1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/CodeGen/StackMaps.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include <cctype>
33 
34 using namespace llvm;
35 
36 static cl::opt<bool> DisableHazardRecognizer(
37   "disable-sched-hazard", cl::Hidden, cl::init(false),
38   cl::desc("Disable hazard detection during preRA scheduling"));
39 
40 TargetInstrInfo::~TargetInstrInfo() {
41 }
42 
43 const TargetRegisterClass*
44 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
45                              const TargetRegisterInfo *TRI,
46                              const MachineFunction &MF) const {
47   if (OpNum >= MCID.getNumOperands())
48     return nullptr;
49 
50   short RegClass = MCID.OpInfo[OpNum].RegClass;
51   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
52     return TRI->getPointerRegClass(MF, RegClass);
53 
54   // Instructions like INSERT_SUBREG do not have fixed register classes.
55   if (RegClass < 0)
56     return nullptr;
57 
58   // Otherwise just look it up normally.
59   return TRI->getRegClass(RegClass);
60 }
61 
62 /// insertNoop - Insert a noop into the instruction stream at the specified
63 /// point.
64 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
65                                  MachineBasicBlock::iterator MI) const {
66   llvm_unreachable("Target didn't implement insertNoop!");
67 }
68 
69 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
70   return strncmp(Str, MAI.getCommentString().data(),
71                  MAI.getCommentString().size()) == 0;
72 }
73 
74 /// Measure the specified inline asm to determine an approximation of its
75 /// length.
76 /// Comments (which run till the next SeparatorString or newline) do not
77 /// count as an instruction.
78 /// Any other non-whitespace text is considered an instruction, with
79 /// multiple instructions separated by SeparatorString or newlines.
80 /// Variable-length instructions are not handled here; this function
81 /// may be overloaded in the target code to do that.
82 /// We implement a special case of the .space directive which takes only a
83 /// single integer argument in base 10 that is the size in bytes. This is a
84 /// restricted form of the GAS directive in that we only interpret
85 /// simple--i.e. not a logical or arithmetic expression--size values without
86 /// the optional fill value. This is primarily used for creating arbitrary
87 /// sized inline asm blocks for testing purposes.
88 unsigned TargetInstrInfo::getInlineAsmLength(
89   const char *Str,
90   const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
91   // Count the number of instructions in the asm.
92   bool AtInsnStart = true;
93   unsigned Length = 0;
94   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
95   for (; *Str; ++Str) {
96     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
97                                 strlen(MAI.getSeparatorString())) == 0) {
98       AtInsnStart = true;
99     } else if (isAsmComment(Str, MAI)) {
100       // Stop counting as an instruction after a comment until the next
101       // separator.
102       AtInsnStart = false;
103     }
104 
105     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
106       unsigned AddLength = MaxInstLength;
107       if (strncmp(Str, ".space", 6) == 0) {
108         char *EStr;
109         int SpaceSize;
110         SpaceSize = strtol(Str + 6, &EStr, 10);
111         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
112         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
113           ++EStr;
114         if (*EStr == '\0' || *EStr == '\n' ||
115             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
116           AddLength = SpaceSize;
117       }
118       Length += AddLength;
119       AtInsnStart = false;
120     }
121   }
122 
123   return Length;
124 }
125 
126 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
127 /// after it, replacing it with an unconditional branch to NewDest.
128 void
129 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
130                                          MachineBasicBlock *NewDest) const {
131   MachineBasicBlock *MBB = Tail->getParent();
132 
133   // Remove all the old successors of MBB from the CFG.
134   while (!MBB->succ_empty())
135     MBB->removeSuccessor(MBB->succ_begin());
136 
137   // Save off the debug loc before erasing the instruction.
138   DebugLoc DL = Tail->getDebugLoc();
139 
140   // Remove all the dead instructions from the end of MBB.
141   MBB->erase(Tail, MBB->end());
142 
143   // If MBB isn't immediately before MBB, insert a branch to it.
144   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
145     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
146   MBB->addSuccessor(NewDest);
147 }
148 
149 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
150                                                       bool NewMI, unsigned Idx1,
151                                                       unsigned Idx2) const {
152   const MCInstrDesc &MCID = MI.getDesc();
153   bool HasDef = MCID.getNumDefs();
154   if (HasDef && !MI.getOperand(0).isReg())
155     // No idea how to commute this instruction. Target should implement its own.
156     return nullptr;
157 
158   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
159   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
160   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
161          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
162          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
163   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
164          "This only knows how to commute register operands so far");
165 
166   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
167   unsigned Reg1 = MI.getOperand(Idx1).getReg();
168   unsigned Reg2 = MI.getOperand(Idx2).getReg();
169   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
170   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
171   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
172   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
173   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
174   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
175   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
176   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
177   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
178   // Avoid calling isRenamable for virtual registers since we assert that
179   // renamable property is only queried/set for physical registers.
