1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCInstrItineraries.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include <cctype> 33 using namespace llvm; 34 35 static cl::opt<bool> DisableHazardRecognizer( 36 "disable-sched-hazard", cl::Hidden, cl::init(false), 37 cl::desc("Disable hazard detection during preRA scheduling")); 38 39 TargetInstrInfo::~TargetInstrInfo() { 40 } 41 42 const TargetRegisterClass* 43 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 44 const TargetRegisterInfo *TRI, 45 const MachineFunction &MF) const { 46 if (OpNum >= MCID.getNumOperands()) 47 return nullptr; 48 49 short RegClass = MCID.OpInfo[OpNum].RegClass; 50 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 51 return TRI->getPointerRegClass(MF, RegClass); 52 53 // Instructions like INSERT_SUBREG do not have fixed register classes. 54 if (RegClass < 0) 55 return nullptr; 56 57 // Otherwise just look it up normally. 58 return TRI->getRegClass(RegClass); 59 } 60 61 /// insertNoop - Insert a noop into the instruction stream at the specified 62 /// point. 63 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 64 MachineBasicBlock::iterator MI) const { 65 llvm_unreachable("Target didn't implement insertNoop!"); 66 } 67 68 /// Measure the specified inline asm to determine an approximation of its 69 /// length. 70 /// Comments (which run till the next SeparatorString or newline) do not 71 /// count as an instruction. 72 /// Any other non-whitespace text is considered an instruction, with 73 /// multiple instructions separated by SeparatorString or newlines. 74 /// Variable-length instructions are not handled here; this function 75 /// may be overloaded in the target code to do that. 76 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 77 const MCAsmInfo &MAI) const { 78 79 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Remove all the dead instructions from the end of MBB. 111 MBB->erase(Tail, MBB->end()); 112 113 // If MBB isn't immediately before MBB, insert a branch to it. 114 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 115 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 116 Tail->getDebugLoc()); 117 MBB->addSuccessor(NewDest); 118 } 119 120 // commuteInstruction - The default implementation of this method just exchanges 121 // the two operands returned by findCommutedOpIndices. 122 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 123 bool NewMI) const { 124 const MCInstrDesc &MCID = MI->getDesc(); 125 bool HasDef = MCID.getNumDefs(); 126 if (HasDef && !MI->getOperand(0).isReg()) 127 // No idea how to commute this instruction. Target should implement its own. 128 return nullptr; 129 unsigned Idx1, Idx2; 130 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 131 assert(MI->isCommutable() && "Precondition violation: MI must be commutable."); 132 return nullptr; 133 } 134 135 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 136 "This only knows how to commute register operands so far"); 137 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 138 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 139 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 140 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 141 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 142 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 143 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 144 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 145 // If destination is tied to either of the commuted source register, then 146 // it must be updated. 147 if (HasDef && Reg0 == Reg1 && 148 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 149 Reg2IsKill = false; 150 Reg0 = Reg2; 151 SubReg0 = SubReg2; 152 } else if (HasDef && Reg0 == Reg2 && 153 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 154 Reg1IsKill = false; 155 Reg0 = Reg1; 156 SubReg0 = SubReg1; 157 } 158 159 if (NewMI) { 160 // Create a new instruction. 161 MachineFunction &MF = *MI->getParent()->getParent(); 162 MI = MF.CloneMachineInstr(MI); 163 } 164 165 if (HasDef) { 166 MI->getOperand(0).setReg(Reg0); 167 MI->getOperand(0).setSubReg(SubReg0); 168 } 169 MI->getOperand(Idx2).setReg(Reg1); 170 MI->getOperand(Idx1).setReg(Reg2); 171 MI->getOperand(Idx2).setSubReg(SubReg1); 172 MI->getOperand(Idx1).setSubReg(SubReg2); 173 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 174 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 175 return MI; 176 } 177 178 /// findCommutedOpIndices - If specified MI is commutable, return the two 179 /// operand indices that would swap value. Return true if the instruction 180 /// is not in a form which this routine understands. 