1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/CodeGen/TargetSchedule.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCInstrItineraries.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetFrameLowering.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include "llvm/Target/TargetRegisterInfo.h" 33 #include <cctype> 34 35 using namespace llvm; 36 37 static cl::opt<bool> DisableHazardRecognizer( 38 "disable-sched-hazard", cl::Hidden, cl::init(false), 39 cl::desc("Disable hazard detection during preRA scheduling")); 40 41 TargetInstrInfo::~TargetInstrInfo() { 42 } 43 44 const TargetRegisterClass* 45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 46 const TargetRegisterInfo *TRI, 47 const MachineFunction &MF) const { 48 if (OpNum >= MCID.getNumOperands()) 49 return nullptr; 50 51 short RegClass = MCID.OpInfo[OpNum].RegClass; 52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 53 return TRI->getPointerRegClass(MF, RegClass); 54 55 // Instructions like INSERT_SUBREG do not have fixed register classes. 56 if (RegClass < 0) 57 return nullptr; 58 59 // Otherwise just look it up normally. 60 return TRI->getRegClass(RegClass); 61 } 62 63 /// insertNoop - Insert a noop into the instruction stream at the specified 64 /// point. 65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 66 MachineBasicBlock::iterator MI) const { 67 llvm_unreachable("Target didn't implement insertNoop!"); 68 } 69 70 /// Measure the specified inline asm to determine an approximation of its 71 /// length. 72 /// Comments (which run till the next SeparatorString or newline) do not 73 /// count as an instruction. 74 /// Any other non-whitespace text is considered an instruction, with 75 /// multiple instructions separated by SeparatorString or newlines. 76 /// Variable-length instructions are not handled here; this function 77 /// may be overloaded in the target code to do that. 78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 79 const MCAsmInfo &MAI) const { 80 // Count the number of instructions in the asm. 81 bool atInsnStart = true; 82 unsigned Length = 0; 83 for (; *Str; ++Str) { 84 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 85 strlen(MAI.getSeparatorString())) == 0) 86 atInsnStart = true; 87 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 88 Length += MAI.getMaxInstLength(); 89 atInsnStart = false; 90 } 91 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 92 strlen(MAI.getCommentString())) == 0) 93 atInsnStart = false; 94 } 95 96 return Length; 97 } 98 99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 100 /// after it, replacing it with an unconditional branch to NewDest. 101 void 102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 103 MachineBasicBlock *NewDest) const { 104 MachineBasicBlock *MBB = Tail->getParent(); 105 106 // Remove all the old successors of MBB from the CFG. 107 while (!MBB->succ_empty()) 108 MBB->removeSuccessor(MBB->succ_begin()); 109 110 // Remove all the dead instructions from the end of MBB. 111 MBB->erase(Tail, MBB->end()); 112 113 // If MBB isn't immediately before MBB, insert a branch to it. 114 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 115 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 116 Tail->getDebugLoc()); 117 MBB->addSuccessor(NewDest); 118 } 119 120 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI, 121 bool NewMI, 122 unsigned Idx1, 123 unsigned Idx2) const { 124 const MCInstrDesc &MCID = MI->getDesc(); 125 bool HasDef = MCID.getNumDefs(); 126 if (HasDef && !MI->getOperand(0).isReg()) 127 // No idea how to commute this instruction. Target should implement its own. 128 return nullptr; 129 130 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 131 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 132 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 133 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 134 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 135 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 136 "This only knows how to commute register operands so far"); 137 138 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 139 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 140 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 141 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 142 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 143 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 144 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 145 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 146 bool Reg1IsUndef = MI->getOperand(Idx1).isUndef(); 147 bool Reg2IsUndef = MI->getOperand(Idx2).isUndef(); 148 bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead(); 149 bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead(); 150 // If destination is tied to either of the commuted source register, then 151 // it must be updated. 152 if (HasDef && Reg0 == Reg1 && 153 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 154 Reg2IsKill = false; 155 Reg0 = Reg2; 156 SubReg0 = SubReg2; 157 } else if (HasDef && Reg0 == Reg2 && 158 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 159 Reg1IsKill = false; 160 Reg0 = Reg1; 161 SubReg0 = SubReg1; 162 } 163 164 if (NewMI) { 165 // Create a new instruction. 