180   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
181                              ? MI.getOperand(Idx1).isRenamable()
182                              : false;
183   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
184                              ? MI.getOperand(Idx2).isRenamable()
185                              : false;
186   // If destination is tied to either of the commuted source register, then
187   // it must be updated.
188   if (HasDef && Reg0 == Reg1 &&
189       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
190     Reg2IsKill = false;
191     Reg0 = Reg2;
192     SubReg0 = SubReg2;
193   } else if (HasDef && Reg0 == Reg2 &&
194              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
195     Reg1IsKill = false;
196     Reg0 = Reg1;
197     SubReg0 = SubReg1;
198   }
199 
200   MachineInstr *CommutedMI = nullptr;
201   if (NewMI) {
202     // Create a new instruction.
203     MachineFunction &MF = *MI.getMF();
204     CommutedMI = MF.CloneMachineInstr(&MI);
205   } else {
206     CommutedMI = &MI;
207   }
208 
209   if (HasDef) {
210     CommutedMI->getOperand(0).setReg(Reg0);
211     CommutedMI->getOperand(0).setSubReg(SubReg0);
212   }
213   CommutedMI->getOperand(Idx2).setReg(Reg1);
214   CommutedMI->getOperand(Idx1).setReg(Reg2);
215   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
216   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
217   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
218   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
219   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
220   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
221   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
222   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
223   // Avoid calling setIsRenamable for virtual registers since we assert that
224   // renamable property is only queried/set for physical registers.
225   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
226     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
227   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
228     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
229   return CommutedMI;
230 }
231 
232 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
233                                                   unsigned OpIdx1,
234                                                   unsigned OpIdx2) const {
235   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
236   // any commutable operand, which is done in findCommutedOpIndices() method
237   // called below.
238   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
239       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
240     assert(MI.isCommutable() &&
241            "Precondition violation: MI must be commutable.");
242     return nullptr;
243   }
244   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
245 }
246 
247 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
248                                            unsigned &ResultIdx2,
249                                            unsigned CommutableOpIdx1,
250                                            unsigned CommutableOpIdx2) {
251   if (ResultIdx1 == CommuteAnyOperandIndex &&
252       ResultIdx2 == CommuteAnyOperandIndex) {
253     ResultIdx1 = CommutableOpIdx1;
254     ResultIdx2 = CommutableOpIdx2;
255   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
256     if (ResultIdx2 == CommutableOpIdx1)
257       ResultIdx1 = CommutableOpIdx2;
258     else if (ResultIdx2 == CommutableOpIdx2)
259       ResultIdx1 = CommutableOpIdx1;
260     else
261       return false;
262   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
263     if (ResultIdx1 == CommutableOpIdx1)
264       ResultIdx2 = CommutableOpIdx2;
265     else if (ResultIdx1 == CommutableOpIdx2)
266       ResultIdx2 = CommutableOpIdx1;
267     else
268       return false;
269   } else
270     // Check that the result operand indices match the given commutable
271     // operand indices.
272     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
273            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
274 
275   return true;
276 }
277 
278 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
279                                             unsigned &SrcOpIdx1,
280                                             unsigned &SrcOpIdx2) const {
281   assert(!MI.isBundle() &&
282          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
283 
284   const MCInstrDesc &MCID = MI.getDesc();
285   if (!MCID.isCommutable())
286     return false;
287 
288   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
289   // is not true, then the target must implement this.
290   unsigned CommutableOpIdx1 = MCID.getNumDefs();
291   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
292   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
293                             CommutableOpIdx1, CommutableOpIdx2))
294     return false;
295 
296   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
297     // No idea.
298     return false;
299   return true;
300 }
301 
302 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
303   if (!MI.isTerminator()) return false;
304 
305   // Conditional branch is a special case.
