1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned Length = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0)
86       atInsnStart = true;
87     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
88       Length += MAI.getMaxInstLength();
89       atInsnStart = false;
90     }
91     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
92                                strlen(MAI.getCommentString())) == 0)
93       atInsnStart = false;
94   }
95 
96   return Length;
97 }
98 
99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
100 /// after it, replacing it with an unconditional branch to NewDest.
101 void
102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
103                                          MachineBasicBlock *NewDest) const {
104   MachineBasicBlock *MBB = Tail->getParent();
105 
106   // Remove all the old successors of MBB from the CFG.
107   while (!MBB->succ_empty())
108     MBB->removeSuccessor(MBB->succ_begin());
109 
110   // Remove all the dead instructions from the end of MBB.
111   MBB->erase(Tail, MBB->end());
112 
113   // If MBB isn't immediately before MBB, insert a branch to it.
114   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
115     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(),
116                  Tail->getDebugLoc());
117   MBB->addSuccessor(NewDest);
118 }
119 
120 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI,
121                                                       bool NewMI,
122                                                       unsigned Idx1,
123                                                       unsigned Idx2) const {
124   const MCInstrDesc &MCID = MI->getDesc();
125   bool HasDef = MCID.getNumDefs();
126   if (HasDef && !MI->getOperand(0).isReg())
127     // No idea how to commute this instruction. Target should implement its own.
128     return nullptr;
129 
130   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
131   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
132   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
133          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
134          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
135   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
136          "This only knows how to commute register operands so far");
137 
138   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
139   unsigned Reg1 = MI->getOperand(Idx1).getReg();
140   unsigned Reg2 = MI->getOperand(Idx2).getReg();
141   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
142   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
143   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
144   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
145   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
146   bool Reg1IsUndef = MI->getOperand(Idx1).isUndef();
147   bool Reg2IsUndef = MI->getOperand(Idx2).isUndef();
148   bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead();
149   bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead();
150   // If destination is tied to either of the commuted source register, then
151   // it must be updated.
152   if (HasDef && Reg0 == Reg1 &&
153       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
154     Reg2IsKill = false;
155     Reg0 = Reg2;
156     SubReg0 = SubReg2;
157   } else if (HasDef && Reg0 == Reg2 &&
158              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
159     Reg1IsKill = false;
160     Reg0 = Reg1;
161     SubReg0 = SubReg1;
162   }
163 
164   if (NewMI) {
165     // Create a new instruction.
166     MachineFunction &MF = *MI->getParent()->getParent();
167     MI = MF.CloneMachineInstr(MI);
168   }
169 
170   if (HasDef) {
171     MI->getOperand(0).setReg(Reg0);
172     MI->getOperand(0).setSubReg(SubReg0);
173   }
174   MI->getOperand(Idx2).setReg(Reg1);
175   MI->getOperand(Idx1).setReg(Reg2);
176   MI->getOperand(Idx2).setSubReg(SubReg1);
177   MI->getOperand(Idx1).setSubReg(SubReg2);
178   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
179   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
180   MI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
181   MI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
182   MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
183   MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
184   return MI;
185 }
186 
187 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
188                                                   bool NewMI,
189                                                   unsigned OpIdx1,
190                                                   unsigned OpIdx2) const {
191   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
192   // any commutable operand, which is done in findCommutedOpIndices() method
193   // called below.
194   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
195       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
196     assert(MI->isCommutable() &&
197            "Precondition violation: MI must be commutable.");
198     return nullptr;
199   }
200   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
201 }
202 
203 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
204                                            unsigned &ResultIdx2,
205                                            unsigned CommutableOpIdx1,
206                                            unsigned CommutableOpIdx2) {
207   if (ResultIdx1 == CommuteAnyOperandIndex &&
208       ResultIdx2 == CommuteAnyOperandIndex) {
209     ResultIdx1 = CommutableOpIdx1;
210     ResultIdx2 = CommutableOpIdx2;
211   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
212     if (ResultIdx2 == CommutableOpIdx1)
213       ResultIdx1 = CommutableOpIdx2;
214     else if (ResultIdx2 == CommutableOpIdx2)
215       ResultIdx1 = CommutableOpIdx1;
216     else
217       return false;
218   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
219     if (ResultIdx1 == CommutableOpIdx1)
220       ResultIdx2 = CommutableOpIdx2;
221     else if (ResultIdx1 == CommutableOpIdx2)
222       ResultIdx2 = CommutableOpIdx1;
223     else
224       return false;
225   } else
226     // Check that the result operand indices match the given commutable
227     // operand indices.
