1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/CodeGen/TargetSchedule.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCInstrItineraries.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetFrameLowering.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 35 using namespace llvm; 36 37 static cl::opt<bool> DisableHazardRecognizer( 38 "disable-sched-hazard", cl::Hidden, cl::init(false), 39 cl::desc("Disable hazard detection during preRA scheduling")); 40 41 TargetInstrInfo::~TargetInstrInfo() { 42 } 43 44 const TargetRegisterClass* 45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 46 const TargetRegisterInfo *TRI, 47 const MachineFunction &MF) const { 48 if (OpNum >= MCID.getNumOperands()) 49 return nullptr; 50 51 short RegClass = MCID.OpInfo[OpNum].RegClass; 52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 53 return TRI->getPointerRegClass(MF, RegClass); 54 55 // Instructions like INSERT_SUBREG do not have fixed register classes. 56 if (RegClass < 0) 57 return nullptr; 58 59 // Otherwise just look it up normally. 60 return TRI->getRegClass(RegClass); 61 } 62 63 /// insertNoop - Insert a noop into the instruction stream at the specified 64 /// point. 65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 66 MachineBasicBlock::iterator MI) const { 67 llvm_unreachable("Target didn't implement insertNoop!"); 68 } 69 70 /// Measure the specified inline asm to determine an approximation of its 71 /// length. 72 /// Comments (which run till the next SeparatorString or newline) do not 73 /// count as an instruction. 74 /// Any other non-whitespace text is considered an instruction, with 75 /// multiple instructions separated by SeparatorString or newlines. 76 /// Variable-length instructions are not handled here; this function 77 /// may be overloaded in the target code to do that. 78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 79 const MCAsmInfo &MAI) const { 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Remove all the dead instructions from the end of MBB. 111 MBB->erase(Tail, MBB->end()); 112 113 // If MBB isn't immediately before MBB, insert a branch to it. 114 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 115 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 116 Tail->getDebugLoc()); 117 MBB->addSuccessor(NewDest); 118 } 119 120 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI, 121 bool NewMI, 122 unsigned Idx1, 123 unsigned Idx2) const { 124 const MCInstrDesc &MCID = MI->getDesc(); 125 bool HasDef = MCID.getNumDefs(); 126 if (HasDef && !MI->getOperand(0).isReg()) 127 // No idea how to commute this instruction. Target should implement its own. 128 return nullptr; 129 130 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 131 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 132 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 133 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 134 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 135 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 136 "This only knows how to commute register operands so far"); 137 138 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 139 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 140 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 141 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 142 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 143 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 144 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 145 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 146 bool Reg1IsUndef = MI->getOperand(Idx1).isUndef(); 147 bool Reg2IsUndef = MI->getOperand(Idx2).isUndef(); 148 bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead(); 149 bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead(); 150 // If destination is tied to either of the commuted source register, then 151 // it must be updated. 152 if (HasDef && Reg0 == Reg1 && 153 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 154 Reg2IsKill = false; 155 Reg0 = Reg2; 156 SubReg0 = SubReg2; 157 } else if (HasDef && Reg0 == Reg2 && 158 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 159 Reg1IsKill = false; 160 Reg0 = Reg1; 161 SubReg0 = SubReg1; 162 } 163 164 if (NewMI) { 165 // Create a new instruction. 166 MachineFunction &MF = *MI->getParent()->getParent(); 167 MI = MF.CloneMachineInstr(MI); 168 } 169 170 if (HasDef) { 171 MI->getOperand(0).setReg(Reg0); 172 MI->getOperand(0).setSubReg(SubReg0); 173 } 174 MI->getOperand(Idx2).setReg(Reg1); 175 MI->getOperand(Idx1).setReg(Reg2); 176 MI->getOperand(Idx2).setSubReg(SubReg1); 177 MI->getOperand(Idx1).setSubReg(SubReg2); 178 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 179 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 180 MI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 181 MI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 182 MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 183 MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 184 return MI; 185 } 186 187 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 188 bool NewMI, 189 unsigned OpIdx1, 190 unsigned OpIdx2) const { 191 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 192 // any commutable operand, which is done in findCommutedOpIndices() method 193 // called below. 