306   if (MI.isBranch() && !MI.isBarrier())
307     return true;
308   if (!MI.isPredicable())
309     return true;
310   return !isPredicated(MI);
311 }
312 
313 bool TargetInstrInfo::PredicateInstruction(
314     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
315   bool MadeChange = false;
316 
317   assert(!MI.isBundle() &&
318          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
319 
320   const MCInstrDesc &MCID = MI.getDesc();
321   if (!MI.isPredicable())
322     return false;
323 
324   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
325     if (MCID.OpInfo[i].isPredicate()) {
326       MachineOperand &MO = MI.getOperand(i);
327       if (MO.isReg()) {
328         MO.setReg(Pred[j].getReg());
329         MadeChange = true;
330       } else if (MO.isImm()) {
331         MO.setImm(Pred[j].getImm());
332         MadeChange = true;
333       } else if (MO.isMBB()) {
334         MO.setMBB(Pred[j].getMBB());
335         MadeChange = true;
336       }
337       ++j;
338     }
339   }
340   return MadeChange;
341 }
342 
343 bool TargetInstrInfo::hasLoadFromStackSlot(
344     const MachineInstr &MI,
345     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
346   size_t StartSize = Accesses.size();
347   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
348                                   oe = MI.memoperands_end();
349        o != oe; ++o) {
350     if ((*o)->isLoad() &&
351         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
352       Accesses.push_back(*o);
353   }
354   return Accesses.size() != StartSize;
355 }
356 
357 bool TargetInstrInfo::hasStoreToStackSlot(
358     const MachineInstr &MI,
359     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
360   size_t StartSize = Accesses.size();
361   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
362                                   oe = MI.memoperands_end();
363        o != oe; ++o) {
364     if ((*o)->isStore() &&
365         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
366       Accesses.push_back(*o);
367   }
368   return Accesses.size() != StartSize;
369 }
370 
371 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
372                                         unsigned SubIdx, unsigned &Size,
373                                         unsigned &Offset,
374                                         const MachineFunction &MF) const {
375   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
376   if (!SubIdx) {
377     Size = TRI->getSpillSize(*RC);
378     Offset = 0;
379     return true;
380   }
381   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
382   // Convert bit size to byte size.
383   if (BitSize % 8)
384     return false;
385 
386   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
387   if (BitOffset < 0 || BitOffset % 8)
388     return false;
389 
390   Size = BitSize /= 8;
391   Offset = (unsigned)BitOffset / 8;
392 
393   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
394 
395   if (!MF.getDataLayout().isLittleEndian()) {
396     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
397   }
398   return true;
399 }
400 
401 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
402                                     MachineBasicBlock::iterator I,
403                                     unsigned DestReg, unsigned SubIdx,
404                                     const MachineInstr &Orig,
405                                     const TargetRegisterInfo &TRI) const {
406   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
407   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
408   MBB.insert(I, MI);
409 }
410 
411 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
412                                        const MachineInstr &MI1,
413                                        const MachineRegisterInfo *MRI) const {
414   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
415 }
416 
417 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
418     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
419   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
420   MachineFunction &MF = *MBB.getParent();
421   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
422 }
423 
424 // If the COPY instruction in MI can be folded to a stack operation, return
425 // the register class to use.
426 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
427                                               unsigned FoldIdx) {
428   assert(MI.isCopy() && "MI must be a COPY instruction");
429   if (MI.getNumOperands() != 2)
430     return nullptr;
431   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
432 
433   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
434   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
435 
436   if (FoldOp.getSubReg() || LiveOp.getSubReg())
437     return nullptr;
438 
439   unsigned FoldReg = FoldOp.getReg();
440   unsigned LiveReg = LiveOp.getReg();
441 
442   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
443          "Cannot fold physregs");
444 
445   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
446   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
447 
448   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
449     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
450 
451   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
452     return RC;
453 
454   // FIXME: Allow folding when register classes are memory compatible.
455   return nullptr;
456 }
457 
458 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
459   llvm_unreachable("Not implemented");
460 }
461 
462 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
463                                     ArrayRef<unsigned> Ops, int FrameIndex,
464                                     const TargetInstrInfo &TII) {
465   unsigned StartIdx = 0;
466   switch (MI.getOpcode()) {
467   case TargetOpcode::STACKMAP: {
468     // StackMapLiveValues are foldable
469     StartIdx = StackMapOpers(&MI).getVarIdx();
470     break;
471   }
472   case TargetOpcode::PATCHPOINT: {
473     // For PatchPoint, the call args are not foldable (even if reported in the
474     // stackmap e.g. via anyregcc).
475     StartIdx = PatchPointOpers(&MI).getVarIdx();
476     break;
477   }
478   case TargetOpcode::STATEPOINT: {
479     // For statepoints, fold deopt and gc arguments, but not call arguments.
480     StartIdx = StatepointOpers(&MI).getVarIdx();
481     break;
482   }
483   default:
484     llvm_unreachable("unexpected stackmap opcode");
485   }
486 
487   // Return false if any operands requested for folding are not foldable (not
488   // part of the stackmap's live values).
489   for (unsigned Op : Ops) {
490     if (Op < StartIdx)
491       return nullptr;
492   }
493 
494   MachineInstr *NewMI =
495       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
496   MachineInstrBuilder MIB(MF, NewMI);
497 
498   // No need to fold return, the meta data, and function arguments
499   for (unsigned i = 0; i < StartIdx; ++i)
500     MIB.add(MI.getOperand(i));
501 
502   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
503     MachineOperand &MO = MI.getOperand(i);
504     if (is_contained(Ops, i)) {
505       unsigned SpillSize;
506       unsigned SpillOffset;
507       // Compute the spill slot size and offset.