228     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
229            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
230 
231   return true;
232 }
233 
234 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
235                                             unsigned &SrcOpIdx1,
236                                             unsigned &SrcOpIdx2) const {
237   assert(!MI->isBundle() &&
238          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
239 
240   const MCInstrDesc &MCID = MI->getDesc();
241   if (!MCID.isCommutable())
242     return false;
243 
244   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
245   // is not true, then the target must implement this.
246   unsigned CommutableOpIdx1 = MCID.getNumDefs();
247   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
248   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
249                             CommutableOpIdx1, CommutableOpIdx2))
250     return false;
251 
252   if (!MI->getOperand(SrcOpIdx1).isReg() ||
253       !MI->getOperand(SrcOpIdx2).isReg())
254     // No idea.
255     return false;
256   return true;
257 }
258 
259 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
260   if (!MI.isTerminator()) return false;
261 
262   // Conditional branch is a special case.
263   if (MI.isBranch() && !MI.isBarrier())
264     return true;
265   if (!MI.isPredicable())
266     return true;
267   return !isPredicated(MI);
268 }
269 
270 bool TargetInstrInfo::PredicateInstruction(
271     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
272   bool MadeChange = false;
273 
274   assert(!MI.isBundle() &&
275          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
276 
277   const MCInstrDesc &MCID = MI.getDesc();
278   if (!MI.isPredicable())
279     return false;
280 
281   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
282     if (MCID.OpInfo[i].isPredicate()) {
283       MachineOperand &MO = MI.getOperand(i);
284       if (MO.isReg()) {
285         MO.setReg(Pred[j].getReg());
286         MadeChange = true;
287       } else if (MO.isImm()) {
288         MO.setImm(Pred[j].getImm());
289         MadeChange = true;
290       } else if (MO.isMBB()) {
291         MO.setMBB(Pred[j].getMBB());
292         MadeChange = true;
293       }
294       ++j;
295     }
296   }
297   return MadeChange;
298 }
299 
300 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
301                                            const MachineMemOperand *&MMO,
302                                            int &FrameIndex) const {
303   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
304          oe = MI->memoperands_end();
305        o != oe;
306        ++o) {
307     if ((*o)->isLoad()) {
308       if (const FixedStackPseudoSourceValue *Value =
309           dyn_cast_or_null<FixedStackPseudoSourceValue>(
310               (*o)->getPseudoValue())) {
311         FrameIndex = Value->getFrameIndex();
312         MMO = *o;
313         return true;
314       }
315     }
316   }
317   return false;
318 }
319 
320 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
321                                           const MachineMemOperand *&MMO,
322                                           int &FrameIndex) const {
323   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
324          oe = MI->memoperands_end();
325        o != oe;
326        ++o) {
327     if ((*o)->isStore()) {
328       if (const FixedStackPseudoSourceValue *Value =
329           dyn_cast_or_null<FixedStackPseudoSourceValue>(
330               (*o)->getPseudoValue())) {
331         FrameIndex = Value->getFrameIndex();
332         MMO = *o;
333         return true;
334       }
335     }
336   }
337   return false;
338 }
339 
340 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
341                                         unsigned SubIdx, unsigned &Size,
342                                         unsigned &Offset,
343                                         const MachineFunction &MF) const {
344   if (!SubIdx) {
345     Size = RC->getSize();
346     Offset = 0;
347     return true;
348   }
349   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
350   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
351   // Convert bit size to byte size to be consistent with
352   // MCRegisterClass::getSize().
353   if (BitSize % 8)
354     return false;
355 
356   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
357   if (BitOffset < 0 || BitOffset % 8)
358     return false;
359 
360   Size = BitSize /= 8;
361   Offset = (unsigned)BitOffset / 8;
362 
363   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
364 
365   if (!MF.getDataLayout().isLittleEndian()) {
366     Offset = RC->getSize() - (Offset + Size);
367   }
368   return true;
369 }
370 
371 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
372                                     MachineBasicBlock::iterator I,
373                                     unsigned DestReg,
374                                     unsigned SubIdx,
375                                     const MachineInstr *Orig,
376                                     const TargetRegisterInfo &TRI) const {
377   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
378   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
379   MBB.insert(I, MI);
380 }
381 
382 bool
383 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
384                                   const MachineInstr *MI1,
385                                   const MachineRegisterInfo *MRI) const {
386   return MI0->isIdenticalTo(*MI1, MachineInstr::IgnoreVRegDefs);
387 }
388 
389 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
390                                          MachineFunction &MF) const {
391   assert(!Orig->isNotDuplicable() &&
392          "Instruction cannot be duplicated");
393   return MF.CloneMachineInstr(Orig);
394 }
395 
396 // If the COPY instruction in MI can be folded to a stack operation, return
397 // the register class to use.
