1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCInstrItineraries.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include <cctype> 33 using namespace llvm; 34 35 static cl::opt<bool> DisableHazardRecognizer( 36 "disable-sched-hazard", cl::Hidden, cl::init(false), 37 cl::desc("Disable hazard detection during preRA scheduling")); 38 39 TargetInstrInfo::~TargetInstrInfo() { 40 } 41 42 const TargetRegisterClass* 43 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 44 const TargetRegisterInfo *TRI, 45 const MachineFunction &MF) const { 46 if (OpNum >= MCID.getNumOperands()) 47 return nullptr; 48 49 short RegClass = MCID.OpInfo[OpNum].RegClass; 50 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 51 return TRI->getPointerRegClass(MF, RegClass); 52 53 // Instructions like INSERT_SUBREG do not have fixed register classes. 54 if (RegClass < 0) 55 return nullptr; 56 57 // Otherwise just look it up normally. 58 return TRI->getRegClass(RegClass); 59 } 60 61 /// insertNoop - Insert a noop into the instruction stream at the specified 62 /// point. 63 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 64 MachineBasicBlock::iterator MI) const { 65 llvm_unreachable("Target didn't implement insertNoop!"); 66 } 67 68 /// Measure the specified inline asm to determine an approximation of its 69 /// length. 70 /// Comments (which run till the next SeparatorString or newline) do not 71 /// count as an instruction. 72 /// Any other non-whitespace text is considered an instruction, with 73 /// multiple instructions separated by SeparatorString or newlines. 74 /// Variable-length instructions are not handled here; this function 75 /// may be overloaded in the target code to do that. 76 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 77 const MCAsmInfo &MAI) const { 78 79 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Remove all the dead instructions from the end of MBB. 111 MBB->erase(Tail, MBB->end()); 112 113 // If MBB isn't immediately before MBB, insert a branch to it. 114 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 115 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 116 Tail->getDebugLoc()); 117 MBB->addSuccessor(NewDest); 118 } 119 120 // commuteInstruction - The default implementation of this method just exchanges 121 // the two operands returned by findCommutedOpIndices. 122 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 123 bool NewMI) const { 124 const MCInstrDesc &MCID = MI->getDesc(); 125 bool HasDef = MCID.getNumDefs(); 126 if (HasDef && !MI->getOperand(0).isReg()) 127 // No idea how to commute this instruction. Target should implement its own. 128 return nullptr; 129 unsigned Idx1, Idx2; 130 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 131 assert(MI->isCommutable() && "Precondition violation: MI must be commutable."); 132 return nullptr; 133 } 134 135 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 136 "This only knows how to commute register operands so far"); 137 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 138 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 139 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 140 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 141 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 142 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 143 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 144 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 145 bool Reg1IsUndef = MI->getOperand(Idx1).isUndef(); 146 bool Reg2IsUndef = MI->getOperand(Idx2).isUndef(); 147 bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead(); 148 bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead(); 149 // If destination is tied to either of the commuted source register, then 150 // it must be updated. 151 if (HasDef && Reg0 == Reg1 && 152 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 153 Reg2IsKill = false; 154 Reg0 = Reg2; 155 SubReg0 = SubReg2; 156 } else if (HasDef && Reg0 == Reg2 && 157 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 158 Reg1IsKill = false; 159 Reg0 = Reg1; 160 SubReg0 = SubReg1; 161 } 162 163 if (NewMI) { 164 // Create a new instruction. 