194 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 195 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 196 assert(MI->isCommutable() && 197 "Precondition violation: MI must be commutable."); 198 return nullptr; 199 } 200 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 201 } 202 203 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 204 unsigned &ResultIdx2, 205 unsigned CommutableOpIdx1, 206 unsigned CommutableOpIdx2) { 207 if (ResultIdx1 == CommuteAnyOperandIndex && 208 ResultIdx2 == CommuteAnyOperandIndex) { 209 ResultIdx1 = CommutableOpIdx1; 210 ResultIdx2 = CommutableOpIdx2; 211 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 212 if (ResultIdx2 == CommutableOpIdx1) 213 ResultIdx1 = CommutableOpIdx2; 214 else if (ResultIdx2 == CommutableOpIdx2) 215 ResultIdx1 = CommutableOpIdx1; 216 else 217 return false; 218 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 219 if (ResultIdx1 == CommutableOpIdx1) 220 ResultIdx2 = CommutableOpIdx2; 221 else if (ResultIdx1 == CommutableOpIdx2) 222 ResultIdx2 = CommutableOpIdx1; 223 else 224 return false; 225 } else 226 // Check that the result operand indices match the given commutable 227 // operand indices. 228 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 229 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 230 231 return true; 232 } 233 234 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 235 unsigned &SrcOpIdx1, 236 unsigned &SrcOpIdx2) const { 237 assert(!MI->isBundle() && 238 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 239 240 const MCInstrDesc &MCID = MI->getDesc(); 241 if (!MCID.isCommutable()) 242 return false; 243 244 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 245 // is not true, then the target must implement this. 246 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 247 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 248 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 249 CommutableOpIdx1, CommutableOpIdx2)) 250 return false; 251 252 if (!MI->getOperand(SrcOpIdx1).isReg() || 253 !MI->getOperand(SrcOpIdx2).isReg()) 254 // No idea. 255 return false; 256 return true; 257 } 258 259 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 260 if (!MI.isTerminator()) return false; 261 262 // Conditional branch is a special case. 263 if (MI.isBranch() && !MI.isBarrier()) 264 return true; 265 if (!MI.isPredicable()) 266 return true; 267 return !isPredicated(MI); 268 } 269 270 bool TargetInstrInfo::PredicateInstruction( 271 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 272 bool MadeChange = false; 273 274 assert(!MI.isBundle() && 275 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 276 277 const MCInstrDesc &MCID = MI.getDesc(); 278 if (!MI.isPredicable()) 279 return false; 280 281 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 282 if (MCID.OpInfo[i].isPredicate()) { 283 MachineOperand &MO = MI.getOperand(i); 284 if (MO.isReg()) { 285 MO.setReg(Pred[j].getReg()); 286 MadeChange = true; 287 } else if (MO.isImm()) { 288 MO.setImm(Pred[j].getImm()); 289 MadeChange = true; 290 } else if (MO.isMBB()) { 291 MO.setMBB(Pred[j].getMBB()); 292 MadeChange = true; 293 } 294 ++j; 295 } 296 } 297 return MadeChange; 298 } 299 300 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 301 const MachineMemOperand *&MMO, 302 int &FrameIndex) const { 303 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 304 oe = MI->memoperands_end(); 305 o != oe; 306 ++o) { 307 if ((*o)->isLoad()) { 308 if (const FixedStackPseudoSourceValue *Value = 309 dyn_cast_or_null<FixedStackPseudoSourceValue>( 310 (*o)->getPseudoValue())) { 311 FrameIndex = Value->getFrameIndex(); 312 MMO = *o; 313 return true; 314 } 315 } 316 } 317 return false; 318 } 319 320 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 321 const MachineMemOperand *&MMO, 322 int &FrameIndex) const { 323 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 324 oe = MI->memoperands_end(); 325 o != oe; 326 ++o) { 327 if ((*o)->isStore()) { 328 if (const FixedStackPseudoSourceValue *Value = 329 dyn_cast_or_null<FixedStackPseudoSourceValue>( 330 (*o)->getPseudoValue())) { 331 FrameIndex = Value->getFrameIndex(); 332 MMO = *o; 333 return true; 334 } 335 } 336 } 337 return false; 338 } 339 340 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 341 unsigned SubIdx, unsigned &Size, 342 unsigned &Offset, 343 const MachineFunction &MF) const { 344 if (!SubIdx) { 345 Size = RC->getSize(); 346 Offset = 0; 347 return true; 348 } 349 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 350 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 351 // Convert bit size to byte size to be consistent with 352 // MCRegisterClass::getSize(). 