memoperands_end();
330        o != oe; ++o) {
331     if ((*o)->isStore()) {
332       if (const FixedStackPseudoSourceValue *Value =
333           dyn_cast_or_null<FixedStackPseudoSourceValue>(
334               (*o)->getPseudoValue())) {
335         FrameIndex = Value->getFrameIndex();
336         MMO = *o;
337         return true;
338       }
339     }
340   }
341   return false;
342 }
343 
344 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
345                                         unsigned SubIdx, unsigned &Size,
346                                         unsigned &Offset,
347                                         const MachineFunction &MF) const {
348   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
349   if (!SubIdx) {
350     Size = TRI->getSpillSize(*RC);
351     Offset = 0;
352     return true;
353   }
354   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
355   // Convert bit size to byte size to be consistent with
356   // MCRegisterClass::getSize().
357   if (BitSize % 8)
358     return false;
359 
360   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
361   if (BitOffset < 0 || BitOffset % 8)
362     return false;
363 
364   Size = BitSize /= 8;
365   Offset = (unsigned)BitOffset / 8;
366 
367   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
368 
369   if (!MF.getDataLayout().isLittleEndian()) {
370     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
371   }
372   return true;
373 }
374 
375 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
376                                     MachineBasicBlock::iterator I,
377                                     unsigned DestReg, unsigned SubIdx,
378                                     const MachineInstr &Orig,
379                                     const TargetRegisterInfo &TRI) const {
380   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
381   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
382   MBB.insert(I, MI);
383 }
384 
385 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
386                                        const MachineInstr &MI1,
387                                        const MachineRegisterInfo *MRI) const {
388   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
389 }
390 
391 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
392     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
393   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
394   MachineFunction &MF = *MBB.getParent();
395   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
396 }
397 
398 // If the COPY instruction in MI can be folded to a stack operation, return
399 // the register class to use.
400 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
401                                               unsigned FoldIdx) {
402   assert(MI.isCopy() && "MI must be a COPY instruction");
403   if (MI.getNumOperands() != 2)
404     return nullptr;
405   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
406 
407   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
408   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
409 
410   if (FoldOp.getSubReg() || LiveOp.getSubReg())
411     return nullptr;
412 
413   unsigned FoldReg = FoldOp.getReg();
414   unsigned LiveReg = LiveOp.getReg();
415 
416   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
417          "Cannot fold physregs");
418 
419   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
420   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
421 
422   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
423     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
424 
425   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
426     return RC;
427 
428   // FIXME: Allow folding when register classes are memory compatible.
429   return nullptr;
430 }
431 
432 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
433   llvm_unreachable("Not implemented");
434 }
435 
436 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
437                                     ArrayRef<unsigned> Ops, int FrameIndex,
438                                     const TargetInstrInfo &TII) {
439   unsigned StartIdx = 0;
440   switch (MI.getOpcode()) {
441   case TargetOpcode::STACKMAP: {
442     // StackMapLiveValues are foldable
443     StartIdx = StackMapOpers(&MI).getVarIdx();
444     break;
445   }
446   case TargetOpcode::PATCHPOINT: {
447     // For PatchPoint, the call args are not foldable (even if reported in the
448     // stackmap e.g. via anyregcc).
449     StartIdx = PatchPointOpers(&MI).getVarIdx();
450     break;
451   }
452   case TargetOpcode::STATEPOINT: {
453     // For statepoints, fold deopt and gc arguments, but not call arguments.
454     StartIdx = StatepointOpers(&MI).getVarIdx();
455     break;
456   }
457   default:
458     llvm_unreachable("unexpected stackmap opcode");
459   }
460 
461   // Return false if any operands requested for folding are not foldable (not
462   // part of the stackmap's live values).