165 MachineFunction &MF = *MI->getParent()->getParent(); 166 MI = MF.CloneMachineInstr(MI); 167 } 168 169 if (HasDef) { 170 MI->getOperand(0).setReg(Reg0); 171 MI->getOperand(0).setSubReg(SubReg0); 172 } 173 MI->getOperand(Idx2).setReg(Reg1); 174 MI->getOperand(Idx1).setReg(Reg2); 175 MI->getOperand(Idx2).setSubReg(SubReg1); 176 MI->getOperand(Idx1).setSubReg(SubReg2); 177 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 178 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 179 MI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 180 MI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 181 MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 182 MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 183 return MI; 184 } 185 186 /// findCommutedOpIndices - If specified MI is commutable, return the two 187 /// operand indices that would swap value. Return true if the instruction 188 /// is not in a form which this routine understands. 189 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 190 unsigned &SrcOpIdx1, 191 unsigned &SrcOpIdx2) const { 192 assert(!MI->isBundle() && 193 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 194 195 const MCInstrDesc &MCID = MI->getDesc(); 196 if (!MCID.isCommutable()) 197 return false; 198 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 199 // is not true, then the target must implement this. 200 SrcOpIdx1 = MCID.getNumDefs(); 201 SrcOpIdx2 = SrcOpIdx1 + 1; 202 if (!MI->getOperand(SrcOpIdx1).isReg() || 203 !MI->getOperand(SrcOpIdx2).isReg()) 204 // No idea. 205 return false; 206 return true; 207 } 208 209 210 bool 211 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 212 if (!MI->isTerminator()) return false; 213 214 // Conditional branch is a special case. 215 if (MI->isBranch() && !MI->isBarrier()) 216 return true; 217 if (!MI->isPredicable()) 218 return true; 219 return !isPredicated(MI); 220 } 221 222 223 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, 224 const SmallVectorImpl<MachineOperand> &Pred) const { 225 bool MadeChange = false; 226 227 assert(!MI->isBundle() && 228 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 229 230 const MCInstrDesc &MCID = MI->getDesc(); 231 if (!MI->isPredicable()) 232 return false; 233 234 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 235 if (MCID.OpInfo[i].isPredicate()) { 236 MachineOperand &MO = MI->getOperand(i); 237 if (MO.isReg()) { 238 MO.setReg(Pred[j].getReg()); 239 MadeChange = true; 240 } else if (MO.isImm()) { 241 MO.setImm(Pred[j].getImm()); 242 MadeChange = true; 243 } else if (MO.isMBB()) { 244 MO.setMBB(Pred[j].getMBB()); 245 MadeChange = true; 246 } 247 ++j; 248 } 249 } 250 return MadeChange; 251 } 252 253 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 254 const MachineMemOperand *&MMO, 255 int &FrameIndex) const { 256 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 257 oe = MI->memoperands_end(); 258 o != oe; 259 ++o) { 260 if ((*o)->isLoad()) { 261 if (const FixedStackPseudoSourceValue *Value = 262 dyn_cast_or_null<FixedStackPseudoSourceValue>( 263 (*o)->getPseudoValue())) { 264 FrameIndex = Value->getFrameIndex(); 265 MMO = *o; 266 return true; 267 } 268 } 269 } 270 return false; 271 } 272 273 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 274 const MachineMemOperand *&MMO, 275 int &FrameIndex) const { 276 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 277 oe = MI->memoperands_end(); 278 o != oe; 279 ++o) { 280 if ((*o)->isStore()) { 281 if (const FixedStackPseudoSourceValue *Value = 282 dyn_cast_or_null<FixedStackPseudoSourceValue>( 283 (*o)->getPseudoValue())) { 284 FrameIndex = Value->getFrameIndex(); 285 MMO = *o; 286 return true; 287 } 288 } 289 } 290 return false; 291 } 292 293 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 294 unsigned SubIdx, unsigned &Size, 295 unsigned &Offset, 296 const MachineFunction &MF) const { 297 if (!SubIdx) { 298 Size = RC->getSize(); 299 Offset = 0; 300 return true; 301 } 302 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 303 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 304 // Convert bit size to byte size to be consistent with 305 // MCRegisterClass::getSize(). 