1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
71   return strncmp(Str, MAI.getCommentString().data(),
72                  MAI.getCommentString().size()) == 0;
73 }
74 
75 /// Measure the specified inline asm to determine an approximation of its
76 /// length.
77 /// Comments (which run till the next SeparatorString or newline) do not
78 /// count as an instruction.
79 /// Any other non-whitespace text is considered an instruction, with
80 /// multiple instructions separated by SeparatorString or newlines.
81 /// Variable-length instructions are not handled here; this function
82 /// may be overloaded in the target code to do that.
83 /// We implement a special case of the .space directive which takes only a
84 /// single integer argument in base 10 that is the size in bytes. This is a
85 /// restricted form of the GAS directive in that we only interpret
86 /// simple--i.e. not a logical or arithmetic expression--size values without
87 /// the optional fill value. This is primarily used for creating arbitrary
88 /// sized inline asm blocks for testing purposes.
89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
90                                              const MCAsmInfo &MAI) const {
91   // Count the number of instructions in the asm.
92   bool AtInsnStart = true;
93   unsigned Length = 0;
94   for (; *Str; ++Str) {
95     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
96                                 strlen(MAI.getSeparatorString())) == 0) {
97       AtInsnStart = true;
98     } else if (isAsmComment(Str, MAI)) {
99       // Stop counting as an instruction after a comment until the next
100       // separator.
101       AtInsnStart = false;
102     }
103 
104     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
105       unsigned AddLength = MAI.getMaxInstLength();
106       if (strncmp(Str, ".space", 6) == 0) {
107         char *EStr;
108         int SpaceSize;
109         SpaceSize = strtol(Str + 6, &EStr, 10);
110         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
111         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
112           ++EStr;
113         if (*EStr == '\0' || *EStr == '\n' ||
114             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
115           AddLength = SpaceSize;
116       }
117       Length += AddLength;
118       AtInsnStart = false;
119     }
120   }
121 
122   return Length;
123 }
124 
125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
126 /// after it, replacing it with an unconditional branch to NewDest.
127 void
128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
129                                          MachineBasicBlock *NewDest) const {
130   MachineBasicBlock *MBB = Tail->getParent();
131 
132   // Remove all the old successors of MBB from the CFG.
133   while (!MBB->succ_empty())
134     MBB->removeSuccessor(MBB->succ_begin());
135 
136   // Save off the debug loc before erasing the instruction.
137   DebugLoc DL = Tail->getDebugLoc();
138 
139   // Remove all the dead instructions from the end of MBB.
140   MBB->erase(Tail, MBB->end());
141 
142   // If MBB isn't immediately before MBB, insert a branch to it.
143   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
144     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
145   MBB->addSuccessor(NewDest);
146 }
147 
148 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
149                                                       bool NewMI, unsigned Idx1,
150                                                       unsigned Idx2) const {
151   const MCInstrDesc &MCID = MI.getDesc();
152   bool HasDef = MCID.getNumDefs();
153   if (HasDef && !MI.getOperand(0).isReg())
154     // No idea how to commute this instruction. Target should implement its own.
155     return nullptr;
156 
157   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
158   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
159   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
160          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
161          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
162   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
163          "This only knows how to commute register operands so far");
164 
165   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
166   unsigned Reg1 = MI.getOperand(Idx1).getReg();
167   unsigned Reg2 = MI.getOperand(Idx2).getReg();
168   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
169   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
170   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
171   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
172   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
173   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
174   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
175   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
176   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
177   // If destination is tied to either of the commuted source register, then
178   // it must be updated.
179   if (HasDef && Reg0 == Reg1 &&
180       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
181     Reg2IsKill = false;
182     Reg0 = Reg2;
183     SubReg0 = SubReg2;
184   } else if (HasDef && Reg0 == Reg2 &&
185              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
186     Reg1IsKill = false;
187     Reg0 = Reg1;
188     SubReg0 = SubReg1;
189   }
190 
191   MachineInstr *CommutedMI = nullptr;
192   if (NewMI) {
193     // Create a new instruction.
194     MachineFunction &MF = *MI.getParent()->getParent();
195     CommutedMI = MF.CloneMachineInstr(&MI);
196   } else {
197     CommutedMI = &MI;
198   }
199 
200   if (HasDef) {
201     CommutedMI->getOperand(0).setReg(Reg0);
202     CommutedMI->getOperand(0).setSubReg(SubReg0);
203   }
204   CommutedMI->getOperand(Idx2).setReg(Reg1);
205   CommutedMI->getOperand(Idx1).setReg(Reg2);
206   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
207   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
208   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
209   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
210   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
211   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
212   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
213   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
214   return CommutedMI;
215 }
216 
217 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
218                                                   unsigned OpIdx1,
219                                                   unsigned OpIdx2) const {
220   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
221   // any commutable operand, which is done in findCommutedOpIndices() method
222   // called below.
