1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCInstrItineraries.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
71   return strncmp(Str, MAI.getCommentString().data(),
72                  MAI.getCommentString().size()) == 0;
73 }
74 
75 /// Measure the specified inline asm to determine an approximation of its
76 /// length.
77 /// Comments (which run till the next SeparatorString or newline) do not
78 /// count as an instruction.
79 /// Any other non-whitespace text is considered an instruction, with
80 /// multiple instructions separated by SeparatorString or newlines.
81 /// Variable-length instructions are not handled here; this function
82 /// may be overloaded in the target code to do that.
83 /// We implement a special case of the .space directive which takes only a
84 /// single integer argument in base 10 that is the size in bytes. This is a
85 /// restricted form of the GAS directive in that we only interpret
86 /// simple--i.e. not a logical or arithmetic expression--size values without
87 /// the optional fill value. This is primarily used for creating arbitrary
88 /// sized inline asm blocks for testing purposes.
89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
90                                              const MCAsmInfo &MAI) const {
91   // Count the number of instructions in the asm.
92   bool AtInsnStart = true;
93   unsigned Length = 0;
94   for (; *Str; ++Str) {
95     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
96                                 strlen(MAI.getSeparatorString())) == 0) {
97       AtInsnStart = true;
98     } else if (isAsmComment(Str, MAI)) {
99       // Stop counting as an instruction after a comment until the next
100       // separator.
101       AtInsnStart = false;
102     }
103 
104     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
105       unsigned AddLength = MAI.getMaxInstLength();
106       if (strncmp(Str, ".space", 6) == 0) {
107         char *EStr;
108         int SpaceSize;
109         SpaceSize = strtol(Str + 6, &EStr, 10);
110         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
111         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
112           ++EStr;
113         if (*EStr == '\0' || *EStr == '\n' ||
114             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
115           AddLength = SpaceSize;
116       }
117       Length += AddLength;
118       AtInsnStart = false;
119     }
120   }
121 
122   return Length;
123 }
124 
125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
126 /// after it, replacing it with an unconditional branch to NewDest.
127 void
128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
129                                          MachineBasicBlock *NewDest) const {
130   MachineBasicBlock *MBB = Tail->getParent();
131 
132   // Remove all the old successors of MBB from the CFG.
133   while (!MBB->succ_empty())
134     MBB->removeSuccessor(MBB->succ_begin());
135 
136   // Save off the debug loc before erasing the instruction.
137   DebugLoc DL = Tail->getDebugLoc();
138 
139   // Remove all the dead instructions from the end of MBB.
140   MBB->erase(Tail, MBB->end());
141 
142   // If MBB isn't immediately before MBB, insert a branch to it.
143   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
144     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
145   MBB->addSuccessor(NewDest);
146 }
147 
148 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
149                                                       bool NewMI, unsigned Idx1,
150                                                       unsigned Idx2) const {
151   const MCInstrDesc &MCID = MI.getDesc();
152   bool HasDef = MCID.getNumDefs();
153   if (HasDef && !MI.getOperand(0).isReg())
154     // No idea how to commute this instruction. Target should implement its own.
155     return nullptr;
156 
157   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
158   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
159   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
160          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
161          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
162   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
163          "This only knows how to commute register operands so far");
164 
165   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
166   unsigned Reg1 = MI.getOperand(Idx1).getReg();
167   unsigned Reg2 = MI.getOperand(Idx2).getReg();
168   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
169   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
170   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
171   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
172   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
173   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
174   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
175   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
176   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
177   // Avoid calling isRenamable for virtual registers since we assert that
178   // renamable property is only queried/set for physical registers.
179   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
180                              ? MI.getOperand(Idx1).isRenamable()
181                              : false;
182   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
183                              ? MI.getOperand(Idx2).isRenamable()
184                              : false;
185   // If destination is tied to either of the commuted source register, then
186   // it must be updated.
187   if (HasDef && Reg0 == Reg1 &&
188       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
189     Reg2IsKill = false;
190     Reg0 = Reg2;
191     SubReg0 = SubReg2;
192   } else if (HasDef && Reg0 == Reg2 &&
193              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
194     Reg1IsKill = false;
195     Reg0 = Reg1;
196     SubReg0 = SubReg1;
197   }
198 
199   MachineInstr *CommutedMI = nullptr;
200   if (NewMI) {
201     // Create a new instruction.