463   for (unsigned Op : Ops) {
464     if (Op < StartIdx)
465       return nullptr;
466   }
467 
468   MachineInstr *NewMI =
469       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
470   MachineInstrBuilder MIB(MF, NewMI);
471 
472   // No need to fold return, the meta data, and function arguments
473   for (unsigned i = 0; i < StartIdx; ++i)
474     MIB.add(MI.getOperand(i));
475 
476   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
477     MachineOperand &MO = MI.getOperand(i);
478     if (is_contained(Ops, i)) {
479       unsigned SpillSize;
480       unsigned SpillOffset;
481       // Compute the spill slot size and offset.
482       const TargetRegisterClass *RC =
483         MF.getRegInfo().getRegClass(MO.getReg());
484       bool Valid =
485           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
486       if (!Valid)
487         report_fatal_error("cannot spill patchpoint subregister operand");
488       MIB.addImm(StackMaps::IndirectMemRefOp);
489       MIB.addImm(SpillSize);
490       MIB.addFrameIndex(FrameIndex);
491       MIB.addImm(SpillOffset);
492     }
493     else
494       MIB.add(MO);
495   }
496   return NewMI;
497 }
498 
499 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
500 /// slot into the specified machine instruction for the specified operand(s).
501 /// If this is possible, a new instruction is returned with the specified
502 /// operand folded, otherwise NULL is returned. The client is responsible for
503 /// removing the old instruction and adding the new one in the instruction
504 /// stream.
505 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
506                                                  ArrayRef<unsigned> Ops, int FI,
507                                                  LiveIntervals *LIS) const {
508   auto Flags = MachineMemOperand::MONone;
509   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
510     if (MI.getOperand(Ops[i]).isDef())
511       Flags |= MachineMemOperand::MOStore;
512     else
513       Flags |= MachineMemOperand::MOLoad;
514 
515   MachineBasicBlock *MBB = MI.getParent();
516   assert(MBB && "foldMemoryOperand needs an inserted instruction");
517   MachineFunction &MF = *MBB->getParent();
518 
519   // If we're not folding a load into a subreg, the size of the load is the
520   // size of the spill slot. But if we are, we need to figure out what the
521   // actual load size is.
522   int64_t MemSize = 0;
523   const MachineFrameInfo &MFI = MF.getFrameInfo();
524   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
525 
526   if (Flags & MachineMemOperand::MOStore) {
527     MemSize = MFI.getObjectSize(FI);
528   } else {
529     for (unsigned Idx : Ops) {
530       int64_t OpSize = MFI.getObjectSize(FI);
531 
532       if (auto SubReg = MI.getOperand(Idx).getSubReg()) {
533         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
534         if (SubRegSize > 0 && !(SubRegSize % 8))
535           OpSize = SubRegSize / 8;
536       }
537 
538       MemSize = std::max(MemSize, OpSize);
539     }
540   }
541 
542   assert(MemSize && "Did not expect a zero-sized stack slot");
543 
544   MachineInstr *NewMI = nullptr;
545 
546   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
547       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
548       MI.getOpcode() == TargetOpcode::STATEPOINT) {
549     // Fold stackmap/patchpoint.
550     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
551     if (NewMI)
552       MBB->insert(MI, NewMI);
553   } else {
554     // Ask the target to do the actual folding.
555     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
556   }
557 
558   if (NewMI) {
559     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
560     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
561     assert((!(Flags & MachineMemOperand::MOStore) ||
562             NewMI->mayStore()) &&
563            "Folded a def to a non-store!");
564     assert((!(Flags & MachineMemOperand::MOLoad) ||
565             NewMI->mayLoad()) &&
566            "Folded a use to a non-load!");
567     assert(MFI.getObjectOffset(FI) != -1);
568     MachineMemOperand *MMO = MF.getMachineMemOperand(
569         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
570         MFI.getObjectAlignment(FI));
571     NewMI->addMemOperand(MF, MMO);
572 
573     return NewMI;
574   }
575 
576   // Straight COPY may fold as load/store.