306 if (BitSize % 8) 307 return false; 308 309 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 310 if (BitOffset < 0 || BitOffset % 8) 311 return false; 312 313 Size = BitSize /= 8; 314 Offset = (unsigned)BitOffset / 8; 315 316 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 317 318 if (!MF.getTarget().getDataLayout()->isLittleEndian()) { 319 Offset = RC->getSize() - (Offset + Size); 320 } 321 return true; 322 } 323 324 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 325 MachineBasicBlock::iterator I, 326 unsigned DestReg, 327 unsigned SubIdx, 328 const MachineInstr *Orig, 329 const TargetRegisterInfo &TRI) const { 330 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 331 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 332 MBB.insert(I, MI); 333 } 334 335 bool 336 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 337 const MachineInstr *MI1, 338 const MachineRegisterInfo *MRI) const { 339 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 340 } 341 342 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 343 MachineFunction &MF) const { 344 assert(!Orig->isNotDuplicable() && 345 "Instruction cannot be duplicated"); 346 return MF.CloneMachineInstr(Orig); 347 } 348 349 // If the COPY instruction in MI can be folded to a stack operation, return 350 // the register class to use. 351 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 352 unsigned FoldIdx) { 353 assert(MI->isCopy() && "MI must be a COPY instruction"); 354 if (MI->getNumOperands() != 2) 355 return nullptr; 356 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 357 358 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 359 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 360 361 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 362 return nullptr; 363 364 unsigned FoldReg = FoldOp.getReg(); 365 unsigned LiveReg = LiveOp.getReg(); 366 367 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 368 "Cannot fold physregs"); 369 370 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 371 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 372 373 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 374 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 375 376 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 377 return RC; 378 379 // FIXME: Allow folding when register classes are memory compatible. 380 return nullptr; 381 } 382 383 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 384 llvm_unreachable("Not a MachO target"); 385 } 386 387 bool TargetInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, 388 ArrayRef<unsigned> Ops) const { 389 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 390 } 391 392 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI, 393 ArrayRef<unsigned> Ops, int FrameIndex, 394 const TargetInstrInfo &TII) { 395 unsigned StartIdx = 0; 396 switch (MI->getOpcode()) { 397 case TargetOpcode::STACKMAP: 398 StartIdx = 2; // Skip ID, nShadowBytes. 399 break; 400 case TargetOpcode::PATCHPOINT: { 401 // For PatchPoint, the call args are not foldable. 402 PatchPointOpers opers(MI); 403 StartIdx = opers.getVarIdx(); 404 break; 405 } 406 default: 407 llvm_unreachable("unexpected stackmap opcode"); 408 } 409 410 // Return false if any operands requested for folding are not foldable (not 411 // part of the stackmap's live values). 412 for (unsigned Op : Ops) { 413 if (Op < StartIdx) 414 return nullptr; 415 } 416 417 MachineInstr *NewMI = 418 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 419 MachineInstrBuilder MIB(MF, NewMI); 420 421 // No need to fold return, the meta data, and function arguments 422 for (unsigned i = 0; i < StartIdx; ++i) 423 MIB.addOperand(MI->getOperand(i)); 424 425 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 426 MachineOperand &MO = MI->getOperand(i); 427 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 428 unsigned SpillSize; 429 unsigned SpillOffset; 430 // Compute the spill slot size and offset. 431 const TargetRegisterClass *RC = 432 MF.getRegInfo().getRegClass(MO.getReg()); 433 bool Valid = 434 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 435 if (!Valid) 436 report_fatal_error("cannot spill patchpoint subregister operand"); 437 MIB.addImm(StackMaps::IndirectMemRefOp); 438 MIB.addImm(SpillSize); 439 MIB.addFrameIndex(FrameIndex); 440 MIB.addImm(SpillOffset); 441 } 442 else 443 MIB.addOperand(MO); 444 } 445 return NewMI; 446 } 447 448 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 449 /// slot into the specified machine instruction for the specified operand(s). 450 /// If this is possible, a new instruction is returned with the specified 451 /// operand folded, otherwise NULL is returned. The client is responsible for 452 /// removing the old instruction and adding the new one in the instruction 453 /// stream. 