1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned Length = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0)
86       atInsnStart = true;
87     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
88       Length += MAI.getMaxInstLength();
89       atInsnStart = false;
90     }
91     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
92                                strlen(MAI.getCommentString())) == 0)
93       atInsnStart = false;
94   }
95 
96   return Length;
97 }
98 
99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
100 /// after it, replacing it with an unconditional branch to NewDest.
101 void
102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
103                                          MachineBasicBlock *NewDest) const {
104   MachineBasicBlock *MBB = Tail->getParent();
105 
106   // Remove all the old successors of MBB from the CFG.
107   while (!MBB->succ_empty())
108     MBB->removeSuccessor(MBB->succ_begin());
109 
110   // Remove all the dead instructions from the end of MBB.
111   MBB->erase(Tail, MBB->end());
112 
113   // If MBB isn't immediately before MBB, insert a branch to it.
114   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
115     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(),
116                  Tail->getDebugLoc());
117   MBB->addSuccessor(NewDest);
118 }
119 
120 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI,
121                                                       bool NewMI,
122                                                       unsigned Idx1,
123                                                       unsigned Idx2) const {
124   const MCInstrDesc &MCID = MI->getDesc();
125   bool HasDef = MCID.getNumDefs();
126   if (HasDef && !MI->getOperand(0).isReg())
127     // No idea how to commute this instruction. Target should implement its own.
128     return nullptr;
129 
130   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
131   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
132   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
133          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
134          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
135   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
136          "This only knows how to commute register operands so far");
137 
138   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
139   unsigned Reg1 = MI->getOperand(Idx1).getReg();
140   unsigned Reg2 = MI->getOperand(Idx2).getReg();
141   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
142   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
143   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
144   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
145   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
146   bool Reg1IsUndef = MI->getOperand(Idx1).isUndef();
147   bool Reg2IsUndef = MI->getOperand(Idx2).isUndef();
148   bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead();
149   bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead();
150   // If destination is tied to either of the commuted source register, then
151   // it must be updated.
152   if (HasDef && Reg0 == Reg1 &&
153       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
154     Reg2IsKill = false;
155     Reg0 = Reg2;
156     SubReg0 = SubReg2;
157   } else if (HasDef && Reg0 == Reg2 &&
158              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
159     Reg1IsKill = false;
160     Reg0 = Reg1;
161     SubReg0 = SubReg1;
162   }
163 
164   if (NewMI) {
165     // Create a new instruction.
166     MachineFunction &MF = *MI->getParent()->getParent();
167     MI = MF.CloneMachineInstr(MI);
168   }
169 
170   if (HasDef) {
171     MI->getOperand(0).setReg(Reg0);
172     MI->getOperand(0).setSubReg(SubReg0);
173   }
174   MI->getOperand(Idx2).setReg(Reg1);
175   MI->getOperand(Idx1).setReg(Reg2);
176   MI->getOperand(Idx2).setSubReg(SubReg1);
177   MI->getOperand(Idx1).setSubReg(SubReg2);
178   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
179   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
180   MI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
181   MI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
182   MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
183   MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
184   return MI;
185 }
186 
187 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
188                                                   bool NewMI,
189                                                   unsigned OpIdx1,
190                                                   unsigned OpIdx2) const {
191   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
192   // any commutable operand, which is done in findCommutedOpIndices() method
193   // called below.
194   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
195       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
196     assert(MI->isCommutable() &&
197            "Precondition violation: MI must be commutable.");
198     return nullptr;
199   }
200   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
201 }
202 
203 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
204                                            unsigned &ResultIdx2,
205                                            unsigned CommutableOpIdx1,
206                                            unsigned CommutableOpIdx2) {
207   if (ResultIdx1 == CommuteAnyOperandIndex &&
208       ResultIdx2 == CommuteAnyOperandIndex) {
209     ResultIdx1 = CommutableOpIdx1;
210     ResultIdx2 = CommutableOpIdx2;
211   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
212     if (ResultIdx2 == CommutableOpIdx1)
213       ResultIdx1 = CommutableOpIdx2;
214     else if (ResultIdx2 == CommutableOpIdx2)
215       ResultIdx1 = CommutableOpIdx1;
216     else
217       return false;
218   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
219     if (ResultIdx1 == CommutableOpIdx1)
220       ResultIdx2 = CommutableOpIdx2;
221     else if (ResultIdx1 == CommutableOpIdx2)
222       ResultIdx2 = CommutableOpIdx1;
223     else
224       return false;
225   } else
226     // Check that the result operand indices match the given commutable
227     // operand indices.
