1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/MachineScheduler.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSchedule.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 
37 using namespace llvm;
38 
39 static cl::opt<bool> DisableHazardRecognizer(
40   "disable-sched-hazard", cl::Hidden, cl::init(false),
41   cl::desc("Disable hazard detection during preRA scheduling"));
42 
43 TargetInstrInfo::~TargetInstrInfo() {
44 }
45 
46 const TargetRegisterClass*
47 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
48                              const TargetRegisterInfo *TRI,
49                              const MachineFunction &MF) const {
50   if (OpNum >= MCID.getNumOperands())
51     return nullptr;
52 
53   short RegClass = MCID.OpInfo[OpNum].RegClass;
54   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
55     return TRI->getPointerRegClass(MF, RegClass);
56 
57   // Instructions like INSERT_SUBREG do not have fixed register classes.
58   if (RegClass < 0)
59     return nullptr;
60 
61   // Otherwise just look it up normally.
62   return TRI->getRegClass(RegClass);
63 }
64 
65 /// insertNoop - Insert a noop into the instruction stream at the specified
66 /// point.
67 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
68                                  MachineBasicBlock::iterator MI) const {
69   llvm_unreachable("Target didn't implement insertNoop!");
70 }
71 
72 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
73   return strncmp(Str, MAI.getCommentString().data(),
74                  MAI.getCommentString().size()) == 0;
75 }
76 
77 /// Measure the specified inline asm to determine an approximation of its
78 /// length.
79 /// Comments (which run till the next SeparatorString or newline) do not
80 /// count as an instruction.
81 /// Any other non-whitespace text is considered an instruction, with
82 /// multiple instructions separated by SeparatorString or newlines.
83 /// Variable-length instructions are not handled here; this function
84 /// may be overloaded in the target code to do that.
85 /// We implement a special case of the .space directive which takes only a
86 /// single integer argument in base 10 that is the size in bytes. This is a
87 /// restricted form of the GAS directive in that we only interpret
88 /// simple--i.e. not a logical or arithmetic expression--size values without
89 /// the optional fill value. This is primarily used for creating arbitrary
90 /// sized inline asm blocks for testing purposes.
91 unsigned TargetInstrInfo::getInlineAsmLength(
92   const char *Str,
93   const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
94   // Count the number of instructions in the asm.
95   bool AtInsnStart = true;
96   unsigned Length = 0;
97   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
98   for (; *Str; ++Str) {
99     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
100                                 strlen(MAI.getSeparatorString())) == 0) {
101       AtInsnStart = true;
102     } else if (isAsmComment(Str, MAI)) {
103       // Stop counting as an instruction after a comment until the next
104       // separator.
105       AtInsnStart = false;
106     }
107 
108     if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
109       unsigned AddLength = MaxInstLength;
110       if (strncmp(Str, ".space", 6) == 0) {
111         char *EStr;
112         int SpaceSize;
113         SpaceSize = strtol(Str + 6, &EStr, 10);
114         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
115         while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
116           ++EStr;
117         if (*EStr == '\0' || *EStr == '\n' ||
118             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
119           AddLength = SpaceSize;
120       }
121       Length += AddLength;
122       AtInsnStart = false;
123     }
124   }
125 
126   return Length;
127 }
128 
129 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
130 /// after it, replacing it with an unconditional branch to NewDest.
131 void
132 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
133                                          MachineBasicBlock *NewDest) const {
134   MachineBasicBlock *MBB = Tail->getParent();
135 
136   // Remove all the old successors of MBB from the CFG.
137   while (!MBB->succ_empty())
138     MBB->removeSuccessor(MBB->succ_begin());
139 
140   // Save off the debug loc before erasing the instruction.
141   DebugLoc DL = Tail->getDebugLoc();
142 
143   // Update call site info and remove all the dead instructions
144   // from the end of MBB.
145   while (Tail != MBB->end()) {
146     auto MI = Tail++;
147     if (MI->shouldUpdateCallSiteInfo())
148       MBB->getParent()->eraseCallSiteInfo(&*MI);
149     MBB->erase(MI);
150   }
151 
152   // If MBB isn't immediately before MBB, insert a branch to it.
153   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
154     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
155   MBB->addSuccessor(NewDest);
156 }
157 
158 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
159                                                       bool NewMI, unsigned Idx1,
160                                                       unsigned Idx2) const {
161   const MCInstrDesc &MCID = MI.getDesc();
162   bool HasDef = MCID.getNumDefs();
163   if (HasDef && !MI.getOperand(0).isReg())
164     // No idea how to commute this instruction. Target should implement its own.
165     return nullptr;
166 
167   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
168   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
169   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
170          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
171          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
172   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
173          "This only knows how to commute register operands so far");
174 
175   Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
176   Register Reg1 = MI.getOperand(Idx1).getReg();
177   Register Reg2 = MI.getOperand(Idx2).getReg();
178   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
179   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
180   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
181   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
182   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
183   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
184   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
185   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
186   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
187   // Avoid calling isRenamable for virtual registers since we assert that
188   // renamable property is only queried/set for physical registers.
189   bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
190                              ? MI.getOperand(Idx1).isRenamable()
191                              : false;
192   bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
193                              ? MI.getOperand(Idx2).isRenamable()
194                              : false;
195   // If destination is tied to either of the commuted source register, then
196   // it must be updated.