202     MachineFunction &MF = *MI.getMF();
203     CommutedMI = MF.CloneMachineInstr(&MI);
204   } else {
205     CommutedMI = &MI;
206   }
207 
208   if (HasDef) {
209     CommutedMI->getOperand(0).setReg(Reg0);
210     CommutedMI->getOperand(0).setSubReg(SubReg0);
211   }
212   CommutedMI->getOperand(Idx2).setReg(Reg1);
213   CommutedMI->getOperand(Idx1).setReg(Reg2);
214   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
215   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
216   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
217   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
218   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
219   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
220   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
221   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
222   // Avoid calling setIsRenamable for virtual registers since we assert that
223   // renamable property is only queried/set for physical registers.
224   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
225     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
226   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
227     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
228   return CommutedMI;
229 }
230 
231 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
232                                                   unsigned OpIdx1,
233                                                   unsigned OpIdx2) const {
234   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
235   // any commutable operand, which is done in findCommutedOpIndices() method
236   // called below.
237   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
238       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
239     assert(MI.isCommutable() &&
240            "Precondition violation: MI must be commutable.");
241     return nullptr;
242   }
243   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
244 }
245 
246 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
247                                            unsigned &ResultIdx2,
248                                            unsigned CommutableOpIdx1,
249                                            unsigned CommutableOpIdx2) {
250   if (ResultIdx1 == CommuteAnyOperandIndex &&
251       ResultIdx2 == CommuteAnyOperandIndex) {
252     ResultIdx1 = CommutableOpIdx1;
253     ResultIdx2 = CommutableOpIdx2;
254   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
255     if (ResultIdx2 == CommutableOpIdx1)
256       ResultIdx1 = CommutableOpIdx2;
257     else if (ResultIdx2 == CommutableOpIdx2)
258       ResultIdx1 = CommutableOpIdx1;
259     else
260       return false;
261   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
262     if (ResultIdx1 == CommutableOpIdx1)
263       ResultIdx2 = CommutableOpIdx2;
264     else if (ResultIdx1 == CommutableOpIdx2)
265       ResultIdx2 = CommutableOpIdx1;
266     else
267       return false;
268   } else
269     // Check that the result operand indices match the given commutable
270     // operand indices.
271     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
272            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
273 
274   return true;
275 }
276 
277 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
278                                             unsigned &SrcOpIdx1,
279                                             unsigned &SrcOpIdx2) const {
280   assert(!MI.isBundle() &&
281          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
282 
283   const MCInstrDesc &MCID = MI.getDesc();
284   if (!MCID.isCommutable())
285     return false;
286 
287   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
288   // is not true, then the target must implement this.
289   unsigned CommutableOpIdx1 = MCID.getNumDefs();
290   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
291   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
292                             CommutableOpIdx1, CommutableOpIdx2))
293     return false;
294 
295   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
296     // No idea.
297     return false;
298   return true;
299 }
300 
301 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
302   if (!MI.isTerminator()) return false;
303 
304   // Conditional branch is a special case.
305   if (MI.isBranch() && !MI.isBarrier())
306     return true;
307   if (!MI.isPredicable())
308     return true;
309   return !isPredicated(MI);
310 }
311 
312 bool TargetInstrInfo::PredicateInstruction(
313     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
314   bool MadeChange = false;
315 
316   assert(!MI.isBundle() &&
317          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
318 
319   const MCInstrDesc &MCID = MI.getDesc();
320   if (!MI.isPredicable())
321     return false;
322 
323   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
324     if (MCID.OpInfo[i].isPredicate()) {
325       MachineOperand &MO = MI.getOperand(i);
326       if (MO.isReg()) {
327         MO.setReg(Pred[j].getReg());
328         MadeChange = true;
329       } else if (MO.isImm()) {
330         MO.setImm(Pred[j].getImm());
331         MadeChange = true;
332       } else if (MO.isMBB()) {
333         MO.setMBB(Pred[j].getMBB());
334         MadeChange = true;
335       }
336       ++j;
337     }
338   }
339   return MadeChange;
340 }
341 
342 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
343                                            const MachineMemOperand *&MMO,
344                                            int &FrameIndex) const {
345   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
346                                   oe = MI.memoperands_end();
347        o != oe; ++o) {
348     if ((*o)->isLoad()) {
349       if (const FixedStackPseudoSourceValue *Value =
350           dyn_cast_or_null<FixedStackPseudoSourceValue>(
351               (*o)->getPseudoValue())) {
352         FrameIndex = Value->getFrameIndex();
353         MMO = *o;
354         return true;
355       }
356     }
357   }
358   return false;
359 }
360 
361 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
362                                           const MachineMemOperand *&MMO,
363                                           int &FrameIndex) const {
364   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
365                                   oe = MI.memoperands_end();
366        o != oe; ++o) {
367     if ((*o)->isStore()) {
368       if (const FixedStackPseudoSourceValue *Value =
369           dyn_cast_or_null<FixedStackPseudoSourceValue>(
370               (*o)->getPseudoValue())) {
371         FrameIndex = Value->getFrameIndex();
372         MMO = *o;
373         return true;
374       }
375     }
376   }
377   return false;
378 }
379 
380 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
381                                         unsigned SubIdx, unsigned &Size,
382                                         unsigned &Offset,
383                                         const MachineFunction &MF) const {
384   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
385   if (!SubIdx) {
386     Size = TRI->getSpillSize(*RC);
387     Offset = 0;
388     return true;
389   }
390   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
391   // Convert bit size to byte size to be consistent with
392   // MCRegisterClass::getSize().