398 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
399                                               unsigned FoldIdx) {
400   assert(MI->isCopy() && "MI must be a COPY instruction");
401   if (MI->getNumOperands() != 2)
402     return nullptr;
403   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
404 
405   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
406   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
407 
408   if (FoldOp.getSubReg() || LiveOp.getSubReg())
409     return nullptr;
410 
411   unsigned FoldReg = FoldOp.getReg();
412   unsigned LiveReg = LiveOp.getReg();
413 
414   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
415          "Cannot fold physregs");
416 
417   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
418   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
419 
420   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
421     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
422 
423   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
424     return RC;
425 
426   // FIXME: Allow folding when register classes are memory compatible.
427   return nullptr;
428 }
429 
430 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
431   llvm_unreachable("Not a MachO target");
432 }
433 
434 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI,
435                                     ArrayRef<unsigned> Ops, int FrameIndex,
436                                     const TargetInstrInfo &TII) {
437   unsigned StartIdx = 0;
438   switch (MI->getOpcode()) {
439   case TargetOpcode::STACKMAP:
440     StartIdx = 2; // Skip ID, nShadowBytes.
441     break;
442   case TargetOpcode::PATCHPOINT: {
443     // For PatchPoint, the call args are not foldable.
444     PatchPointOpers opers(MI);
445     StartIdx = opers.getVarIdx();
446     break;
447   }
448   default:
449     llvm_unreachable("unexpected stackmap opcode");
450   }
451 
452   // Return false if any operands requested for folding are not foldable (not
453   // part of the stackmap's live values).
454   for (unsigned Op : Ops) {
455     if (Op < StartIdx)
456       return nullptr;
457   }
458 
459   MachineInstr *NewMI =
460     MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
461   MachineInstrBuilder MIB(MF, NewMI);
462 
463   // No need to fold return, the meta data, and function arguments
464   for (unsigned i = 0; i < StartIdx; ++i)
465     MIB.addOperand(MI->getOperand(i));
466 
467   for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
468     MachineOperand &MO = MI->getOperand(i);
469     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
470       unsigned SpillSize;
471       unsigned SpillOffset;
472       // Compute the spill slot size and offset.
473       const TargetRegisterClass *RC =
474         MF.getRegInfo().getRegClass(MO.getReg());
475       bool Valid =
476           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
477       if (!Valid)
478         report_fatal_error("cannot spill patchpoint subregister operand");
479       MIB.addImm(StackMaps::IndirectMemRefOp);
480       MIB.addImm(SpillSize);
481       MIB.addFrameIndex(FrameIndex);
482       MIB.addImm(SpillOffset);
483     }
484     else
485       MIB.addOperand(MO);
486   }
487   return NewMI;
488 }
489 
490 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
491 /// slot into the specified machine instruction for the specified operand(s).
492 /// If this is possible, a new instruction is returned with the specified
493 /// operand folded, otherwise NULL is returned. The client is responsible for
494 /// removing the old instruction and adding the new one in the instruction
495 /// stream.
496 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
497                                                  ArrayRef<unsigned> Ops,
498                                                  int FI) const {
499   unsigned Flags = 0;
500   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
501     if (MI->getOperand(Ops[i]).isDef())
502       Flags |= MachineMemOperand::MOStore;
503     else
504       Flags |= MachineMemOperand::MOLoad;
505 
506   MachineBasicBlock *MBB = MI->getParent();
507   assert(MBB && "foldMemoryOperand needs an inserted instruction");
508   MachineFunction &MF = *MBB->getParent();
509 
510   MachineInstr *NewMI = nullptr;
511 
512   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
513       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
514     // Fold stackmap/patchpoint.
515     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
516     if (NewMI)
517       MBB->insert(MI, NewMI);
518   } else {
519     // Ask the target to do the actual folding.
520     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI);
521   }
522 
523   if (NewMI) {
524     NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
525     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
526     assert((!(Flags & MachineMemOperand::MOStore) ||
527             NewMI->mayStore()) &&
528            "Folded a def to a non-store!");
529     assert((!(Flags & MachineMemOperand::MOLoad) ||
530             NewMI->mayLoad()) &&
531            "Folded a use to a non-load!");
532     const MachineFrameInfo &MFI = *MF.getFrameInfo();
533     assert(MFI.getObjectOffset(FI) != -1);
534     MachineMemOperand *MMO = MF.getMachineMemOperand(
535         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
536         MFI.getObjectAlignment(FI));
537     NewMI->addMemOperand(MF, MMO);
538 
539     return NewMI;
540   }
541 
542   // Straight COPY may fold as load/store.