353 if (BitSize % 8) 354 return false; 355 356 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 357 if (BitOffset < 0 || BitOffset % 8) 358 return false; 359 360 Size = BitSize /= 8; 361 Offset = (unsigned)BitOffset / 8; 362 363 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 364 365 if (!MF.getDataLayout().isLittleEndian()) { 366 Offset = RC->getSize() - (Offset + Size); 367 } 368 return true; 369 } 370 371 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 372 MachineBasicBlock::iterator I, 373 unsigned DestReg, 374 unsigned SubIdx, 375 const MachineInstr *Orig, 376 const TargetRegisterInfo &TRI) const { 377 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 378 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 379 MBB.insert(I, MI); 380 } 381 382 bool 383 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 384 const MachineInstr *MI1, 385 const MachineRegisterInfo *MRI) const { 386 return MI0->isIdenticalTo(*MI1, MachineInstr::IgnoreVRegDefs); 387 } 388 389 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 390 MachineFunction &MF) const { 391 assert(!Orig->isNotDuplicable() && 392 "Instruction cannot be duplicated"); 393 return MF.CloneMachineInstr(Orig); 394 } 395 396 // If the COPY instruction in MI can be folded to a stack operation, return 397 // the register class to use. 398 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 399 unsigned FoldIdx) { 400 assert(MI->isCopy() && "MI must be a COPY instruction"); 401 if (MI->getNumOperands() != 2) 402 return nullptr; 403 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 404 405 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 406 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 407 408 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 409 return nullptr; 410 411 unsigned FoldReg = FoldOp.getReg(); 412 unsigned LiveReg = LiveOp.getReg(); 413 414 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 415 "Cannot fold physregs"); 416 417 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 418 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 419 420 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 421 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 422 423 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 424 return RC; 425 426 // FIXME: Allow folding when register classes are memory compatible. 427 return nullptr; 428 } 429 430 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 431 llvm_unreachable("Not a MachO target"); 432 } 433 434 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI, 435 ArrayRef<unsigned> Ops, int FrameIndex, 436 const TargetInstrInfo &TII) { 437 unsigned StartIdx = 0; 438 switch (MI->getOpcode()) { 439 case TargetOpcode::STACKMAP: 440 StartIdx = 2; // Skip ID, nShadowBytes. 441 break; 442 case TargetOpcode::PATCHPOINT: { 443 // For PatchPoint, the call args are not foldable. 444 PatchPointOpers opers(MI); 445 StartIdx = opers.getVarIdx(); 446 break; 447 } 448 default: 449 llvm_unreachable("unexpected stackmap opcode"); 450 } 451 452 // Return false if any operands requested for folding are not foldable (not 453 // part of the stackmap's live values). 454 for (unsigned Op : Ops) { 455 if (Op < StartIdx) 456 return nullptr; 457 } 458 459 MachineInstr *NewMI = 460 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 461 MachineInstrBuilder MIB(MF, NewMI); 462 463 // No need to fold return, the meta data, and function arguments 464 for (unsigned i = 0; i < StartIdx; ++i) 465 MIB.addOperand(MI->getOperand(i)); 466 467 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 468 MachineOperand &MO = MI->getOperand(i); 469 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 470 unsigned SpillSize; 471 unsigned SpillOffset; 472 // Compute the spill slot size and offset. 473 const TargetRegisterClass *RC = 474 MF.getRegInfo().getRegClass(MO.getReg()); 475 bool Valid = 476 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 477 if (!Valid) 478 report_fatal_error("cannot spill patchpoint subregister operand"); 479 MIB.addImm(StackMaps::IndirectMemRefOp); 480 MIB.addImm(SpillSize); 481 MIB.addFrameIndex(FrameIndex); 482 MIB.addImm(SpillOffset); 483 } 484 else 485 MIB.addOperand(MO); 486 } 487 return NewMI; 488 } 489 490 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 491 /// slot into the specified machine instruction for the specified operand(s). 492 /// If this is possible, a new instruction is returned with the specified 493 /// operand folded, otherwise NULL is returned. The client is responsible for 494 /// removing the old instruction and adding the new one in the instruction 495 /// stream. 496 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 497 ArrayRef<unsigned> Ops, 498 int FI) const { 499 unsigned Flags = 0; 500 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 501 if (MI->getOperand(Ops[i]).isDef()) 502 Flags |= MachineMemOperand::MOStore; 503 else 504 Flags |= MachineMemOperand::MOLoad; 505 506 MachineBasicBlock *MBB = MI->getParent(); 507 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 508 MachineFunction &MF = *MBB->getParent(); 509 510 MachineInstr *NewMI = nullptr; 511 512 if (MI->getOpcode() == TargetOpcode::STACKMAP || 513 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 514 // Fold stackmap/patchpoint. 515 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 516 if (NewMI) 517 MBB->insert(MI, NewMI); 518 } else { 519 // Ask the target to do the actual folding. 