228     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
229            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
230 
231   return true;
232 }
233 
234 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
235                                             unsigned &SrcOpIdx1,
236                                             unsigned &SrcOpIdx2) const {
237   assert(!MI->isBundle() &&
238          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
239 
240   const MCInstrDesc &MCID = MI->getDesc();
241   if (!MCID.isCommutable())
242     return false;
243 
244   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
245   // is not true, then the target must implement this.
246   unsigned CommutableOpIdx1 = MCID.getNumDefs();
247   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
248   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
249                             CommutableOpIdx1, CommutableOpIdx2))
250     return false;
251 
252   if (!MI->getOperand(SrcOpIdx1).isReg() ||
253       !MI->getOperand(SrcOpIdx2).isReg())
254     // No idea.
255     return false;
256   return true;
257 }
258 
259 bool
260 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
261   if (!MI->isTerminator()) return false;
262 
263   // Conditional branch is a special case.
264   if (MI->isBranch() && !MI->isBarrier())
265     return true;
266   if (!MI->isPredicable())
267     return true;
268   return !isPredicated(MI);
269 }
270 
271 bool TargetInstrInfo::PredicateInstruction(
272     MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
273   bool MadeChange = false;
274 
275   assert(!MI->isBundle() &&
276          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
277 
278   const MCInstrDesc &MCID = MI->getDesc();
279   if (!MI->isPredicable())
280     return false;
281 
282   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
283     if (MCID.OpInfo[i].isPredicate()) {
284       MachineOperand &MO = MI->getOperand(i);
285       if (MO.isReg()) {
286         MO.setReg(Pred[j].getReg());
287         MadeChange = true;
288       } else if (MO.isImm()) {
289         MO.setImm(Pred[j].getImm());
290         MadeChange = true;
291       } else if (MO.isMBB()) {
292         MO.setMBB(Pred[j].getMBB());
293         MadeChange = true;
294       }
295       ++j;
296     }
297   }
298   return MadeChange;
299 }
300 
301 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
302                                            const MachineMemOperand *&MMO,
303                                            int &FrameIndex) const {
304   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
305          oe = MI->memoperands_end();
306        o != oe;
307        ++o) {
308     if ((*o)->isLoad()) {
309       if (const FixedStackPseudoSourceValue *Value =
310           dyn_cast_or_null<FixedStackPseudoSourceValue>(
311               (*o)->getPseudoValue())) {
312         FrameIndex = Value->getFrameIndex();
313         MMO = *o;
314         return true;
315       }
316     }
317   }
318   return false;
319 }
320 
321 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
322                                           const MachineMemOperand *&MMO,
323                                           int &FrameIndex) const {
324   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
325          oe = MI->memoperands_end();
326        o != oe;
327        ++o) {
328     if ((*o)->isStore()) {
329       if (const FixedStackPseudoSourceValue *Value =
330           dyn_cast_or_null<FixedStackPseudoSourceValue>(
331               (*o)->getPseudoValue())) {
332         FrameIndex = Value->getFrameIndex();
333         MMO = *o;
334         return true;
335       }
336     }
337   }
338   return false;
339 }
340 
341 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
342                                         unsigned SubIdx, unsigned &Size,
343                                         unsigned &Offset,
344                                         const MachineFunction &MF) const {
345   if (!SubIdx) {
346     Size = RC->getSize();
347     Offset = 0;
348     return true;
349   }
350   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
351   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
352   // Convert bit size to byte size to be consistent with
353   // MCRegisterClass::getSize().
354   if (BitSize % 8)
355     return false;
356 
357   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
358   if (BitOffset < 0 || BitOffset % 8)
359     return false;
360 
361   Size = BitSize /= 8;
362   Offset = (unsigned)BitOffset / 8;
363 
364   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
365 
366   if (!MF.getDataLayout().isLittleEndian()) {
367     Offset = RC->getSize() - (Offset + Size);
368   }
369   return true;
370 }
371 
372 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
373                                     MachineBasicBlock::iterator I,
374                                     unsigned DestReg,
375                                     unsigned SubIdx,
376                                     const MachineInstr *Orig,
377                                     const TargetRegisterInfo &TRI) const {
378   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
379   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
380   MBB.insert(I, MI);
381 }
382 
383 bool
384 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
385                                   const MachineInstr *MI1,
386                                   const MachineRegisterInfo *MRI) const {
387   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
388 }
389 
390 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
391                                          MachineFunction &MF) const {
392   assert(!Orig->isNotDuplicable() &&
393          "Instruction cannot be duplicated");
394   return MF.CloneMachineInstr(Orig);
395 }
396 
397 // If the COPY instruction in MI can be folded to a stack operation, return
398 // the register class to use.