577   if (!MI.isCopy() || Ops.size() != 1)
578     return nullptr;
579 
580   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
581   if (!RC)
582     return nullptr;
583 
584   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
585   MachineBasicBlock::iterator Pos = MI;
586 
587   if (Flags == MachineMemOperand::MOStore)
588     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
589   else
590     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
591   return &*--Pos;
592 }
593 
594 bool TargetInstrInfo::hasReassociableOperands(
595     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
596   const MachineOperand &Op1 = Inst.getOperand(1);
597   const MachineOperand &Op2 = Inst.getOperand(2);
598   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
599 
600   // We need virtual register definitions for the operands that we will
601   // reassociate.
602   MachineInstr *MI1 = nullptr;
603   MachineInstr *MI2 = nullptr;
604   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
605     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
606   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
607     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
608 
609   // And they need to be in the trace (otherwise, they won't have a depth).
610   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
611 }
612 
613 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
614                                              bool &Commuted) const {
615   const MachineBasicBlock *MBB = Inst.getParent();
616   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
617   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
618   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
619   unsigned AssocOpcode = Inst.getOpcode();
620 
621   // If only one operand has the same opcode and it's the second source operand,
622   // the operands must be commuted.
623   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
624   if (Commuted)
625     std::swap(MI1, MI2);
626 
627   // 1. The previous instruction must be the same type as Inst.
628   // 2. The previous instruction must have virtual register definitions for its
629   //    operands in the same basic block as Inst.
630   // 3. The previous instruction's result must only be used by Inst.
631   return MI1->getOpcode() == AssocOpcode &&
632          hasReassociableOperands(*MI1, MBB) &&
633          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
634 }
635 
636 // 1. The operation must be associative and commutative.
637 // 2. The instruction must have virtual register definitions for its
638 //    operands in the same basic block.
639 // 3. The instruction must have a reassociable sibling.
640 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
641                                                bool &Commuted) const {
642   return isAssociativeAndCommutative(Inst) &&
643          hasReassociableOperands(Inst, Inst.getParent()) &&
644          hasReassociableSibling(Inst, Commuted);
645 }
646 
647 // The concept of the reassociation pass is that these operations can benefit
648 // from this kind of transformation:
649 //
650 // A = ? op ?
651 // B = A op X (Prev)
652 // C = B op Y (Root)
653 // -->
654 // A = ? op ?
655 // B = X op Y
656 // C = A op B
657 //
658 // breaking the dependency between A and B, allowing them to be executed in
659 // parallel (or back-to-back in a pipeline) instead of depending on each other.
660 
661 // FIXME: This has the potential to be expensive (compile time) while not
662 // improving the code at all. Some ways to limit the overhead:
663 // 1. Track successful transforms; bail out if hit rate gets too low.
664 // 2. Only enable at -O3 or some other non-default optimization level.
665 // 3. Pre-screen pattern candidates here: if an operand of the previous
666 //    instruction is known to not increase the critical path, then don't match
667 //    that pattern.
668 bool TargetInstrInfo::getMachineCombinerPatterns(
669     MachineInstr &Root,
670     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
671   bool Commute;
672   if (isReassociationCandidate(Root, Commute)) {
673     // We found a sequence of instructions that may be suitable for a
674     // reassociation of operands to increase ILP. Specify each commutation
675     // possibility for the Prev instruction in the sequence and let the
676     // machine combiner decide if changing the operands is worthwhile.
677     if (Commute) {
678       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
679       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
680     } else {
681       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
682       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
683     }
684     return true;
685   }
686 
687   return false;
688 }
689 /// Return true when a code sequence can improve loop throughput.
690 bool
691 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
692   return false;
693 }
694 /// Attempt the reassociation transformation to reduce critical path length.
695 /// See the above comments before getMachineCombinerPatterns().
696 void TargetInstrInfo::reassociateOps(
697     MachineInstr &Root, MachineInstr &Prev,
698     MachineCombinerPattern Pattern,
699     SmallVectorImpl<MachineInstr *> &InsInstrs,
700     SmallVectorImpl<MachineInstr *> &DelInstrs,
701     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
702   MachineFunction *MF = Root.getParent()->getParent();
703   MachineRegisterInfo &MRI = MF->getRegInfo();
704   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
705   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
706   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
707 
708   // This array encodes the operand index for each parameter because the
709   // operands may be commuted. Each row corresponds to a pattern value,
710   // and each column specifies the index of A, B, X, Y.