181 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 182 unsigned &SrcOpIdx1, 183 unsigned &SrcOpIdx2) const { 184 assert(!MI->isBundle() && 185 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 186 187 const MCInstrDesc &MCID = MI->getDesc(); 188 if (!MCID.isCommutable()) 189 return false; 190 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 191 // is not true, then the target must implement this. 192 SrcOpIdx1 = MCID.getNumDefs(); 193 SrcOpIdx2 = SrcOpIdx1 + 1; 194 if (!MI->getOperand(SrcOpIdx1).isReg() || 195 !MI->getOperand(SrcOpIdx2).isReg()) 196 // No idea. 197 return false; 198 return true; 199 } 200 201 202 bool 203 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 204 if (!MI->isTerminator()) return false; 205 206 // Conditional branch is a special case. 207 if (MI->isBranch() && !MI->isBarrier()) 208 return true; 209 if (!MI->isPredicable()) 210 return true; 211 return !isPredicated(MI); 212 } 213 214 215 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, 216 const SmallVectorImpl<MachineOperand> &Pred) const { 217 bool MadeChange = false; 218 219 assert(!MI->isBundle() && 220 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 221 222 const MCInstrDesc &MCID = MI->getDesc(); 223 if (!MI->isPredicable()) 224 return false; 225 226 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 227 if (MCID.OpInfo[i].isPredicate()) { 228 MachineOperand &MO = MI->getOperand(i); 229 if (MO.isReg()) { 230 MO.setReg(Pred[j].getReg()); 231 MadeChange = true; 232 } else if (MO.isImm()) { 233 MO.setImm(Pred[j].getImm()); 234 MadeChange = true; 235 } else if (MO.isMBB()) { 236 MO.setMBB(Pred[j].getMBB()); 237 MadeChange = true; 238 } 239 ++j; 240 } 241 } 242 return MadeChange; 243 } 244 245 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 246 const MachineMemOperand *&MMO, 247 int &FrameIndex) const { 248 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 249 oe = MI->memoperands_end(); 250 o != oe; 251 ++o) { 252 if ((*o)->isLoad()) { 253 if (const FixedStackPseudoSourceValue *Value = 254 dyn_cast_or_null<FixedStackPseudoSourceValue>( 255 (*o)->getPseudoValue())) { 256 FrameIndex = Value->getFrameIndex(); 257 MMO = *o; 258 return true; 259 } 260 } 261 } 262 return false; 263 } 264 265 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 266 const MachineMemOperand *&MMO, 267 int &FrameIndex) const { 268 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 269 oe = MI->memoperands_end(); 270 o != oe; 271 ++o) { 272 if ((*o)->isStore()) { 273 if (const FixedStackPseudoSourceValue *Value = 274 dyn_cast_or_null<FixedStackPseudoSourceValue>( 275 (*o)->getPseudoValue())) { 276 FrameIndex = Value->getFrameIndex(); 277 MMO = *o; 278 return true; 279 } 280 } 281 } 282 return false; 283 } 284 285 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 286 unsigned SubIdx, unsigned &Size, 287 unsigned &Offset, 288 const TargetMachine *TM) const { 289 if (!SubIdx) { 290 Size = RC->getSize(); 291 Offset = 0; 292 return true; 293 } 294 unsigned BitSize = 295 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxSize(SubIdx); 296 // Convert bit size to byte size to be consistent with 297 // MCRegisterClass::getSize(). 298 if (BitSize % 8) 299 return false; 300 301 int BitOffset = 302 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxOffset(SubIdx); 303 if (BitOffset < 0 || BitOffset % 8) 304 return false; 305 306 Size = BitSize /= 8; 307 Offset = (unsigned)BitOffset / 8; 308 309 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 310 311 if (!TM->getSubtargetImpl()->getDataLayout()->isLittleEndian()) { 312 Offset = RC->getSize() - (Offset + Size); 313 } 314 return true; 315 } 316 317 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 318 MachineBasicBlock::iterator I, 319 unsigned DestReg, 320 unsigned SubIdx, 321 const MachineInstr *Orig, 322 const TargetRegisterInfo &TRI) const { 323 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 324 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 325 MBB.insert(I, MI); 326 } 327 328 bool 329 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 330 const MachineInstr *MI1, 331 const MachineRegisterInfo *MRI) const { 332 