393   if (BitSize % 8)
394     return false;
395 
396   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
397   if (BitOffset < 0 || BitOffset % 8)
398     return false;
399 
400   Size = BitSize /= 8;
401   Offset = (unsigned)BitOffset / 8;
402 
403   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
404 
405   if (!MF.getDataLayout().isLittleEndian()) {
406     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
407   }
408   return true;
409 }
410 
411 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
412                                     MachineBasicBlock::iterator I,
413                                     unsigned DestReg, unsigned SubIdx,
414                                     const MachineInstr &Orig,
415                                     const TargetRegisterInfo &TRI) const {
416   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
417   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
418   MBB.insert(I, MI);
419 }
420 
421 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
422                                        const MachineInstr &MI1,
423                                        const MachineRegisterInfo *MRI) const {
424   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
425 }
426 
427 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
428     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
429   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
430   MachineFunction &MF = *MBB.getParent();
431   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
432 }
433 
434 // If the COPY instruction in MI can be folded to a stack operation, return
435 // the register class to use.
436 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
437                                               unsigned FoldIdx) {
438   assert(MI.isCopy() && "MI must be a COPY instruction");
439   if (MI.getNumOperands() != 2)
440     return nullptr;
441   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
442 
443   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
444   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
445 
446   if (FoldOp.getSubReg() || LiveOp.getSubReg())
447     return nullptr;
448 
449   unsigned FoldReg = FoldOp.getReg();
450   unsigned LiveReg = LiveOp.getReg();
451 
452   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
453          "Cannot fold physregs");
454 
455   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
456   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
457 
458   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
459     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
460 
461   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
462     return RC;
463 
464   // FIXME: Allow folding when register classes are memory compatible.
465   return nullptr;
466 }
467 
468 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
469   llvm_unreachable("Not implemented");
470 }
471 
472 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
473                                     ArrayRef<unsigned> Ops, int FrameIndex,
474                                     const TargetInstrInfo &TII) {
475   unsigned StartIdx = 0;
476   switch (MI.getOpcode()) {
477   case TargetOpcode::STACKMAP: {
478     // StackMapLiveValues are foldable
479     StartIdx = StackMapOpers(&MI).getVarIdx();
480     break;
481   }
482   case TargetOpcode::PATCHPOINT: {
483     // For PatchPoint, the call args are not foldable (even if reported in the
484     // stackmap e.g. via anyregcc).
485     StartIdx = PatchPointOpers(&MI).getVarIdx();
486     break;
487   }
488   case TargetOpcode::STATEPOINT: {
489     // For statepoints, fold deopt and gc arguments, but not call arguments.
490     StartIdx = StatepointOpers(&MI).getVarIdx();
491     break;
492   }
493   default:
494     llvm_unreachable("unexpected stackmap opcode");
495   }
496 
497   // Return false if any operands requested for folding are not foldable (not
498   // part of the stackmap's live values).
499   for (unsigned Op : Ops) {
500     if (Op < StartIdx)
501       return nullptr;
502   }
503 
504   MachineInstr *NewMI =
505       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
506   MachineInstrBuilder MIB(MF, NewMI);
507 
508   // No need to fold return, the meta data, and function arguments
509   for (unsigned i = 0; i < StartIdx; ++i)
510     MIB.add(MI.getOperand(i));
511 
512   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
513     MachineOperand &MO = MI.getOperand(i);
514     if (is_contained(Ops, i)) {
515       unsigned SpillSize;
516       unsigned SpillOffset;
517       // Compute the spill slot size and offset.