197   if (HasDef && Reg0 == Reg1 &&
198       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
199     Reg2IsKill = false;
200     Reg0 = Reg2;
201     SubReg0 = SubReg2;
202   } else if (HasDef && Reg0 == Reg2 &&
203              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
204     Reg1IsKill = false;
205     Reg0 = Reg1;
206     SubReg0 = SubReg1;
207   }
208 
209   MachineInstr *CommutedMI = nullptr;
210   if (NewMI) {
211     // Create a new instruction.
212     MachineFunction &MF = *MI.getMF();
213     CommutedMI = MF.CloneMachineInstr(&MI);
214   } else {
215     CommutedMI = &MI;
216   }
217 
218   if (HasDef) {
219     CommutedMI->getOperand(0).setReg(Reg0);
220     CommutedMI->getOperand(0).setSubReg(SubReg0);
221   }
222   CommutedMI->getOperand(Idx2).setReg(Reg1);
223   CommutedMI->getOperand(Idx1).setReg(Reg2);
224   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
225   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
226   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
227   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
228   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
229   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
230   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
231   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
232   // Avoid calling setIsRenamable for virtual registers since we assert that
233   // renamable property is only queried/set for physical registers.
234   if (Register::isPhysicalRegister(Reg1))
235     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
236   if (Register::isPhysicalRegister(Reg2))
237     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
238   return CommutedMI;
239 }
240 
241 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
242                                                   unsigned OpIdx1,
243                                                   unsigned OpIdx2) const {
244   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
245   // any commutable operand, which is done in findCommutedOpIndices() method
246   // called below.
247   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
248       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
249     assert(MI.isCommutable() &&
250            "Precondition violation: MI must be commutable.");
251     return nullptr;
252   }
253   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
254 }
255 
256 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
257                                            unsigned &ResultIdx2,
258                                            unsigned CommutableOpIdx1,
259                                            unsigned CommutableOpIdx2) {
260   if (ResultIdx1 == CommuteAnyOperandIndex &&
261       ResultIdx2 == CommuteAnyOperandIndex) {
262     ResultIdx1 = CommutableOpIdx1;
263     ResultIdx2 = CommutableOpIdx2;
264   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
265     if (ResultIdx2 == CommutableOpIdx1)
266       ResultIdx1 = CommutableOpIdx2;
267     else if (ResultIdx2 == CommutableOpIdx2)
268       ResultIdx1 = CommutableOpIdx1;
269     else
270       return false;
271   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
272     if (ResultIdx1 == CommutableOpIdx1)
273       ResultIdx2 = CommutableOpIdx2;
274     else if (ResultIdx1 == CommutableOpIdx2)
275       ResultIdx2 = CommutableOpIdx1;
276     else
277       return false;
278   } else
279     // Check that the result operand indices match the given commutable
280     // operand indices.
281     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
282            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
283 
284   return true;
285 }
286 
287 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
288                                             unsigned &SrcOpIdx1,
289                                             unsigned &SrcOpIdx2) const {
290   assert(!MI.isBundle() &&
291          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
292 
293   const MCInstrDesc &MCID = MI.getDesc();
294   if (!MCID.isCommutable())
295     return false;
296 
297   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
298   // is not true, then the target must implement this.
299   unsigned CommutableOpIdx1 = MCID.getNumDefs();
300   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
301   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
302                             CommutableOpIdx1, CommutableOpIdx2))
303     return false;
304 
305   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
306     // No idea.
307     return false;
308   return true;
309 }
310 
311 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
312   if (!MI.isTerminator()) return false;
313 
314   // Conditional branch is a special case.
315   if (MI.isBranch() && !MI.isBarrier())
316     return true;
317   if (!MI.isPredicable())
318     return true;
319   return !isPredicated(MI);
320 }
321 
322 bool TargetInstrInfo::PredicateInstruction(
323     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
324   bool MadeChange = false;
325 
326   assert(!MI.isBundle() &&
327          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
328 
329   const MCInstrDesc &MCID = MI.getDesc();
330   if (!MI.isPredicable())
331     return false;
332 
333   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
334     if (MCID.OpInfo[i].isPredicate()) {
335       MachineOperand &MO = MI.getOperand(i);
336       if (MO.isReg()) {
337         MO.setReg(Pred[j].getReg());
338         MadeChange = true;
339       } else if (MO.isImm()) {
340         MO.setImm(Pred[j].getImm());
341         MadeChange = true;
342       } else if (MO.isMBB()) {
343         MO.setMBB(Pred[j].getMBB());
344         MadeChange = true;
345       }
346       ++j;
347     }
348   }
349   return MadeChange;
350 }
351 
352 bool TargetInstrInfo::hasLoadFromStackSlot(
353     const MachineInstr &MI,
354     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
355   size_t StartSize = Accesses.size();
356   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
357                                   oe = MI.memoperands_end();
358        o != oe; ++o) {
359     if ((*o)->isLoad() &&
360         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
361       Accesses.push_back(*o);
362   }
363   return Accesses.size() != StartSize;
364 }
365 
366 bool TargetInstrInfo::hasStoreToStackSlot(
367     const MachineInstr &MI,
368     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
369   size_t StartSize = Accesses.size();
370   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
371                                   oe = MI.memoperands_end();
372        o != oe; ++o) {
373     if ((*o)->isStore() &&
374         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
375       Accesses.push_back(*o);
376   }
377   return Accesses.size() != StartSize;
378 }
379 
380 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
381                                         unsigned SubIdx, unsigned &Size,
382                                         unsigned &Offset,
383                                         const MachineFunction &MF) const {
384   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
385   if (!SubIdx) {
386     Size = TRI->getSpillSize(*RC);
387     Offset = 0;
388     return true;
389   }
390   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
391   // Convert bit size to byte size.