520 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI); 521 } 522 523 if (NewMI) { 524 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 525 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 526 assert((!(Flags & MachineMemOperand::MOStore) || 527 NewMI->mayStore()) && 528 "Folded a def to a non-store!"); 529 assert((!(Flags & MachineMemOperand::MOLoad) || 530 NewMI->mayLoad()) && 531 "Folded a use to a non-load!"); 532 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 533 assert(MFI.getObjectOffset(FI) != -1); 534 MachineMemOperand *MMO = MF.getMachineMemOperand( 535 MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI), 536 MFI.getObjectAlignment(FI)); 537 NewMI->addMemOperand(MF, MMO); 538 539 return NewMI; 540 } 541 542 // Straight COPY may fold as load/store. 543 if (!MI->isCopy() || Ops.size() != 1) 544 return nullptr; 545 546 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 547 if (!RC) 548 return nullptr; 549 550 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 551 MachineBasicBlock::iterator Pos = MI; 552 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 553 554 if (Flags == MachineMemOperand::MOStore) 555 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 556 else 557 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 558 return --Pos; 559 } 560 561 bool TargetInstrInfo::hasReassociableOperands( 562 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 563 const MachineOperand &Op1 = Inst.getOperand(1); 564 const MachineOperand &Op2 = Inst.getOperand(2); 565 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 566 567 // We need virtual register definitions for the operands that we will 568 // reassociate. 569 MachineInstr *MI1 = nullptr; 570 MachineInstr *MI2 = nullptr; 571 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 572 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 573 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 574 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 575 576 // And they need to be in the trace (otherwise, they won't have a depth). 577 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 578 } 579 580 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 581 bool &Commuted) const { 582 const MachineBasicBlock *MBB = Inst.getParent(); 583 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 584 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 585 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 586 unsigned AssocOpcode = Inst.getOpcode(); 587 588 // If only one operand has the same opcode and it's the second source operand, 589 // the operands must be commuted. 590 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 591 if (Commuted) 592 std::swap(MI1, MI2); 593 594 // 1. The previous instruction must be the same type as Inst. 595 // 2. The previous instruction must have virtual register definitions for its 596 // operands in the same basic block as Inst. 597 // 3. The previous instruction's result must only be used by Inst. 598 return MI1->getOpcode() == AssocOpcode && 599 hasReassociableOperands(*MI1, MBB) && 600 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 601 } 602 603 // 1. The operation must be associative and commutative. 604 // 2. The instruction must have virtual register definitions for its 605 // operands in the same basic block. 606 // 3. The instruction must have a reassociable sibling. 607 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 608 bool &Commuted) const { 609 return isAssociativeAndCommutative(Inst) && 610 hasReassociableOperands(Inst, Inst.getParent()) && 611 hasReassociableSibling(Inst, Commuted); 612 } 613 614 // The concept of the reassociation pass is that these operations can benefit 615 // from this kind of transformation: 616 // 617 // A = ? op ? 618 // B = A op X (Prev) 619 // C = B op Y (Root) 620 // --> 621 // A = ? op ? 622 // B = X op Y 623 // C = A op B 624 // 625 // breaking the dependency between A and B, allowing them to be executed in 626 // parallel (or back-to-back in a pipeline) instead of depending on each other. 627 628 // FIXME: This has the potential to be expensive (compile time) while not 629 // improving the code at all. Some ways to limit the overhead: 630 // 1. Track successful transforms; bail out if hit rate gets too low. 631 // 2. Only enable at -O3 or some other non-default optimization level. 632 // 3. Pre-screen pattern candidates here: if an operand of the previous 633 // instruction is known to not increase the critical path, then don't match 634 // that pattern. 635 bool TargetInstrInfo::getMachineCombinerPatterns( 636 MachineInstr &Root, 637 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 638 bool Commute; 639 if (isReassociationCandidate(Root, Commute)) { 640 // We found a sequence of instructions that may be suitable for a 641 // reassociation of operands to increase ILP. Specify each commutation 642 // possibility for the Prev instruction in the sequence and let the 643 // machine combiner decide if changing the operands is worthwhile. 