223   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
224       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
225     assert(MI.isCommutable() &&
226            "Precondition violation: MI must be commutable.");
227     return nullptr;
228   }
229   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
230 }
231 
232 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
233                                            unsigned &ResultIdx2,
234                                            unsigned CommutableOpIdx1,
235                                            unsigned CommutableOpIdx2) {
236   if (ResultIdx1 == CommuteAnyOperandIndex &&
237       ResultIdx2 == CommuteAnyOperandIndex) {
238     ResultIdx1 = CommutableOpIdx1;
239     ResultIdx2 = CommutableOpIdx2;
240   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
241     if (ResultIdx2 == CommutableOpIdx1)
242       ResultIdx1 = CommutableOpIdx2;
243     else if (ResultIdx2 == CommutableOpIdx2)
244       ResultIdx1 = CommutableOpIdx1;
245     else
246       return false;
247   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
248     if (ResultIdx1 == CommutableOpIdx1)
249       ResultIdx2 = CommutableOpIdx2;
250     else if (ResultIdx1 == CommutableOpIdx2)
251       ResultIdx2 = CommutableOpIdx1;
252     else
253       return false;
254   } else
255     // Check that the result operand indices match the given commutable
256     // operand indices.
257     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
258            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
259 
260   return true;
261 }
262 
263 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
264                                             unsigned &SrcOpIdx1,
265                                             unsigned &SrcOpIdx2) const {
266   assert(!MI.isBundle() &&
267          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
268 
269   const MCInstrDesc &MCID = MI.getDesc();
270   if (!MCID.isCommutable())
271     return false;
272 
273   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
274   // is not true, then the target must implement this.
275   unsigned CommutableOpIdx1 = MCID.getNumDefs();
276   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
277   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
278                             CommutableOpIdx1, CommutableOpIdx2))
279     return false;
280 
281   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
282     // No idea.
283     return false;
284   return true;
285 }
286 
287 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
288   if (!MI.isTerminator()) return false;
289 
290   // Conditional branch is a special case.
291   if (MI.isBranch() && !MI.isBarrier())
292     return true;
293   if (!MI.isPredicable())
294     return true;
295   return !isPredicated(MI);
296 }
297 
298 bool TargetInstrInfo::PredicateInstruction(
299     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
300   bool MadeChange = false;
301 
302   assert(!MI.isBundle() &&
303          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
304 
305   const MCInstrDesc &MCID = MI.getDesc();
306   if (!MI.isPredicable())
307     return false;
308 
309   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
310     if (MCID.OpInfo[i].isPredicate()) {
311       MachineOperand &MO = MI.getOperand(i);
312       if (MO.isReg()) {
313         MO.setReg(Pred[j].getReg());
314         MadeChange = true;
315       } else if (MO.isImm()) {
316         MO.setImm(Pred[j].getImm());
317         MadeChange = true;
318       } else if (MO.isMBB()) {
319         MO.setMBB(Pred[j].getMBB());
320         MadeChange = true;
321       }
322       ++j;
323     }
324   }
325   return MadeChange;
326 }
327 
328 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
329                                            const MachineMemOperand *&MMO,
330                                            int &FrameIndex) const {
331   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
332                                   oe = MI.memoperands_end();
333        o != oe; ++o) {
334     if ((*o)->isLoad()) {
335       if (const FixedStackPseudoSourceValue *Value =
336           dyn_cast_or_null<FixedStackPseudoSourceValue>(
337               (*o)->getPseudoValue())) {
338         FrameIndex = Value->getFrameIndex();
339         MMO = *o;
340         return true;
341       }
342     }
343   }
344   return false;
345 }
346 
347 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
348                                           const MachineMemOperand *&MMO,
349                                           int &FrameIndex) const {
350   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
351                                   oe = MI.memoperands_end();
352        o != oe; ++o) {
353     if ((*o)->isStore()) {
354       if (const FixedStackPseudoSourceValue *Value =
355           dyn_cast_or_null<FixedStackPseudoSourceValue>(
356               (*o)->getPseudoValue())) {
357         FrameIndex = Value->getFrameIndex();
358         MMO = *o;
359         return true;
360       }
361     }
362   }
363   return false;
364 }
365 
366 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
367                                         unsigned SubIdx, unsigned &Size,
368                                         unsigned &Offset,
369                                         const MachineFunction &MF) const {
370   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
371   if (!SubIdx) {
372     Size = TRI->getSpillSize(*RC);
373     Offset = 0;
374     return true;
375   }
376   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
377   // Convert bit size to byte size to be consistent with
378   // MCRegisterClass::getSize().