392   if (BitSize % 8)
393     return false;
394 
395   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
396   if (BitOffset < 0 || BitOffset % 8)
397     return false;
398 
399   Size = BitSize / 8;
400   Offset = (unsigned)BitOffset / 8;
401 
402   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
403 
404   if (!MF.getDataLayout().isLittleEndian()) {
405     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
406   }
407   return true;
408 }
409 
410 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
411                                     MachineBasicBlock::iterator I,
412                                     Register DestReg, unsigned SubIdx,
413                                     const MachineInstr &Orig,
414                                     const TargetRegisterInfo &TRI) const {
415   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
416   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
417   MBB.insert(I, MI);
418 }
419 
420 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
421                                        const MachineInstr &MI1,
422                                        const MachineRegisterInfo *MRI) const {
423   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
424 }
425 
426 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
427     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
428   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
429   MachineFunction &MF = *MBB.getParent();
430   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
431 }
432 
433 // If the COPY instruction in MI can be folded to a stack operation, return
434 // the register class to use.
435 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
436                                               unsigned FoldIdx) {
437   assert(MI.isCopy() && "MI must be a COPY instruction");
438   if (MI.getNumOperands() != 2)
439     return nullptr;
440   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
441 
442   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
443   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
444 
445   if (FoldOp.getSubReg() || LiveOp.getSubReg())
446     return nullptr;
447 
448   Register FoldReg = FoldOp.getReg();
449   Register LiveReg = LiveOp.getReg();
450 
451   assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");
452 
453   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
454   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
455 
456   if (Register::isPhysicalRegister(LiveOp.getReg()))
457     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
458 
459   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
460     return RC;
461 
462   // FIXME: Allow folding when register classes are memory compatible.
463   return nullptr;
464 }
465 
466 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
467   llvm_unreachable("Not implemented");
468 }
469 
470 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
471                                     ArrayRef<unsigned> Ops, int FrameIndex,
472                                     const TargetInstrInfo &TII) {
473   unsigned StartIdx = 0;
474   unsigned NumDefs = 0;
475   switch (MI.getOpcode()) {
476   case TargetOpcode::STACKMAP: {
477     // StackMapLiveValues are foldable
478     StartIdx = StackMapOpers(&MI).getVarIdx();
479     break;
480   }
481   case TargetOpcode::PATCHPOINT: {
482     // For PatchPoint, the call args are not foldable (even if reported in the
483     // stackmap e.g. via anyregcc).
484     StartIdx = PatchPointOpers(&MI).getVarIdx();
485     break;
486   }
487   case TargetOpcode::STATEPOINT: {
488     // For statepoints, fold deopt and gc arguments, but not call arguments.
489     StartIdx = StatepointOpers(&MI).getVarIdx();
490     NumDefs = MI.getNumDefs();
491     break;
492   }
493   default:
494     llvm_unreachable("unexpected stackmap opcode");
495   }
496 
497   unsigned DefToFoldIdx = MI.getNumOperands();
498 
499   // Return false if any operands requested for folding are not foldable (not
500   // part of the stackmap's live values).
501   for (unsigned Op : Ops) {
502     if (Op < NumDefs) {
503       assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
504       DefToFoldIdx = Op;
505     } else if (Op < StartIdx) {
506       return nullptr;
507     }
508     // When called from regalloc (InlineSpiller), operands must be untied,
509     // and regalloc will take care of (re)loading operand from memory.
510     // But when called from other places (e.g. peephole pass),
511     // we cannot fold operand which are tied - callers are unaware they
512     // need to reload destination register.
513     if (MI.getOperand(Op).isTied())
514       return nullptr;
515   }
516 
517   MachineInstr *NewMI =
518       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
519   MachineInstrBuilder MIB(MF, NewMI);
520 
521   // No need to fold return, the meta data, and function arguments
522   for (unsigned i = 0; i < StartIdx; ++i)
523     if (i != DefToFoldIdx)
524       MIB.add(MI.getOperand(i));
525 
526   for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
527     MachineOperand &MO = MI.getOperand(i);
528     unsigned TiedTo = e;
529     (void)MI.isRegTiedToDefOperand(i, &TiedTo);
530 
531     if (is_contained(Ops, i)) {
532       assert(TiedTo == e && "Cannot fold tied operands");
533       unsigned SpillSize;
534       unsigned SpillOffset;
535       // Compute the spill slot size and offset.
536       const TargetRegisterClass *RC =
537         MF.getRegInfo().getRegClass(MO.getReg());
538       bool Valid =
539           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
540       if (!Valid)
541         report_fatal_error("cannot spill patchpoint subregister operand");
542       MIB.addImm(StackMaps::IndirectMemRefOp);
543       MIB.addImm(SpillSize);
544       MIB.addFrameIndex(FrameIndex);
545       MIB.addImm(SpillOffset);
546     } else {
547       MIB.add(MO);
548       if (TiedTo < e) {
549         assert(TiedTo < NumDefs && "Bad tied operand");
550         if (TiedTo > DefToFoldIdx)
551           --TiedTo;
552         NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
553       }
554     }
555   }
556   return NewMI;
557 }
558 
559 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
560                                                  ArrayRef<unsigned> Ops, int FI,
561                                                  LiveIntervals *LIS,
562                                                  VirtRegMap *VRM) const {
563   auto Flags = MachineMemOperand::MONone;
564   for (unsigned OpIdx : Ops)
565     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
566                                           : MachineMemOperand::MOLoad;
567 
568   MachineBasicBlock *MBB = MI.getParent();
569   assert(MBB && "foldMemoryOperand needs an inserted instruction");
570   MachineFunction &MF = *MBB->getParent();
571 
572   // If we're not folding a load into a subreg, the size of the load is the
573   // size of the spill slot. But if we are, we need to figure out what the
574   // actual load size is.