399 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
400                                               unsigned FoldIdx) {
401   assert(MI->isCopy() && "MI must be a COPY instruction");
402   if (MI->getNumOperands() != 2)
403     return nullptr;
404   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
405 
406   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
407   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
408 
409   if (FoldOp.getSubReg() || LiveOp.getSubReg())
410     return nullptr;
411 
412   unsigned FoldReg = FoldOp.getReg();
413   unsigned LiveReg = LiveOp.getReg();
414 
415   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
416          "Cannot fold physregs");
417 
418   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
419   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
420 
421   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
422     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
423 
424   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
425     return RC;
426 
427   // FIXME: Allow folding when register classes are memory compatible.
428   return nullptr;
429 }
430 
431 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
432   llvm_unreachable("Not a MachO target");
433 }
434 
435 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI,
436                                     ArrayRef<unsigned> Ops, int FrameIndex,
437                                     const TargetInstrInfo &TII) {
438   unsigned StartIdx = 0;
439   switch (MI->getOpcode()) {
440   case TargetOpcode::STACKMAP:
441     StartIdx = 2; // Skip ID, nShadowBytes.
442     break;
443   case TargetOpcode::PATCHPOINT: {
444     // For PatchPoint, the call args are not foldable.
445     PatchPointOpers opers(MI);
446     StartIdx = opers.getVarIdx();
447     break;
448   }
449   default:
450     llvm_unreachable("unexpected stackmap opcode");
451   }
452 
453   // Return false if any operands requested for folding are not foldable (not
454   // part of the stackmap's live values).
455   for (unsigned Op : Ops) {
456     if (Op < StartIdx)
457       return nullptr;
458   }
459 
460   MachineInstr *NewMI =
461     MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
462   MachineInstrBuilder MIB(MF, NewMI);
463 
464   // No need to fold return, the meta data, and function arguments
465   for (unsigned i = 0; i < StartIdx; ++i)
466     MIB.addOperand(MI->getOperand(i));
467 
468   for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
469     MachineOperand &MO = MI->getOperand(i);
470     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
471       unsigned SpillSize;
472       unsigned SpillOffset;
473       // Compute the spill slot size and offset.
474       const TargetRegisterClass *RC =
475         MF.getRegInfo().getRegClass(MO.getReg());
476       bool Valid =
477           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
478       if (!Valid)
479         report_fatal_error("cannot spill patchpoint subregister operand");
480       MIB.addImm(StackMaps::IndirectMemRefOp);
481       MIB.addImm(SpillSize);
482       MIB.addFrameIndex(FrameIndex);
483       MIB.addImm(SpillOffset);
484     }
485     else
486       MIB.addOperand(MO);
487   }
488   return NewMI;
489 }
490 
491 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
492 /// slot into the specified machine instruction for the specified operand(s).
493 /// If this is possible, a new instruction is returned with the specified
494 /// operand folded, otherwise NULL is returned. The client is responsible for
495 /// removing the old instruction and adding the new one in the instruction
496 /// stream.
497 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
498                                                  ArrayRef<unsigned> Ops,
499                                                  int FI) const {
500   unsigned Flags = 0;
501   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
502     if (MI->getOperand(Ops[i]).isDef())
503       Flags |= MachineMemOperand::MOStore;
504     else
505       Flags |= MachineMemOperand::MOLoad;
506 
507   MachineBasicBlock *MBB = MI->getParent();
508   assert(MBB && "foldMemoryOperand needs an inserted instruction");
509   MachineFunction &MF = *MBB->getParent();
510 
511   MachineInstr *NewMI = nullptr;
512 
513   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
514       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
515     // Fold stackmap/patchpoint.
516     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
517     if (NewMI)
518       MBB->insert(MI, NewMI);
519   } else {
520     // Ask the target to do the actual folding.
521     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI);
522   }
523 
524   if (NewMI) {
525     NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
526     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
527     assert((!(Flags & MachineMemOperand::MOStore) ||
528             NewMI->mayStore()) &&
529            "Folded a def to a non-store!");
530     assert((!(Flags & MachineMemOperand::MOLoad) ||
531             NewMI->mayLoad()) &&
532            "Folded a use to a non-load!");
533     const MachineFrameInfo &MFI = *MF.getFrameInfo();
534     assert(MFI.getObjectOffset(FI) != -1);
535     MachineMemOperand *MMO = MF.getMachineMemOperand(
536         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
537         MFI.getObjectAlignment(FI));
538     NewMI->addMemOperand(MF, MMO);
539 
540     return NewMI;
541   }
542 
543   // Straight COPY may fold as load/store.