166 MachineFunction &MF = *MI->getParent()->getParent(); 167 MI = MF.CloneMachineInstr(MI); 168 } 169 170 if (HasDef) { 171 MI->getOperand(0).setReg(Reg0); 172 MI->getOperand(0).setSubReg(SubReg0); 173 } 174 MI->getOperand(Idx2).setReg(Reg1); 175 MI->getOperand(Idx1).setReg(Reg2); 176 MI->getOperand(Idx2).setSubReg(SubReg1); 177 MI->getOperand(Idx1).setSubReg(SubReg2); 178 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 179 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 180 MI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 181 MI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 182 MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 183 MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 184 return MI; 185 } 186 187 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 188 bool NewMI, 189 unsigned OpIdx1, 190 unsigned OpIdx2) const { 191 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 192 // any commutable operand, which is done in findCommutedOpIndices() method 193 // called below. 194 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 195 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 196 assert(MI->isCommutable() && 197 "Precondition violation: MI must be commutable."); 198 return nullptr; 199 } 200 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 201 } 202 203 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 204 unsigned &ResultIdx2, 205 unsigned CommutableOpIdx1, 206 unsigned CommutableOpIdx2) { 207 if (ResultIdx1 == CommuteAnyOperandIndex && 208 ResultIdx2 == CommuteAnyOperandIndex) { 209 ResultIdx1 = CommutableOpIdx1; 210 ResultIdx2 = CommutableOpIdx2; 211 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 212 if (ResultIdx2 == CommutableOpIdx1) 213 ResultIdx1 = CommutableOpIdx2; 214 else if (ResultIdx2 == CommutableOpIdx2) 215 ResultIdx1 = CommutableOpIdx1; 216 else 217 return false; 218 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 219 if (ResultIdx1 == CommutableOpIdx1) 220 ResultIdx2 = CommutableOpIdx2; 221 else if (ResultIdx1 == CommutableOpIdx2) 222 ResultIdx2 = CommutableOpIdx1; 223 else 224 return false; 225 } else 226 // Check that the result operand indices match the given commutable 227 // operand indices. 228 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 229 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 230 231 return true; 232 } 233 234 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 235 unsigned &SrcOpIdx1, 236 unsigned &SrcOpIdx2) const { 237 assert(!MI->isBundle() && 238 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 239 240 const MCInstrDesc &MCID = MI->getDesc(); 241 if (!MCID.isCommutable()) 242 return false; 243 244 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 245 // is not true, then the target must implement this. 246 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 247 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 248 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 249 CommutableOpIdx1, CommutableOpIdx2)) 250 return false; 251 252 if (!MI->getOperand(SrcOpIdx1).isReg() || 253 !MI->getOperand(SrcOpIdx2).isReg()) 254 // No idea. 255 return false; 256 return true; 257 } 258 259 bool 260 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 261 if (!MI->isTerminator()) return false; 262 263 // Conditional branch is a special case. 264 if (MI->isBranch() && !MI->isBarrier()) 265 return true; 266 if (!MI->isPredicable()) 267 return true; 268 return !isPredicated(MI); 269 } 270 271 bool TargetInstrInfo::PredicateInstruction( 272 MachineInstr *MI, ArrayRef<MachineOperand> Pred) const { 273 bool MadeChange = false; 274 275 assert(!MI->isBundle() && 276 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 277 278 const MCInstrDesc &MCID = MI->getDesc(); 279 if (!MI->isPredicable()) 280 return false; 281 282 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 283 if (MCID.OpInfo[i].isPredicate()) { 284 MachineOperand &MO = MI->getOperand(i); 285 if (MO.isReg()) { 286 MO.setReg(Pred[j].getReg()); 287 MadeChange = true; 288 } else if (MO.isImm()) { 289 MO.setImm(Pred[j].getImm()); 290 MadeChange = true; 291 } else if (MO.isMBB()) { 292 MO.setMBB(Pred[j].getMBB()); 293 MadeChange = true; 294 } 295 ++j; 296 } 297 } 298 return MadeChange; 299 } 300 301 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 302 const MachineMemOperand *&MMO, 303 int &FrameIndex) const { 304 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 305 oe = MI->memoperands_end(); 306 o != oe; 307 ++o) { 308 if ((*o)->isLoad()) { 309 if (const FixedStackPseudoSourceValue *Value = 310 dyn_cast_or_null<FixedStackPseudoSourceValue>( 311 (*o)->getPseudoValue())) { 312 FrameIndex = Value->getFrameIndex(); 313 MMO = *o; 314 return true; 315 } 316 } 317 } 318 return false; 319 } 320 321 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 322 const MachineMemOperand *&MMO, 323 int &FrameIndex) const { 324 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 325 oe = MI->memoperands_end(); 326 o != oe; 327 ++o) { 328 if ((*o)->isStore()) { 329 if (const FixedStackPseudoSourceValue *Value = 330 dyn_cast_or_null<FixedStackPseudoSourceValue>( 331 (*o)->getPseudoValue())) { 332 FrameIndex = Value->getFrameIndex(); 333 MMO = *o; 334 return true; 335 } 336 } 337 } 338 return false; 339 } 340 341 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 342 unsigned SubIdx, unsigned &Size, 343 unsigned &Offset, 344 const MachineFunction &MF) const { 345 if (!SubIdx) { 346 Size = RC->getSize(); 347 Offset = 0; 348 return true; 349 } 350 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 351 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 352 // Convert bit size to byte size to be consistent with 353 // MCRegisterClass::getSize(). 