575   int64_t MemSize = 0;
576   const MachineFrameInfo &MFI = MF.getFrameInfo();
577   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
578 
579   if (Flags & MachineMemOperand::MOStore) {
580     MemSize = MFI.getObjectSize(FI);
581   } else {
582     for (unsigned OpIdx : Ops) {
583       int64_t OpSize = MFI.getObjectSize(FI);
584 
585       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
586         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
587         if (SubRegSize > 0 && !(SubRegSize % 8))
588           OpSize = SubRegSize / 8;
589       }
590 
591       MemSize = std::max(MemSize, OpSize);
592     }
593   }
594 
595   assert(MemSize && "Did not expect a zero-sized stack slot");
596 
597   MachineInstr *NewMI = nullptr;
598 
599   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
600       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
601       MI.getOpcode() == TargetOpcode::STATEPOINT) {
602     // Fold stackmap/patchpoint.
603     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
604     if (NewMI)
605       MBB->insert(MI, NewMI);
606   } else {
607     // Ask the target to do the actual folding.
608     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
609   }
610 
611   if (NewMI) {
612     NewMI->setMemRefs(MF, MI.memoperands());
613     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
614     assert((!(Flags & MachineMemOperand::MOStore) ||
615             NewMI->mayStore()) &&
616            "Folded a def to a non-store!");
617     assert((!(Flags & MachineMemOperand::MOLoad) ||
618             NewMI->mayLoad()) &&
619            "Folded a use to a non-load!");
620     assert(MFI.getObjectOffset(FI) != -1);
621     MachineMemOperand *MMO =
622         MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
623                                 Flags, MemSize, MFI.getObjectAlign(FI));
624     NewMI->addMemOperand(MF, MMO);
625 
626     // The pass "x86 speculative load hardening" always attaches symbols to
627     // call instructions. We need copy it form old instruction.
628     NewMI->cloneInstrSymbols(MF, MI);
629 
630     return NewMI;
631   }
632 
633   // Straight COPY may fold as load/store.
634   if (!MI.isCopy() || Ops.size() != 1)
635     return nullptr;
636 
637   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
638   if (!RC)
639     return nullptr;
640 
641   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
642   MachineBasicBlock::iterator Pos = MI;
643 
644   if (Flags == MachineMemOperand::MOStore)
645     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
646   else
647     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
648   return &*--Pos;
649 }
650 
651 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
652                                                  ArrayRef<unsigned> Ops,
653                                                  MachineInstr &LoadMI,
654                                                  LiveIntervals *LIS) const {
655   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
656 #ifndef NDEBUG
657   for (unsigned OpIdx : Ops)
658     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
659 #endif
660 
661   MachineBasicBlock &MBB = *MI.getParent();
662   MachineFunction &MF = *MBB.getParent();
663 
664   // Ask the target to do the actual folding.
665   MachineInstr *NewMI = nullptr;
666   int FrameIndex = 0;
667 
668   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
669        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
670        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
671       isLoadFromStackSlot(LoadMI, FrameIndex)) {
672     // Fold stackmap/patchpoint.
673     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
674     if (NewMI)
675       NewMI = &*MBB.insert(MI, NewMI);
676   } else {
677     // Ask the target to do the actual folding.
678     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
679   }
680 
681   if (!NewMI)
682     return nullptr;
683 
684   // Copy the memoperands from the load to the folded instruction.
685   if (MI.memoperands_empty()) {
686     NewMI->setMemRefs(MF, LoadMI.memoperands());
687   } else {
688     // Handle the rare case of folding multiple loads.
689     NewMI->setMemRefs(MF, MI.memoperands());
690     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
691                                     E = LoadMI.memoperands_end();
692          I != E; ++I) {
693       NewMI->addMemOperand(MF, *I);
694     }
695   }
696   return NewMI;
697 }
698 
699 bool TargetInstrInfo::hasReassociableOperands(
700     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
701   const MachineOperand &Op1 = Inst.getOperand(1);
702   const MachineOperand &Op2 = Inst.getOperand(2);
703   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
704 
705   // We need virtual register definitions for the operands that we will
706   // reassociate.
707   MachineInstr *MI1 = nullptr;
708   MachineInstr *MI2 = nullptr;
709   if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
710     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
711   if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
712     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
713 
714   // And they need to be in the trace (otherwise, they won't have a depth).
715   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
716 }
717 
718 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
719                                              bool &Commuted) const {
720   const MachineBasicBlock *MBB = Inst.getParent();
721   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
722   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
723   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
724   unsigned AssocOpcode = Inst.getOpcode();
725 
726   // If only one operand has the same opcode and it's the second source operand,
727   // the operands must be commuted.
728   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
729   if (Commuted)
730     std::swap(MI1, MI2);
731 
732   // 1. The previous instruction must be the same type as Inst.
733   // 2. The previous instruction must also be associative/commutative (this can
734   //    be different even for instructions with the same opcode if traits like
735   //    fast-math-flags are included).
736   // 3. The previous instruction must have virtual register definitions for its
737   //    operands in the same basic block as Inst.
738   // 4. The previous instruction's result must only be used by Inst.