644 if (Commute) { 645 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 646 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 647 } else { 648 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 649 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 650 } 651 return true; 652 } 653 654 return false; 655 } 656 657 /// Attempt the reassociation transformation to reduce critical path length. 658 /// See the above comments before getMachineCombinerPatterns(). 659 void TargetInstrInfo::reassociateOps( 660 MachineInstr &Root, MachineInstr &Prev, 661 MachineCombinerPattern Pattern, 662 SmallVectorImpl<MachineInstr *> &InsInstrs, 663 SmallVectorImpl<MachineInstr *> &DelInstrs, 664 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 665 MachineFunction *MF = Root.getParent()->getParent(); 666 MachineRegisterInfo &MRI = MF->getRegInfo(); 667 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 668 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 669 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 670 671 // This array encodes the operand index for each parameter because the 672 // operands may be commuted. Each row corresponds to a pattern value, 673 // and each column specifies the index of A, B, X, Y. 674 unsigned OpIdx[4][4] = { 675 { 1, 1, 2, 2 }, 676 { 1, 2, 2, 1 }, 677 { 2, 1, 1, 2 }, 678 { 2, 2, 1, 1 } 679 }; 680 681 int Row; 682 switch (Pattern) { 683 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 684 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 685 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 686 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 687 default: llvm_unreachable("unexpected MachineCombinerPattern"); 688 } 689 690 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 691 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 692 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 693 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 694 MachineOperand &OpC = Root.getOperand(0); 695 696 unsigned RegA = OpA.getReg(); 697 unsigned RegB = OpB.getReg(); 698 unsigned RegX = OpX.getReg(); 699 unsigned RegY = OpY.getReg(); 700 unsigned RegC = OpC.getReg(); 701 702 if (TargetRegisterInfo::isVirtualRegister(RegA)) 703 MRI.constrainRegClass(RegA, RC); 704 if (TargetRegisterInfo::isVirtualRegister(RegB)) 705 MRI.constrainRegClass(RegB, RC); 706 if (TargetRegisterInfo::isVirtualRegister(RegX)) 707 MRI.constrainRegClass(RegX, RC); 708 if (TargetRegisterInfo::isVirtualRegister(RegY)) 709 MRI.constrainRegClass(RegY, RC); 710 if (TargetRegisterInfo::isVirtualRegister(RegC)) 711 MRI.constrainRegClass(RegC, RC); 712 713 // Create a new virtual register for the result of (X op Y) instead of 714 // recycling RegB because the MachineCombiner's computation of the critical 715 // path requires a new register definition rather than an existing one. 716 unsigned NewVR = MRI.createVirtualRegister(RC); 717 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 718 719 unsigned Opcode = Root.getOpcode(); 720 bool KillA = OpA.isKill(); 721 bool KillX = OpX.isKill(); 722 bool KillY = OpY.isKill(); 723 724 // Create new instructions for insertion. 725 MachineInstrBuilder MIB1 = 726 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 727 .addReg(RegX, getKillRegState(KillX)) 728 .addReg(RegY, getKillRegState(KillY)); 729 MachineInstrBuilder MIB2 = 730 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 731 .addReg(RegA, getKillRegState(KillA)) 732 .addReg(NewVR, getKillRegState(true)); 733 734 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 735 736 // Record new instructions for insertion and old instructions for deletion. 737 InsInstrs.push_back(MIB1); 738 InsInstrs.push_back(MIB2); 739 DelInstrs.push_back(&Prev); 740 DelInstrs.push_back(&Root); 741 } 742 743 void TargetInstrInfo::genAlternativeCodeSequence( 744 MachineInstr &Root, MachineCombinerPattern Pattern, 745 SmallVectorImpl<MachineInstr *> &InsInstrs, 746 SmallVectorImpl<MachineInstr *> &DelInstrs, 747 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 748 MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo(); 749 750 // Select the previous instruction in the sequence based on the input pattern. 751 MachineInstr *Prev = nullptr; 752 switch (Pattern) { 753 case MachineCombinerPattern::REASSOC_AX_BY: 754 case MachineCombinerPattern::REASSOC_XA_BY: 755 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 756 break; 757 case MachineCombinerPattern::REASSOC_AX_YB: 758 case MachineCombinerPattern::REASSOC_XA_YB: 759 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 760 break; 761 default: 762 break; 763 } 764 765 assert(Prev && "Unknown pattern for machine combiner"); 766 767 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 768 } 769 770 /// foldMemoryOperand - Same as the previous version except it allows folding 771 /// of any load and store from / to any address, not just from a specific 772 /// stack slot. 773 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 774 ArrayRef<unsigned> Ops, 775 MachineInstr *LoadMI) const { 776 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 777 #ifndef NDEBUG 778 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 779 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 780 #endif 781 MachineBasicBlock &MBB = *MI->getParent(); 782 MachineFunction &MF = *MBB.getParent(); 783 784 // Ask the target to do the actual folding. 