354 if (BitSize % 8) 355 return false; 356 357 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 358 if (BitOffset < 0 || BitOffset % 8) 359 return false; 360 361 Size = BitSize /= 8; 362 Offset = (unsigned)BitOffset / 8; 363 364 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 365 366 if (!MF.getDataLayout().isLittleEndian()) { 367 Offset = RC->getSize() - (Offset + Size); 368 } 369 return true; 370 } 371 372 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 373 MachineBasicBlock::iterator I, 374 unsigned DestReg, 375 unsigned SubIdx, 376 const MachineInstr *Orig, 377 const TargetRegisterInfo &TRI) const { 378 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 379 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 380 MBB.insert(I, MI); 381 } 382 383 bool 384 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 385 const MachineInstr *MI1, 386 const MachineRegisterInfo *MRI) const { 387 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 388 } 389 390 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 391 MachineFunction &MF) const { 392 assert(!Orig->isNotDuplicable() && 393 "Instruction cannot be duplicated"); 394 return MF.CloneMachineInstr(Orig); 395 } 396 397 // If the COPY instruction in MI can be folded to a stack operation, return 398 // the register class to use. 399 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 400 unsigned FoldIdx) { 401 assert(MI->isCopy() && "MI must be a COPY instruction"); 402 if (MI->getNumOperands() != 2) 403 return nullptr; 404 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 405 406 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 407 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 408 409 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 410 return nullptr; 411 412 unsigned FoldReg = FoldOp.getReg(); 413 unsigned LiveReg = LiveOp.getReg(); 414 415 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 416 "Cannot fold physregs"); 417 418 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 419 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 420 421 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 422 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 423 424 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 425 return RC; 426 427 // FIXME: Allow folding when register classes are memory compatible. 428 return nullptr; 429 } 430 431 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 432 llvm_unreachable("Not a MachO target"); 433 } 434 435 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI, 436 ArrayRef<unsigned> Ops, int FrameIndex, 437 const TargetInstrInfo &TII) { 438 unsigned StartIdx = 0; 439 switch (MI->getOpcode()) { 440 case TargetOpcode::STACKMAP: 441 StartIdx = 2; // Skip ID, nShadowBytes. 442 break; 443 case TargetOpcode::PATCHPOINT: { 444 // For PatchPoint, the call args are not foldable. 445 PatchPointOpers opers(MI); 446 StartIdx = opers.getVarIdx(); 447 break; 448 } 449 default: 450 llvm_unreachable("unexpected stackmap opcode"); 451 } 452 453 // Return false if any operands requested for folding are not foldable (not 454 // part of the stackmap's live values). 455 for (unsigned Op : Ops) { 456 if (Op < StartIdx) 457 return nullptr; 458 } 459 460 MachineInstr *NewMI = 461 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 462 MachineInstrBuilder MIB(MF, NewMI); 463 464 // No need to fold return, the meta data, and function arguments 465 for (unsigned i = 0; i < StartIdx; ++i) 466 MIB.addOperand(MI->getOperand(i)); 467 468 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 469 MachineOperand &MO = MI->getOperand(i); 470 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 471 unsigned SpillSize; 472 unsigned SpillOffset; 473 // Compute the spill slot size and offset. 474 const TargetRegisterClass *RC = 475 MF.getRegInfo().getRegClass(MO.getReg()); 476 bool Valid = 477 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 478 if (!Valid) 479 report_fatal_error("cannot spill patchpoint subregister operand"); 480 MIB.addImm(StackMaps::IndirectMemRefOp); 481 MIB.addImm(SpillSize); 482 MIB.addFrameIndex(FrameIndex); 483 MIB.addImm(SpillOffset); 484 } 485 else 486 MIB.addOperand(MO); 487 } 488 return NewMI; 489 } 490 491 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 492 /// slot into the specified machine instruction for the specified operand(s). 493 /// If this is possible, a new instruction is returned with the specified 494 /// operand folded, otherwise NULL is returned. The client is responsible for 495 /// removing the old instruction and adding the new one in the instruction 496 /// stream. 