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 333 } 334 335 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 336 MachineFunction &MF) const { 337 assert(!Orig->isNotDuplicable() && 338 "Instruction cannot be duplicated"); 339 return MF.CloneMachineInstr(Orig); 340 } 341 342 // If the COPY instruction in MI can be folded to a stack operation, return 343 // the register class to use. 344 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 345 unsigned FoldIdx) { 346 assert(MI->isCopy() && "MI must be a COPY instruction"); 347 if (MI->getNumOperands() != 2) 348 return nullptr; 349 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 350 351 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 352 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 353 354 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 355 return nullptr; 356 357 unsigned FoldReg = FoldOp.getReg(); 358 unsigned LiveReg = LiveOp.getReg(); 359 360 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 361 "Cannot fold physregs"); 362 363 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 364 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 365 366 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 367 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 368 369 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 370 return RC; 371 372 // FIXME: Allow folding when register classes are memory compatible. 373 return nullptr; 374 } 375 376 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 377 llvm_unreachable("Not a MachO target"); 378 } 379 380 bool TargetInstrInfo:: 381 canFoldMemoryOperand(const MachineInstr *MI, 382 const SmallVectorImpl<unsigned> &Ops) const { 383 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 384 } 385 386 static MachineInstr* foldPatchpoint(MachineFunction &MF, 387 MachineInstr *MI, 388 const SmallVectorImpl<unsigned> &Ops, 389 int FrameIndex, 390 const TargetInstrInfo &TII) { 391 unsigned StartIdx = 0; 392 switch (MI->getOpcode()) { 393 case TargetOpcode::STACKMAP: 394 StartIdx = 2; // Skip ID, nShadowBytes. 395 break; 396 case TargetOpcode::PATCHPOINT: { 397 // For PatchPoint, the call args are not foldable. 398 PatchPointOpers opers(MI); 399 StartIdx = opers.getVarIdx(); 400 break; 401 } 402 default: 403 llvm_unreachable("unexpected stackmap opcode"); 404 } 405 406 // Return false if any operands requested for folding are not foldable (not 407 // part of the stackmap's live values). 408 for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end(); 409 I != E; ++I) { 410 if (*I < StartIdx) 411 return nullptr; 412 } 413 414 MachineInstr *NewMI = 415 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 416 MachineInstrBuilder MIB(MF, NewMI); 417 418 // No need to fold return, the meta data, and function arguments 419 for (unsigned i = 0; i < StartIdx; ++i) 420 MIB.addOperand(MI->getOperand(i)); 421 422 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 423 MachineOperand &MO = MI->getOperand(i); 424 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 425 unsigned SpillSize; 426 unsigned SpillOffset; 427 // Compute the spill slot size and offset. 428 const TargetRegisterClass *RC = 429 MF.getRegInfo().getRegClass(MO.getReg()); 430 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, 431 SpillOffset, &MF.getTarget()); 432 if (!Valid) 433 report_fatal_error("cannot spill patchpoint subregister operand"); 434 MIB.addImm(StackMaps::IndirectMemRefOp); 435 MIB.addImm(SpillSize); 436 MIB.addFrameIndex(FrameIndex); 437 MIB.addImm(SpillOffset); 438 } 439 else 440 MIB.addOperand(MO); 441 } 442 return NewMI; 443 } 444 445 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 446 /// slot into the specified machine instruction for the specified operand(s). 447 /// If this is possible, a new instruction is returned with the specified 448 /// operand folded, otherwise NULL is returned. The client is responsible for 449 /// removing the old instruction and adding the new one in the instruction 450 /// stream. 451 MachineInstr* 452 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 453 const SmallVectorImpl<unsigned> &Ops, 454 int FI) const { 455 unsigned Flags = 0; 456 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 457 if (MI->getOperand(Ops[i]).isDef()) 458 Flags |= MachineMemOperand::MOStore; 459 else 460 Flags |= MachineMemOperand::MOLoad; 461 462 MachineBasicBlock *MBB = MI->getParent(); 463 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 464 MachineFunction &MF = *MBB->getParent(); 465 466 MachineInstr *NewMI = nullptr; 467 468 if (MI->getOpcode() == TargetOpcode::STACKMAP || 469 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 470 // Fold stackmap/patchpoint. 