711   unsigned OpIdx[4][4] = {
712     { 1, 1, 2, 2 },
713     { 1, 2, 2, 1 },
714     { 2, 1, 1, 2 },
715     { 2, 2, 1, 1 }
716   };
717 
718   int Row;
719   switch (Pattern) {
720   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
721   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
722   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
723   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
724   default: llvm_unreachable("unexpected MachineCombinerPattern");
725   }
726 
727   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
728   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
729   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
730   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
731   MachineOperand &OpC = Root.getOperand(0);
732 
733   unsigned RegA = OpA.getReg();
734   unsigned RegB = OpB.getReg();
735   unsigned RegX = OpX.getReg();
736   unsigned RegY = OpY.getReg();
737   unsigned RegC = OpC.getReg();
738 
739   if (TargetRegisterInfo::isVirtualRegister(RegA))
740     MRI.constrainRegClass(RegA, RC);
741   if (TargetRegisterInfo::isVirtualRegister(RegB))
742     MRI.constrainRegClass(RegB, RC);
743   if (TargetRegisterInfo::isVirtualRegister(RegX))
744     MRI.constrainRegClass(RegX, RC);
745   if (TargetRegisterInfo::isVirtualRegister(RegY))
746     MRI.constrainRegClass(RegY, RC);
747   if (TargetRegisterInfo::isVirtualRegister(RegC))
748     MRI.constrainRegClass(RegC, RC);
749 
750   // Create a new virtual register for the result of (X op Y) instead of
751   // recycling RegB because the MachineCombiner's computation of the critical
752   // path requires a new register definition rather than an existing one.
753   unsigned NewVR = MRI.createVirtualRegister(RC);
754   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
755 
756   unsigned Opcode = Root.getOpcode();
757   bool KillA = OpA.isKill();
758   bool KillX = OpX.isKill();
759   bool KillY = OpY.isKill();
760 
761   // Create new instructions for insertion.
762   MachineInstrBuilder MIB1 =
763       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
764           .addReg(RegX, getKillRegState(KillX))
765           .addReg(RegY, getKillRegState(KillY));
766   MachineInstrBuilder MIB2 =
767       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
768           .addReg(RegA, getKillRegState(KillA))
769           .addReg(NewVR, getKillRegState(true));
770 
771   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
772 
773   // Record new instructions for insertion and old instructions for deletion.
774   InsInstrs.push_back(MIB1);
775   InsInstrs.push_back(MIB2);
776   DelInstrs.push_back(&Prev);
777   DelInstrs.push_back(&Root);
778 }
779 
780 void TargetInstrInfo::genAlternativeCodeSequence(
781     MachineInstr &Root, MachineCombinerPattern Pattern,
782     SmallVectorImpl<MachineInstr *> &InsInstrs,
783     SmallVectorImpl<MachineInstr *> &DelInstrs,
784     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
785   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
786 
787   // Select the previous instruction in the sequence based on the input pattern.
788   MachineInstr *Prev = nullptr;
789   switch (Pattern) {
790   case MachineCombinerPattern::REASSOC_AX_BY:
791   case MachineCombinerPattern::REASSOC_XA_BY:
792     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
793     break;
794   case MachineCombinerPattern::REASSOC_AX_YB:
795   case MachineCombinerPattern::REASSOC_XA_YB:
796     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
797     break;
798   default:
799     break;
800   }
801 
802   assert(Prev && "Unknown pattern for machine combiner");
803 
804   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
805 }
806 
807 /// foldMemoryOperand - Same as the previous version except it allows folding
808 /// of any load and store from / to any address, not just from a specific
809 /// stack slot.