497 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 498 ArrayRef<unsigned> Ops, 499 int FI) const { 500 unsigned Flags = 0; 501 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 502 if (MI->getOperand(Ops[i]).isDef()) 503 Flags |= MachineMemOperand::MOStore; 504 else 505 Flags |= MachineMemOperand::MOLoad; 506 507 MachineBasicBlock *MBB = MI->getParent(); 508 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 509 MachineFunction &MF = *MBB->getParent(); 510 511 MachineInstr *NewMI = nullptr; 512 513 if (MI->getOpcode() == TargetOpcode::STACKMAP || 514 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 515 // Fold stackmap/patchpoint. 516 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 517 if (NewMI) 518 MBB->insert(MI, NewMI); 519 } else { 520 // Ask the target to do the actual folding. 521 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI); 522 } 523 524 if (NewMI) { 525 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 526 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 527 assert((!(Flags & MachineMemOperand::MOStore) || 528 NewMI->mayStore()) && 529 "Folded a def to a non-store!"); 530 assert((!(Flags & MachineMemOperand::MOLoad) || 531 NewMI->mayLoad()) && 532 "Folded a use to a non-load!"); 533 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 534 assert(MFI.getObjectOffset(FI) != -1); 535 MachineMemOperand *MMO = MF.getMachineMemOperand( 536 MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI), 537 MFI.getObjectAlignment(FI)); 538 NewMI->addMemOperand(MF, MMO); 539 540 return NewMI; 541 } 542 543 // Straight COPY may fold as load/store. 544 if (!MI->isCopy() || Ops.size() != 1) 545 return nullptr; 546 547 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 548 if (!RC) 549 return nullptr; 550 551 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 552 MachineBasicBlock::iterator Pos = MI; 553 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 554 555 if (Flags == MachineMemOperand::MOStore) 556 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 557 else 558 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 559 return --Pos; 560 } 561 562 bool TargetInstrInfo::hasReassociableOperands( 563 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 564 const MachineOperand &Op1 = Inst.getOperand(1); 565 const MachineOperand &Op2 = Inst.getOperand(2); 566 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 567 568 // We need virtual register definitions for the operands that we will 569 // reassociate. 570 MachineInstr *MI1 = nullptr; 571 MachineInstr *MI2 = nullptr; 572 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 573 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 574 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 575 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 576 577 // And they need to be in the trace (otherwise, they won't have a depth). 578 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 579 } 580 581 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 582 bool &Commuted) const { 583 const MachineBasicBlock *MBB = Inst.getParent(); 584 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 585 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 586 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 587 unsigned AssocOpcode = Inst.getOpcode(); 588 589 // If only one operand has the same opcode and it's the second source operand, 590 // the operands must be commuted. 591 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 592 if (Commuted) 593 std::swap(MI1, MI2); 594 595 // 1. The previous instruction must be the same type as Inst. 596 // 2. The previous instruction must have virtual register definitions for its 597 // operands in the same basic block as Inst. 598 // 3. The previous instruction's result must only be used by Inst. 599 return MI1->getOpcode() == AssocOpcode && 600 hasReassociableOperands(*MI1, MBB) && 601 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 602 } 603 604 // 1. The operation must be associative and commutative. 605 // 2. The instruction must have virtual register definitions for its 606 // operands in the same basic block. 607 // 3. The instruction must have a reassociable sibling. 608 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 609 bool &Commuted) const { 610 return isAssociativeAndCommutative(Inst) && 611 hasReassociableOperands(Inst, Inst.getParent()) && 612 hasReassociableSibling(Inst, Commuted); 613 } 614 615 // The concept of the reassociation pass is that these operations can benefit 616 // from this kind of transformation: 617 // 618 // A = ? op ? 619 // B = A op X (Prev) 620 // C = B op Y (Root) 621 // --> 622 // A = ? op ? 623 // B = X op Y 624 // C = A op B 625 // 626 // breaking the dependency between A and B, allowing them to be executed in 627 // parallel (or back-to-back in a pipeline) instead of depending on each other. 628 629 // FIXME: This has the potential to be expensive (compile time) while not 630 // improving the code at all. Some ways to limit the overhead: 631 // 1. Track successful transforms; bail out if hit rate gets too low. 632 // 2. Only enable at -O3 or some other non-default optimization level. 633 // 3. Pre-screen pattern candidates here: if an operand of the previous 634 // instruction is known to not increase the critical path, then don't match 635 // that pattern. 