471 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 472 } else { 473 // Ask the target to do the actual folding. 474 NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI); 475 } 476 477 if (NewMI) { 478 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 479 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 480 assert((!(Flags & MachineMemOperand::MOStore) || 481 NewMI->mayStore()) && 482 "Folded a def to a non-store!"); 483 assert((!(Flags & MachineMemOperand::MOLoad) || 484 NewMI->mayLoad()) && 485 "Folded a use to a non-load!"); 486 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 487 assert(MFI.getObjectOffset(FI) != -1); 488 MachineMemOperand *MMO = 489 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 490 Flags, MFI.getObjectSize(FI), 491 MFI.getObjectAlignment(FI)); 492 NewMI->addMemOperand(MF, MMO); 493 494 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 495 return MBB->insert(MI, NewMI); 496 } 497 498 // Straight COPY may fold as load/store. 499 if (!MI->isCopy() || Ops.size() != 1) 500 return nullptr; 501 502 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 503 if (!RC) 504 return nullptr; 505 506 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 507 MachineBasicBlock::iterator Pos = MI; 508 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 509 510 if (Flags == MachineMemOperand::MOStore) 511 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 512 else 513 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 514 return --Pos; 515 } 516 517 /// foldMemoryOperand - Same as the previous version except it allows folding 518 /// of any load and store from / to any address, not just from a specific 519 /// stack slot. 520 MachineInstr* 521 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 522 const SmallVectorImpl<unsigned> &Ops, 523 MachineInstr* LoadMI) const { 524 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 525 #ifndef NDEBUG 526 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 527 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 528 #endif 529 MachineBasicBlock &MBB = *MI->getParent(); 530 MachineFunction &MF = *MBB.getParent(); 531 532 // Ask the target to do the actual folding. 533 MachineInstr *NewMI = nullptr; 534 int FrameIndex = 0; 535 536 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 537 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 538 isLoadFromStackSlot(LoadMI, FrameIndex)) { 539 // Fold stackmap/patchpoint. 540 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 541 } else { 542 // Ask the target to do the actual folding. 543 NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 544 } 545 546 if (!NewMI) return nullptr; 547 548 NewMI = MBB.insert(MI, NewMI); 549 550 // Copy the memoperands from the load to the folded instruction. 551 if (MI->memoperands_empty()) { 552 NewMI->setMemRefs(LoadMI->memoperands_begin(), 553 LoadMI->memoperands_end()); 554 } 555 else { 556 // Handle the rare case of folding multiple loads. 557 NewMI->setMemRefs(MI->memoperands_begin(), 558 MI->memoperands_end()); 559 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 560 E = LoadMI->memoperands_end(); I != E; ++I) { 561 NewMI->addMemOperand(MF, *I); 562 } 563 } 564 return NewMI; 565 } 566 567 bool TargetInstrInfo:: 568 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 569 AliasAnalysis *AA) const { 570 const MachineFunction &MF = *MI->getParent()->getParent(); 571 const MachineRegisterInfo &MRI = MF.getRegInfo(); 572 573 // Remat clients assume operand 0 is the defined register. 574 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 575 return false; 576 unsigned DefReg = MI->getOperand(0).getReg(); 577 578 // A sub-register definition can only be rematerialized if the instruction 579 // doesn't read the other parts of the register. Otherwise it is really a 580 // read-modify-write operation on the full virtual register which cannot be 581 // moved safely. 