544   if (!MI->isCopy() || Ops.size() != 1)
545     return nullptr;
546 
547   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
548   if (!RC)
549     return nullptr;
550 
551   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
552   MachineBasicBlock::iterator Pos = MI;
553   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
554 
555   if (Flags == MachineMemOperand::MOStore)
556     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
557   else
558     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
559   return --Pos;
560 }
561 
562 bool TargetInstrInfo::hasReassociableOperands(
563     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
564   const MachineOperand &Op1 = Inst.getOperand(1);
565   const MachineOperand &Op2 = Inst.getOperand(2);
566   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
567 
568   // We need virtual register definitions for the operands that we will
569   // reassociate.
570   MachineInstr *MI1 = nullptr;
571   MachineInstr *MI2 = nullptr;
572   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
573     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
574   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
575     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
576 
577   // And they need to be in the trace (otherwise, they won't have a depth).
578   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
579 }
580 
581 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
582                                              bool &Commuted) const {
583   const MachineBasicBlock *MBB = Inst.getParent();
584   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
585   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
586   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
587   unsigned AssocOpcode = Inst.getOpcode();
588 
589   // If only one operand has the same opcode and it's the second source operand,
590   // the operands must be commuted.
591   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
592   if (Commuted)
593     std::swap(MI1, MI2);
594 
595   // 1. The previous instruction must be the same type as Inst.
596   // 2. The previous instruction must have virtual register definitions for its
597   //    operands in the same basic block as Inst.
598   // 3. The previous instruction's result must only be used by Inst.
599   return MI1->getOpcode() == AssocOpcode &&
600          hasReassociableOperands(*MI1, MBB) &&
601          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
602 }
603 
604 // 1. The operation must be associative and commutative.
605 // 2. The instruction must have virtual register definitions for its
606 //    operands in the same basic block.
607 // 3. The instruction must have a reassociable sibling.
608 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
609                                                bool &Commuted) const {
610   return isAssociativeAndCommutative(Inst) &&
611          hasReassociableOperands(Inst, Inst.getParent()) &&
612          hasReassociableSibling(Inst, Commuted);
613 }
614 
615 // The concept of the reassociation pass is that these operations can benefit
616 // from this kind of transformation:
617 //
618 // A = ? op ?
619 // B = A op X (Prev)
620 // C = B op Y (Root)
621 // -->
622 // A = ? op ?
623 // B = X op Y
624 // C = A op B
625 //
626 // breaking the dependency between A and B, allowing them to be executed in
627 // parallel (or back-to-back in a pipeline) instead of depending on each other.
628 
629 // FIXME: This has the potential to be expensive (compile time) while not
630 // improving the code at all. Some ways to limit the overhead:
631 // 1. Track successful transforms; bail out if hit rate gets too low.
632 // 2. Only enable at -O3 or some other non-default optimization level.
633 // 3. Pre-screen pattern candidates here: if an operand of the previous
634 //    instruction is known to not increase the critical path, then don't match
635 //    that pattern.
636 bool TargetInstrInfo::getMachineCombinerPatterns(
637     MachineInstr &Root,
638     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
639   bool Commute;
640   if (isReassociationCandidate(Root, Commute)) {
641     // We found a sequence of instructions that may be suitable for a
642     // reassociation of operands to increase ILP. Specify each commutation
643     // possibility for the Prev instruction in the sequence and let the
644     // machine combiner decide if changing the operands is worthwhile.
645     if (Commute) {
646       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
647       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
648     } else {
649       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
650       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
651     }
652     return true;
653   }
654 
655   return false;
656 }
657 
658 /// Attempt the reassociation transformation to reduce critical path length.
659 /// See the above comments before getMachineCombinerPatterns().
660 void TargetInstrInfo::reassociateOps(
661     MachineInstr &Root, MachineInstr &Prev,
662     MachineCombinerPattern Pattern,
663     SmallVectorImpl<MachineInstr *> &InsInstrs,
664     SmallVectorImpl<MachineInstr *> &DelInstrs,
665     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
666   MachineFunction *MF = Root.getParent()->getParent();
667   MachineRegisterInfo &MRI = MF->getRegInfo();
668   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
669   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
670   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
671 
672   // This array encodes the operand index for each parameter because the
673   // operands may be commuted. Each row corresponds to a pattern value,
674   // and each column specifies the index of A, B, X, Y.