379   if (BitSize % 8)
380     return false;
381 
382   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
383   if (BitOffset < 0 || BitOffset % 8)
384     return false;
385 
386   Size = BitSize /= 8;
387   Offset = (unsigned)BitOffset / 8;
388 
389   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
390 
391   if (!MF.getDataLayout().isLittleEndian()) {
392     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
393   }
394   return true;
395 }
396 
397 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
398                                     MachineBasicBlock::iterator I,
399                                     unsigned DestReg, unsigned SubIdx,
400                                     const MachineInstr &Orig,
401                                     const TargetRegisterInfo &TRI) const {
402   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
403   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
404   MBB.insert(I, MI);
405 }
406 
407 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
408                                        const MachineInstr &MI1,
409                                        const MachineRegisterInfo *MRI) const {
410   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
411 }
412 
413 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
414     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
415   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
416   MachineFunction &MF = *MBB.getParent();
417   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
418 }
419 
420 // If the COPY instruction in MI can be folded to a stack operation, return
421 // the register class to use.
422 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
423                                               unsigned FoldIdx) {
424   assert(MI.isCopy() && "MI must be a COPY instruction");
425   if (MI.getNumOperands() != 2)
426     return nullptr;
427   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
428 
429   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
430   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
431 
432   if (FoldOp.getSubReg() || LiveOp.getSubReg())
433     return nullptr;
434 
435   unsigned FoldReg = FoldOp.getReg();
436   unsigned LiveReg = LiveOp.getReg();
437 
438   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
439          "Cannot fold physregs");
440 
441   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
442   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
443 
444   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
445     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
446 
447   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
448     return RC;
449 
450   // FIXME: Allow folding when register classes are memory compatible.
451   return nullptr;
452 }
453 
454 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
455   llvm_unreachable("Not implemented");
456 }
457 
458 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
459                                     ArrayRef<unsigned> Ops, int FrameIndex,
460                                     const TargetInstrInfo &TII) {
461   unsigned StartIdx = 0;
462   switch (MI.getOpcode()) {
463   case TargetOpcode::STACKMAP: {
464     // StackMapLiveValues are foldable
465     StartIdx = StackMapOpers(&MI).getVarIdx();
466     break;
467   }
468   case TargetOpcode::PATCHPOINT: {
469     // For PatchPoint, the call args are not foldable (even if reported in the
470     // stackmap e.g. via anyregcc).
471     StartIdx = PatchPointOpers(&MI).getVarIdx();
472     break;
473   }
474   case TargetOpcode::STATEPOINT: {
475     // For statepoints, fold deopt and gc arguments, but not call arguments.
476     StartIdx = StatepointOpers(&MI).getVarIdx();
477     break;
478   }
479   default:
480     llvm_unreachable("unexpected stackmap opcode");
481   }
482 
483   // Return false if any operands requested for folding are not foldable (not
484   // part of the stackmap's live values).
485   for (unsigned Op : Ops) {
486     if (Op < StartIdx)
487       return nullptr;
488   }
489 
490   MachineInstr *NewMI =
491       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
492   MachineInstrBuilder MIB(MF, NewMI);
493 
494   // No need to fold return, the meta data, and function arguments
495   for (unsigned i = 0; i < StartIdx; ++i)
496     MIB.add(MI.getOperand(i));
497 
498   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
499     MachineOperand &MO = MI.getOperand(i);
500     if (is_contained(Ops, i)) {
501       unsigned SpillSize;
502       unsigned SpillOffset;
503       // Compute the spill slot size and offset.
504       const TargetRegisterClass *RC =
505         MF.getRegInfo().getRegClass(MO.getReg());
506       bool Valid =
507           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
508       if (!Valid)
509         report_fatal_error("cannot spill patchpoint subregister operand");
510       MIB.addImm(StackMaps::IndirectMemRefOp);
511       MIB.addImm(SpillSize);
512       MIB.addFrameIndex(FrameIndex);
513       MIB.addImm(SpillOffset);
514     }
515     else
516       MIB.add(MO);
517   }
518   return NewMI;
519 }
520 
521 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
522 /// slot into the specified machine instruction for the specified operand(s).