518       const TargetRegisterClass *RC =
519         MF.getRegInfo().getRegClass(MO.getReg());
520       bool Valid =
521           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
522       if (!Valid)
523         report_fatal_error("cannot spill patchpoint subregister operand");
524       MIB.addImm(StackMaps::IndirectMemRefOp);
525       MIB.addImm(SpillSize);
526       MIB.addFrameIndex(FrameIndex);
527       MIB.addImm(SpillOffset);
528     }
529     else
530       MIB.add(MO);
531   }
532   return NewMI;
533 }
534 
535 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
536                                                  ArrayRef<unsigned> Ops, int FI,
537                                                  LiveIntervals *LIS) const {
538   auto Flags = MachineMemOperand::MONone;
539   for (unsigned OpIdx : Ops)
540     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
541                                           : MachineMemOperand::MOLoad;
542 
543   MachineBasicBlock *MBB = MI.getParent();
544   assert(MBB && "foldMemoryOperand needs an inserted instruction");
545   MachineFunction &MF = *MBB->getParent();
546 
547   // If we're not folding a load into a subreg, the size of the load is the
548   // size of the spill slot. But if we are, we need to figure out what the
549   // actual load size is.
550   int64_t MemSize = 0;
551   const MachineFrameInfo &MFI = MF.getFrameInfo();
552   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
553 
554   if (Flags & MachineMemOperand::MOStore) {
555     MemSize = MFI.getObjectSize(FI);
556   } else {
557     for (unsigned OpIdx : Ops) {
558       int64_t OpSize = MFI.getObjectSize(FI);
559 
560       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
561         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
562         if (SubRegSize > 0 && !(SubRegSize % 8))
563           OpSize = SubRegSize / 8;
564       }
565 
566       MemSize = std::max(MemSize, OpSize);
567     }
568   }
569 
570   assert(MemSize && "Did not expect a zero-sized stack slot");
571 
572   MachineInstr *NewMI = nullptr;
573 
574   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
575       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
576       MI.getOpcode() == TargetOpcode::STATEPOINT) {
577     // Fold stackmap/patchpoint.
578     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
579     if (NewMI)
580       MBB->insert(MI, NewMI);
581   } else {
582     // Ask the target to do the actual folding.
583     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
584   }
585 
586   if (NewMI) {
587     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
588     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
589     assert((!(Flags & MachineMemOperand::MOStore) ||
590             NewMI->mayStore()) &&
591            "Folded a def to a non-store!");
592     assert((!(Flags & MachineMemOperand::MOLoad) ||
593             NewMI->mayLoad()) &&
594            "Folded a use to a non-load!");
595     assert(MFI.getObjectOffset(FI) != -1);
596     MachineMemOperand *MMO = MF.getMachineMemOperand(
597         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
598         MFI.getObjectAlignment(FI));
599     NewMI->addMemOperand(MF, MMO);
600 
601     return NewMI;
602   }
603 
604   // Straight COPY may fold as load/store.
605   if (!MI.isCopy() || Ops.size() != 1)
606     return nullptr;
607 
608   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
609   if (!RC)
610     return nullptr;
611 
612   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
613   MachineBasicBlock::iterator Pos = MI;
614 
615   if (Flags == MachineMemOperand::MOStore)
616     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
617   else
618     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
619   return &*--Pos;
620 }
621 
622 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
623                                                  ArrayRef<unsigned> Ops,
624                                                  MachineInstr &LoadMI,
625                                                  LiveIntervals *LIS) const {
626   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
627 #ifndef NDEBUG
628   for (unsigned OpIdx : Ops)
629     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
630 #endif
631 
632   MachineBasicBlock &MBB = *MI.getParent();
633   MachineFunction &MF = *MBB.getParent();
634 
635   // Ask the target to do the actual folding.
636   MachineInstr *NewMI = nullptr;
637   int FrameIndex = 0;
638 
639   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
640        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
641        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
642       isLoadFromStackSlot(LoadMI, FrameIndex)) {
643     // Fold stackmap/patchpoint.
644     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
645     if (NewMI)
646       NewMI = &*MBB.insert(MI, NewMI);
647   } else {
648     // Ask the target to do the actual folding.
649     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
650   }
651 
652   if (!NewMI)
653     return nullptr;
654 
655   // Copy the memoperands from the load to the folded instruction.
656   if (MI.memoperands_empty()) {
657     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
658   } else {
659     // Handle the rare case of folding multiple loads.
660     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
661     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
662                                     E = LoadMI.memoperands_end();
663          I != E; ++I) {
664       NewMI->addMemOperand(MF, *I);
665     }
666   }
667   return NewMI;
668 }
669 
670 bool TargetInstrInfo::hasReassociableOperands(
671     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
672   const MachineOperand &Op1 = Inst.getOperand(1);
673   const MachineOperand &Op2 = Inst.getOperand(2);
674   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
675 
676   // We need virtual register definitions for the operands that we will
677   // reassociate.