675   unsigned OpIdx[4][4] = {
676     { 1, 1, 2, 2 },
677     { 1, 2, 2, 1 },
678     { 2, 1, 1, 2 },
679     { 2, 2, 1, 1 }
680   };
681 
682   int Row;
683   switch (Pattern) {
684   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
685   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
686   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
687   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
688   default: llvm_unreachable("unexpected MachineCombinerPattern");
689   }
690 
691   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
692   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
693   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
694   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
695   MachineOperand &OpC = Root.getOperand(0);
696 
697   unsigned RegA = OpA.getReg();
698   unsigned RegB = OpB.getReg();
699   unsigned RegX = OpX.getReg();
700   unsigned RegY = OpY.getReg();
701   unsigned RegC = OpC.getReg();
702 
703   if (TargetRegisterInfo::isVirtualRegister(RegA))
704     MRI.constrainRegClass(RegA, RC);
705   if (TargetRegisterInfo::isVirtualRegister(RegB))
706     MRI.constrainRegClass(RegB, RC);
707   if (TargetRegisterInfo::isVirtualRegister(RegX))
708     MRI.constrainRegClass(RegX, RC);
709   if (TargetRegisterInfo::isVirtualRegister(RegY))
710     MRI.constrainRegClass(RegY, RC);
711   if (TargetRegisterInfo::isVirtualRegister(RegC))
712     MRI.constrainRegClass(RegC, RC);
713 
714   // Create a new virtual register for the result of (X op Y) instead of
715   // recycling RegB because the MachineCombiner's computation of the critical
716   // path requires a new register definition rather than an existing one.
717   unsigned NewVR = MRI.createVirtualRegister(RC);
718   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
719 
720   unsigned Opcode = Root.getOpcode();
721   bool KillA = OpA.isKill();
722   bool KillX = OpX.isKill();
723   bool KillY = OpY.isKill();
724 
725   // Create new instructions for insertion.
726   MachineInstrBuilder MIB1 =
727       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
728           .addReg(RegX, getKillRegState(KillX))
729           .addReg(RegY, getKillRegState(KillY));
730   MachineInstrBuilder MIB2 =
731       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
732           .addReg(RegA, getKillRegState(KillA))
733           .addReg(NewVR, getKillRegState(true));
734 
735   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
736 
737   // Record new instructions for insertion and old instructions for deletion.
738   InsInstrs.push_back(MIB1);
739   InsInstrs.push_back(MIB2);
740   DelInstrs.push_back(&Prev);
741   DelInstrs.push_back(&Root);
742 }
743 
744 void TargetInstrInfo::genAlternativeCodeSequence(
745     MachineInstr &Root, MachineCombinerPattern Pattern,
746     SmallVectorImpl<MachineInstr *> &InsInstrs,
747     SmallVectorImpl<MachineInstr *> &DelInstrs,
748     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
749   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
750 
751   // Select the previous instruction in the sequence based on the input pattern.
752   MachineInstr *Prev = nullptr;
753   switch (Pattern) {
754   case MachineCombinerPattern::REASSOC_AX_BY:
755   case MachineCombinerPattern::REASSOC_XA_BY:
756     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
757     break;
758   case MachineCombinerPattern::REASSOC_AX_YB:
759   case MachineCombinerPattern::REASSOC_XA_YB:
760     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
761     break;
762   default:
763     break;
764   }
765 
766   assert(Prev && "Unknown pattern for machine combiner");
767 
768   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
769 }
770 
771 /// foldMemoryOperand - Same as the previous version except it allows folding
772 /// of any load and store from / to any address, not just from a specific
773 /// stack slot.
774 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
775                                                  ArrayRef<unsigned> Ops,
776                                                  MachineInstr *LoadMI) const {
777   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
778 #ifndef NDEBUG
779   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
780     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
781 #endif
782   MachineBasicBlock &MBB = *MI->getParent();
783   MachineFunction &MF = *MBB.getParent();
784 
785   // Ask the target to do the actual folding.
786   MachineInstr *NewMI = nullptr;
787   int FrameIndex = 0;
788 
789   if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
790        MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
791       isLoadFromStackSlot(LoadMI, FrameIndex)) {
792     // Fold stackmap/patchpoint.
793     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
794     if (NewMI)
795       NewMI = MBB.insert(MI, NewMI);
796   } else {
797     // Ask the target to do the actual folding.