523 /// If this is possible, a new instruction is returned with the specified
524 /// operand folded, otherwise NULL is returned. The client is responsible for
525 /// removing the old instruction and adding the new one in the instruction
526 /// stream.
527 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
528                                                  ArrayRef<unsigned> Ops, int FI,
529                                                  LiveIntervals *LIS) const {
530   auto Flags = MachineMemOperand::MONone;
531   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
532     if (MI.getOperand(Ops[i]).isDef())
533       Flags |= MachineMemOperand::MOStore;
534     else
535       Flags |= MachineMemOperand::MOLoad;
536 
537   MachineBasicBlock *MBB = MI.getParent();
538   assert(MBB && "foldMemoryOperand needs an inserted instruction");
539   MachineFunction &MF = *MBB->getParent();
540 
541   // If we're not folding a load into a subreg, the size of the load is the
542   // size of the spill slot. But if we are, we need to figure out what the
543   // actual load size is.
544   int64_t MemSize = 0;
545   const MachineFrameInfo &MFI = MF.getFrameInfo();
546   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
547 
548   if (Flags & MachineMemOperand::MOStore) {
549     MemSize = MFI.getObjectSize(FI);
550   } else {
551     for (unsigned Idx : Ops) {
552       int64_t OpSize = MFI.getObjectSize(FI);
553 
554       if (auto SubReg = MI.getOperand(Idx).getSubReg()) {
555         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
556         if (SubRegSize > 0 && !(SubRegSize % 8))
557           OpSize = SubRegSize / 8;
558       }
559 
560       MemSize = std::max(MemSize, OpSize);
561     }
562   }
563 
564   assert(MemSize && "Did not expect a zero-sized stack slot");
565 
566   MachineInstr *NewMI = nullptr;
567 
568   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
569       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
570       MI.getOpcode() == TargetOpcode::STATEPOINT) {
571     // Fold stackmap/patchpoint.
572     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
573     if (NewMI)
574       MBB->insert(MI, NewMI);
575   } else {
576     // Ask the target to do the actual folding.
577     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
578   }
579 
580   if (NewMI) {
581     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
582     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
583     assert((!(Flags & MachineMemOperand::MOStore) ||
584             NewMI->mayStore()) &&
585            "Folded a def to a non-store!");
586     assert((!(Flags & MachineMemOperand::MOLoad) ||
587             NewMI->mayLoad()) &&
588            "Folded a use to a non-load!");
589     assert(MFI.getObjectOffset(FI) != -1);
590     MachineMemOperand *MMO = MF.getMachineMemOperand(
591         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
592         MFI.getObjectAlignment(FI));
593     NewMI->addMemOperand(MF, MMO);
594 
595     return NewMI;
596   }
597 
598   // Straight COPY may fold as load/store.
599   if (!MI.isCopy() || Ops.size() != 1)
600     return nullptr;
601 
602   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
603   if (!RC)
604     return nullptr;
605 
606   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
607   MachineBasicBlock::iterator Pos = MI;
608 
609   if (Flags == MachineMemOperand::MOStore)
610     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
611   else
612     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
613   return &*--Pos;
614 }
615 
616 bool TargetInstrInfo::hasReassociableOperands(
617     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
618   const MachineOperand &Op1 = Inst.getOperand(1);
619   const MachineOperand &Op2 = Inst.getOperand(2);
620   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
621 
622   // We need virtual register definitions for the operands that we will
623   // reassociate.
624   MachineInstr *MI1 = nullptr;
625   MachineInstr *MI2 = nullptr;
626   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
627     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
628   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
629     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
630 
631   // And they need to be in the trace (otherwise, they won't have a depth).
632   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
633 }
634 
635 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
636                                              bool &Commuted) const {
637   const MachineBasicBlock *MBB = Inst.getParent();
638   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
639   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
640   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
641   unsigned AssocOpcode = Inst.getOpcode();
642 
643   // If only one operand has the same opcode and it's the second source operand,
644   // the operands must be commuted.
645   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
646   if (Commuted)
647     std::swap(MI1, MI2);
648 
649   // 1. The previous instruction must be the same type as Inst.
650   // 2. The previous instruction must have virtual register definitions for its
651   //    operands in the same basic block as Inst.
652   // 3. The previous instruction's result must only be used by Inst.
653   return MI1->getOpcode() == AssocOpcode &&
654          hasReassociableOperands(*MI1, MBB) &&
655          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
656 }
657 
658 // 1. The operation must be associative and commutative.
659 // 2. The instruction must have virtual register definitions for its
660 //    operands in the same basic block.
661 // 3. The instruction must have a reassociable sibling.