810 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
811                                                  ArrayRef<unsigned> Ops,
812                                                  MachineInstr &LoadMI,
813                                                  LiveIntervals *LIS) const {
814   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
815 #ifndef NDEBUG
816   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
817     assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!");
818 #endif
819   MachineBasicBlock &MBB = *MI.getParent();
820   MachineFunction &MF = *MBB.getParent();
821 
822   // Ask the target to do the actual folding.
823   MachineInstr *NewMI = nullptr;
824   int FrameIndex = 0;
825 
826   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
827        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
828        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
829       isLoadFromStackSlot(LoadMI, FrameIndex)) {
830     // Fold stackmap/patchpoint.
831     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
832     if (NewMI)
833       NewMI = &*MBB.insert(MI, NewMI);
834   } else {
835     // Ask the target to do the actual folding.
836     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
837   }
838 
839   if (!NewMI) return nullptr;
840 
841   // Copy the memoperands from the load to the folded instruction.
842   if (MI.memoperands_empty()) {
843     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
844   }
845   else {
846     // Handle the rare case of folding multiple loads.
847     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
848     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
849                                     E = LoadMI.memoperands_end();
850          I != E; ++I) {
851       NewMI->addMemOperand(MF, *I);
852     }
853   }
854   return NewMI;
855 }
856 
857 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
858     const MachineInstr &MI, AliasAnalysis *AA) const {
859   const MachineFunction &MF = *MI.getParent()->getParent();
860   const MachineRegisterInfo &MRI = MF.getRegInfo();
861 
862   // Remat clients assume operand 0 is the defined register.
863   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
864     return false;
865   unsigned DefReg = MI.getOperand(0).getReg();
866 
867   // A sub-register definition can only be rematerialized if the instruction
868   // doesn't read the other parts of the register.  Otherwise it is really a
869   // read-modify-write operation on the full virtual register which cannot be
870   // moved safely.
871   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
872       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
873     return false;
874 
875   // A load from a fixed stack slot can be rematerialized. This may be
876   // redundant with subsequent checks, but it's target-independent,
877   // simple, and a common case.
878   int FrameIdx = 0;
879   if (isLoadFromStackSlot(MI, FrameIdx) &&
880       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
881     return true;
882 
883   // Avoid instructions obviously unsafe for remat.
884   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
885     return false;
886 
887   // Don't remat inline asm. We have no idea how expensive it is
888   // even if it's side effect free.
889   if (MI.isInlineAsm())
890     return false;
891 
892   // Avoid instructions which load from potentially varying memory.
893   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
894     return false;
895 
896   // If any of the registers accessed are non-constant, conservatively assume
897   // the instruction is not rematerializable.
898   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
899     const MachineOperand &MO = MI.getOperand(i);
900     if (!MO.isReg()) continue;
901     unsigned Reg = MO.getReg();
902     if (Reg == 0)
903       continue;
904 
905     // Check for a well-behaved physical register.
906     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
907       if (MO.isUse()) {
908         // If the physreg has no defs anywhere, it's just an ambient register
909         // and we can freely move its uses. Alternatively, if it's allocatable,
910         // it could get allocated to something with a def during allocation.
911         if (!MRI.isConstantPhysReg(Reg))
912           return false;
913       } else {
914         // A physreg def. We can't remat it.
915         return false;
916       }
917       continue;
918     }
919 
920     // Only allow one virtual-register def.  There may be multiple defs of the
921     // same virtual register, though.
922     if (MO.isDef() && Reg != DefReg)
923       return false;
924 
925     // Don't allow any virtual-register uses. Rematting an instruction with
926     // virtual register uses would length the live ranges of the uses, which
927     // is not necessarily a good idea, certainly not "trivial".
928     if (MO.isUse())
929       return false;
930   }
931 
932   // Everything checked out.
933   return true;
934 }
935 
936 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
937   const MachineFunction *MF = MI.getParent()->getParent();
938   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
939   bool StackGrowsDown =
940     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
941 
942   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
943   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
944 
945   if (!isFrameInstr(MI))
946     return 0;
947 
948   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
949 
950   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
951       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
952     SPAdj = -SPAdj;
953 
954   return SPAdj;
955 }
956 
957 /// isSchedulingBoundary - Test if the given instruction should be
958 /// considered a scheduling boundary. This primarily includes labels
959 /// and terminators.