636 bool TargetInstrInfo::getMachineCombinerPatterns( 637 MachineInstr &Root, 638 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 639 bool Commute; 640 if (isReassociationCandidate(Root, Commute)) { 641 // We found a sequence of instructions that may be suitable for a 642 // reassociation of operands to increase ILP. Specify each commutation 643 // possibility for the Prev instruction in the sequence and let the 644 // machine combiner decide if changing the operands is worthwhile. 645 if (Commute) { 646 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 647 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 648 } else { 649 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 650 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 651 } 652 return true; 653 } 654 655 return false; 656 } 657 658 /// Attempt the reassociation transformation to reduce critical path length. 659 /// See the above comments before getMachineCombinerPatterns(). 660 void TargetInstrInfo::reassociateOps( 661 MachineInstr &Root, MachineInstr &Prev, 662 MachineCombinerPattern Pattern, 663 SmallVectorImpl<MachineInstr *> &InsInstrs, 664 SmallVectorImpl<MachineInstr *> &DelInstrs, 665 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 666 MachineFunction *MF = Root.getParent()->getParent(); 667 MachineRegisterInfo &MRI = MF->getRegInfo(); 668 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 669 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 670 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 671 672 // This array encodes the operand index for each parameter because the 673 // operands may be commuted. Each row corresponds to a pattern value, 674 // and each column specifies the index of A, B, X, Y. 675 unsigned OpIdx[4][4] = { 676 { 1, 1, 2, 2 }, 677 { 1, 2, 2, 1 }, 678 { 2, 1, 1, 2 }, 679 { 2, 2, 1, 1 } 680 }; 681 682 int Row; 683 switch (Pattern) { 684 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 685 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 686 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 687 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 688 default: llvm_unreachable("unexpected MachineCombinerPattern"); 689 } 690 691 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 692 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 693 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 694 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 695 MachineOperand &OpC = Root.getOperand(0); 696 697 unsigned RegA = OpA.getReg(); 698 unsigned RegB = OpB.getReg(); 699 unsigned RegX = OpX.getReg(); 700 unsigned RegY = OpY.getReg(); 701 unsigned RegC = OpC.getReg(); 702 703 if (TargetRegisterInfo::isVirtualRegister(RegA)) 704 MRI.constrainRegClass(RegA, RC); 705 if (TargetRegisterInfo::isVirtualRegister(RegB)) 706 MRI.constrainRegClass(RegB, RC); 707 if (TargetRegisterInfo::isVirtualRegister(RegX)) 708 MRI.constrainRegClass(RegX, RC); 709 if (TargetRegisterInfo::isVirtualRegister(RegY)) 710 MRI.constrainRegClass(RegY, RC); 711 if (TargetRegisterInfo::isVirtualRegister(RegC)) 712 MRI.constrainRegClass(RegC, RC); 713 714 // Create a new virtual register for the result of (X op Y) instead of 715 // recycling RegB because the MachineCombiner's computation of the critical 716 // path requires a new register definition rather than an existing one. 717 unsigned NewVR = MRI.createVirtualRegister(RC); 718 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 719 720 unsigned Opcode = Root.getOpcode(); 721 bool KillA = OpA.isKill(); 722 bool KillX = OpX.isKill(); 723 bool KillY = OpY.isKill(); 724 725 // Create new instructions for insertion. 726 MachineInstrBuilder MIB1 = 727 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 728 .addReg(RegX, getKillRegState(KillX)) 729 .addReg(RegY, getKillRegState(KillY)); 730 MachineInstrBuilder MIB2 = 731 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 732 .addReg(RegA, getKillRegState(KillA)) 733 .addReg(NewVR, getKillRegState(true)); 734 735 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 736 737 // Record new instructions for insertion and old instructions for deletion. 738 InsInstrs.push_back(MIB1); 739 InsInstrs.push_back(MIB2); 740 DelInstrs.push_back(&Prev); 741 DelInstrs.push_back(&Root); 742 } 743 744 void TargetInstrInfo::genAlternativeCodeSequence( 745 MachineInstr &Root, MachineCombinerPattern Pattern, 746 SmallVectorImpl<MachineInstr *> &InsInstrs, 747 SmallVectorImpl<MachineInstr *> &DelInstrs, 748 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 749 MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo(); 750 751 // Select the previous instruction in the sequence based on the input pattern. 752 MachineInstr *Prev = nullptr; 753 switch (Pattern) { 754 case MachineCombinerPattern::REASSOC_AX_BY: 755 case MachineCombinerPattern::REASSOC_XA_BY: 756 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 757 break; 758 case MachineCombinerPattern::REASSOC_AX_YB: 759 case MachineCombinerPattern::REASSOC_XA_YB: 760 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 761 break; 762 default: 763 break; 764 } 765 766 assert(Prev && "Unknown pattern for machine combiner"); 767 768 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 769 } 770 771 /// foldMemoryOperand - Same as the previous version except it allows folding 772 /// of any load and store from / to any address, not just from a specific 773 /// stack slot. 774 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 775 ArrayRef<unsigned> Ops, 776 MachineInstr *LoadMI) const { 777 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 778 #ifndef NDEBUG 779 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 780 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 781 #endif 782 MachineBasicBlock &MBB = *MI->getParent(); 783 MachineFunction &MF = *MBB.getParent(); 784 785 // Ask the target to do the actual folding. 