508       const TargetRegisterClass *RC =
509         MF.getRegInfo().getRegClass(MO.getReg());
510       bool Valid =
511           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
512       if (!Valid)
513         report_fatal_error("cannot spill patchpoint subregister operand");
514       MIB.addImm(StackMaps::IndirectMemRefOp);
515       MIB.addImm(SpillSize);
516       MIB.addFrameIndex(FrameIndex);
517       MIB.addImm(SpillOffset);
518     }
519     else
520       MIB.add(MO);
521   }
522   return NewMI;
523 }
524 
525 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
526                                                  ArrayRef<unsigned> Ops, int FI,
527                                                  LiveIntervals *LIS) const {
528   auto Flags = MachineMemOperand::MONone;
529   for (unsigned OpIdx : Ops)
530     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
531                                           : MachineMemOperand::MOLoad;
532 
533   MachineBasicBlock *MBB = MI.getParent();
534   assert(MBB && "foldMemoryOperand needs an inserted instruction");
535   MachineFunction &MF = *MBB->getParent();
536 
537   // If we're not folding a load into a subreg, the size of the load is the
538   // size of the spill slot. But if we are, we need to figure out what the
539   // actual load size is.
540   int64_t MemSize = 0;
541   const MachineFrameInfo &MFI = MF.getFrameInfo();
542   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
543 
544   if (Flags & MachineMemOperand::MOStore) {
545     MemSize = MFI.getObjectSize(FI);
546   } else {
547     for (unsigned OpIdx : Ops) {
548       int64_t OpSize = MFI.getObjectSize(FI);
549 
550       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
551         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
552         if (SubRegSize > 0 && !(SubRegSize % 8))
553           OpSize = SubRegSize / 8;
554       }
555 
556       MemSize = std::max(MemSize, OpSize);
557     }
558   }
559 
560   assert(MemSize && "Did not expect a zero-sized stack slot");
561 
562   MachineInstr *NewMI = nullptr;
563 
564   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
565       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
566       MI.getOpcode() == TargetOpcode::STATEPOINT) {
567     // Fold stackmap/patchpoint.
568     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
569     if (NewMI)
570       MBB->insert(MI, NewMI);
571   } else {
572     // Ask the target to do the actual folding.
573     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
574   }
575 
576   if (NewMI) {
577     NewMI->setMemRefs(MF, MI.memoperands());
578     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
579     assert((!(Flags & MachineMemOperand::MOStore) ||
580             NewMI->mayStore()) &&
581            "Folded a def to a non-store!");
582     assert((!(Flags & MachineMemOperand::MOLoad) ||
583             NewMI->mayLoad()) &&
584            "Folded a use to a non-load!");
585     assert(MFI.getObjectOffset(FI) != -1);
586     MachineMemOperand *MMO = MF.getMachineMemOperand(
587         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
588         MFI.getObjectAlignment(FI));
589     NewMI->addMemOperand(MF, MMO);
590 
591     return NewMI;
592   }
593 
594   // Straight COPY may fold as load/store.
595   if (!MI.isCopy() || Ops.size() != 1)
596     return nullptr;
597 
598   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
599   if (!RC)
600     return nullptr;
601 
602   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
603   MachineBasicBlock::iterator Pos = MI;
604 
605   if (Flags == MachineMemOperand::MOStore)
606     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
607   else
608     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
609   return &*--Pos;
610 }
611 
612 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
613                                                  ArrayRef<unsigned> Ops,
614                                                  MachineInstr &LoadMI,
615                                                  LiveIntervals *LIS) const {
616   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
617 #ifndef NDEBUG
618   for (unsigned OpIdx : Ops)
619     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
620 #endif
621 
622   MachineBasicBlock &MBB = *MI.getParent();
623   MachineFunction &MF = *MBB.getParent();
624 
625   // Ask the target to do the actual folding.
626   MachineInstr *NewMI = nullptr;
627   int FrameIndex = 0;
628 
629   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
630        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
631        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
632       isLoadFromStackSlot(LoadMI, FrameIndex)) {
633     // Fold stackmap/patchpoint.
634     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
635     if (NewMI)
636       NewMI = &*MBB.insert(MI, NewMI);
637   } else {
638     // Ask the target to do the actual folding.
639     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
640   }
641 
642   if (!NewMI)
643     return nullptr;
644 
645   // Copy the memoperands from the load to the folded instruction.