543   if (!MI->isCopy() || Ops.size() != 1)
544     return nullptr;
545 
546   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
547   if (!RC)
548     return nullptr;
549 
550   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
551   MachineBasicBlock::iterator Pos = MI;
552   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
553 
554   if (Flags == MachineMemOperand::MOStore)
555     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
556   else
557     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
558   return --Pos;
559 }
560 
561 bool TargetInstrInfo::hasReassociableOperands(
562     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
563   const MachineOperand &Op1 = Inst.getOperand(1);
564   const MachineOperand &Op2 = Inst.getOperand(2);
565   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
566 
567   // We need virtual register definitions for the operands that we will
568   // reassociate.
569   MachineInstr *MI1 = nullptr;
570   MachineInstr *MI2 = nullptr;
571   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
572     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
573   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
574     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
575 
576   // And they need to be in the trace (otherwise, they won't have a depth).
577   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
578 }
579 
580 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
581                                              bool &Commuted) const {
582   const MachineBasicBlock *MBB = Inst.getParent();
583   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
584   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
585   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
586   unsigned AssocOpcode = Inst.getOpcode();
587 
588   // If only one operand has the same opcode and it's the second source operand,
589   // the operands must be commuted.
590   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
591   if (Commuted)
592     std::swap(MI1, MI2);
593 
594   // 1. The previous instruction must be the same type as Inst.
595   // 2. The previous instruction must have virtual register definitions for its
596   //    operands in the same basic block as Inst.
597   // 3. The previous instruction's result must only be used by Inst.
598   return MI1->getOpcode() == AssocOpcode &&
599          hasReassociableOperands(*MI1, MBB) &&
600          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
601 }
602 
603 // 1. The operation must be associative and commutative.
604 // 2. The instruction must have virtual register definitions for its
605 //    operands in the same basic block.
606 // 3. The instruction must have a reassociable sibling.
607 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
608                                                bool &Commuted) const {
609   return isAssociativeAndCommutative(Inst) &&
610          hasReassociableOperands(Inst, Inst.getParent()) &&
611          hasReassociableSibling(Inst, Commuted);
612 }
613 
614 // The concept of the reassociation pass is that these operations can benefit
615 // from this kind of transformation:
616 //
617 // A = ? op ?
618 // B = A op X (Prev)
619 // C = B op Y (Root)
620 // -->
621 // A = ? op ?
622 // B = X op Y
623 // C = A op B
624 //
625 // breaking the dependency between A and B, allowing them to be executed in
626 // parallel (or back-to-back in a pipeline) instead of depending on each other.
627 
628 // FIXME: This has the potential to be expensive (compile time) while not
629 // improving the code at all. Some ways to limit the overhead:
630 // 1. Track successful transforms; bail out if hit rate gets too low.
631 // 2. Only enable at -O3 or some other non-default optimization level.
632 // 3. Pre-screen pattern candidates here: if an operand of the previous
633 //    instruction is known to not increase the critical path, then don't match
634 //    that pattern.
635 bool TargetInstrInfo::getMachineCombinerPatterns(
636     MachineInstr &Root,
637     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
638   bool Commute;
639   if (isReassociationCandidate(Root, Commute)) {
640     // We found a sequence of instructions that may be suitable for a
641     // reassociation of operands to increase ILP. Specify each commutation
642     // possibility for the Prev instruction in the sequence and let the
643     // machine combiner decide if changing the operands is worthwhile.
644     if (Commute) {
645       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
646       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
647     } else {
648       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
649       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
650     }
651     return true;
652   }
653 
654   return false;
655 }
656 
657 /// Attempt the reassociation transformation to reduce critical path length.
658 /// See the above comments before getMachineCombinerPatterns().
659 void TargetInstrInfo::reassociateOps(
660     MachineInstr &Root, MachineInstr &Prev,
661     MachineCombinerPattern Pattern,
662     SmallVectorImpl<MachineInstr *> &InsInstrs,
663     SmallVectorImpl<MachineInstr *> &DelInstrs,
664     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
665   MachineFunction *MF = Root.getParent()->getParent();
666   MachineRegisterInfo &MRI = MF->getRegInfo();
667   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
668   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
669   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
670 
671   // This array encodes the operand index for each parameter because the
672   // operands may be commuted. Each row corresponds to a pattern value,
673   // and each column specifies the index of A, B, X, Y.