582 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 583 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 584 return false; 585 586 // A load from a fixed stack slot can be rematerialized. This may be 587 // redundant with subsequent checks, but it's target-independent, 588 // simple, and a common case. 589 int FrameIdx = 0; 590 if (isLoadFromStackSlot(MI, FrameIdx) && 591 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 592 return true; 593 594 // Avoid instructions obviously unsafe for remat. 595 if (MI->isNotDuplicable() || MI->mayStore() || 596 MI->hasUnmodeledSideEffects()) 597 return false; 598 599 // Don't remat inline asm. We have no idea how expensive it is 600 // even if it's side effect free. 601 if (MI->isInlineAsm()) 602 return false; 603 604 // Avoid instructions which load from potentially varying memory. 605 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 606 return false; 607 608 // If any of the registers accessed are non-constant, conservatively assume 609 // the instruction is not rematerializable. 610 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 611 const MachineOperand &MO = MI->getOperand(i); 612 if (!MO.isReg()) continue; 613 unsigned Reg = MO.getReg(); 614 if (Reg == 0) 615 continue; 616 617 // Check for a well-behaved physical register. 618 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 619 if (MO.isUse()) { 620 // If the physreg has no defs anywhere, it's just an ambient register 621 // and we can freely move its uses. Alternatively, if it's allocatable, 622 // it could get allocated to something with a def during allocation. 623 if (!MRI.isConstantPhysReg(Reg, MF)) 624 return false; 625 } else { 626 // A physreg def. We can't remat it. 627 return false; 628 } 629 continue; 630 } 631 632 // Only allow one virtual-register def. There may be multiple defs of the 633 // same virtual register, though. 634 if (MO.isDef() && Reg != DefReg) 635 return false; 636 637 // Don't allow any virtual-register uses. Rematting an instruction with 638 // virtual register uses would length the live ranges of the uses, which 639 // is not necessarily a good idea, certainly not "trivial". 640 if (MO.isUse()) 641 return false; 642 } 643 644 // Everything checked out. 645 return true; 646 } 647 648 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { 649 const MachineFunction *MF = MI->getParent()->getParent(); 650 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 651 bool StackGrowsDown = 652 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 653 654 int FrameSetupOpcode = getCallFrameSetupOpcode(); 655 int FrameDestroyOpcode = getCallFrameDestroyOpcode(); 656 657 if (MI->getOpcode() != FrameSetupOpcode && 658 MI->getOpcode() != FrameDestroyOpcode) 659 return 0; 660 661 int SPAdj = MI->getOperand(0).getImm(); 662 663 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || 664 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) 665 SPAdj = -SPAdj; 666 667 return SPAdj; 668 } 669 670 /// isSchedulingBoundary - Test if the given instruction should be 671 /// considered a scheduling boundary. This primarily includes labels 672 /// and terminators. 673 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 674 const MachineBasicBlock *MBB, 675 const MachineFunction &MF) const { 676 // Terminators and labels can't be scheduled around. 677 if (MI->isTerminator() || MI->isPosition()) 678 return true; 679 680 // Don't attempt to schedule around any instruction that defines 681 // a stack-oriented pointer, as it's unlikely to be profitable. This 682 // saves compile time, because it doesn't require every single 683 // stack slot reference to depend on the instruction that does the 684 // modification. 685 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 686 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 687 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) 688 return true; 689 690 return false; 691 } 692 693 // Provide a global flag for disabling the PreRA hazard recognizer that targets 694 // may choose to honor. 695 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 696 return !DisableHazardRecognizer; 697 } 698 699 // Default implementation of CreateTargetRAHazardRecognizer. 700 ScheduleHazardRecognizer *TargetInstrInfo:: 701 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 702 const ScheduleDAG *DAG) const { 703 // Dummy hazard recognizer allows all instructions to issue. 704 return new ScheduleHazardRecognizer(); 705 } 706 707 // Default implementation of CreateTargetMIHazardRecognizer. 