662 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
663                                                bool &Commuted) const {
664   return isAssociativeAndCommutative(Inst) &&
665          hasReassociableOperands(Inst, Inst.getParent()) &&
666          hasReassociableSibling(Inst, Commuted);
667 }
668 
669 // The concept of the reassociation pass is that these operations can benefit
670 // from this kind of transformation:
671 //
672 // A = ? op ?
673 // B = A op X (Prev)
674 // C = B op Y (Root)
675 // -->
676 // A = ? op ?
677 // B = X op Y
678 // C = A op B
679 //
680 // breaking the dependency between A and B, allowing them to be executed in
681 // parallel (or back-to-back in a pipeline) instead of depending on each other.
682 
683 // FIXME: This has the potential to be expensive (compile time) while not
684 // improving the code at all. Some ways to limit the overhead:
685 // 1. Track successful transforms; bail out if hit rate gets too low.
686 // 2. Only enable at -O3 or some other non-default optimization level.
687 // 3. Pre-screen pattern candidates here: if an operand of the previous
688 //    instruction is known to not increase the critical path, then don't match
689 //    that pattern.
690 bool TargetInstrInfo::getMachineCombinerPatterns(
691     MachineInstr &Root,
692     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
693   bool Commute;
694   if (isReassociationCandidate(Root, Commute)) {
695     // We found a sequence of instructions that may be suitable for a
696     // reassociation of operands to increase ILP. Specify each commutation
697     // possibility for the Prev instruction in the sequence and let the
698     // machine combiner decide if changing the operands is worthwhile.
699     if (Commute) {
700       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
701       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
702     } else {
703       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
704       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
705     }
706     return true;
707   }
708 
709   return false;
710 }
711 /// Return true when a code sequence can improve loop throughput.
712 bool
713 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
714   return false;
715 }
716 /// Attempt the reassociation transformation to reduce critical path length.
717 /// See the above comments before getMachineCombinerPatterns().
718 void TargetInstrInfo::reassociateOps(
719     MachineInstr &Root, MachineInstr &Prev,
720     MachineCombinerPattern Pattern,
721     SmallVectorImpl<MachineInstr *> &InsInstrs,
722     SmallVectorImpl<MachineInstr *> &DelInstrs,
723     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
724   MachineFunction *MF = Root.getParent()->getParent();
725   MachineRegisterInfo &MRI = MF->getRegInfo();
726   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
727   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
728   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
729 
730   // This array encodes the operand index for each parameter because the
731   // operands may be commuted. Each row corresponds to a pattern value,
732   // and each column specifies the index of A, B, X, Y.
733   unsigned OpIdx[4][4] = {
734     { 1, 1, 2, 2 },
735     { 1, 2, 2, 1 },
736     { 2, 1, 1, 2 },
737     { 2, 2, 1, 1 }
738   };
739 
740   int Row;
741   switch (Pattern) {
742   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
743   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
744   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
745   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
746   default: llvm_unreachable("unexpected MachineCombinerPattern");
747   }
748 
749   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
750   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
751   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
752   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
753   MachineOperand &OpC = Root.getOperand(0);
754 
755   unsigned RegA = OpA.getReg();
756   unsigned RegB = OpB.getReg();
757   unsigned RegX = OpX.getReg();
758   unsigned RegY = OpY.getReg();
759   unsigned RegC = OpC.getReg();
760 
761   if (TargetRegisterInfo::isVirtualRegister(RegA))
762     MRI.constrainRegClass(RegA, RC);
763   if (TargetRegisterInfo::isVirtualRegister(RegB))
764     MRI.constrainRegClass(RegB, RC);
765   if (TargetRegisterInfo::isVirtualRegister(RegX))
766     MRI.constrainRegClass(RegX, RC);
767   if (TargetRegisterInfo::isVirtualRegister(RegY))
768     MRI.constrainRegClass(RegY, RC);
769   if (TargetRegisterInfo::isVirtualRegister(RegC))
770     MRI.constrainRegClass(RegC, RC);
771 
772   // Create a new virtual register for the result of (X op Y) instead of
773   // recycling RegB because the MachineCombiner's computation of the critical
774   // path requires a new register definition rather than an existing one.
775   unsigned NewVR = MRI.createVirtualRegister(RC);
776   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
777 
778   unsigned Opcode = Root.getOpcode();
779   bool KillA = OpA.isKill();
780   bool KillX = OpX.isKill();
781   bool KillY = OpY.isKill();
782 
783   // Create new instructions for insertion.