674   unsigned OpIdx[4][4] = {
675     { 1, 1, 2, 2 },
676     { 1, 2, 2, 1 },
677     { 2, 1, 1, 2 },
678     { 2, 2, 1, 1 }
679   };
680 
681   int Row;
682   switch (Pattern) {
683   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
684   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
685   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
686   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
687   default: llvm_unreachable("unexpected MachineCombinerPattern");
688   }
689 
690   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
691   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
692   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
693   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
694   MachineOperand &OpC = Root.getOperand(0);
695 
696   unsigned RegA = OpA.getReg();
697   unsigned RegB = OpB.getReg();
698   unsigned RegX = OpX.getReg();
699   unsigned RegY = OpY.getReg();
700   unsigned RegC = OpC.getReg();
701 
702   if (TargetRegisterInfo::isVirtualRegister(RegA))
703     MRI.constrainRegClass(RegA, RC);
704   if (TargetRegisterInfo::isVirtualRegister(RegB))
705     MRI.constrainRegClass(RegB, RC);
706   if (TargetRegisterInfo::isVirtualRegister(RegX))
707     MRI.constrainRegClass(RegX, RC);
708   if (TargetRegisterInfo::isVirtualRegister(RegY))
709     MRI.constrainRegClass(RegY, RC);
710   if (TargetRegisterInfo::isVirtualRegister(RegC))
711     MRI.constrainRegClass(RegC, RC);
712 
713   // Create a new virtual register for the result of (X op Y) instead of
714   // recycling RegB because the MachineCombiner's computation of the critical
715   // path requires a new register definition rather than an existing one.
716   unsigned NewVR = MRI.createVirtualRegister(RC);
717   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
718 
719   unsigned Opcode = Root.getOpcode();
720   bool KillA = OpA.isKill();
721   bool KillX = OpX.isKill();
722   bool KillY = OpY.isKill();
723 
724   // Create new instructions for insertion.
725   MachineInstrBuilder MIB1 =
726       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
727           .addReg(RegX, getKillRegState(KillX))
728           .addReg(RegY, getKillRegState(KillY));
729   MachineInstrBuilder MIB2 =
730       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
731           .addReg(RegA, getKillRegState(KillA))
732           .addReg(NewVR, getKillRegState(true));
733 
734   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
735 
736   // Record new instructions for insertion and old instructions for deletion.
737   InsInstrs.push_back(MIB1);
738   InsInstrs.push_back(MIB2);
739   DelInstrs.push_back(&Prev);
740   DelInstrs.push_back(&Root);
741 }
742 
743 void TargetInstrInfo::genAlternativeCodeSequence(
744     MachineInstr &Root, MachineCombinerPattern Pattern,
745     SmallVectorImpl<MachineInstr *> &InsInstrs,
746     SmallVectorImpl<MachineInstr *> &DelInstrs,
747     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
748   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
749 
750   // Select the previous instruction in the sequence based on the input pattern.
751   MachineInstr *Prev = nullptr;
752   switch (Pattern) {
753   case MachineCombinerPattern::REASSOC_AX_BY:
754   case MachineCombinerPattern::REASSOC_XA_BY:
755     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
756     break;
757   case MachineCombinerPattern::REASSOC_AX_YB:
758   case MachineCombinerPattern::REASSOC_XA_YB:
759     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
760     break;
761   default:
762     break;
763   }
764 
765   assert(Prev && "Unknown pattern for machine combiner");
766 
767   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
768 }
769 
770 /// foldMemoryOperand - Same as the previous version except it allows folding
771 /// of any load and store from / to any address, not just from a specific
772 /// stack slot.
773 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
774                                                  ArrayRef<unsigned> Ops,
775                                                  MachineInstr *LoadMI) const {
776   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
777 #ifndef NDEBUG
778   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
779     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
780 #endif
781   MachineBasicBlock &MBB = *MI->getParent();
782   MachineFunction &MF = *MBB.getParent();
783 
784   // Ask the target to do the actual folding.
785   MachineInstr *NewMI = nullptr;
786   int FrameIndex = 0;
787 
788   if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
789        MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
790       isLoadFromStackSlot(LoadMI, FrameIndex)) {
791     // Fold stackmap/patchpoint.
792     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
793     if (NewMI)
794       NewMI = MBB.insert(MI, NewMI);
795   } else {
796     // Ask the target to do the actual folding.