708 ScheduleHazardRecognizer *TargetInstrInfo:: 709 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 710 const ScheduleDAG *DAG) const { 711 return (ScheduleHazardRecognizer *) 712 new ScoreboardHazardRecognizer(II, DAG, "misched"); 713 } 714 715 // Default implementation of CreateTargetPostRAHazardRecognizer. 716 ScheduleHazardRecognizer *TargetInstrInfo:: 717 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 718 const ScheduleDAG *DAG) const { 719 return (ScheduleHazardRecognizer *) 720 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 721 } 722 723 //===----------------------------------------------------------------------===// 724 // SelectionDAG latency interface. 725 //===----------------------------------------------------------------------===// 726 727 int 728 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 729 SDNode *DefNode, unsigned DefIdx, 730 SDNode *UseNode, unsigned UseIdx) const { 731 if (!ItinData || ItinData->isEmpty()) 732 return -1; 733 734 if (!DefNode->isMachineOpcode()) 735 return -1; 736 737 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 738 if (!UseNode->isMachineOpcode()) 739 return ItinData->getOperandCycle(DefClass, DefIdx); 740 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 741 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 742 } 743 744 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 745 SDNode *N) const { 746 if (!ItinData || ItinData->isEmpty()) 747 return 1; 748 749 if (!N->isMachineOpcode()) 750 return 1; 751 752 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 753 } 754 755 //===----------------------------------------------------------------------===// 756 // MachineInstr latency interface. 757 //===----------------------------------------------------------------------===// 758 759 unsigned 760 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 761 const MachineInstr *MI) const { 762 if (!ItinData || ItinData->isEmpty()) 763 return 1; 764 765 unsigned Class = MI->getDesc().getSchedClass(); 766 int UOps = ItinData->Itineraries[Class].NumMicroOps; 767 if (UOps >= 0) 768 return UOps; 769 770 // The # of u-ops is dynamically determined. The specific target should 771 // override this function to return the right number. 772 return 1; 773 } 774 775 /// Return the default expected latency for a def based on it's opcode. 776 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 777 const MachineInstr *DefMI) const { 778 if (DefMI->isTransient()) 779 return 0; 780 if (DefMI->mayLoad()) 781 return SchedModel.LoadLatency; 782 if (isHighLatencyDef(DefMI->getOpcode())) 783 return SchedModel.HighLatency; 784 return 1; 785 } 786 787 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { 788 return 0; 789 } 790 791 unsigned TargetInstrInfo:: 792 getInstrLatency(const InstrItineraryData *ItinData, 793 const MachineInstr *MI, 794 unsigned *PredCost) const { 795 // Default to one cycle for no itinerary. However, an "empty" itinerary may 796 // still have a MinLatency property, which getStageLatency checks. 797 if (!ItinData) 798 return MI->mayLoad() ? 2 : 1; 799 800 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 801 } 802 803 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, 804 const MachineInstr *DefMI, 805 unsigned DefIdx) const { 806 if (!ItinData || ItinData->isEmpty()) 807 return false; 808 809 unsigned DefClass = DefMI->getDesc().getSchedClass(); 810 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 811 return (DefCycle != -1 && DefCycle <= 1); 812 } 813 814 /// Both DefMI and UseMI must be valid. By default, call directly to the 815 /// itinerary. This may be overriden by the target. 816 int TargetInstrInfo:: 817 getOperandLatency(const InstrItineraryData *ItinData, 818 const MachineInstr *DefMI, unsigned DefIdx, 819 const MachineInstr *UseMI, unsigned UseIdx) const { 820 unsigned DefClass = DefMI->getDesc().getSchedClass(); 821 unsigned UseClass = UseMI->getDesc().getSchedClass(); 822 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 823 } 824 825 /// If we can determine the operand latency from the def only, without itinerary 826 /// lookup, do so. Otherwise return -1. 827 int TargetInstrInfo::computeDefOperandLatency( 828 const InstrItineraryData *ItinData, 829 const MachineInstr *DefMI) const { 830 831 // Let the target hook getInstrLatency handle missing itineraries. 