798     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI);
799   }
800 
801   if (!NewMI) return nullptr;
802 
803   // Copy the memoperands from the load to the folded instruction.
804   if (MI->memoperands_empty()) {
805     NewMI->setMemRefs(LoadMI->memoperands_begin(),
806                       LoadMI->memoperands_end());
807   }
808   else {
809     // Handle the rare case of folding multiple loads.
810     NewMI->setMemRefs(MI->memoperands_begin(),
811                       MI->memoperands_end());
812     for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
813            E = LoadMI->memoperands_end(); I != E; ++I) {
814       NewMI->addMemOperand(MF, *I);
815     }
816   }
817   return NewMI;
818 }
819 
820 bool TargetInstrInfo::
821 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
822                                          AliasAnalysis *AA) const {
823   const MachineFunction &MF = *MI->getParent()->getParent();
824   const MachineRegisterInfo &MRI = MF.getRegInfo();
825 
826   // Remat clients assume operand 0 is the defined register.
827   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
828     return false;
829   unsigned DefReg = MI->getOperand(0).getReg();
830 
831   // A sub-register definition can only be rematerialized if the instruction
832   // doesn't read the other parts of the register.  Otherwise it is really a
833   // read-modify-write operation on the full virtual register which cannot be
834   // moved safely.
835   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
836       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
837     return false;
838 
839   // A load from a fixed stack slot can be rematerialized. This may be
840   // redundant with subsequent checks, but it's target-independent,
841   // simple, and a common case.
842   int FrameIdx = 0;
843   if (isLoadFromStackSlot(MI, FrameIdx) &&
844       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
845     return true;
846 
847   // Avoid instructions obviously unsafe for remat.
848   if (MI->isNotDuplicable() || MI->mayStore() ||
849       MI->hasUnmodeledSideEffects())
850     return false;
851 
852   // Don't remat inline asm. We have no idea how expensive it is
853   // even if it's side effect free.
854   if (MI->isInlineAsm())
855     return false;
856 
857   // Avoid instructions which load from potentially varying memory.
858   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
859     return false;
860 
861   // If any of the registers accessed are non-constant, conservatively assume
862   // the instruction is not rematerializable.
863   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
864     const MachineOperand &MO = MI->getOperand(i);
865     if (!MO.isReg()) continue;
866     unsigned Reg = MO.getReg();
867     if (Reg == 0)
868       continue;
869 
870     // Check for a well-behaved physical register.
871     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
872       if (MO.isUse()) {
873         // If the physreg has no defs anywhere, it's just an ambient register
874         // and we can freely move its uses. Alternatively, if it's allocatable,
875         // it could get allocated to something with a def during allocation.
876         if (!MRI.isConstantPhysReg(Reg, MF))
877           return false;
878       } else {
879         // A physreg def. We can't remat it.
880         return false;
881       }
882       continue;
883     }
884 
885     // Only allow one virtual-register def.  There may be multiple defs of the
886     // same virtual register, though.
887     if (MO.isDef() && Reg != DefReg)
888       return false;
889 
890     // Don't allow any virtual-register uses. Rematting an instruction with
891     // virtual register uses would length the live ranges of the uses, which
892     // is not necessarily a good idea, certainly not "trivial".
893     if (MO.isUse())
894       return false;
895   }
896 
897   // Everything checked out.
898   return true;
899 }
900 
901 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
902   const MachineFunction *MF = MI->getParent()->getParent();
903   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
904   bool StackGrowsDown =
905     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
906 
907   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
908   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
909 
910   if (MI->getOpcode() != FrameSetupOpcode &&
911       MI->getOpcode() != FrameDestroyOpcode)
912     return 0;
913 
914   int SPAdj = MI->getOperand(0).getImm();
915   SPAdj = TFI->alignSPAdjust(SPAdj);
916 
917   if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
918        (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
919     SPAdj = -SPAdj;
920 
921   return SPAdj;
922 }
923 
924 /// isSchedulingBoundary - Test if the given instruction should be
925 /// considered a scheduling boundary. This primarily includes labels
926 /// and terminators.
927 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
928                                            const MachineBasicBlock *MBB,
929                                            const MachineFunction &MF) const {
930   // Terminators and labels can't be scheduled around.
931   if (MI->isTerminator() || MI->isPosition())
932     return true;
933 
934   // Don't attempt to schedule around any instruction that defines
935   // a stack-oriented pointer, as it's unlikely to be profitable. This
936   // saves compile time, because it doesn't require every single
937   // stack slot reference to depend on the instruction that does the
938   // modification.