739   return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) &&
740          hasReassociableOperands(*MI1, MBB) &&
741          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
742 }
743 
744 // 1. The operation must be associative and commutative.
745 // 2. The instruction must have virtual register definitions for its
746 //    operands in the same basic block.
747 // 3. The instruction must have a reassociable sibling.
748 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
749                                                bool &Commuted) const {
750   return isAssociativeAndCommutative(Inst) &&
751          hasReassociableOperands(Inst, Inst.getParent()) &&
752          hasReassociableSibling(Inst, Commuted);
753 }
754 
755 // The concept of the reassociation pass is that these operations can benefit
756 // from this kind of transformation:
757 //
758 // A = ? op ?
759 // B = A op X (Prev)
760 // C = B op Y (Root)
761 // -->
762 // A = ? op ?
763 // B = X op Y
764 // C = A op B
765 //
766 // breaking the dependency between A and B, allowing them to be executed in
767 // parallel (or back-to-back in a pipeline) instead of depending on each other.
768 
769 // FIXME: This has the potential to be expensive (compile time) while not
770 // improving the code at all. Some ways to limit the overhead:
771 // 1. Track successful transforms; bail out if hit rate gets too low.
772 // 2. Only enable at -O3 or some other non-default optimization level.
773 // 3. Pre-screen pattern candidates here: if an operand of the previous
774 //    instruction is known to not increase the critical path, then don't match
775 //    that pattern.
776 bool TargetInstrInfo::getMachineCombinerPatterns(
777     MachineInstr &Root,
778     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
779   bool Commute;
780   if (isReassociationCandidate(Root, Commute)) {
781     // We found a sequence of instructions that may be suitable for a
782     // reassociation of operands to increase ILP. Specify each commutation
783     // possibility for the Prev instruction in the sequence and let the
784     // machine combiner decide if changing the operands is worthwhile.
785     if (Commute) {
786       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
787       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
788     } else {
789       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
790       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
791     }
792     return true;
793   }
794 
795   return false;
796 }
797 
798 /// Return true when a code sequence can improve loop throughput.
799 bool
800 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
801   return false;
802 }
803 
804 /// Attempt the reassociation transformation to reduce critical path length.
805 /// See the above comments before getMachineCombinerPatterns().
806 void TargetInstrInfo::reassociateOps(
807     MachineInstr &Root, MachineInstr &Prev,
808     MachineCombinerPattern Pattern,
809     SmallVectorImpl<MachineInstr *> &InsInstrs,
810     SmallVectorImpl<MachineInstr *> &DelInstrs,
811     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
812   MachineFunction *MF = Root.getMF();
813   MachineRegisterInfo &MRI = MF->getRegInfo();
814   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
815   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
816   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
817 
818   // This array encodes the operand index for each parameter because the
819   // operands may be commuted. Each row corresponds to a pattern value,
820   // and each column specifies the index of A, B, X, Y.
821   unsigned OpIdx[4][4] = {
822     { 1, 1, 2, 2 },
823     { 1, 2, 2, 1 },
824     { 2, 1, 1, 2 },
825     { 2, 2, 1, 1 }
826   };
827 
828   int Row;
829   switch (Pattern) {
830   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
831   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
832   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
833   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
834   default: llvm_unreachable("unexpected MachineCombinerPattern");
835   }
836 
837   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
838   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
839   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
840   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
841   MachineOperand &OpC = Root.getOperand(0);
842 
843   Register RegA = OpA.getReg();
844   Register RegB = OpB.getReg();
845   Register RegX = OpX.getReg();
846   Register RegY = OpY.getReg();
847   Register RegC = OpC.getReg();
848 
849   if (Register::isVirtualRegister(RegA))
850     MRI.constrainRegClass(RegA, RC);
851   if (Register::isVirtualRegister(RegB))
852     MRI.constrainRegClass(RegB, RC);
853   if (Register::isVirtualRegister(RegX))
854     MRI.constrainRegClass(RegX, RC);
855   if (Register::isVirtualRegister(RegY))
856     MRI.constrainRegClass(RegY, RC);
857   if (Register::isVirtualRegister(RegC))
858     MRI.constrainRegClass(RegC, RC);
859 
860   // Create a new virtual register for the result of (X op Y) instead of
861   // recycling RegB because the MachineCombiner's computation of the critical
862   // path requires a new register definition rather than an existing one.
863   Register NewVR = MRI.createVirtualRegister(RC);
864   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
865 
866   unsigned Opcode = Root.getOpcode();
867   bool KillA = OpA.isKill();
868   bool KillX = OpX.isKill();
869   bool KillY = OpY.isKill();
870 
871   // Create new instructions for insertion.
872   MachineInstrBuilder MIB1 =
873       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
874           .addReg(RegX, getKillRegState(KillX))
875           .addReg(RegY, getKillRegState(KillY));
876   MachineInstrBuilder MIB2 =
877       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
878           .addReg(RegA, getKillRegState(KillA))
879           .addReg(NewVR, getKillRegState(true));
880 
881   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
882 
883   // Record new instructions for insertion and old instructions for deletion.
884   InsInstrs.push_back(MIB1);
885   InsInstrs.push_back(MIB2);
886   DelInstrs.push_back(&Prev);
887   DelInstrs.push_back(&Root);
888 }
889 
890 void TargetInstrInfo::genAlternativeCodeSequence(
891     MachineInstr &Root, MachineCombinerPattern Pattern,
892     SmallVectorImpl<MachineInstr *> &InsInstrs,
893     SmallVectorImpl<MachineInstr *> &DelInstrs,
894     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
895   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
896 
897   // Select the previous instruction in the sequence based on the input pattern.