786 MachineInstr *NewMI = nullptr; 787 int FrameIndex = 0; 788 789 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 790 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 791 isLoadFromStackSlot(LoadMI, FrameIndex)) { 792 // Fold stackmap/patchpoint. 793 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 794 if (NewMI) 795 NewMI = MBB.insert(MI, NewMI); 796 } else { 797 // Ask the target to do the actual folding. 798 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI); 799 } 800 801 if (!NewMI) return nullptr; 802 803 // Copy the memoperands from the load to the folded instruction. 804 if (MI->memoperands_empty()) { 805 NewMI->setMemRefs(LoadMI->memoperands_begin(), 806 LoadMI->memoperands_end()); 807 } 808 else { 809 // Handle the rare case of folding multiple loads. 810 NewMI->setMemRefs(MI->memoperands_begin(), 811 MI->memoperands_end()); 812 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 813 E = LoadMI->memoperands_end(); I != E; ++I) { 814 NewMI->addMemOperand(MF, *I); 815 } 816 } 817 return NewMI; 818 } 819 820 bool TargetInstrInfo:: 821 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 822 AliasAnalysis *AA) const { 823 const MachineFunction &MF = *MI->getParent()->getParent(); 824 const MachineRegisterInfo &MRI = MF.getRegInfo(); 825 826 // Remat clients assume operand 0 is the defined register. 827 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 828 return false; 829 unsigned DefReg = MI->getOperand(0).getReg(); 830 831 // A sub-register definition can only be rematerialized if the instruction 832 // doesn't read the other parts of the register. Otherwise it is really a 833 // read-modify-write operation on the full virtual register which cannot be 834 // moved safely. 835 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 836 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 837 return false; 838 839 // A load from a fixed stack slot can be rematerialized. This may be 840 // redundant with subsequent checks, but it's target-independent, 841 // simple, and a common case. 842 int FrameIdx = 0; 843 if (isLoadFromStackSlot(MI, FrameIdx) && 844 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 845 return true; 846 847 // Avoid instructions obviously unsafe for remat. 848 if (MI->isNotDuplicable() || MI->mayStore() || 849 MI->hasUnmodeledSideEffects()) 850 return false; 851 852 // Don't remat inline asm. We have no idea how expensive it is 853 // even if it's side effect free. 854 if (MI->isInlineAsm()) 855 return false; 856 857 // Avoid instructions which load from potentially varying memory. 858 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 859 return false; 860 861 // If any of the registers accessed are non-constant, conservatively assume 862 // the instruction is not rematerializable. 863 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 864 const MachineOperand &MO = MI->getOperand(i); 865 if (!MO.isReg()) continue; 866 unsigned Reg = MO.getReg(); 867 if (Reg == 0) 868 continue; 869 870 // Check for a well-behaved physical register. 871 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 872 if (MO.isUse()) { 873 // If the physreg has no defs anywhere, it's just an ambient register 874 // and we can freely move its uses. Alternatively, if it's allocatable, 875 // it could get allocated to something with a def during allocation. 876 if (!MRI.isConstantPhysReg(Reg, MF)) 877 return false; 878 } else { 879 // A physreg def. We can't remat it. 880 return false; 881 } 882 continue; 883 } 884 885 // Only allow one virtual-register def. There may be multiple defs of the 886 // same virtual register, though. 887 if (MO.isDef() && Reg != DefReg) 888 return false; 889 890 // Don't allow any virtual-register uses. Rematting an instruction with 891 // virtual register uses would length the live ranges of the uses, which 892 // is not necessarily a good idea, certainly not "trivial". 893 if (MO.isUse()) 894 return false; 895 } 896 897 // Everything checked out. 898 return true; 899 } 900 901 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const { 902 const MachineFunction *MF = MI->getParent()->getParent(); 903 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 904 bool StackGrowsDown = 905 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 906 907 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 908 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 909 910 if (MI->getOpcode() != FrameSetupOpcode && 911 MI->getOpcode() != FrameDestroyOpcode) 912 return 0; 913 914 int SPAdj = MI->getOperand(0).getImm(); 915 SPAdj = TFI->alignSPAdjust(SPAdj); 916 917 if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) || 918 (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode)) 919 SPAdj = -SPAdj; 920 921 return SPAdj; 922 } 923 924 /// isSchedulingBoundary - Test if the given instruction should be 925 /// considered a scheduling boundary. This primarily includes labels 926 /// and terminators. 