784   MachineInstrBuilder MIB1 =
785       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
786           .addReg(RegX, getKillRegState(KillX))
787           .addReg(RegY, getKillRegState(KillY));
788   MachineInstrBuilder MIB2 =
789       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
790           .addReg(RegA, getKillRegState(KillA))
791           .addReg(NewVR, getKillRegState(true));
792 
793   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
794 
795   // Record new instructions for insertion and old instructions for deletion.
796   InsInstrs.push_back(MIB1);
797   InsInstrs.push_back(MIB2);
798   DelInstrs.push_back(&Prev);
799   DelInstrs.push_back(&Root);
800 }
801 
802 void TargetInstrInfo::genAlternativeCodeSequence(
803     MachineInstr &Root, MachineCombinerPattern Pattern,
804     SmallVectorImpl<MachineInstr *> &InsInstrs,
805     SmallVectorImpl<MachineInstr *> &DelInstrs,
806     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
807   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
808 
809   // Select the previous instruction in the sequence based on the input pattern.
810   MachineInstr *Prev = nullptr;
811   switch (Pattern) {
812   case MachineCombinerPattern::REASSOC_AX_BY:
813   case MachineCombinerPattern::REASSOC_XA_BY:
814     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
815     break;
816   case MachineCombinerPattern::REASSOC_AX_YB:
817   case MachineCombinerPattern::REASSOC_XA_YB:
818     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
819     break;
820   default:
821     break;
822   }
823 
824   assert(Prev && "Unknown pattern for machine combiner");
825 
826   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
827 }
828 
829 /// foldMemoryOperand - Same as the previous version except it allows folding
830 /// of any load and store from / to any address, not just from a specific
831 /// stack slot.
832 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
833                                                  ArrayRef<unsigned> Ops,
834                                                  MachineInstr &LoadMI,
835                                                  LiveIntervals *LIS) const {
836   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
837 #ifndef NDEBUG
838   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
839     assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!");
840 #endif
841   MachineBasicBlock &MBB = *MI.getParent();
842   MachineFunction &MF = *MBB.getParent();
843 
844   // Ask the target to do the actual folding.
845   MachineInstr *NewMI = nullptr;
846   int FrameIndex = 0;
847 
848   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
849        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
850        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
851       isLoadFromStackSlot(LoadMI, FrameIndex)) {
852     // Fold stackmap/patchpoint.
853     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
854     if (NewMI)
855       NewMI = &*MBB.insert(MI, NewMI);
856   } else {
857     // Ask the target to do the actual folding.
858     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
859   }
860 
861   if (!NewMI) return nullptr;
862 
863   // Copy the memoperands from the load to the folded instruction.
864   if (MI.memoperands_empty()) {
865     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
866   }
867   else {
868     // Handle the rare case of folding multiple loads.
869     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
870     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
871                                     E = LoadMI.memoperands_end();
872          I != E; ++I) {
873       NewMI->addMemOperand(MF, *I);
874     }
875   }
876   return NewMI;
877 }
878 
879 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
880     const MachineInstr &MI, AliasAnalysis *AA) const {
881   const MachineFunction &MF = *MI.getParent()->getParent();
882   const MachineRegisterInfo &MRI = MF.getRegInfo();
883 
884   // Remat clients assume operand 0 is the defined register.
885   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
886     return false;
887   unsigned DefReg = MI.getOperand(0).getReg();
888 
889   // A sub-register definition can only be rematerialized if the instruction
890   // doesn't read the other parts of the register.  Otherwise it is really a
891   // read-modify-write operation on the full virtual register which cannot be
892   // moved safely.
893   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
894       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
895     return false;
896 
897   // A load from a fixed stack slot can be rematerialized. This may be
898   // redundant with subsequent checks, but it's target-independent,
899   // simple, and a common case.
900   int FrameIdx = 0;
901   if (isLoadFromStackSlot(MI, FrameIdx) &&
902       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
903     return true;
904 
905   // Avoid instructions obviously unsafe for remat.
906   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
907     return false;
908 
909   // Don't remat inline asm. We have no idea how expensive it is
910   // even if it's side effect free.
911   if (MI.isInlineAsm())
912     return false;
913 
914   // Avoid instructions which load from potentially varying memory.
915   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
916     return false;
917 
918   // If any of the registers accessed are non-constant, conservatively assume
919   // the instruction is not rematerializable.
920   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
921     const MachineOperand &MO = MI.getOperand(i);
922     if (!MO.isReg()) continue;
923     unsigned Reg = MO.getReg();
924     if (Reg == 0)
925       continue;
926 
927     // Check for a well-behaved physical register.