454 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 455 ArrayRef<unsigned> Ops, 456 int FI) const { 457 unsigned Flags = 0; 458 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 459 if (MI->getOperand(Ops[i]).isDef()) 460 Flags |= MachineMemOperand::MOStore; 461 else 462 Flags |= MachineMemOperand::MOLoad; 463 464 MachineBasicBlock *MBB = MI->getParent(); 465 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 466 MachineFunction &MF = *MBB->getParent(); 467 468 MachineInstr *NewMI = nullptr; 469 470 if (MI->getOpcode() == TargetOpcode::STACKMAP || 471 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 472 // Fold stackmap/patchpoint. 473 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 474 } else { 475 // Ask the target to do the actual folding. 476 NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI); 477 } 478 479 if (NewMI) { 480 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 481 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 482 assert((!(Flags & MachineMemOperand::MOStore) || 483 NewMI->mayStore()) && 484 "Folded a def to a non-store!"); 485 assert((!(Flags & MachineMemOperand::MOLoad) || 486 NewMI->mayLoad()) && 487 "Folded a use to a non-load!"); 488 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 489 assert(MFI.getObjectOffset(FI) != -1); 490 MachineMemOperand *MMO = 491 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 492 Flags, MFI.getObjectSize(FI), 493 MFI.getObjectAlignment(FI)); 494 NewMI->addMemOperand(MF, MMO); 495 496 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 497 return MBB->insert(MI, NewMI); 498 } 499 500 // Straight COPY may fold as load/store. 501 if (!MI->isCopy() || Ops.size() != 1) 502 return nullptr; 503 504 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 505 if (!RC) 506 return nullptr; 507 508 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 509 MachineBasicBlock::iterator Pos = MI; 510 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 511 512 if (Flags == MachineMemOperand::MOStore) 513 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 514 else 515 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 516 return --Pos; 517 } 518 519 /// foldMemoryOperand - Same as the previous version except it allows folding 520 /// of any load and store from / to any address, not just from a specific 521 /// stack slot. 522 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 523 ArrayRef<unsigned> Ops, 524 MachineInstr *LoadMI) const { 525 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 526 #ifndef NDEBUG 527 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 528 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 529 #endif 530 MachineBasicBlock &MBB = *MI->getParent(); 531 MachineFunction &MF = *MBB.getParent(); 532 533 // Ask the target to do the actual folding. 534 MachineInstr *NewMI = nullptr; 535 int FrameIndex = 0; 536 537 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 538 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 539 isLoadFromStackSlot(LoadMI, FrameIndex)) { 540 // Fold stackmap/patchpoint. 541 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 542 } else { 543 // Ask the target to do the actual folding. 544 NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 545 } 546 547 if (!NewMI) return nullptr; 548 549 NewMI = MBB.insert(MI, NewMI); 550 551 // Copy the memoperands from the load to the folded instruction. 552 if (MI->memoperands_empty()) { 553 NewMI->setMemRefs(LoadMI->memoperands_begin(), 554 LoadMI->memoperands_end()); 555 } 556 else { 557 // Handle the rare case of folding multiple loads. 558 NewMI->setMemRefs(MI->memoperands_begin(), 559 MI->memoperands_end()); 560 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 561 E = LoadMI->memoperands_end(); I != E; ++I) { 562 NewMI->addMemOperand(MF, *I); 563 } 564 } 565 return NewMI; 566 } 567 568 bool TargetInstrInfo:: 569 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 570 AliasAnalysis *AA) const { 571 const MachineFunction &MF = *MI->getParent()->getParent(); 572 const MachineRegisterInfo &MRI = MF.getRegInfo(); 573 574 // Remat clients assume operand 0 is the defined register. 575 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 576 return false; 577 unsigned DefReg = MI->getOperand(0).getReg(); 578 579 // A sub-register definition can only be rematerialized if the instruction 580 // doesn't read the other parts of the register. Otherwise it is really a 581 // read-modify-write operation on the full virtual register which cannot be 582 // moved safely. 