898   MachineInstr *Prev = nullptr;
899   switch (Pattern) {
900   case MachineCombinerPattern::REASSOC_AX_BY:
901   case MachineCombinerPattern::REASSOC_XA_BY:
902     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
903     break;
904   case MachineCombinerPattern::REASSOC_AX_YB:
905   case MachineCombinerPattern::REASSOC_XA_YB:
906     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
907     break;
908   default:
909     break;
910   }
911 
912   assert(Prev && "Unknown pattern for machine combiner");
913 
914   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
915 }
916 
917 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
918     const MachineInstr &MI, AAResults *AA) const {
919   const MachineFunction &MF = *MI.getMF();
920   const MachineRegisterInfo &MRI = MF.getRegInfo();
921 
922   // Remat clients assume operand 0 is the defined register.
923   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
924     return false;
925   Register DefReg = MI.getOperand(0).getReg();
926 
927   // A sub-register definition can only be rematerialized if the instruction
928   // doesn't read the other parts of the register.  Otherwise it is really a
929   // read-modify-write operation on the full virtual register which cannot be
930   // moved safely.
931   if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
932       MI.readsVirtualRegister(DefReg))
933     return false;
934 
935   // A load from a fixed stack slot can be rematerialized. This may be
936   // redundant with subsequent checks, but it's target-independent,
937   // simple, and a common case.
938   int FrameIdx = 0;
939   if (isLoadFromStackSlot(MI, FrameIdx) &&
940       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
941     return true;
942 
943   // Avoid instructions obviously unsafe for remat.
944   if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
945       MI.hasUnmodeledSideEffects())
946     return false;
947 
948   // Don't remat inline asm. We have no idea how expensive it is
949   // even if it's side effect free.
950   if (MI.isInlineAsm())
951     return false;
952 
953   // Avoid instructions which load from potentially varying memory.
954   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
955     return false;
956 
957   // If any of the registers accessed are non-constant, conservatively assume
958   // the instruction is not rematerializable.
959   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
960     const MachineOperand &MO = MI.getOperand(i);
961     if (!MO.isReg()) continue;
962     Register Reg = MO.getReg();
963     if (Reg == 0)
964       continue;
965 
966     // Check for a well-behaved physical register.
967     if (Register::isPhysicalRegister(Reg)) {
968       if (MO.isUse()) {
969         // If the physreg has no defs anywhere, it's just an ambient register
970         // and we can freely move its uses. Alternatively, if it's allocatable,
971         // it could get allocated to something with a def during allocation.
972         if (!MRI.isConstantPhysReg(Reg))
973           return false;
974       } else {
975         // A physreg def. We can't remat it.
976         return false;
977       }
978       continue;
979     }
980 
981     // Only allow one virtual-register def.  There may be multiple defs of the
982     // same virtual register, though.
983     if (MO.isDef() && Reg != DefReg)
984       return false;
985 
986     // Don't allow any virtual-register uses. Rematting an instruction with
987     // virtual register uses would length the live ranges of the uses, which
988     // is not necessarily a good idea, certainly not "trivial".
989     if (MO.isUse())
990       return false;
991   }
992 
993   // Everything checked out.
994   return true;
995 }
996 
997 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
998   const MachineFunction *MF = MI.getMF();
999   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
1000   bool StackGrowsDown =
1001     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
1002 
1003   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1004   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1005 
1006   if (!isFrameInstr(MI))
1007     return 0;
1008 
1009   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1010 
1011   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1012       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1013     SPAdj = -SPAdj;
1014 
1015   return SPAdj;
1016 }
1017 
1018 /// isSchedulingBoundary - Test if the given instruction should be
1019 /// considered a scheduling boundary. This primarily includes labels
1020 /// and terminators.
1021 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1022                                            const MachineBasicBlock *MBB,
1023                                            const MachineFunction &MF) const {
1024   // Terminators and labels can't be scheduled around.
1025   if (MI.isTerminator() || MI.isPosition())
1026     return true;
1027 
1028   // INLINEASM_BR can jump to another block
1029   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1030     return true;
1031 
1032   // Don't attempt to schedule around any instruction that defines
1033   // a stack-oriented pointer, as it's unlikely to be profitable. This
1034   // saves compile time, because it doesn't require every single
1035   // stack slot reference to depend on the instruction that does the
1036   // modification.
1037   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1038   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1039   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1040 }
1041 
1042 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1043 // may choose to honor.
1044 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1045   return !DisableHazardRecognizer;
1046 }
1047 
1048 // Default implementation of CreateTargetRAHazardRecognizer.
1049 ScheduleHazardRecognizer *TargetInstrInfo::
1050 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1051                              const ScheduleDAG *DAG) const {
1052   // Dummy hazard recognizer allows all instructions to issue.
1053   return new ScheduleHazardRecognizer();
1054 }
1055 
1056 // Default implementation of CreateTargetMIHazardRecognizer.
1057 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1058     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1059   return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1060 }
1061 
1062 // Default implementation of CreateTargetPostRAHazardRecognizer.
1063 ScheduleHazardRecognizer *TargetInstrInfo::
1064 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1065                                    const ScheduleDAG *DAG) const {
1066   return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1067 }
1068 
1069 // Default implementation of getMemOperandWithOffset.