785 MachineInstr *NewMI = nullptr; 786 int FrameIndex = 0; 787 788 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 789 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 790 isLoadFromStackSlot(LoadMI, FrameIndex)) { 791 // Fold stackmap/patchpoint. 792 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 793 if (NewMI) 794 NewMI = MBB.insert(MI, NewMI); 795 } else { 796 // Ask the target to do the actual folding. 797 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI); 798 } 799 800 if (!NewMI) return nullptr; 801 802 // Copy the memoperands from the load to the folded instruction. 803 if (MI->memoperands_empty()) { 804 NewMI->setMemRefs(LoadMI->memoperands_begin(), 805 LoadMI->memoperands_end()); 806 } 807 else { 808 // Handle the rare case of folding multiple loads. 809 NewMI->setMemRefs(MI->memoperands_begin(), 810 MI->memoperands_end()); 811 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 812 E = LoadMI->memoperands_end(); I != E; ++I) { 813 NewMI->addMemOperand(MF, *I); 814 } 815 } 816 return NewMI; 817 } 818 819 bool TargetInstrInfo:: 820 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 821 AliasAnalysis *AA) const { 822 const MachineFunction &MF = *MI->getParent()->getParent(); 823 const MachineRegisterInfo &MRI = MF.getRegInfo(); 824 825 // Remat clients assume operand 0 is the defined register. 826 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 827 return false; 828 unsigned DefReg = MI->getOperand(0).getReg(); 829 830 // A sub-register definition can only be rematerialized if the instruction 831 // doesn't read the other parts of the register. Otherwise it is really a 832 // read-modify-write operation on the full virtual register which cannot be 833 // moved safely. 834 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 835 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 836 return false; 837 838 // A load from a fixed stack slot can be rematerialized. This may be 839 // redundant with subsequent checks, but it's target-independent, 840 // simple, and a common case. 841 int FrameIdx = 0; 842 if (isLoadFromStackSlot(MI, FrameIdx) && 843 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 844 return true; 845 846 // Avoid instructions obviously unsafe for remat. 847 if (MI->isNotDuplicable() || MI->mayStore() || 848 MI->hasUnmodeledSideEffects()) 849 return false; 850 851 // Don't remat inline asm. We have no idea how expensive it is 852 // even if it's side effect free. 853 if (MI->isInlineAsm()) 854 return false; 855 856 // Avoid instructions which load from potentially varying memory. 857 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 858 return false; 859 860 // If any of the registers accessed are non-constant, conservatively assume 861 // the instruction is not rematerializable. 862 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 863 const MachineOperand &MO = MI->getOperand(i); 864 if (!MO.isReg()) continue; 865 unsigned Reg = MO.getReg(); 866 if (Reg == 0) 867 continue; 868 869 // Check for a well-behaved physical register. 870 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 871 if (MO.isUse()) { 872 // If the physreg has no defs anywhere, it's just an ambient register 873 // and we can freely move its uses. Alternatively, if it's allocatable, 874 // it could get allocated to something with a def during allocation. 875 if (!MRI.isConstantPhysReg(Reg, MF)) 876 return false; 877 } else { 878 // A physreg def. We can't remat it. 879 return false; 880 } 881 continue; 882 } 883 884 // Only allow one virtual-register def. There may be multiple defs of the 885 // same virtual register, though. 886 if (MO.isDef() && Reg != DefReg) 887 return false; 888 889 // Don't allow any virtual-register uses. Rematting an instruction with 890 // virtual register uses would length the live ranges of the uses, which 891 // is not necessarily a good idea, certainly not "trivial". 892 if (MO.isUse()) 893 return false; 894 } 895 896 // Everything checked out. 897 return true; 898 } 899 900 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { 901 const MachineFunction *MF = MI->getParent()->getParent(); 902 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 903 bool StackGrowsDown = 904 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 905 906 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 907 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 908 909 if (MI->getOpcode() != FrameSetupOpcode && 910 MI->getOpcode() != FrameDestroyOpcode) 911 return 0; 912 913 int SPAdj = MI->getOperand(0).getImm(); 914 SPAdj = TFI->alignSPAdjust(SPAdj); 915 916 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || 917 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) 918 SPAdj = -SPAdj; 919 920 return SPAdj; 921 } 922 923 /// isSchedulingBoundary - Test if the given instruction should be 924 /// considered a scheduling boundary. This primarily includes labels 925 /// and terminators. 926 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 927 const MachineBasicBlock *MBB, 928 const MachineFunction &MF) const { 929 // Terminators and labels can't be scheduled around. 