646   if (MI.memoperands_empty()) {
647     NewMI->setMemRefs(MF, LoadMI.memoperands());
648   } else {
649     // Handle the rare case of folding multiple loads.
650     NewMI->setMemRefs(MF, MI.memoperands());
651     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
652                                     E = LoadMI.memoperands_end();
653          I != E; ++I) {
654       NewMI->addMemOperand(MF, *I);
655     }
656   }
657   return NewMI;
658 }
659 
660 bool TargetInstrInfo::hasReassociableOperands(
661     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
662   const MachineOperand &Op1 = Inst.getOperand(1);
663   const MachineOperand &Op2 = Inst.getOperand(2);
664   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
665 
666   // We need virtual register definitions for the operands that we will
667   // reassociate.
668   MachineInstr *MI1 = nullptr;
669   MachineInstr *MI2 = nullptr;
670   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
671     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
672   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
673     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
674 
675   // And they need to be in the trace (otherwise, they won't have a depth).
676   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
677 }
678 
679 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
680                                              bool &Commuted) const {
681   const MachineBasicBlock *MBB = Inst.getParent();
682   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
683   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
684   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
685   unsigned AssocOpcode = Inst.getOpcode();
686 
687   // If only one operand has the same opcode and it's the second source operand,
688   // the operands must be commuted.
689   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
690   if (Commuted)
691     std::swap(MI1, MI2);
692 
693   // 1. The previous instruction must be the same type as Inst.
694   // 2. The previous instruction must have virtual register definitions for its
695   //    operands in the same basic block as Inst.
696   // 3. The previous instruction's result must only be used by Inst.
697   return MI1->getOpcode() == AssocOpcode &&
698          hasReassociableOperands(*MI1, MBB) &&
699          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
700 }
701 
702 // 1. The operation must be associative and commutative.
703 // 2. The instruction must have virtual register definitions for its
704 //    operands in the same basic block.
705 // 3. The instruction must have a reassociable sibling.
706 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
707                                                bool &Commuted) const {
708   return isAssociativeAndCommutative(Inst) &&
709          hasReassociableOperands(Inst, Inst.getParent()) &&
710          hasReassociableSibling(Inst, Commuted);
711 }
712 
713 // The concept of the reassociation pass is that these operations can benefit
714 // from this kind of transformation:
715 //
716 // A = ? op ?
717 // B = A op X (Prev)
718 // C = B op Y (Root)
719 // -->
720 // A = ? op ?
721 // B = X op Y
722 // C = A op B
723 //
724 // breaking the dependency between A and B, allowing them to be executed in
725 // parallel (or back-to-back in a pipeline) instead of depending on each other.
726 
727 // FIXME: This has the potential to be expensive (compile time) while not
728 // improving the code at all. Some ways to limit the overhead:
729 // 1. Track successful transforms; bail out if hit rate gets too low.
730 // 2. Only enable at -O3 or some other non-default optimization level.
731 // 3. Pre-screen pattern candidates here: if an operand of the previous
732 //    instruction is known to not increase the critical path, then don't match
733 //    that pattern.
734 bool TargetInstrInfo::getMachineCombinerPatterns(
735     MachineInstr &Root,
736     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
737   bool Commute;
738   if (isReassociationCandidate(Root, Commute)) {
739     // We found a sequence of instructions that may be suitable for a
740     // reassociation of operands to increase ILP. Specify each commutation
741     // possibility for the Prev instruction in the sequence and let the
742     // machine combiner decide if changing the operands is worthwhile.
743     if (Commute) {
744       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
745       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
746     } else {
747       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
748       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
749     }
750     return true;
751   }
752 
753   return false;
754 }
755 
756 /// Return true when a code sequence can improve loop throughput.
757 bool
758 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
759   return false;
760 }
761 
762 /// Attempt the reassociation transformation to reduce critical path length.
763 /// See the above comments before getMachineCombinerPatterns().
764 void TargetInstrInfo::reassociateOps(
765     MachineInstr &Root, MachineInstr &Prev,
766     MachineCombinerPattern Pattern,
767     SmallVectorImpl<MachineInstr *> &InsInstrs,
768     SmallVectorImpl<MachineInstr *> &DelInstrs,
769     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
770   MachineFunction *MF = Root.getMF();
771   MachineRegisterInfo &MRI = MF->getRegInfo();
772   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
773   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
774   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
775 
776   // This array encodes the operand index for each parameter because the
777   // operands may be commuted. Each row corresponds to a pattern value,
778   // and each column specifies the index of A, B, X, Y.