927 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 928 const MachineBasicBlock *MBB, 929 const MachineFunction &MF) const { 930 // Terminators and labels can't be scheduled around. 931 if (MI->isTerminator() || MI->isPosition()) 932 return true; 933 934 // Don't attempt to schedule around any instruction that defines 935 // a stack-oriented pointer, as it's unlikely to be profitable. This 936 // saves compile time, because it doesn't require every single 937 // stack slot reference to depend on the instruction that does the 938 // modification. 939 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 940 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 941 return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 942 } 943 944 // Provide a global flag for disabling the PreRA hazard recognizer that targets 945 // may choose to honor. 946 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 947 return !DisableHazardRecognizer; 948 } 949 950 // Default implementation of CreateTargetRAHazardRecognizer. 951 ScheduleHazardRecognizer *TargetInstrInfo:: 952 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 953 const ScheduleDAG *DAG) const { 954 // Dummy hazard recognizer allows all instructions to issue. 955 return new ScheduleHazardRecognizer(); 956 } 957 958 // Default implementation of CreateTargetMIHazardRecognizer. 959 ScheduleHazardRecognizer *TargetInstrInfo:: 960 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 961 const ScheduleDAG *DAG) const { 962 return (ScheduleHazardRecognizer *) 963 new ScoreboardHazardRecognizer(II, DAG, "misched"); 964 } 965 966 // Default implementation of CreateTargetPostRAHazardRecognizer. 967 ScheduleHazardRecognizer *TargetInstrInfo:: 968 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 969 const ScheduleDAG *DAG) const { 970 return (ScheduleHazardRecognizer *) 971 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 972 } 973 974 //===----------------------------------------------------------------------===// 975 // SelectionDAG latency interface. 976 //===----------------------------------------------------------------------===// 977 978 int 979 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 980 SDNode *DefNode, unsigned DefIdx, 981 SDNode *UseNode, unsigned UseIdx) const { 982 if (!ItinData || ItinData->isEmpty()) 983 return -1; 984 985 if (!DefNode->isMachineOpcode()) 986 return -1; 987 988 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 989 if (!UseNode->isMachineOpcode()) 990 return ItinData->getOperandCycle(DefClass, DefIdx); 991 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 992 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 993 } 994 995 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 996 SDNode *N) const { 997 if (!ItinData || ItinData->isEmpty()) 998 return 1; 999 1000 if (!N->isMachineOpcode()) 1001 return 1; 1002 1003 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // MachineInstr latency interface. 1008 //===----------------------------------------------------------------------===// 1009 1010 unsigned 1011 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1012 const MachineInstr *MI) const { 1013 if (!ItinData || ItinData->isEmpty()) 1014 return 1; 1015 1016 unsigned Class = MI->getDesc().getSchedClass(); 1017 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1018 if (UOps >= 0) 1019 return UOps; 1020 1021 // The # of u-ops is dynamically determined. The specific target should 1022 // override this function to return the right number. 1023 return 1; 1024 } 1025 1026 /// Return the default expected latency for a def based on it's opcode. 1027 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1028 const MachineInstr *DefMI) const { 1029 if (DefMI->isTransient()) 1030 return 0; 1031 if (DefMI->mayLoad()) 1032 return SchedModel.LoadLatency; 1033 if (isHighLatencyDef(DefMI->getOpcode())) 1034 return SchedModel.HighLatency; 1035 return 1; 1036 } 1037 1038 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { 1039 return 0; 1040 } 1041 1042 unsigned TargetInstrInfo:: 1043 getInstrLatency(const InstrItineraryData *ItinData, 1044 const MachineInstr *MI, 1045 unsigned *PredCost) const { 1046 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1047 // still have a MinLatency property, which getStageLatency checks. 1048 if (!ItinData) 1049 return MI->mayLoad() ? 2 : 1; 1050 1051 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 1052 } 1053 1054 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1055 const MachineInstr *DefMI, 1056 unsigned DefIdx) const { 1057 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1058 if (!ItinData || ItinData->isEmpty()) 1059 return false; 1060 1061 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1062 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1063 return (DefCycle != -1 && DefCycle <= 1); 1064 } 1065 1066 /// Both DefMI and UseMI must be valid. By default, call directly to the 1067 /// itinerary. This may be overriden by the target. 