583 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 584 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 585 return false; 586 587 // A load from a fixed stack slot can be rematerialized. This may be 588 // redundant with subsequent checks, but it's target-independent, 589 // simple, and a common case. 590 int FrameIdx = 0; 591 if (isLoadFromStackSlot(MI, FrameIdx) && 592 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 593 return true; 594 595 // Avoid instructions obviously unsafe for remat. 596 if (MI->isNotDuplicable() || MI->mayStore() || 597 MI->hasUnmodeledSideEffects()) 598 return false; 599 600 // Don't remat inline asm. We have no idea how expensive it is 601 // even if it's side effect free. 602 if (MI->isInlineAsm()) 603 return false; 604 605 // Avoid instructions which load from potentially varying memory. 606 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 607 return false; 608 609 // If any of the registers accessed are non-constant, conservatively assume 610 // the instruction is not rematerializable. 611 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 612 const MachineOperand &MO = MI->getOperand(i); 613 if (!MO.isReg()) continue; 614 unsigned Reg = MO.getReg(); 615 if (Reg == 0) 616 continue; 617 618 // Check for a well-behaved physical register. 619 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 620 if (MO.isUse()) { 621 // If the physreg has no defs anywhere, it's just an ambient register 622 // and we can freely move its uses. Alternatively, if it's allocatable, 623 // it could get allocated to something with a def during allocation. 624 if (!MRI.isConstantPhysReg(Reg, MF)) 625 return false; 626 } else { 627 // A physreg def. We can't remat it. 628 return false; 629 } 630 continue; 631 } 632 633 // Only allow one virtual-register def. There may be multiple defs of the 634 // same virtual register, though. 635 if (MO.isDef() && Reg != DefReg) 636 return false; 637 638 // Don't allow any virtual-register uses. Rematting an instruction with 639 // virtual register uses would length the live ranges of the uses, which 640 // is not necessarily a good idea, certainly not "trivial". 641 if (MO.isUse()) 642 return false; 643 } 644 645 // Everything checked out. 646 return true; 647 } 648 649 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { 650 const MachineFunction *MF = MI->getParent()->getParent(); 651 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 652 bool StackGrowsDown = 653 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 654 655 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 656 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 657 658 if (MI->getOpcode() != FrameSetupOpcode && 659 MI->getOpcode() != FrameDestroyOpcode) 660 return 0; 661 662 int SPAdj = MI->getOperand(0).getImm(); 663 664 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || 665 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) 666 SPAdj = -SPAdj; 667 668 return SPAdj; 669 } 670 671 /// isSchedulingBoundary - Test if the given instruction should be 672 /// considered a scheduling boundary. This primarily includes labels 673 /// and terminators. 674 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 675 const MachineBasicBlock *MBB, 676 const MachineFunction &MF) const { 677 // Terminators and labels can't be scheduled around. 678 if (MI->isTerminator() || MI->isPosition()) 679 return true; 680 681 // Don't attempt to schedule around any instruction that defines 682 // a stack-oriented pointer, as it's unlikely to be profitable. This 683 // saves compile time, because it doesn't require every single 684 // stack slot reference to depend on the instruction that does the 685 // modification. 686 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 687 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 688 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) 689 return true; 690 691 return false; 692 } 693 694 // Provide a global flag for disabling the PreRA hazard recognizer that targets 695 // may choose to honor. 696 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 697 return !DisableHazardRecognizer; 698 } 699 700 // Default implementation of CreateTargetRAHazardRecognizer. 701 ScheduleHazardRecognizer *TargetInstrInfo:: 702 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 703 const ScheduleDAG *DAG) const { 704 // Dummy hazard recognizer allows all instructions to issue. 705 return new ScheduleHazardRecognizer(); 706 } 707 708 // Default implementation of CreateTargetMIHazardRecognizer. 