779   unsigned OpIdx[4][4] = {
780     { 1, 1, 2, 2 },
781     { 1, 2, 2, 1 },
782     { 2, 1, 1, 2 },
783     { 2, 2, 1, 1 }
784   };
785 
786   int Row;
787   switch (Pattern) {
788   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
789   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
790   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
791   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
792   default: llvm_unreachable("unexpected MachineCombinerPattern");
793   }
794 
795   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
796   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
797   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
798   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
799   MachineOperand &OpC = Root.getOperand(0);
800 
801   unsigned RegA = OpA.getReg();
802   unsigned RegB = OpB.getReg();
803   unsigned RegX = OpX.getReg();
804   unsigned RegY = OpY.getReg();
805   unsigned RegC = OpC.getReg();
806 
807   if (TargetRegisterInfo::isVirtualRegister(RegA))
808     MRI.constrainRegClass(RegA, RC);
809   if (TargetRegisterInfo::isVirtualRegister(RegB))
810     MRI.constrainRegClass(RegB, RC);
811   if (TargetRegisterInfo::isVirtualRegister(RegX))
812     MRI.constrainRegClass(RegX, RC);
813   if (TargetRegisterInfo::isVirtualRegister(RegY))
814     MRI.constrainRegClass(RegY, RC);
815   if (TargetRegisterInfo::isVirtualRegister(RegC))
816     MRI.constrainRegClass(RegC, RC);
817 
818   // Create a new virtual register for the result of (X op Y) instead of
819   // recycling RegB because the MachineCombiner's computation of the critical
820   // path requires a new register definition rather than an existing one.
821   unsigned NewVR = MRI.createVirtualRegister(RC);
822   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
823 
824   unsigned Opcode = Root.getOpcode();
825   bool KillA = OpA.isKill();
826   bool KillX = OpX.isKill();
827   bool KillY = OpY.isKill();
828 
829   // Create new instructions for insertion.
830   MachineInstrBuilder MIB1 =
831       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
832           .addReg(RegX, getKillRegState(KillX))
833           .addReg(RegY, getKillRegState(KillY));
834   MachineInstrBuilder MIB2 =
835       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
836           .addReg(RegA, getKillRegState(KillA))
837           .addReg(NewVR, getKillRegState(true));
838 
839   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
840 
841   // Record new instructions for insertion and old instructions for deletion.
842   InsInstrs.push_back(MIB1);
843   InsInstrs.push_back(MIB2);
844   DelInstrs.push_back(&Prev);
845   DelInstrs.push_back(&Root);
846 }
847 
848 void TargetInstrInfo::genAlternativeCodeSequence(
849     MachineInstr &Root, MachineCombinerPattern Pattern,
850     SmallVectorImpl<MachineInstr *> &InsInstrs,
851     SmallVectorImpl<MachineInstr *> &DelInstrs,
852     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
853   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
854 
855   // Select the previous instruction in the sequence based on the input pattern.
856   MachineInstr *Prev = nullptr;
857   switch (Pattern) {
858   case MachineCombinerPattern::REASSOC_AX_BY:
859   case MachineCombinerPattern::REASSOC_XA_BY:
860     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
861     break;
862   case MachineCombinerPattern::REASSOC_AX_YB:
863   case MachineCombinerPattern::REASSOC_XA_YB:
864     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
865     break;
866   default:
867     break;
868   }
869 
870   assert(Prev && "Unknown pattern for machine combiner");
871 
872   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
873 }
874 
875 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
876     const MachineInstr &MI, AliasAnalysis *AA) const {
877   const MachineFunction &MF = *MI.getMF();
878   const MachineRegisterInfo &MRI = MF.getRegInfo();
879 
880   // Remat clients assume operand 0 is the defined register.
881   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
882     return false;
883   unsigned DefReg = MI.getOperand(0).getReg();
884 
885   // A sub-register definition can only be rematerialized if the instruction
886   // doesn't read the other parts of the register.  Otherwise it is really a
887   // read-modify-write operation on the full virtual register which cannot be
888   // moved safely.
889   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
890       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
891     return false;
892 
893   // A load from a fixed stack slot can be rematerialized. This may be
894   // redundant with subsequent checks, but it's target-independent,
895   // simple, and a common case.
896   int FrameIdx = 0;
897   if (isLoadFromStackSlot(MI, FrameIdx) &&
898       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
899     return true;
900 
901   // Avoid instructions obviously unsafe for remat.
902   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
903     return false;
904 
905   // Don't remat inline asm. We have no idea how expensive it is
906   // even if it's side effect free.
907   if (MI.isInlineAsm())
908     return false;
909 
910   // Avoid instructions which load from potentially varying memory.
911   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
912     return false;
913 
914   // If any of the registers accessed are non-constant, conservatively assume
915   // the instruction is not rematerializable.