960 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
961                                            const MachineBasicBlock *MBB,
962                                            const MachineFunction &MF) const {
963   // Terminators and labels can't be scheduled around.
964   if (MI.isTerminator() || MI.isPosition())
965     return true;
966 
967   // Don't attempt to schedule around any instruction that defines
968   // a stack-oriented pointer, as it's unlikely to be profitable. This
969   // saves compile time, because it doesn't require every single
970   // stack slot reference to depend on the instruction that does the
971   // modification.
972   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
973   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
974   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
975 }
976 
977 // Provide a global flag for disabling the PreRA hazard recognizer that targets
978 // may choose to honor.
979 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
980   return !DisableHazardRecognizer;
981 }
982 
983 // Default implementation of CreateTargetRAHazardRecognizer.
984 ScheduleHazardRecognizer *TargetInstrInfo::
985 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
986                              const ScheduleDAG *DAG) const {
987   // Dummy hazard recognizer allows all instructions to issue.
988   return new ScheduleHazardRecognizer();
989 }
990 
991 // Default implementation of CreateTargetMIHazardRecognizer.
992 ScheduleHazardRecognizer *TargetInstrInfo::
993 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
994                                const ScheduleDAG *DAG) const {
995   return (ScheduleHazardRecognizer *)
996     new ScoreboardHazardRecognizer(II, DAG, "misched");
997 }
998 
999 // Default implementation of CreateTargetPostRAHazardRecognizer.
1000 ScheduleHazardRecognizer *TargetInstrInfo::
1001 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1002                                    const ScheduleDAG *DAG) const {
1003   return (ScheduleHazardRecognizer *)
1004     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 //  SelectionDAG latency interface.
1009 //===----------------------------------------------------------------------===//
1010 
1011 int
1012 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1013                                    SDNode *DefNode, unsigned DefIdx,
1014                                    SDNode *UseNode, unsigned UseIdx) const {
1015   if (!ItinData || ItinData->isEmpty())
1016     return -1;
1017 
1018   if (!DefNode->isMachineOpcode())
1019     return -1;
1020 
1021   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1022   if (!UseNode->isMachineOpcode())
1023     return ItinData->getOperandCycle(DefClass, DefIdx);
1024   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1025   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1026 }
1027 
1028 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1029                                      SDNode *N) const {
1030   if (!ItinData || ItinData->isEmpty())
1031     return 1;
1032 
1033   if (!N->isMachineOpcode())
1034     return 1;
1035 
1036   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1037 }
1038 
1039 //===----------------------------------------------------------------------===//
1040 //  MachineInstr latency interface.
1041 //===----------------------------------------------------------------------===//
1042 
1043 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1044                                          const MachineInstr &MI) const {
1045   if (!ItinData || ItinData->isEmpty())
1046     return 1;
1047 
1048   unsigned Class = MI.getDesc().getSchedClass();
1049   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1050   if (UOps >= 0)
1051     return UOps;
1052 
1053   // The # of u-ops is dynamically determined. The specific target should
1054   // override this function to return the right number.
1055   return 1;
1056 }
1057 
1058 /// Return the default expected latency for a def based on it's opcode.
1059 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1060                                             const MachineInstr &DefMI) const {
1061   if (DefMI.isTransient())
1062     return 0;
1063   if (DefMI.mayLoad())
1064     return SchedModel.LoadLatency;
1065   if (isHighLatencyDef(DefMI.getOpcode()))
1066     return SchedModel.HighLatency;
1067   return 1;
1068 }
1069 
1070 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1071   return 0;
1072 }
1073 
1074 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1075                                           const MachineInstr &MI,
1076                                           unsigned *PredCost) const {
1077   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1078   // still have a MinLatency property, which getStageLatency checks.