678   MachineInstr *MI1 = nullptr;
679   MachineInstr *MI2 = nullptr;
680   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
681     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
682   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
683     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
684 
685   // And they need to be in the trace (otherwise, they won't have a depth).
686   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
687 }
688 
689 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
690                                              bool &Commuted) const {
691   const MachineBasicBlock *MBB = Inst.getParent();
692   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
693   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
694   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
695   unsigned AssocOpcode = Inst.getOpcode();
696 
697   // If only one operand has the same opcode and it's the second source operand,
698   // the operands must be commuted.
699   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
700   if (Commuted)
701     std::swap(MI1, MI2);
702 
703   // 1. The previous instruction must be the same type as Inst.
704   // 2. The previous instruction must have virtual register definitions for its
705   //    operands in the same basic block as Inst.
706   // 3. The previous instruction's result must only be used by Inst.
707   return MI1->getOpcode() == AssocOpcode &&
708          hasReassociableOperands(*MI1, MBB) &&
709          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
710 }
711 
712 // 1. The operation must be associative and commutative.
713 // 2. The instruction must have virtual register definitions for its
714 //    operands in the same basic block.
715 // 3. The instruction must have a reassociable sibling.
716 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
717                                                bool &Commuted) const {
718   return isAssociativeAndCommutative(Inst) &&
719          hasReassociableOperands(Inst, Inst.getParent()) &&
720          hasReassociableSibling(Inst, Commuted);
721 }
722 
723 // The concept of the reassociation pass is that these operations can benefit
724 // from this kind of transformation:
725 //
726 // A = ? op ?
727 // B = A op X (Prev)
728 // C = B op Y (Root)
729 // -->
730 // A = ? op ?
731 // B = X op Y
732 // C = A op B
733 //
734 // breaking the dependency between A and B, allowing them to be executed in
735 // parallel (or back-to-back in a pipeline) instead of depending on each other.
736 
737 // FIXME: This has the potential to be expensive (compile time) while not
738 // improving the code at all. Some ways to limit the overhead:
739 // 1. Track successful transforms; bail out if hit rate gets too low.
740 // 2. Only enable at -O3 or some other non-default optimization level.
741 // 3. Pre-screen pattern candidates here: if an operand of the previous
742 //    instruction is known to not increase the critical path, then don't match
743 //    that pattern.
744 bool TargetInstrInfo::getMachineCombinerPatterns(
745     MachineInstr &Root,
746     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
747   bool Commute;
748   if (isReassociationCandidate(Root, Commute)) {
749     // We found a sequence of instructions that may be suitable for a
750     // reassociation of operands to increase ILP. Specify each commutation
751     // possibility for the Prev instruction in the sequence and let the
752     // machine combiner decide if changing the operands is worthwhile.
753     if (Commute) {
754       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
755       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
756     } else {
757       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
758       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
759     }
760     return true;
761   }
762 
763   return false;
764 }
765 
766 /// Return true when a code sequence can improve loop throughput.
767 bool
768 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
769   return false;
770 }
771 
772 /// Attempt the reassociation transformation to reduce critical path length.
773 /// See the above comments before getMachineCombinerPatterns().
774 void TargetInstrInfo::reassociateOps(
775     MachineInstr &Root, MachineInstr &Prev,
776     MachineCombinerPattern Pattern,
777     SmallVectorImpl<MachineInstr *> &InsInstrs,
778     SmallVectorImpl<MachineInstr *> &DelInstrs,
779     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
780   MachineFunction *MF = Root.getMF();
781   MachineRegisterInfo &MRI = MF->getRegInfo();
782   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
783   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
784   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
785 
786   // This array encodes the operand index for each parameter because the
787   // operands may be commuted. Each row corresponds to a pattern value,
788   // and each column specifies the index of A, B, X, Y.