709 ScheduleHazardRecognizer *TargetInstrInfo:: 710 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 711 const ScheduleDAG *DAG) const { 712 return (ScheduleHazardRecognizer *) 713 new ScoreboardHazardRecognizer(II, DAG, "misched"); 714 } 715 716 // Default implementation of CreateTargetPostRAHazardRecognizer. 717 ScheduleHazardRecognizer *TargetInstrInfo:: 718 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 719 const ScheduleDAG *DAG) const { 720 return (ScheduleHazardRecognizer *) 721 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 722 } 723 724 //===----------------------------------------------------------------------===// 725 // SelectionDAG latency interface. 726 //===----------------------------------------------------------------------===// 727 728 int 729 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 730 SDNode *DefNode, unsigned DefIdx, 731 SDNode *UseNode, unsigned UseIdx) const { 732 if (!ItinData || ItinData->isEmpty()) 733 return -1; 734 735 if (!DefNode->isMachineOpcode()) 736 return -1; 737 738 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 739 if (!UseNode->isMachineOpcode()) 740 return ItinData->getOperandCycle(DefClass, DefIdx); 741 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 742 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 743 } 744 745 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 746 SDNode *N) const { 747 if (!ItinData || ItinData->isEmpty()) 748 return 1; 749 750 if (!N->isMachineOpcode()) 751 return 1; 752 753 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 754 } 755 756 //===----------------------------------------------------------------------===// 757 // MachineInstr latency interface. 758 //===----------------------------------------------------------------------===// 759 760 unsigned 761 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 762 const MachineInstr *MI) const { 763 if (!ItinData || ItinData->isEmpty()) 764 return 1; 765 766 unsigned Class = MI->getDesc().getSchedClass(); 767 int UOps = ItinData->Itineraries[Class].NumMicroOps; 768 if (UOps >= 0) 769 return UOps; 770 771 // The # of u-ops is dynamically determined. The specific target should 772 // override this function to return the right number. 773 return 1; 774 } 775 776 /// Return the default expected latency for a def based on it's opcode. 777 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 778 const MachineInstr *DefMI) const { 779 if (DefMI->isTransient()) 780 return 0; 781 if (DefMI->mayLoad()) 782 return SchedModel.LoadLatency; 783 if (isHighLatencyDef(DefMI->getOpcode())) 784 return SchedModel.HighLatency; 785 return 1; 786 } 787 788 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { 789 return 0; 790 } 791 792 unsigned TargetInstrInfo:: 793 getInstrLatency(const InstrItineraryData *ItinData, 794 const MachineInstr *MI, 795 unsigned *PredCost) const { 796 // Default to one cycle for no itinerary. However, an "empty" itinerary may 797 // still have a MinLatency property, which getStageLatency checks. 798 if (!ItinData) 799 return MI->mayLoad() ? 2 : 1; 800 801 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 802 } 803 804 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, 805 const MachineInstr *DefMI, 806 unsigned DefIdx) const { 807 if (!ItinData || ItinData->isEmpty()) 808 return false; 809 810 unsigned DefClass = DefMI->getDesc().getSchedClass(); 811 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 812 return (DefCycle != -1 && DefCycle <= 1); 813 } 814 815 /// Both DefMI and UseMI must be valid. By default, call directly to the 816 /// itinerary. This may be overriden by the target. 817 int TargetInstrInfo:: 818 getOperandLatency(const InstrItineraryData *ItinData, 819 const MachineInstr *DefMI, unsigned DefIdx, 820 const MachineInstr *UseMI, unsigned UseIdx) const { 821 unsigned DefClass = DefMI->getDesc().getSchedClass(); 822 unsigned UseClass = UseMI->getDesc().getSchedClass(); 823 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 824 } 825 826 /// If we can determine the operand latency from the def only, without itinerary 827 /// lookup, do so. Otherwise return -1. 828 int TargetInstrInfo::computeDefOperandLatency( 829 const InstrItineraryData *ItinData, 830 const MachineInstr *DefMI) const { 831 832 // Let the target hook getInstrLatency handle missing itineraries. 