1068 int TargetInstrInfo:: 1069 getOperandLatency(const InstrItineraryData *ItinData, 1070 const MachineInstr *DefMI, unsigned DefIdx, 1071 const MachineInstr *UseMI, unsigned UseIdx) const { 1072 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1073 unsigned UseClass = UseMI->getDesc().getSchedClass(); 1074 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1075 } 1076 1077 /// If we can determine the operand latency from the def only, without itinerary 1078 /// lookup, do so. Otherwise return -1. 1079 int TargetInstrInfo::computeDefOperandLatency( 1080 const InstrItineraryData *ItinData, 1081 const MachineInstr *DefMI) const { 1082 1083 // Let the target hook getInstrLatency handle missing itineraries. 1084 if (!ItinData) 1085 return getInstrLatency(ItinData, DefMI); 1086 1087 if(ItinData->isEmpty()) 1088 return defaultDefLatency(ItinData->SchedModel, DefMI); 1089 1090 // ...operand lookup required 1091 return -1; 1092 } 1093 1094 /// computeOperandLatency - Compute and return the latency of the given data 1095 /// dependent def and use when the operand indices are already known. UseMI may 1096 /// be NULL for an unknown use. 1097 /// 1098 /// FindMin may be set to get the minimum vs. expected latency. Minimum 1099 /// latency is used for scheduling groups, while expected latency is for 1100 /// instruction cost and critical path. 1101 /// 1102 /// Depending on the subtarget's itinerary properties, this may or may not need 1103 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 1104 /// UseIdx to compute min latency. 1105 unsigned TargetInstrInfo:: 1106 computeOperandLatency(const InstrItineraryData *ItinData, 1107 const MachineInstr *DefMI, unsigned DefIdx, 1108 const MachineInstr *UseMI, unsigned UseIdx) const { 1109 1110 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 1111 if (DefLatency >= 0) 1112 return DefLatency; 1113 1114 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 1115 1116 int OperLatency = 0; 1117 if (UseMI) 1118 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 1119 else { 1120 unsigned DefClass = DefMI->getDesc().getSchedClass(); 1121 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 1122 } 1123 if (OperLatency >= 0) 1124 return OperLatency; 1125 1126 // No operand latency was found. 1127 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 1128 1129 // Expected latency is the max of the stage latency and itinerary props. 1130 InstrLatency = std::max(InstrLatency, 1131 defaultDefLatency(ItinData->SchedModel, DefMI)); 1132 return InstrLatency; 1133 } 1134 1135 bool TargetInstrInfo::getRegSequenceInputs( 1136 const MachineInstr &MI, unsigned DefIdx, 1137 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1138 assert((MI.isRegSequence() || 1139 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1140 1141 if (!MI.isRegSequence()) 1142 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1143 1144 // We are looking at: 1145 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1146 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1147 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1148 OpIdx += 2) { 1149 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1150 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1151 assert(MOSubIdx.isImm() && 1152 "One of the subindex of the reg_sequence is not an immediate"); 1153 // Record Reg:SubReg, SubIdx. 1154 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1155 (unsigned)MOSubIdx.getImm())); 1156 } 1157 return true; 1158 } 1159 1160 bool TargetInstrInfo::getExtractSubregInputs( 1161 const MachineInstr &MI, unsigned DefIdx, 1162 RegSubRegPairAndIdx &InputReg) const { 1163 assert((MI.isExtractSubreg() || 1164 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1165 1166 if (!MI.isExtractSubreg()) 1167 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1168 1169 // We are looking at: 1170 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1171 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1172 const MachineOperand &MOReg = MI.getOperand(1); 1173 const MachineOperand &MOSubIdx = MI.getOperand(2); 1174 assert(MOSubIdx.isImm() && 1175 "The subindex of the extract_subreg is not an immediate"); 1176 1177 InputReg.Reg = MOReg.getReg(); 1178 InputReg.SubReg = MOReg.getSubReg(); 1179 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1180 return true; 1181 } 1182 1183 bool TargetInstrInfo::getInsertSubregInputs( 1184 const MachineInstr &MI, unsigned DefIdx, 1185 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1186 assert((MI.isInsertSubreg() || 1187 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1188 1189 if (!MI.isInsertSubreg()) 1190 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1191 1192 // We are looking at: 1193 // Def = INSERT_SEQUENCE v0, v1, sub0. 1194 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1195 const MachineOperand &MOBaseReg = MI.getOperand(1); 1196 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1197 const MachineOperand &MOSubIdx = MI.getOperand(3); 1198 assert(MOSubIdx.isImm() && 1199 "One of the subindex of the reg_sequence is not an immediate"); 1200 BaseReg.Reg = MOBaseReg.getReg(); 1201 BaseReg.SubReg = MOBaseReg.getSubReg(); 1202 1203 InsertedReg.Reg = MOInsertedReg.getReg(); 1204 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1205 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1206 return true; 1207 } 1208