928     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
929       if (MO.isUse()) {
930         // If the physreg has no defs anywhere, it's just an ambient register
931         // and we can freely move its uses. Alternatively, if it's allocatable,
932         // it could get allocated to something with a def during allocation.
933         if (!MRI.isConstantPhysReg(Reg))
934           return false;
935       } else {
936         // A physreg def. We can't remat it.
937         return false;
938       }
939       continue;
940     }
941 
942     // Only allow one virtual-register def.  There may be multiple defs of the
943     // same virtual register, though.
944     if (MO.isDef() && Reg != DefReg)
945       return false;
946 
947     // Don't allow any virtual-register uses. Rematting an instruction with
948     // virtual register uses would length the live ranges of the uses, which
949     // is not necessarily a good idea, certainly not "trivial".
950     if (MO.isUse())
951       return false;
952   }
953 
954   // Everything checked out.
955   return true;
956 }
957 
958 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
959   const MachineFunction *MF = MI.getParent()->getParent();
960   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
961   bool StackGrowsDown =
962     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
963 
964   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
965   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
966 
967   if (!isFrameInstr(MI))
968     return 0;
969 
970   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
971 
972   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
973       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
974     SPAdj = -SPAdj;
975 
976   return SPAdj;
977 }
978 
979 /// isSchedulingBoundary - Test if the given instruction should be
980 /// considered a scheduling boundary. This primarily includes labels
981 /// and terminators.
982 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
983                                            const MachineBasicBlock *MBB,
984                                            const MachineFunction &MF) const {
985   // Terminators and labels can't be scheduled around.
986   if (MI.isTerminator() || MI.isPosition())
987     return true;
988 
989   // Don't attempt to schedule around any instruction that defines
990   // a stack-oriented pointer, as it's unlikely to be profitable. This
991   // saves compile time, because it doesn't require every single
992   // stack slot reference to depend on the instruction that does the
993   // modification.
994   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
995   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
996   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
997 }
998 
999 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1000 // may choose to honor.
1001 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1002   return !DisableHazardRecognizer;
1003 }
1004 
1005 // Default implementation of CreateTargetRAHazardRecognizer.
1006 ScheduleHazardRecognizer *TargetInstrInfo::
1007 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1008                              const ScheduleDAG *DAG) const {
1009   // Dummy hazard recognizer allows all instructions to issue.
1010   return new ScheduleHazardRecognizer();
1011 }
1012 
1013 // Default implementation of CreateTargetMIHazardRecognizer.
1014 ScheduleHazardRecognizer *TargetInstrInfo::
1015 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1016                                const ScheduleDAG *DAG) const {
1017   return (ScheduleHazardRecognizer *)
1018     new ScoreboardHazardRecognizer(II, DAG, "misched");
1019 }
1020 
1021 // Default implementation of CreateTargetPostRAHazardRecognizer.
1022 ScheduleHazardRecognizer *TargetInstrInfo::
1023 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1024                                    const ScheduleDAG *DAG) const {
1025   return (ScheduleHazardRecognizer *)
1026     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1027 }
1028 
1029 //===----------------------------------------------------------------------===//
1030 //  SelectionDAG latency interface.
1031 //===----------------------------------------------------------------------===//
1032 
1033 int
1034 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1035                                    SDNode *DefNode, unsigned DefIdx,
1036                                    SDNode *UseNode, unsigned UseIdx) const {
1037   if (!ItinData || ItinData->isEmpty())
1038     return -1;
1039 
1040   if (!DefNode->isMachineOpcode())
1041     return -1;
1042 
1043   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1044   if (!UseNode->isMachineOpcode())
1045     return ItinData->getOperandCycle(DefClass, DefIdx);
1046   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1047   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1048 }
1049 
1050 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1051                                      SDNode *N) const {
1052   if (!ItinData || ItinData->isEmpty())
1053     return 1;
1054 
1055   if (!N->isMachineOpcode())
1056     return 1;
1057 
1058   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1059 }
1060 
1061 //===----------------------------------------------------------------------===//
1062 //  MachineInstr latency interface.
1063 //===----------------------------------------------------------------------===//
1064 
1065 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1066                                          const MachineInstr &MI) const {
1067   if (!ItinData || ItinData->isEmpty())
1068     return 1;
1069 
1070   unsigned Class = MI.getDesc().getSchedClass();
1071   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1072   if (UOps >= 0)
1073     return UOps;
1074 
1075   // The # of u-ops is dynamically determined. The specific target should
1076   // override this function to return the right number.
1077   return 1;
1078 }
1079 
1080 /// Return the default expected latency for a def based on it's opcode.