833 if (!ItinData) 834 return getInstrLatency(ItinData, DefMI); 835 836 if(ItinData->isEmpty()) 837 return defaultDefLatency(ItinData->SchedModel, DefMI); 838 839 // ...operand lookup required 840 return -1; 841 } 842 843 /// computeOperandLatency - Compute and return the latency of the given data 844 /// dependent def and use when the operand indices are already known. UseMI may 845 /// be NULL for an unknown use. 846 /// 847 /// FindMin may be set to get the minimum vs. expected latency. Minimum 848 /// latency is used for scheduling groups, while expected latency is for 849 /// instruction cost and critical path. 850 /// 851 /// Depending on the subtarget's itinerary properties, this may or may not need 852 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 853 /// UseIdx to compute min latency. 854 unsigned TargetInstrInfo:: 855 computeOperandLatency(const InstrItineraryData *ItinData, 856 const MachineInstr *DefMI, unsigned DefIdx, 857 const MachineInstr *UseMI, unsigned UseIdx) const { 858 859 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 860 if (DefLatency >= 0) 861 return DefLatency; 862 863 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 864 865 int OperLatency = 0; 866 if (UseMI) 867 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 868 else { 869 unsigned DefClass = DefMI->getDesc().getSchedClass(); 870 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 871 } 872 if (OperLatency >= 0) 873 return OperLatency; 874 875 // No operand latency was found. 876 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 877 878 // Expected latency is the max of the stage latency and itinerary props. 879 InstrLatency = std::max(InstrLatency, 880 defaultDefLatency(ItinData->SchedModel, DefMI)); 881 return InstrLatency; 882 } 883 884 bool TargetInstrInfo::getRegSequenceInputs( 885 const MachineInstr &MI, unsigned DefIdx, 886 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 887 assert((MI.isRegSequence() || 888 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 889 890 if (!MI.isRegSequence()) 891 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 892 893 // We are looking at: 894 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 895 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 896 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 897 OpIdx += 2) { 898 const MachineOperand &MOReg = MI.getOperand(OpIdx); 899 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 900 assert(MOSubIdx.isImm() && 901 "One of the subindex of the reg_sequence is not an immediate"); 902 // Record Reg:SubReg, SubIdx. 903 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 904 (unsigned)MOSubIdx.getImm())); 905 } 906 return true; 907 } 908 909 bool TargetInstrInfo::getExtractSubregInputs( 910 const MachineInstr &MI, unsigned DefIdx, 911 RegSubRegPairAndIdx &InputReg) const { 912 assert((MI.isExtractSubreg() || 913 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 914 915 if (!MI.isExtractSubreg()) 916 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 917 918 // We are looking at: 919 // Def = EXTRACT_SUBREG v0.sub1, sub0. 920 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 921 const MachineOperand &MOReg = MI.getOperand(1); 922 const MachineOperand &MOSubIdx = MI.getOperand(2); 923 assert(MOSubIdx.isImm() && 924 "The subindex of the extract_subreg is not an immediate"); 925 926 InputReg.Reg = MOReg.getReg(); 927 InputReg.SubReg = MOReg.getSubReg(); 928 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 929 return true; 930 } 931 932 bool TargetInstrInfo::getInsertSubregInputs( 933 const MachineInstr &MI, unsigned DefIdx, 934 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 935 assert((MI.isInsertSubreg() || 936 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 937 938 if (!MI.isInsertSubreg()) 939 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 940 941 // We are looking at: 942 // Def = INSERT_SEQUENCE v0, v1, sub0. 943 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 944 const MachineOperand &MOBaseReg = MI.getOperand(1); 945 const MachineOperand &MOInsertedReg = MI.getOperand(2); 946 const MachineOperand &MOSubIdx = MI.getOperand(3); 947 assert(MOSubIdx.isImm() && 948 "One of the subindex of the reg_sequence is not an immediate"); 949 BaseReg.Reg = MOBaseReg.getReg(); 950 BaseReg.SubReg = MOBaseReg.getSubReg(); 951 952 InsertedReg.Reg = MOInsertedReg.getReg(); 953 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 954 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 955 return true; 956 } 957