916   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
917     const MachineOperand &MO = MI.getOperand(i);
918     if (!MO.isReg()) continue;
919     unsigned Reg = MO.getReg();
920     if (Reg == 0)
921       continue;
922 
923     // Check for a well-behaved physical register.
924     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
925       if (MO.isUse()) {
926         // If the physreg has no defs anywhere, it's just an ambient register
927         // and we can freely move its uses. Alternatively, if it's allocatable,
928         // it could get allocated to something with a def during allocation.
929         if (!MRI.isConstantPhysReg(Reg))
930           return false;
931       } else {
932         // A physreg def. We can't remat it.
933         return false;
934       }
935       continue;
936     }
937 
938     // Only allow one virtual-register def.  There may be multiple defs of the
939     // same virtual register, though.
940     if (MO.isDef() && Reg != DefReg)
941       return false;
942 
943     // Don't allow any virtual-register uses. Rematting an instruction with
944     // virtual register uses would length the live ranges of the uses, which
945     // is not necessarily a good idea, certainly not "trivial".
946     if (MO.isUse())
947       return false;
948   }
949 
950   // Everything checked out.
951   return true;
952 }
953 
954 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
955   const MachineFunction *MF = MI.getMF();
956   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
957   bool StackGrowsDown =
958     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
959 
960   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
961   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
962 
963   if (!isFrameInstr(MI))
964     return 0;
965 
966   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
967 
968   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
969       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
970     SPAdj = -SPAdj;
971 
972   return SPAdj;
973 }
974 
975 /// isSchedulingBoundary - Test if the given instruction should be
976 /// considered a scheduling boundary. This primarily includes labels
977 /// and terminators.
978 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
979                                            const MachineBasicBlock *MBB,
980                                            const MachineFunction &MF) const {
981   // Terminators and labels can't be scheduled around.
982   if (MI.isTerminator() || MI.isPosition())
983     return true;
984 
985   // Don't attempt to schedule around any instruction that defines
986   // a stack-oriented pointer, as it's unlikely to be profitable. This
987   // saves compile time, because it doesn't require every single
988   // stack slot reference to depend on the instruction that does the
989   // modification.
990   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
991   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
992   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
993 }
994 
995 // Provide a global flag for disabling the PreRA hazard recognizer that targets
996 // may choose to honor.
997 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
998   return !DisableHazardRecognizer;
999 }
1000 
1001 // Default implementation of CreateTargetRAHazardRecognizer.
1002 ScheduleHazardRecognizer *TargetInstrInfo::
1003 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1004                              const ScheduleDAG *DAG) const {
1005   // Dummy hazard recognizer allows all instructions to issue.
1006   return new ScheduleHazardRecognizer();
1007 }
1008 
1009 // Default implementation of CreateTargetMIHazardRecognizer.
1010 ScheduleHazardRecognizer *TargetInstrInfo::
1011 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1012                                const ScheduleDAG *DAG) const {
1013   return (ScheduleHazardRecognizer *)
1014     new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1015 }
1016 
1017 // Default implementation of CreateTargetPostRAHazardRecognizer.
1018 ScheduleHazardRecognizer *TargetInstrInfo::
1019 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1020                                    const ScheduleDAG *DAG) const {
1021   return (ScheduleHazardRecognizer *)
1022     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1023 }
1024 
1025 //===----------------------------------------------------------------------===//
1026 //  SelectionDAG latency interface.
1027 //===----------------------------------------------------------------------===//
1028 
1029 int
1030 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1031                                    SDNode *DefNode, unsigned DefIdx,
1032                                    SDNode *UseNode, unsigned UseIdx) const {
1033   if (!ItinData || ItinData->isEmpty())
1034     return -1;
1035 
1036   if (!DefNode->isMachineOpcode())
1037     return -1;
1038 
1039   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1040   if (!UseNode->isMachineOpcode())
1041     return ItinData->getOperandCycle(DefClass, DefIdx);
1042   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1043   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1044 }
1045 
1046 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1047                                      SDNode *N) const {
1048   if (!ItinData || ItinData->isEmpty())
1049     return 1;
1050 
1051   if (!N->isMachineOpcode())
1052     return 1;
1053 
1054   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //  MachineInstr latency interface.
1059 //===----------------------------------------------------------------------===//
1060 
1061 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1062                                          const MachineInstr &MI) const {
1063   if (!ItinData || ItinData->isEmpty())
1064     return 1;
1065 
1066   unsigned Class = MI.getDesc().getSchedClass();
1067   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1068   if (UOps >= 0)
1069     return UOps;
1070 
1071   // The # of u-ops is dynamically determined. The specific target should
1072   // override this function to return the right number.
1073   return 1;
1074 }
1075 
1076 /// Return the default expected latency for a def based on it's opcode.