789   unsigned OpIdx[4][4] = {
790     { 1, 1, 2, 2 },
791     { 1, 2, 2, 1 },
792     { 2, 1, 1, 2 },
793     { 2, 2, 1, 1 }
794   };
795 
796   int Row;
797   switch (Pattern) {
798   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
799   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
800   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
801   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
802   default: llvm_unreachable("unexpected MachineCombinerPattern");
803   }
804 
805   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
806   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
807   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
808   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
809   MachineOperand &OpC = Root.getOperand(0);
810 
811   unsigned RegA = OpA.getReg();
812   unsigned RegB = OpB.getReg();
813   unsigned RegX = OpX.getReg();
814   unsigned RegY = OpY.getReg();
815   unsigned RegC = OpC.getReg();
816 
817   if (TargetRegisterInfo::isVirtualRegister(RegA))
818     MRI.constrainRegClass(RegA, RC);
819   if (TargetRegisterInfo::isVirtualRegister(RegB))
820     MRI.constrainRegClass(RegB, RC);
821   if (TargetRegisterInfo::isVirtualRegister(RegX))
822     MRI.constrainRegClass(RegX, RC);
823   if (TargetRegisterInfo::isVirtualRegister(RegY))
824     MRI.constrainRegClass(RegY, RC);
825   if (TargetRegisterInfo::isVirtualRegister(RegC))
826     MRI.constrainRegClass(RegC, RC);
827 
828   // Create a new virtual register for the result of (X op Y) instead of
829   // recycling RegB because the MachineCombiner's computation of the critical
830   // path requires a new register definition rather than an existing one.
831   unsigned NewVR = MRI.createVirtualRegister(RC);
832   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
833 
834   unsigned Opcode = Root.getOpcode();
835   bool KillA = OpA.isKill();
836   bool KillX = OpX.isKill();
837   bool KillY = OpY.isKill();
838 
839   // Create new instructions for insertion.
840   MachineInstrBuilder MIB1 =
841       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
842           .addReg(RegX, getKillRegState(KillX))
843           .addReg(RegY, getKillRegState(KillY));
844   MachineInstrBuilder MIB2 =
845       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
846           .addReg(RegA, getKillRegState(KillA))
847           .addReg(NewVR, getKillRegState(true));
848 
849   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
850 
851   // Record new instructions for insertion and old instructions for deletion.
852   InsInstrs.push_back(MIB1);
853   InsInstrs.push_back(MIB2);
854   DelInstrs.push_back(&Prev);
855   DelInstrs.push_back(&Root);
856 }
857 
858 void TargetInstrInfo::genAlternativeCodeSequence(
859     MachineInstr &Root, MachineCombinerPattern Pattern,
860     SmallVectorImpl<MachineInstr *> &InsInstrs,
861     SmallVectorImpl<MachineInstr *> &DelInstrs,
862     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
863   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
864 
865   // Select the previous instruction in the sequence based on the input pattern.
866   MachineInstr *Prev = nullptr;
867   switch (Pattern) {
868   case MachineCombinerPattern::REASSOC_AX_BY:
869   case MachineCombinerPattern::REASSOC_XA_BY:
870     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
871     break;
872   case MachineCombinerPattern::REASSOC_AX_YB:
873   case MachineCombinerPattern::REASSOC_XA_YB:
874     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
875     break;
876   default:
877     break;
878   }
879 
880   assert(Prev && "Unknown pattern for machine combiner");
881 
882   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
883 }
884 
885 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
886     const MachineInstr &MI, AliasAnalysis *AA) const {
887   const MachineFunction &MF = *MI.getMF();
888   const MachineRegisterInfo &MRI = MF.getRegInfo();
889 
890   // Remat clients assume operand 0 is the defined register.
891   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
892     return false;
893   unsigned DefReg = MI.getOperand(0).getReg();
894 
895   // A sub-register definition can only be rematerialized if the instruction
896   // doesn't read the other parts of the register.  Otherwise it is really a
897   // read-modify-write operation on the full virtual register which cannot be
898   // moved safely.
899   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
900       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
901     return false;
902 
903   // A load from a fixed stack slot can be rematerialized. This may be
904   // redundant with subsequent checks, but it's target-independent,
905   // simple, and a common case.
906   int FrameIdx = 0;
907   if (isLoadFromStackSlot(MI, FrameIdx) &&
908       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
909     return true;
910 
911   // Avoid instructions obviously unsafe for remat.
912   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
913     return false;
914 
915   // Don't remat inline asm. We have no idea how expensive it is
916   // even if it's side effect free.
917   if (MI.isInlineAsm())
918     return false;
919 
920   // Avoid instructions which load from potentially varying memory.
921   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
922     return false;
923 
924   // If any of the registers accessed are non-constant, conservatively assume
925   // the instruction is not rematerializable.
926   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
927     const MachineOperand &MO = MI.getOperand(i);
928     if (!MO.isReg()) continue;
929     unsigned Reg = MO.getReg();
930     if (Reg == 0)
931       continue;
932 
933     // Check for a well-behaved physical register.
934     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
935       if (MO.isUse()) {
936         // If the physreg has no defs anywhere, it's just an ambient register
937         // and we can freely move its uses. Alternatively, if it's allocatable,
938         // it could get allocated to something with a def during allocation.