930 if (MI->isTerminator() || MI->isPosition()) 931 return true; 932 933 // Don't attempt to schedule around any instruction that defines 934 // a stack-oriented pointer, as it's unlikely to be profitable. This 935 // saves compile time, because it doesn't require every single 936 // stack slot reference to depend on the instruction that does the 937 // modification. 938 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 939 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 940 return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 941 } 942 943 // Provide a global flag for disabling the PreRA hazard recognizer that targets 944 // may choose to honor. 945 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 946 return !DisableHazardRecognizer; 947 } 948 949 // Default implementation of CreateTargetRAHazardRecognizer. 950 ScheduleHazardRecognizer *TargetInstrInfo:: 951 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 952 const ScheduleDAG *DAG) const { 953 // Dummy hazard recognizer allows all instructions to issue. 954 return new ScheduleHazardRecognizer(); 955 } 956 957 // Default implementation of CreateTargetMIHazardRecognizer. 958 ScheduleHazardRecognizer *TargetInstrInfo:: 959 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 960 const ScheduleDAG *DAG) const { 961 return (ScheduleHazardRecognizer *) 962 new ScoreboardHazardRecognizer(II, DAG, "misched"); 963 } 964 965 // Default implementation of CreateTargetPostRAHazardRecognizer. 966 ScheduleHazardRecognizer *TargetInstrInfo:: 967 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 968 const ScheduleDAG *DAG) const { 969 return (ScheduleHazardRecognizer *) 970 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 971 } 972 973 //===----------------------------------------------------------------------===// 974 // SelectionDAG latency interface. 975 //===----------------------------------------------------------------------===// 976 977 int 978 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 979 SDNode *DefNode, unsigned DefIdx, 980 SDNode *UseNode, unsigned UseIdx) const { 981 if (!ItinData || ItinData->isEmpty()) 982 return -1; 983 984 if (!DefNode->isMachineOpcode()) 985 return -1; 986 987 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 988 if (!UseNode->isMachineOpcode()) 989 return ItinData->getOperandCycle(DefClass, DefIdx); 990 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 991 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 992 } 993 994 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 995 SDNode *N) const { 996 if (!ItinData || ItinData->isEmpty()) 997 return 1; 998 999 if (!N->isMachineOpcode()) 1000 return 1; 1001 1002 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1003 } 1004 1005 //===----------------------------------------------------------------------===// 1006 // MachineInstr latency interface. 1007 //===----------------------------------------------------------------------===// 1008 1009 unsigned 1010 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1011 const MachineInstr *MI) const { 1012 if (!ItinData || ItinData->isEmpty()) 1013 return 1; 1014 1015 unsigned Class = MI->getDesc().getSchedClass(); 1016 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1017 if (UOps >= 0) 1018 return UOps; 1019 1020 // The # of u-ops is dynamically determined. The specific target should 1021 // override this function to return the right number. 1022 return 1; 1023 } 1024 1025 /// Return the default expected latency for a def based on it's opcode. 1026 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1027 const MachineInstr *DefMI) const { 1028 if (DefMI->isTransient()) 1029 return 0; 1030 if (DefMI->mayLoad()) 1031 return SchedModel.LoadLatency; 1032 if (isHighLatencyDef(DefMI->getOpcode())) 1033 return SchedModel.HighLatency; 1034 return 1; 1035 } 1036 1037 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1038 return 0; 1039 } 1040 1041 unsigned TargetInstrInfo:: 1042 getInstrLatency(const InstrItineraryData *ItinData, 1043 const MachineInstr *MI, 1044 unsigned *PredCost) const { 1045 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1046 // still have a MinLatency property, which getStageLatency checks. 1047 if (!ItinData) 1048 return MI->mayLoad() ? 2 : 1; 1049 1050 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 1051 } 1052 1053 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1054 const MachineInstr *DefMI, 1055 unsigned DefIdx) const { 1056 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1057 if (!ItinData || ItinData->isEmpty()) 1058 return false; 1059 1060 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1061 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1062 return (DefCycle != -1 && DefCycle <= 1); 1063 } 1064 1065 /// Both DefMI and UseMI must be valid. By default, call directly to the 1066 /// itinerary. This may be overriden by the target. 