1077 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1078                                             const MachineInstr &DefMI) const {
1079   if (DefMI.isTransient())
1080     return 0;
1081   if (DefMI.mayLoad())
1082     return SchedModel.LoadLatency;
1083   if (isHighLatencyDef(DefMI.getOpcode()))
1084     return SchedModel.HighLatency;
1085   return 1;
1086 }
1087 
1088 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1089   return 0;
1090 }
1091 
1092 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1093                                           const MachineInstr &MI,
1094                                           unsigned *PredCost) const {
1095   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1096   // still have a MinLatency property, which getStageLatency checks.
1097   if (!ItinData)
1098     return MI.mayLoad() ? 2 : 1;
1099 
1100   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1101 }
1102 
1103 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1104                                        const MachineInstr &DefMI,
1105                                        unsigned DefIdx) const {
1106   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1107   if (!ItinData || ItinData->isEmpty())
1108     return false;
1109 
1110   unsigned DefClass = DefMI.getDesc().getSchedClass();
1111   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1112   return (DefCycle != -1 && DefCycle <= 1);
1113 }
1114 
1115 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1116 /// itinerary. This may be overriden by the target.
1117 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1118                                        const MachineInstr &DefMI,
1119                                        unsigned DefIdx,
1120                                        const MachineInstr &UseMI,
1121                                        unsigned UseIdx) const {
1122   unsigned DefClass = DefMI.getDesc().getSchedClass();
1123   unsigned UseClass = UseMI.getDesc().getSchedClass();
1124   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1125 }
1126 
1127 /// If we can determine the operand latency from the def only, without itinerary
1128 /// lookup, do so. Otherwise return -1.
1129 int TargetInstrInfo::computeDefOperandLatency(
1130     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1131 
1132   // Let the target hook getInstrLatency handle missing itineraries.
1133   if (!ItinData)
1134     return getInstrLatency(ItinData, DefMI);
1135 
1136   if(ItinData->isEmpty())
1137     return defaultDefLatency(ItinData->SchedModel, DefMI);
1138 
1139   // ...operand lookup required
1140   return -1;
1141 }
1142 
1143 bool TargetInstrInfo::getRegSequenceInputs(
1144     const MachineInstr &MI, unsigned DefIdx,
1145     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1146   assert((MI.isRegSequence() ||
1147           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1148 
1149   if (!MI.isRegSequence())
1150     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1151 
1152   // We are looking at:
1153   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1154   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1155   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1156        OpIdx += 2) {
1157     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1158     if (MOReg.isUndef())
1159       continue;
1160     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1161     assert(MOSubIdx.isImm() &&
1162            "One of the subindex of the reg_sequence is not an immediate");
1163     // Record Reg:SubReg, SubIdx.
1164     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1165                                             (unsigned)MOSubIdx.getImm()));
1166   }
1167   return true;
1168 }
1169 
1170 bool TargetInstrInfo::getExtractSubregInputs(
1171     const MachineInstr &MI, unsigned DefIdx,
1172     RegSubRegPairAndIdx &InputReg) const {
1173   assert((MI.isExtractSubreg() ||
1174       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1175 
1176   if (!MI.isExtractSubreg())
1177     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1178 
1179   // We are looking at:
1180   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1181   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1182   const MachineOperand &MOReg = MI.getOperand(1);
1183   if (MOReg.isUndef())
1184     return false;
1185   const MachineOperand &MOSubIdx = MI.getOperand(2);
1186   assert(MOSubIdx.isImm() &&
1187          "The subindex of the extract_subreg is not an immediate");
1188 
1189   InputReg.Reg = MOReg.getReg();
1190   InputReg.SubReg = MOReg.getSubReg();
1191   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1192   return true;
1193 }
1194 
1195 bool TargetInstrInfo::getInsertSubregInputs(
1196     const MachineInstr &MI, unsigned DefIdx,
1197     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1198   assert((MI.isInsertSubreg() ||
1199       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1200 
1201   if (!MI.isInsertSubreg())
1202     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1203 
1204   // We are looking at:
1205   // Def = INSERT_SEQUENCE v0, v1, sub0.
1206   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1207   const MachineOperand &MOBaseReg = MI.getOperand(1);
1208   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1209   if (MOInsertedReg.isUndef())
1210     return false;
1211   const MachineOperand &MOSubIdx = MI.getOperand(3);
1212   assert(MOSubIdx.isImm() &&
1213          "One of the subindex of the reg_sequence is not an immediate");
1214   BaseReg.Reg = MOBaseReg.getReg();
1215   BaseReg.SubReg = MOBaseReg.getSubReg();
1216 
1217   InsertedReg.Reg = MOInsertedReg.getReg();
1218   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1219   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1220   return true;
1221 }
1222