1070 bool TargetInstrInfo::getMemOperandWithOffset(
1071     const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1072     bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1073   SmallVector<const MachineOperand *, 4> BaseOps;
1074   unsigned Width;
1075   if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1076                                      Width, TRI) ||
1077       BaseOps.size() != 1)
1078     return false;
1079   BaseOp = BaseOps.front();
1080   return true;
1081 }
1082 
1083 //===----------------------------------------------------------------------===//
1084 //  SelectionDAG latency interface.
1085 //===----------------------------------------------------------------------===//
1086 
1087 int
1088 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1089                                    SDNode *DefNode, unsigned DefIdx,
1090                                    SDNode *UseNode, unsigned UseIdx) const {
1091   if (!ItinData || ItinData->isEmpty())
1092     return -1;
1093 
1094   if (!DefNode->isMachineOpcode())
1095     return -1;
1096 
1097   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1098   if (!UseNode->isMachineOpcode())
1099     return ItinData->getOperandCycle(DefClass, DefIdx);
1100   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1101   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1102 }
1103 
1104 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1105                                      SDNode *N) const {
1106   if (!ItinData || ItinData->isEmpty())
1107     return 1;
1108 
1109   if (!N->isMachineOpcode())
1110     return 1;
1111 
1112   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 //  MachineInstr latency interface.
1117 //===----------------------------------------------------------------------===//
1118 
1119 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1120                                          const MachineInstr &MI) const {
1121   if (!ItinData || ItinData->isEmpty())
1122     return 1;
1123 
1124   unsigned Class = MI.getDesc().getSchedClass();
1125   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1126   if (UOps >= 0)
1127     return UOps;
1128 
1129   // The # of u-ops is dynamically determined. The specific target should
1130   // override this function to return the right number.
1131   return 1;
1132 }
1133 
1134 /// Return the default expected latency for a def based on it's opcode.
1135 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1136                                             const MachineInstr &DefMI) const {
1137   if (DefMI.isTransient())
1138     return 0;
1139   if (DefMI.mayLoad())
1140     return SchedModel.LoadLatency;
1141   if (isHighLatencyDef(DefMI.getOpcode()))
1142     return SchedModel.HighLatency;
1143   return 1;
1144 }
1145 
1146 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1147   return 0;
1148 }
1149 
1150 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1151                                           const MachineInstr &MI,
1152                                           unsigned *PredCost) const {
1153   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1154   // still have a MinLatency property, which getStageLatency checks.
1155   if (!ItinData)
1156     return MI.mayLoad() ? 2 : 1;
1157 
1158   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1159 }
1160 
1161 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1162                                        const MachineInstr &DefMI,
1163                                        unsigned DefIdx) const {
1164   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1165   if (!ItinData || ItinData->isEmpty())
1166     return false;
1167 
1168   unsigned DefClass = DefMI.getDesc().getSchedClass();
1169   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1170   return (DefCycle != -1 && DefCycle <= 1);
1171 }
1172 
1173 Optional<ParamLoadedValue>
1174 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1175                                      Register Reg) const {
1176   const MachineFunction *MF = MI.getMF();
1177   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1178   DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1179   int64_t Offset;
1180   bool OffsetIsScalable;
1181 
1182   // To simplify the sub-register handling, verify that we only need to
1183   // consider physical registers.
1184   assert(MF->getProperties().hasProperty(
1185       MachineFunctionProperties::Property::NoVRegs));
1186 
1187   if (auto DestSrc = isCopyInstr(MI)) {
1188     Register DestReg = DestSrc->Destination->getReg();
1189 
1190     // If the copy destination is the forwarding reg, describe the forwarding
1191     // reg using the copy source as the backup location. Example:
1192     //
1193     //   x0 = MOV x7
1194     //   call callee(x0)      ; x0 described as x7
1195     if (Reg == DestReg)
1196       return ParamLoadedValue(*DestSrc->Source, Expr);
1197 
1198     // Cases where super- or sub-registers needs to be described should
1199     // be handled by the target's hook implementation.
1200     assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) &&
1201            "TargetInstrInfo::describeLoadedValue can't describe super- or "
1202            "sub-regs for copy instructions");
1203     return None;
1204   } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1205     Register SrcReg = RegImm->Reg;
1206     Offset = RegImm->Imm;
1207     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1208     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1209   } else if (MI.hasOneMemOperand()) {
1210     // Only describe memory which provably does not escape the function. As
1211     // described in llvm.org/PR43343, escaped memory may be clobbered by the
1212     // callee (or by another thread).
1213     const auto &TII = MF->getSubtarget().getInstrInfo();
1214     const MachineFrameInfo &MFI = MF->getFrameInfo();
1215     const MachineMemOperand *MMO = MI.memoperands()[0];
1216     const PseudoSourceValue *PSV = MMO->getPseudoValue();
1217 
1218     // If the address points to "special" memory (e.g. a spill slot), it's
1219     // sufficient to check that it isn't aliased by any high-level IR value.
1220     if (!PSV || PSV->mayAlias(&MFI))
1221       return None;
1222 
1223     const MachineOperand *BaseOp;
1224     if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1225                                       TRI))
1226       return None;
1227 
1228     // FIXME: Scalable offsets are not yet handled in the offset code below.
1229     if (OffsetIsScalable)
1230       return None;
1231 
1232     // TODO: Can currently only handle mem instructions with a single define.
1233     // An example from the x86 target:
1234     //    ...
1235     //    DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1236     //    ...
1237     //
1238     if (MI.getNumExplicitDefs() != 1)
1239       return None;
1240 
1241     // TODO: In what way do we need to take Reg into consideration here?