939   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
940   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
941   return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
942 }
943 
944 // Provide a global flag for disabling the PreRA hazard recognizer that targets
945 // may choose to honor.
946 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
947   return !DisableHazardRecognizer;
948 }
949 
950 // Default implementation of CreateTargetRAHazardRecognizer.
951 ScheduleHazardRecognizer *TargetInstrInfo::
952 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
953                              const ScheduleDAG *DAG) const {
954   // Dummy hazard recognizer allows all instructions to issue.
955   return new ScheduleHazardRecognizer();
956 }
957 
958 // Default implementation of CreateTargetMIHazardRecognizer.
959 ScheduleHazardRecognizer *TargetInstrInfo::
960 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
961                                const ScheduleDAG *DAG) const {
962   return (ScheduleHazardRecognizer *)
963     new ScoreboardHazardRecognizer(II, DAG, "misched");
964 }
965 
966 // Default implementation of CreateTargetPostRAHazardRecognizer.
967 ScheduleHazardRecognizer *TargetInstrInfo::
968 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
969                                    const ScheduleDAG *DAG) const {
970   return (ScheduleHazardRecognizer *)
971     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
972 }
973 
974 //===----------------------------------------------------------------------===//
975 //  SelectionDAG latency interface.
976 //===----------------------------------------------------------------------===//
977 
978 int
979 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
980                                    SDNode *DefNode, unsigned DefIdx,
981                                    SDNode *UseNode, unsigned UseIdx) const {
982   if (!ItinData || ItinData->isEmpty())
983     return -1;
984 
985   if (!DefNode->isMachineOpcode())
986     return -1;
987 
988   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
989   if (!UseNode->isMachineOpcode())
990     return ItinData->getOperandCycle(DefClass, DefIdx);
991   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
992   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
993 }
994 
995 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
996                                      SDNode *N) const {
997   if (!ItinData || ItinData->isEmpty())
998     return 1;
999 
1000   if (!N->isMachineOpcode())
1001     return 1;
1002 
1003   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 //  MachineInstr latency interface.
1008 //===----------------------------------------------------------------------===//
1009 
1010 unsigned
1011 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1012                                 const MachineInstr *MI) const {
1013   if (!ItinData || ItinData->isEmpty())
1014     return 1;
1015 
1016   unsigned Class = MI->getDesc().getSchedClass();
1017   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1018   if (UOps >= 0)
1019     return UOps;
1020 
1021   // The # of u-ops is dynamically determined. The specific target should
1022   // override this function to return the right number.
1023   return 1;
1024 }
1025 
1026 /// Return the default expected latency for a def based on it's opcode.
1027 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1028                                             const MachineInstr *DefMI) const {
1029   if (DefMI->isTransient())
1030     return 0;
1031   if (DefMI->mayLoad())
1032     return SchedModel.LoadLatency;
1033   if (isHighLatencyDef(DefMI->getOpcode()))
1034     return SchedModel.HighLatency;
1035   return 1;
1036 }
1037 
1038 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
1039   return 0;
1040 }
1041 
1042 unsigned TargetInstrInfo::
1043 getInstrLatency(const InstrItineraryData *ItinData,
1044                 const MachineInstr *MI,
1045                 unsigned *PredCost) const {
1046   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1047   // still have a MinLatency property, which getStageLatency checks.
1048   if (!ItinData)
1049     return MI->mayLoad() ? 2 : 1;
1050 
1051   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
1052 }
1053 
1054 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1055                                        const MachineInstr *DefMI,
1056                                        unsigned DefIdx) const {
1057   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1058   if (!ItinData || ItinData->isEmpty())
1059     return false;
1060 
1061   unsigned DefClass = DefMI->getDesc().getSchedClass();
1062   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1063   return (DefCycle != -1 && DefCycle <= 1);
1064 }
1065 
1066 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1067 /// itinerary. This may be overriden by the target.
1068 int TargetInstrInfo::
1069 getOperandLatency(const InstrItineraryData *ItinData,
1070                   const MachineInstr *DefMI, unsigned DefIdx,
1071                   const MachineInstr *UseMI, unsigned UseIdx) const {
1072   unsigned DefClass = DefMI->getDesc().getSchedClass();
1073   unsigned UseClass = UseMI->getDesc().getSchedClass();
1074   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1075 }
1076 
1077 /// If we can determine the operand latency from the def only, without itinerary
1078 /// lookup, do so. Otherwise return -1.