797     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI);
798   }
799 
800   if (!NewMI) return nullptr;
801 
802   // Copy the memoperands from the load to the folded instruction.
803   if (MI->memoperands_empty()) {
804     NewMI->setMemRefs(LoadMI->memoperands_begin(),
805                       LoadMI->memoperands_end());
806   }
807   else {
808     // Handle the rare case of folding multiple loads.
809     NewMI->setMemRefs(MI->memoperands_begin(),
810                       MI->memoperands_end());
811     for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
812            E = LoadMI->memoperands_end(); I != E; ++I) {
813       NewMI->addMemOperand(MF, *I);
814     }
815   }
816   return NewMI;
817 }
818 
819 bool TargetInstrInfo::
820 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
821                                          AliasAnalysis *AA) const {
822   const MachineFunction &MF = *MI->getParent()->getParent();
823   const MachineRegisterInfo &MRI = MF.getRegInfo();
824 
825   // Remat clients assume operand 0 is the defined register.
826   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
827     return false;
828   unsigned DefReg = MI->getOperand(0).getReg();
829 
830   // A sub-register definition can only be rematerialized if the instruction
831   // doesn't read the other parts of the register.  Otherwise it is really a
832   // read-modify-write operation on the full virtual register which cannot be
833   // moved safely.
834   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
835       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
836     return false;
837 
838   // A load from a fixed stack slot can be rematerialized. This may be
839   // redundant with subsequent checks, but it's target-independent,
840   // simple, and a common case.
841   int FrameIdx = 0;
842   if (isLoadFromStackSlot(MI, FrameIdx) &&
843       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
844     return true;
845 
846   // Avoid instructions obviously unsafe for remat.
847   if (MI->isNotDuplicable() || MI->mayStore() ||
848       MI->hasUnmodeledSideEffects())
849     return false;
850 
851   // Don't remat inline asm. We have no idea how expensive it is
852   // even if it's side effect free.
853   if (MI->isInlineAsm())
854     return false;
855 
856   // Avoid instructions which load from potentially varying memory.
857   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
858     return false;
859 
860   // If any of the registers accessed are non-constant, conservatively assume
861   // the instruction is not rematerializable.
862   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
863     const MachineOperand &MO = MI->getOperand(i);
864     if (!MO.isReg()) continue;
865     unsigned Reg = MO.getReg();
866     if (Reg == 0)
867       continue;
868 
869     // Check for a well-behaved physical register.
870     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
871       if (MO.isUse()) {
872         // If the physreg has no defs anywhere, it's just an ambient register
873         // and we can freely move its uses. Alternatively, if it's allocatable,
874         // it could get allocated to something with a def during allocation.
875         if (!MRI.isConstantPhysReg(Reg, MF))
876           return false;
877       } else {
878         // A physreg def. We can't remat it.
879         return false;
880       }
881       continue;
882     }
883 
884     // Only allow one virtual-register def.  There may be multiple defs of the
885     // same virtual register, though.
886     if (MO.isDef() && Reg != DefReg)
887       return false;
888 
889     // Don't allow any virtual-register uses. Rematting an instruction with
890     // virtual register uses would length the live ranges of the uses, which
891     // is not necessarily a good idea, certainly not "trivial".
892     if (MO.isUse())
893       return false;
894   }
895 
896   // Everything checked out.
897   return true;
898 }
899 
900 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
901   const MachineFunction *MF = MI->getParent()->getParent();
902   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
903   bool StackGrowsDown =
904     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
905 
906   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
907   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
908 
909   if (MI->getOpcode() != FrameSetupOpcode &&
910       MI->getOpcode() != FrameDestroyOpcode)
911     return 0;
912 
913   int SPAdj = MI->getOperand(0).getImm();
914   SPAdj = TFI->alignSPAdjust(SPAdj);
915 
916   if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
917        (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
918     SPAdj = -SPAdj;
919 
920   return SPAdj;
921 }
922 
923 /// isSchedulingBoundary - Test if the given instruction should be
924 /// considered a scheduling boundary. This primarily includes labels
925 /// and terminators.
926 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
927                                            const MachineBasicBlock *MBB,
928                                            const MachineFunction &MF) const {
929   // Terminators and labels can't be scheduled around.
930   if (MI->isTerminator() || MI->isPosition())
931     return true;
932 
933   // Don't attempt to schedule around any instruction that defines
934   // a stack-oriented pointer, as it's unlikely to be profitable. This
935   // saves compile time, because it doesn't require every single
936   // stack slot reference to depend on the instruction that does the
937   // modification.