1079   if (!ItinData)
1080     return MI.mayLoad() ? 2 : 1;
1081 
1082   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1083 }
1084 
1085 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1086                                        const MachineInstr &DefMI,
1087                                        unsigned DefIdx) const {
1088   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1089   if (!ItinData || ItinData->isEmpty())
1090     return false;
1091 
1092   unsigned DefClass = DefMI.getDesc().getSchedClass();
1093   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1094   return (DefCycle != -1 && DefCycle <= 1);
1095 }
1096 
1097 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1098 /// itinerary. This may be overriden by the target.
1099 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1100                                        const MachineInstr &DefMI,
1101                                        unsigned DefIdx,
1102                                        const MachineInstr &UseMI,
1103                                        unsigned UseIdx) const {
1104   unsigned DefClass = DefMI.getDesc().getSchedClass();
1105   unsigned UseClass = UseMI.getDesc().getSchedClass();
1106   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1107 }
1108 
1109 /// If we can determine the operand latency from the def only, without itinerary
1110 /// lookup, do so. Otherwise return -1.
1111 int TargetInstrInfo::computeDefOperandLatency(
1112     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1113 
1114   // Let the target hook getInstrLatency handle missing itineraries.
1115   if (!ItinData)
1116     return getInstrLatency(ItinData, DefMI);
1117 
1118   if(ItinData->isEmpty())
1119     return defaultDefLatency(ItinData->SchedModel, DefMI);
1120 
1121   // ...operand lookup required
1122   return -1;
1123 }
1124 
1125 bool TargetInstrInfo::getRegSequenceInputs(
1126     const MachineInstr &MI, unsigned DefIdx,
1127     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1128   assert((MI.isRegSequence() ||
1129           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1130 
1131   if (!MI.isRegSequence())
1132     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1133 
1134   // We are looking at:
1135   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1136   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1137   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1138        OpIdx += 2) {
1139     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1140     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1141     assert(MOSubIdx.isImm() &&
1142            "One of the subindex of the reg_sequence is not an immediate");
1143     // Record Reg:SubReg, SubIdx.
1144     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1145                                             (unsigned)MOSubIdx.getImm()));
1146   }
1147   return true;
1148 }
1149 
1150 bool TargetInstrInfo::getExtractSubregInputs(
1151     const MachineInstr &MI, unsigned DefIdx,
1152     RegSubRegPairAndIdx &InputReg) const {
1153   assert((MI.isExtractSubreg() ||
1154       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1155 
1156   if (!MI.isExtractSubreg())
1157     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1158 
1159   // We are looking at:
1160   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1161   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1162   const MachineOperand &MOReg = MI.getOperand(1);
1163   const MachineOperand &MOSubIdx = MI.getOperand(2);
1164   assert(MOSubIdx.isImm() &&
1165          "The subindex of the extract_subreg is not an immediate");
1166 
1167   InputReg.Reg = MOReg.getReg();
1168   InputReg.SubReg = MOReg.getSubReg();
1169   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1170   return true;
1171 }
1172 
1173 bool TargetInstrInfo::getInsertSubregInputs(
1174     const MachineInstr &MI, unsigned DefIdx,
1175     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1176   assert((MI.isInsertSubreg() ||
1177       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1178 
1179   if (!MI.isInsertSubreg())
1180     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1181 
1182   // We are looking at:
1183   // Def = INSERT_SEQUENCE v0, v1, sub0.
1184   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1185   const MachineOperand &MOBaseReg = MI.getOperand(1);
1186   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1187   const MachineOperand &MOSubIdx = MI.getOperand(3);
1188   assert(MOSubIdx.isImm() &&
1189          "One of the subindex of the reg_sequence is not an immediate");
1190   BaseReg.Reg = MOBaseReg.getReg();
1191   BaseReg.SubReg = MOBaseReg.getSubReg();
1192 
1193   InsertedReg.Reg = MOInsertedReg.getReg();
1194   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1195   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1196   return true;
1197 }
1198