939         if (!MRI.isConstantPhysReg(Reg))
940           return false;
941       } else {
942         // A physreg def. We can't remat it.
943         return false;
944       }
945       continue;
946     }
947 
948     // Only allow one virtual-register def.  There may be multiple defs of the
949     // same virtual register, though.
950     if (MO.isDef() && Reg != DefReg)
951       return false;
952 
953     // Don't allow any virtual-register uses. Rematting an instruction with
954     // virtual register uses would length the live ranges of the uses, which
955     // is not necessarily a good idea, certainly not "trivial".
956     if (MO.isUse())
957       return false;
958   }
959 
960   // Everything checked out.
961   return true;
962 }
963 
964 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
965   const MachineFunction *MF = MI.getMF();
966   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
967   bool StackGrowsDown =
968     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
969 
970   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
971   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
972 
973   if (!isFrameInstr(MI))
974     return 0;
975 
976   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
977 
978   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
979       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
980     SPAdj = -SPAdj;
981 
982   return SPAdj;
983 }
984 
985 /// isSchedulingBoundary - Test if the given instruction should be
986 /// considered a scheduling boundary. This primarily includes labels
987 /// and terminators.
988 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
989                                            const MachineBasicBlock *MBB,
990                                            const MachineFunction &MF) const {
991   // Terminators and labels can't be scheduled around.
992   if (MI.isTerminator() || MI.isPosition())
993     return true;
994 
995   // Don't attempt to schedule around any instruction that defines
996   // a stack-oriented pointer, as it's unlikely to be profitable. This
997   // saves compile time, because it doesn't require every single
998   // stack slot reference to depend on the instruction that does the
999   // modification.
1000   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1001   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1002   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1003 }
1004 
1005 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1006 // may choose to honor.
1007 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1008   return !DisableHazardRecognizer;
1009 }
1010 
1011 // Default implementation of CreateTargetRAHazardRecognizer.
1012 ScheduleHazardRecognizer *TargetInstrInfo::
1013 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1014                              const ScheduleDAG *DAG) const {
1015   // Dummy hazard recognizer allows all instructions to issue.
1016   return new ScheduleHazardRecognizer();
1017 }
1018 
1019 // Default implementation of CreateTargetMIHazardRecognizer.
1020 ScheduleHazardRecognizer *TargetInstrInfo::
1021 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1022                                const ScheduleDAG *DAG) const {
1023   return (ScheduleHazardRecognizer *)
1024     new ScoreboardHazardRecognizer(II, DAG, "misched");
1025 }
1026 
1027 // Default implementation of CreateTargetPostRAHazardRecognizer.
1028 ScheduleHazardRecognizer *TargetInstrInfo::
1029 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1030                                    const ScheduleDAG *DAG) const {
1031   return (ScheduleHazardRecognizer *)
1032     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1033 }
1034 
1035 //===----------------------------------------------------------------------===//
1036 //  SelectionDAG latency interface.
1037 //===----------------------------------------------------------------------===//
1038 
1039 int
1040 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1041                                    SDNode *DefNode, unsigned DefIdx,
1042                                    SDNode *UseNode, unsigned UseIdx) const {
1043   if (!ItinData || ItinData->isEmpty())
1044     return -1;
1045 
1046   if (!DefNode->isMachineOpcode())
1047     return -1;
1048 
1049   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1050   if (!UseNode->isMachineOpcode())
1051     return ItinData->getOperandCycle(DefClass, DefIdx);
1052   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1053   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1054 }
1055 
1056 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1057                                      SDNode *N) const {
1058   if (!ItinData || ItinData->isEmpty())
1059     return 1;
1060 
1061   if (!N->isMachineOpcode())
1062     return 1;
1063 
1064   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1065 }
1066 
1067 //===----------------------------------------------------------------------===//
1068 //  MachineInstr latency interface.
1069 //===----------------------------------------------------------------------===//
1070 
1071 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1072                                          const MachineInstr &MI) const {
1073   if (!ItinData || ItinData->isEmpty())
1074     return 1;
1075 
1076   unsigned Class = MI.getDesc().getSchedClass();
1077   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1078   if (UOps >= 0)
1079     return UOps;
1080 
1081   // The # of u-ops is dynamically determined. The specific target should
1082   // override this function to return the right number.
1083   return 1;
1084 }
1085 
1086 /// Return the default expected latency for a def based on it's opcode.