938   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
939   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
940   return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
941 }
942 
943 // Provide a global flag for disabling the PreRA hazard recognizer that targets
944 // may choose to honor.
945 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
946   return !DisableHazardRecognizer;
947 }
948 
949 // Default implementation of CreateTargetRAHazardRecognizer.
950 ScheduleHazardRecognizer *TargetInstrInfo::
951 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
952                              const ScheduleDAG *DAG) const {
953   // Dummy hazard recognizer allows all instructions to issue.
954   return new ScheduleHazardRecognizer();
955 }
956 
957 // Default implementation of CreateTargetMIHazardRecognizer.
958 ScheduleHazardRecognizer *TargetInstrInfo::
959 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
960                                const ScheduleDAG *DAG) const {
961   return (ScheduleHazardRecognizer *)
962     new ScoreboardHazardRecognizer(II, DAG, "misched");
963 }
964 
965 // Default implementation of CreateTargetPostRAHazardRecognizer.
966 ScheduleHazardRecognizer *TargetInstrInfo::
967 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
968                                    const ScheduleDAG *DAG) const {
969   return (ScheduleHazardRecognizer *)
970     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
971 }
972 
973 //===----------------------------------------------------------------------===//
974 //  SelectionDAG latency interface.
975 //===----------------------------------------------------------------------===//
976 
977 int
978 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
979                                    SDNode *DefNode, unsigned DefIdx,
980                                    SDNode *UseNode, unsigned UseIdx) const {
981   if (!ItinData || ItinData->isEmpty())
982     return -1;
983 
984   if (!DefNode->isMachineOpcode())
985     return -1;
986 
987   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
988   if (!UseNode->isMachineOpcode())
989     return ItinData->getOperandCycle(DefClass, DefIdx);
990   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
991   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
992 }
993 
994 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
995                                      SDNode *N) const {
996   if (!ItinData || ItinData->isEmpty())
997     return 1;
998 
999   if (!N->isMachineOpcode())
1000     return 1;
1001 
1002   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1003 }
1004 
1005 //===----------------------------------------------------------------------===//
1006 //  MachineInstr latency interface.
1007 //===----------------------------------------------------------------------===//
1008 
1009 unsigned
1010 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1011                                 const MachineInstr *MI) const {
1012   if (!ItinData || ItinData->isEmpty())
1013     return 1;
1014 
1015   unsigned Class = MI->getDesc().getSchedClass();
1016   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1017   if (UOps >= 0)
1018     return UOps;
1019 
1020   // The # of u-ops is dynamically determined. The specific target should
1021   // override this function to return the right number.
1022   return 1;
1023 }
1024 
1025 /// Return the default expected latency for a def based on it's opcode.
1026 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1027                                             const MachineInstr *DefMI) const {
1028   if (DefMI->isTransient())
1029     return 0;
1030   if (DefMI->mayLoad())
1031     return SchedModel.LoadLatency;
1032   if (isHighLatencyDef(DefMI->getOpcode()))
1033     return SchedModel.HighLatency;
1034   return 1;
1035 }
1036 
1037 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1038   return 0;
1039 }
1040 
1041 unsigned TargetInstrInfo::
1042 getInstrLatency(const InstrItineraryData *ItinData,
1043                 const MachineInstr *MI,
1044                 unsigned *PredCost) const {
1045   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1046   // still have a MinLatency property, which getStageLatency checks.
1047   if (!ItinData)
1048     return MI->mayLoad() ? 2 : 1;
1049 
1050   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
1051 }
1052 
1053 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1054                                        const MachineInstr *DefMI,
1055                                        unsigned DefIdx) const {
1056   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1057   if (!ItinData || ItinData->isEmpty())
1058     return false;
1059 
1060   unsigned DefClass = DefMI->getDesc().getSchedClass();
1061   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1062   return (DefCycle != -1 && DefCycle <= 1);
1063 }
1064 
1065 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1066 /// itinerary. This may be overriden by the target.
1067 int TargetInstrInfo::
1068 getOperandLatency(const InstrItineraryData *ItinData,
1069                   const MachineInstr *DefMI, unsigned DefIdx,
1070                   const MachineInstr *UseMI, unsigned UseIdx) const {
1071   unsigned DefClass = DefMI->getDesc().getSchedClass();
1072   unsigned UseClass = UseMI->getDesc().getSchedClass();
1073   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1074 }
1075 
1076 /// If we can determine the operand latency from the def only, without itinerary
1077 /// lookup, do so. Otherwise return -1.