1067 int TargetInstrInfo:: 1068 getOperandLatency(const InstrItineraryData *ItinData, 1069 const MachineInstr *DefMI, unsigned DefIdx, 1070 const MachineInstr *UseMI, unsigned UseIdx) const { 1071 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1072 unsigned UseClass = UseMI->getDesc().getSchedClass(); 1073 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1074 } 1075 1076 /// If we can determine the operand latency from the def only, without itinerary 1077 /// lookup, do so. Otherwise return -1. 1078 int TargetInstrInfo::computeDefOperandLatency( 1079 const InstrItineraryData *ItinData, 1080 const MachineInstr *DefMI) const { 1081 1082 // Let the target hook getInstrLatency handle missing itineraries. 1083 if (!ItinData) 1084 return getInstrLatency(ItinData, DefMI); 1085 1086 if(ItinData->isEmpty()) 1087 return defaultDefLatency(ItinData->SchedModel, DefMI); 1088 1089 // ...operand lookup required 1090 return -1; 1091 } 1092 1093 /// computeOperandLatency - Compute and return the latency of the given data 1094 /// dependent def and use when the operand indices are already known. UseMI may 1095 /// be NULL for an unknown use. 1096 /// 1097 /// FindMin may be set to get the minimum vs. expected latency. Minimum 1098 /// latency is used for scheduling groups, while expected latency is for 1099 /// instruction cost and critical path. 1100 /// 1101 /// Depending on the subtarget's itinerary properties, this may or may not need 1102 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 1103 /// UseIdx to compute min latency. 1104 unsigned TargetInstrInfo:: 1105 computeOperandLatency(const InstrItineraryData *ItinData, 1106 const MachineInstr *DefMI, unsigned DefIdx, 1107 const MachineInstr *UseMI, unsigned UseIdx) const { 1108 1109 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 1110 if (DefLatency >= 0) 1111 return DefLatency; 1112 1113 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 1114 1115 int OperLatency = 0; 1116 if (UseMI) 1117 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 1118 else { 1119 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1120 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 1121 } 1122 if (OperLatency >= 0) 1123 return OperLatency; 1124 1125 // No operand latency was found. 1126 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 1127 1128 // Expected latency is the max of the stage latency and itinerary props. 1129 InstrLatency = std::max(InstrLatency, 1130 defaultDefLatency(ItinData->SchedModel, DefMI)); 1131 return InstrLatency; 1132 } 1133 1134 bool TargetInstrInfo::getRegSequenceInputs( 1135 const MachineInstr &MI, unsigned DefIdx, 1136 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1137 assert((MI.isRegSequence() || 1138 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1139 1140 if (!MI.isRegSequence()) 1141 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1142 1143 // We are looking at: 1144 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1145 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1146 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1147 OpIdx += 2) { 1148 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1149 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1150 assert(MOSubIdx.isImm() && 1151 "One of the subindex of the reg_sequence is not an immediate"); 1152 // Record Reg:SubReg, SubIdx. 1153 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1154 (unsigned)MOSubIdx.getImm())); 1155 } 1156 return true; 1157 } 1158 1159 bool TargetInstrInfo::getExtractSubregInputs( 1160 const MachineInstr &MI, unsigned DefIdx, 1161 RegSubRegPairAndIdx &InputReg) const { 1162 assert((MI.isExtractSubreg() || 1163 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1164 1165 if (!MI.isExtractSubreg()) 1166 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1167 1168 // We are looking at: 1169 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1170 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1171 const MachineOperand &MOReg = MI.getOperand(1); 1172 const MachineOperand &MOSubIdx = MI.getOperand(2); 1173 assert(MOSubIdx.isImm() && 1174 "The subindex of the extract_subreg is not an immediate"); 1175 1176 InputReg.Reg = MOReg.getReg(); 1177 InputReg.SubReg = MOReg.getSubReg(); 1178 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1179 return true; 1180 } 1181 1182 bool TargetInstrInfo::getInsertSubregInputs( 1183 const MachineInstr &MI, unsigned DefIdx, 1184 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1185 assert((MI.isInsertSubreg() || 1186 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1187 1188 if (!MI.isInsertSubreg()) 1189 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1190 1191 // We are looking at: 1192 // Def = INSERT_SEQUENCE v0, v1, sub0. 1193 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1194 const MachineOperand &MOBaseReg = MI.getOperand(1); 1195 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1196 const MachineOperand &MOSubIdx = MI.getOperand(3); 1197 assert(MOSubIdx.isImm() && 1198 "One of the subindex of the reg_sequence is not an immediate"); 1199 BaseReg.Reg = MOBaseReg.getReg(); 1200 BaseReg.SubReg = MOBaseReg.getSubReg(); 1201 1202 InsertedReg.Reg = MOInsertedReg.getReg(); 1203 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1204 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1205 return true; 1206 } 1207