1242 
1243     SmallVector<uint64_t, 8> Ops;
1244     DIExpression::appendOffset(Ops, Offset);
1245     Ops.push_back(dwarf::DW_OP_deref_size);
1246     Ops.push_back(MMO->getSize());
1247     Expr = DIExpression::prependOpcodes(Expr, Ops);
1248     return ParamLoadedValue(*BaseOp, Expr);
1249   }
1250 
1251   return None;
1252 }
1253 
1254 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1255 /// itinerary. This may be overriden by the target.
1256 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1257                                        const MachineInstr &DefMI,
1258                                        unsigned DefIdx,
1259                                        const MachineInstr &UseMI,
1260                                        unsigned UseIdx) const {
1261   unsigned DefClass = DefMI.getDesc().getSchedClass();
1262   unsigned UseClass = UseMI.getDesc().getSchedClass();
1263   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1264 }
1265 
1266 /// If we can determine the operand latency from the def only, without itinerary
1267 /// lookup, do so. Otherwise return -1.
1268 int TargetInstrInfo::computeDefOperandLatency(
1269     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1270 
1271   // Let the target hook getInstrLatency handle missing itineraries.
1272   if (!ItinData)
1273     return getInstrLatency(ItinData, DefMI);
1274 
1275   if(ItinData->isEmpty())
1276     return defaultDefLatency(ItinData->SchedModel, DefMI);
1277 
1278   // ...operand lookup required
1279   return -1;
1280 }
1281 
1282 bool TargetInstrInfo::getRegSequenceInputs(
1283     const MachineInstr &MI, unsigned DefIdx,
1284     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1285   assert((MI.isRegSequence() ||
1286           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1287 
1288   if (!MI.isRegSequence())
1289     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1290 
1291   // We are looking at:
1292   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1293   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1294   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1295        OpIdx += 2) {
1296     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1297     if (MOReg.isUndef())
1298       continue;
1299     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1300     assert(MOSubIdx.isImm() &&
1301            "One of the subindex of the reg_sequence is not an immediate");
1302     // Record Reg:SubReg, SubIdx.
1303     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1304                                             (unsigned)MOSubIdx.getImm()));
1305   }
1306   return true;
1307 }
1308 
1309 bool TargetInstrInfo::getExtractSubregInputs(
1310     const MachineInstr &MI, unsigned DefIdx,
1311     RegSubRegPairAndIdx &InputReg) const {
1312   assert((MI.isExtractSubreg() ||
1313       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1314 
1315   if (!MI.isExtractSubreg())
1316     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1317 
1318   // We are looking at:
1319   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1320   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1321   const MachineOperand &MOReg = MI.getOperand(1);
1322   if (MOReg.isUndef())
1323     return false;
1324   const MachineOperand &MOSubIdx = MI.getOperand(2);
1325   assert(MOSubIdx.isImm() &&
1326          "The subindex of the extract_subreg is not an immediate");
1327 
1328   InputReg.Reg = MOReg.getReg();
1329   InputReg.SubReg = MOReg.getSubReg();
1330   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1331   return true;
1332 }
1333 
1334 bool TargetInstrInfo::getInsertSubregInputs(
1335     const MachineInstr &MI, unsigned DefIdx,
1336     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1337   assert((MI.isInsertSubreg() ||
1338       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1339 
1340   if (!MI.isInsertSubreg())
1341     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1342 
1343   // We are looking at:
1344   // Def = INSERT_SEQUENCE v0, v1, sub0.
1345   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1346   const MachineOperand &MOBaseReg = MI.getOperand(1);
1347   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1348   if (MOInsertedReg.isUndef())
1349     return false;
1350   const MachineOperand &MOSubIdx = MI.getOperand(3);
1351   assert(MOSubIdx.isImm() &&
1352          "One of the subindex of the reg_sequence is not an immediate");
1353   BaseReg.Reg = MOBaseReg.getReg();
1354   BaseReg.SubReg = MOBaseReg.getSubReg();
1355 
1356   InsertedReg.Reg = MOInsertedReg.getReg();
1357   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1358   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1359   return true;
1360 }
1361 
1362 // Returns a MIRPrinter comment for this machine operand.
1363 std::string TargetInstrInfo::createMIROperandComment(
1364     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1365     const TargetRegisterInfo *TRI) const {
1366 
1367   if (!MI.isInlineAsm())
1368     return "";
1369 
1370   std::string Flags;
1371   raw_string_ostream OS(Flags);
1372 
1373   if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1374     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1375     unsigned ExtraInfo = Op.getImm();
1376     bool First = true;
1377     for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1378       if (!First)
1379         OS << " ";
1380       First = false;
1381       OS << Info;
1382     }
1383 
1384     return OS.str();
1385   }
1386 
1387   int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1388   if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1389     return "";
1390 
1391   assert(Op.isImm() && "Expected flag operand to be an immediate");
1392   // Pretty print the inline asm operand descriptor.
1393   unsigned Flag = Op.getImm();
1394   unsigned Kind = InlineAsm::getKind(Flag);
1395   OS << InlineAsm::getKindName(Kind);
1396 
1397   unsigned RCID = 0;
1398   if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1399       InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1400     if (TRI) {
1401       OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1402     } else
1403       OS << ":RC" << RCID;
1404   }
1405 
1406   if (InlineAsm::isMemKind(Flag)) {
1407     unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1408     OS << ":" << InlineAsm::getMemConstraintName(MCID);
1409   }
1410 
1411   unsigned TiedTo = 0;
1412   if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1413     OS << " tiedto:$" << TiedTo;
1414 
1415   return OS.str();
1416 }
1417 
1418 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}
1419