1078 int TargetInstrInfo::computeDefOperandLatency(
1079   const InstrItineraryData *ItinData,
1080   const MachineInstr *DefMI) const {
1081 
1082   // Let the target hook getInstrLatency handle missing itineraries.
1083   if (!ItinData)
1084     return getInstrLatency(ItinData, DefMI);
1085 
1086   if(ItinData->isEmpty())
1087     return defaultDefLatency(ItinData->SchedModel, DefMI);
1088 
1089   // ...operand lookup required
1090   return -1;
1091 }
1092 
1093 /// computeOperandLatency - Compute and return the latency of the given data
1094 /// dependent def and use when the operand indices are already known. UseMI may
1095 /// be NULL for an unknown use.
1096 ///
1097 /// FindMin may be set to get the minimum vs. expected latency. Minimum
1098 /// latency is used for scheduling groups, while expected latency is for
1099 /// instruction cost and critical path.
1100 ///
1101 /// Depending on the subtarget's itinerary properties, this may or may not need
1102 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
1103 /// UseIdx to compute min latency.
1104 unsigned TargetInstrInfo::
1105 computeOperandLatency(const InstrItineraryData *ItinData,
1106                       const MachineInstr *DefMI, unsigned DefIdx,
1107                       const MachineInstr *UseMI, unsigned UseIdx) const {
1108 
1109   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1110   if (DefLatency >= 0)
1111     return DefLatency;
1112 
1113   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1114 
1115   int OperLatency = 0;
1116   if (UseMI)
1117     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
1118   else {
1119     unsigned DefClass = DefMI->getDesc().getSchedClass();
1120     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1121   }
1122   if (OperLatency >= 0)
1123     return OperLatency;
1124 
1125   // No operand latency was found.
1126   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1127 
1128   // Expected latency is the max of the stage latency and itinerary props.
1129   InstrLatency = std::max(InstrLatency,
1130                           defaultDefLatency(ItinData->SchedModel, DefMI));
1131   return InstrLatency;
1132 }
1133 
1134 bool TargetInstrInfo::getRegSequenceInputs(
1135     const MachineInstr &MI, unsigned DefIdx,
1136     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1137   assert((MI.isRegSequence() ||
1138           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1139 
1140   if (!MI.isRegSequence())
1141     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1142 
1143   // We are looking at:
1144   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1145   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1146   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1147        OpIdx += 2) {
1148     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1149     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1150     assert(MOSubIdx.isImm() &&
1151            "One of the subindex of the reg_sequence is not an immediate");
1152     // Record Reg:SubReg, SubIdx.
1153     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1154                                             (unsigned)MOSubIdx.getImm()));
1155   }
1156   return true;
1157 }
1158 
1159 bool TargetInstrInfo::getExtractSubregInputs(
1160     const MachineInstr &MI, unsigned DefIdx,
1161     RegSubRegPairAndIdx &InputReg) const {
1162   assert((MI.isExtractSubreg() ||
1163       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1164 
1165   if (!MI.isExtractSubreg())
1166     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1167 
1168   // We are looking at:
1169   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1170   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1171   const MachineOperand &MOReg = MI.getOperand(1);
1172   const MachineOperand &MOSubIdx = MI.getOperand(2);
1173   assert(MOSubIdx.isImm() &&
1174          "The subindex of the extract_subreg is not an immediate");
1175 
1176   InputReg.Reg = MOReg.getReg();
1177   InputReg.SubReg = MOReg.getSubReg();
1178   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1179   return true;
1180 }
1181 
1182 bool TargetInstrInfo::getInsertSubregInputs(
1183     const MachineInstr &MI, unsigned DefIdx,
1184     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1185   assert((MI.isInsertSubreg() ||
1186       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1187 
1188   if (!MI.isInsertSubreg())
1189     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1190 
1191   // We are looking at:
1192   // Def = INSERT_SEQUENCE v0, v1, sub0.
1193   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1194   const MachineOperand &MOBaseReg = MI.getOperand(1);
1195   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1196   const MachineOperand &MOSubIdx = MI.getOperand(3);
1197   assert(MOSubIdx.isImm() &&
1198          "One of the subindex of the reg_sequence is not an immediate");
1199   BaseReg.Reg = MOBaseReg.getReg();
1200   BaseReg.SubReg = MOBaseReg.getSubReg();
1201 
1202   InsertedReg.Reg = MOInsertedReg.getReg();
1203   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1204   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1205   return true;
1206 }
1207