832 if (!ItinData) 833 return getInstrLatency(ItinData, DefMI); 834 835 if(ItinData->isEmpty()) 836 return defaultDefLatency(ItinData->SchedModel, DefMI); 837 838 // ...operand lookup required 839 return -1; 840 } 841 842 /// computeOperandLatency - Compute and return the latency of the given data 843 /// dependent def and use when the operand indices are already known. UseMI may 844 /// be NULL for an unknown use. 845 /// 846 /// FindMin may be set to get the minimum vs. expected latency. Minimum 847 /// latency is used for scheduling groups, while expected latency is for 848 /// instruction cost and critical path. 849 /// 850 /// Depending on the subtarget's itinerary properties, this may or may not need 851 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 852 /// UseIdx to compute min latency. 853 unsigned TargetInstrInfo:: 854 computeOperandLatency(const InstrItineraryData *ItinData, 855 const MachineInstr *DefMI, unsigned DefIdx, 856 const MachineInstr *UseMI, unsigned UseIdx) const { 857 858 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 859 if (DefLatency >= 0) 860 return DefLatency; 861 862 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 863 864 int OperLatency = 0; 865 if (UseMI) 866 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 867 else { 868 unsigned DefClass = DefMI->getDesc().getSchedClass(); 869 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 870 } 871 if (OperLatency >= 0) 872 return OperLatency; 873 874 // No operand latency was found. 875 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 876 877 // Expected latency is the max of the stage latency and itinerary props. 878 InstrLatency = std::max(InstrLatency, 879 defaultDefLatency(ItinData->SchedModel, DefMI)); 880 return InstrLatency; 881 } 882 883 bool TargetInstrInfo::getRegSequenceInputs( 884 const MachineInstr &MI, unsigned DefIdx, 885 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 886 assert((MI.isRegSequence() || 887 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 888 889 if (!MI.isRegSequence()) 890 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 891 892 // We are looking at: 893 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 894 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 895 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 896 OpIdx += 2) { 897 const MachineOperand &MOReg = MI.getOperand(OpIdx); 898 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 899 assert(MOSubIdx.isImm() && 900 "One of the subindex of the reg_sequence is not an immediate"); 901 // Record Reg:SubReg, SubIdx. 902 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 903 (unsigned)MOSubIdx.getImm())); 904 } 905 return true; 906 } 907 908 bool TargetInstrInfo::getExtractSubregInputs( 909 const MachineInstr &MI, unsigned DefIdx, 910 RegSubRegPairAndIdx &InputReg) const { 911 assert((MI.isExtractSubreg() || 912 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 913 914 if (!MI.isExtractSubreg()) 915 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 916 917 // We are looking at: 918 // Def = EXTRACT_SUBREG v0.sub1, sub0. 919 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 920 const MachineOperand &MOReg = MI.getOperand(1); 921 const MachineOperand &MOSubIdx = MI.getOperand(2); 922 assert(MOSubIdx.isImm() && 923 "The subindex of the extract_subreg is not an immediate"); 924 925 InputReg.Reg = MOReg.getReg(); 926 InputReg.SubReg = MOReg.getSubReg(); 927 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 928 return true; 929 } 930 931 bool TargetInstrInfo::getInsertSubregInputs( 932 const MachineInstr &MI, unsigned DefIdx, 933 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 934 assert((MI.isInsertSubreg() || 935 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 936 937 if (!MI.isInsertSubreg()) 938 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 939 940 // We are looking at: 941 // Def = INSERT_SEQUENCE v0, v1, sub0. 942 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 943 const MachineOperand &MOBaseReg = MI.getOperand(1); 944 const MachineOperand &MOInsertedReg = MI.getOperand(2); 945 const MachineOperand &MOSubIdx = MI.getOperand(3); 946 assert(MOSubIdx.isImm() && 947 "One of the subindex of the reg_sequence is not an immediate"); 948 BaseReg.Reg = MOBaseReg.getReg(); 949 BaseReg.SubReg = MOBaseReg.getSubReg(); 950 951 InsertedReg.Reg = MOInsertedReg.getReg(); 952 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 953 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 954 return true; 955 } 956