1087 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1088                                             const MachineInstr &DefMI) const {
1089   if (DefMI.isTransient())
1090     return 0;
1091   if (DefMI.mayLoad())
1092     return SchedModel.LoadLatency;
1093   if (isHighLatencyDef(DefMI.getOpcode()))
1094     return SchedModel.HighLatency;
1095   return 1;
1096 }
1097 
1098 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1099   return 0;
1100 }
1101 
1102 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1103                                           const MachineInstr &MI,
1104                                           unsigned *PredCost) const {
1105   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1106   // still have a MinLatency property, which getStageLatency checks.
1107   if (!ItinData)
1108     return MI.mayLoad() ? 2 : 1;
1109 
1110   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1111 }
1112 
1113 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1114                                        const MachineInstr &DefMI,
1115                                        unsigned DefIdx) const {
1116   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1117   if (!ItinData || ItinData->isEmpty())
1118     return false;
1119 
1120   unsigned DefClass = DefMI.getDesc().getSchedClass();
1121   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1122   return (DefCycle != -1 && DefCycle <= 1);
1123 }
1124 
1125 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1126 /// itinerary. This may be overriden by the target.
1127 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1128                                        const MachineInstr &DefMI,
1129                                        unsigned DefIdx,
1130                                        const MachineInstr &UseMI,
1131                                        unsigned UseIdx) const {
1132   unsigned DefClass = DefMI.getDesc().getSchedClass();
1133   unsigned UseClass = UseMI.getDesc().getSchedClass();
1134   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1135 }
1136 
1137 /// If we can determine the operand latency from the def only, without itinerary
1138 /// lookup, do so. Otherwise return -1.
1139 int TargetInstrInfo::computeDefOperandLatency(
1140     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1141 
1142   // Let the target hook getInstrLatency handle missing itineraries.
1143   if (!ItinData)
1144     return getInstrLatency(ItinData, DefMI);
1145 
1146   if(ItinData->isEmpty())
1147     return defaultDefLatency(ItinData->SchedModel, DefMI);
1148 
1149   // ...operand lookup required
1150   return -1;
1151 }
1152 
1153 bool TargetInstrInfo::getRegSequenceInputs(
1154     const MachineInstr &MI, unsigned DefIdx,
1155     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1156   assert((MI.isRegSequence() ||
1157           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1158 
1159   if (!MI.isRegSequence())
1160     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1161 
1162   // We are looking at:
1163   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1164   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1165   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1166        OpIdx += 2) {
1167     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1168     if (MOReg.isUndef())
1169       continue;
1170     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1171     assert(MOSubIdx.isImm() &&
1172            "One of the subindex of the reg_sequence is not an immediate");
1173     // Record Reg:SubReg, SubIdx.
1174     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1175                                             (unsigned)MOSubIdx.getImm()));
1176   }
1177   return true;
1178 }
1179 
1180 bool TargetInstrInfo::getExtractSubregInputs(
1181     const MachineInstr &MI, unsigned DefIdx,
1182     RegSubRegPairAndIdx &InputReg) const {
1183   assert((MI.isExtractSubreg() ||
1184       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1185 
1186   if (!MI.isExtractSubreg())
1187     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1188 
1189   // We are looking at:
1190   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1191   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1192   const MachineOperand &MOReg = MI.getOperand(1);
1193   if (MOReg.isUndef())
1194     return false;
1195   const MachineOperand &MOSubIdx = MI.getOperand(2);
1196   assert(MOSubIdx.isImm() &&
1197          "The subindex of the extract_subreg is not an immediate");
1198 
1199   InputReg.Reg = MOReg.getReg();
1200   InputReg.SubReg = MOReg.getSubReg();
1201   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1202   return true;
1203 }
1204 
1205 bool TargetInstrInfo::getInsertSubregInputs(
1206     const MachineInstr &MI, unsigned DefIdx,
1207     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1208   assert((MI.isInsertSubreg() ||
1209       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1210 
1211   if (!MI.isInsertSubreg())
1212     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1213 
1214   // We are looking at:
1215   // Def = INSERT_SEQUENCE v0, v1, sub0.
1216   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1217   const MachineOperand &MOBaseReg = MI.getOperand(1);
1218   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1219   if (MOInsertedReg.isUndef())
1220     return false;
1221   const MachineOperand &MOSubIdx = MI.getOperand(3);
1222   assert(MOSubIdx.isImm() &&
1223          "One of the subindex of the reg_sequence is not an immediate");
1224   BaseReg.Reg = MOBaseReg.getReg();
1225   BaseReg.SubReg = MOBaseReg.getSubReg();
1226 
1227   InsertedReg.Reg = MOInsertedReg.getReg();
1228   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1229   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1230   return true;
1231 }
1232