1081 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1082                                             const MachineInstr &DefMI) const {
1083   if (DefMI.isTransient())
1084     return 0;
1085   if (DefMI.mayLoad())
1086     return SchedModel.LoadLatency;
1087   if (isHighLatencyDef(DefMI.getOpcode()))
1088     return SchedModel.HighLatency;
1089   return 1;
1090 }
1091 
1092 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1093   return 0;
1094 }
1095 
1096 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1097                                           const MachineInstr &MI,
1098                                           unsigned *PredCost) const {
1099   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1100   // still have a MinLatency property, which getStageLatency checks.
1101   if (!ItinData)
1102     return MI.mayLoad() ? 2 : 1;
1103 
1104   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1105 }
1106 
1107 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1108                                        const MachineInstr &DefMI,
1109                                        unsigned DefIdx) const {
1110   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1111   if (!ItinData || ItinData->isEmpty())
1112     return false;
1113 
1114   unsigned DefClass = DefMI.getDesc().getSchedClass();
1115   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1116   return (DefCycle != -1 && DefCycle <= 1);
1117 }
1118 
1119 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1120 /// itinerary. This may be overriden by the target.
1121 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1122                                        const MachineInstr &DefMI,
1123                                        unsigned DefIdx,
1124                                        const MachineInstr &UseMI,
1125                                        unsigned UseIdx) const {
1126   unsigned DefClass = DefMI.getDesc().getSchedClass();
1127   unsigned UseClass = UseMI.getDesc().getSchedClass();
1128   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1129 }
1130 
1131 /// If we can determine the operand latency from the def only, without itinerary
1132 /// lookup, do so. Otherwise return -1.
1133 int TargetInstrInfo::computeDefOperandLatency(
1134     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1135 
1136   // Let the target hook getInstrLatency handle missing itineraries.
1137   if (!ItinData)
1138     return getInstrLatency(ItinData, DefMI);
1139 
1140   if(ItinData->isEmpty())
1141     return defaultDefLatency(ItinData->SchedModel, DefMI);
1142 
1143   // ...operand lookup required
1144   return -1;
1145 }
1146 
1147 bool TargetInstrInfo::getRegSequenceInputs(
1148     const MachineInstr &MI, unsigned DefIdx,
1149     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1150   assert((MI.isRegSequence() ||
1151           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1152 
1153   if (!MI.isRegSequence())
1154     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1155 
1156   // We are looking at:
1157   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1158   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1159   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1160        OpIdx += 2) {
1161     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1162     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1163     assert(MOSubIdx.isImm() &&
1164            "One of the subindex of the reg_sequence is not an immediate");
1165     // Record Reg:SubReg, SubIdx.
1166     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1167                                             (unsigned)MOSubIdx.getImm()));
1168   }
1169   return true;
1170 }
1171 
1172 bool TargetInstrInfo::getExtractSubregInputs(
1173     const MachineInstr &MI, unsigned DefIdx,
1174     RegSubRegPairAndIdx &InputReg) const {
1175   assert((MI.isExtractSubreg() ||
1176       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1177 
1178   if (!MI.isExtractSubreg())
1179     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1180 
1181   // We are looking at:
1182   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1183   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1184   const MachineOperand &MOReg = MI.getOperand(1);
1185   const MachineOperand &MOSubIdx = MI.getOperand(2);
1186   assert(MOSubIdx.isImm() &&
1187          "The subindex of the extract_subreg is not an immediate");
1188 
1189   InputReg.Reg = MOReg.getReg();
1190   InputReg.SubReg = MOReg.getSubReg();
1191   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1192   return true;
1193 }
1194 
1195 bool TargetInstrInfo::getInsertSubregInputs(
1196     const MachineInstr &MI, unsigned DefIdx,
1197     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1198   assert((MI.isInsertSubreg() ||
1199       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1200 
1201   if (!MI.isInsertSubreg())
1202     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1203 
1204   // We are looking at:
1205   // Def = INSERT_SEQUENCE v0, v1, sub0.
1206   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1207   const MachineOperand &MOBaseReg = MI.getOperand(1);
1208   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1209   const MachineOperand &MOSubIdx = MI.getOperand(3);
1210   assert(MOSubIdx.isImm() &&
1211          "One of the subindex of the reg_sequence is not an immediate");
1212   BaseReg.Reg = MOBaseReg.getReg();
1213   BaseReg.SubReg = MOBaseReg.getSubReg();
1214 
1215   InsertedReg.Reg = MOInsertedReg.getReg();
1216   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1217   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1218   return true;
1219 }
1220