1079 int TargetInstrInfo::computeDefOperandLatency(
1080   const InstrItineraryData *ItinData,
1081   const MachineInstr *DefMI) const {
1082 
1083   // Let the target hook getInstrLatency handle missing itineraries.
1084   if (!ItinData)
1085     return getInstrLatency(ItinData, DefMI);
1086 
1087   if(ItinData->isEmpty())
1088     return defaultDefLatency(ItinData->SchedModel, DefMI);
1089 
1090   // ...operand lookup required
1091   return -1;
1092 }
1093 
1094 /// computeOperandLatency - Compute and return the latency of the given data
1095 /// dependent def and use when the operand indices are already known. UseMI may
1096 /// be NULL for an unknown use.
1097 ///
1098 /// FindMin may be set to get the minimum vs. expected latency. Minimum
1099 /// latency is used for scheduling groups, while expected latency is for
1100 /// instruction cost and critical path.
1101 ///
1102 /// Depending on the subtarget's itinerary properties, this may or may not need
1103 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
1104 /// UseIdx to compute min latency.
1105 unsigned TargetInstrInfo::
1106 computeOperandLatency(const InstrItineraryData *ItinData,
1107                       const MachineInstr *DefMI, unsigned DefIdx,
1108                       const MachineInstr *UseMI, unsigned UseIdx) const {
1109 
1110   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1111   if (DefLatency >= 0)
1112     return DefLatency;
1113 
1114   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1115 
1116   int OperLatency = 0;
1117   if (UseMI)
1118     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
1119   else {
1120     unsigned DefClass = DefMI->getDesc().getSchedClass();
1121     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1122   }
1123   if (OperLatency >= 0)
1124     return OperLatency;
1125 
1126   // No operand latency was found.
1127   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1128 
1129   // Expected latency is the max of the stage latency and itinerary props.
1130   InstrLatency = std::max(InstrLatency,
1131                           defaultDefLatency(ItinData->SchedModel, DefMI));
1132   return InstrLatency;
1133 }
1134 
1135 bool TargetInstrInfo::getRegSequenceInputs(
1136     const MachineInstr &MI, unsigned DefIdx,
1137     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1138   assert((MI.isRegSequence() ||
1139           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1140 
1141   if (!MI.isRegSequence())
1142     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1143 
1144   // We are looking at:
1145   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1146   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1147   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1148        OpIdx += 2) {
1149     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1150     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1151     assert(MOSubIdx.isImm() &&
1152            "One of the subindex of the reg_sequence is not an immediate");
1153     // Record Reg:SubReg, SubIdx.
1154     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1155                                             (unsigned)MOSubIdx.getImm()));
1156   }
1157   return true;
1158 }
1159 
1160 bool TargetInstrInfo::getExtractSubregInputs(
1161     const MachineInstr &MI, unsigned DefIdx,
1162     RegSubRegPairAndIdx &InputReg) const {
1163   assert((MI.isExtractSubreg() ||
1164       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1165 
1166   if (!MI.isExtractSubreg())
1167     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1168 
1169   // We are looking at:
1170   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1171   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1172   const MachineOperand &MOReg = MI.getOperand(1);
1173   const MachineOperand &MOSubIdx = MI.getOperand(2);
1174   assert(MOSubIdx.isImm() &&
1175          "The subindex of the extract_subreg is not an immediate");
1176 
1177   InputReg.Reg = MOReg.getReg();
1178   InputReg.SubReg = MOReg.getSubReg();
1179   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1180   return true;
1181 }
1182 
1183 bool TargetInstrInfo::getInsertSubregInputs(
1184     const MachineInstr &MI, unsigned DefIdx,
1185     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1186   assert((MI.isInsertSubreg() ||
1187       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1188 
1189   if (!MI.isInsertSubreg())
1190     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1191 
1192   // We are looking at:
1193   // Def = INSERT_SEQUENCE v0, v1, sub0.
1194   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1195   const MachineOperand &MOBaseReg = MI.getOperand(1);
1196   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1197   const MachineOperand &MOSubIdx = MI.getOperand(3);
1198   assert(MOSubIdx.isImm() &&
1199          "One of the subindex of the reg_sequence is not an immediate");
1200   BaseReg.Reg = MOBaseReg.getReg();
1201   BaseReg.SubReg = MOBaseReg.getSubReg();
1202 
1203   InsertedReg.Reg = MOInsertedReg.getReg();
1204   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1205   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1206   return true;
1207 }
1208