1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned Length = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0)
86       atInsnStart = true;
87     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
88       Length += MAI.getMaxInstLength();
89       atInsnStart = false;
90     }
91     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
92                                strlen(MAI.getCommentString())) == 0)
93       atInsnStart = false;
94   }
95 
96   return Length;
97 }
98 
99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
100 /// after it, replacing it with an unconditional branch to NewDest.
101 void
102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
103                                          MachineBasicBlock *NewDest) const {
104   MachineBasicBlock *MBB = Tail->getParent();
105 
106   // Remove all the old successors of MBB from the CFG.
107   while (!MBB->succ_empty())
108     MBB->removeSuccessor(MBB->succ_begin());
109 
110   // Save off the debug loc before erasing the instruction.
111   DebugLoc DL = Tail->getDebugLoc();
112 
113   // Remove all the dead instructions from the end of MBB.
114   MBB->erase(Tail, MBB->end());
115 
116   // If MBB isn't immediately before MBB, insert a branch to it.
117   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
118     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
119   MBB->addSuccessor(NewDest);
120 }
121 
122 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI,
123                                                       bool NewMI,
124                                                       unsigned Idx1,
125                                                       unsigned Idx2) const {
126   const MCInstrDesc &MCID = MI->getDesc();
127   bool HasDef = MCID.getNumDefs();
128   if (HasDef && !MI->getOperand(0).isReg())
129     // No idea how to commute this instruction. Target should implement its own.
130     return nullptr;
131 
132   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
133   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
134   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
135          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
136          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
137   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
138          "This only knows how to commute register operands so far");
139 
140   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
141   unsigned Reg1 = MI->getOperand(Idx1).getReg();
142   unsigned Reg2 = MI->getOperand(Idx2).getReg();
143   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
144   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
145   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
146   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
147   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
148   bool Reg1IsUndef = MI->getOperand(Idx1).isUndef();
149   bool Reg2IsUndef = MI->getOperand(Idx2).isUndef();
150   bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead();
151   bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead();
152   // If destination is tied to either of the commuted source register, then
153   // it must be updated.
154   if (HasDef && Reg0 == Reg1 &&
155       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
156     Reg2IsKill = false;
157     Reg0 = Reg2;
158     SubReg0 = SubReg2;
159   } else if (HasDef && Reg0 == Reg2 &&
160              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
161     Reg1IsKill = false;
162     Reg0 = Reg1;
163     SubReg0 = SubReg1;
164   }
165 
166   if (NewMI) {
167     // Create a new instruction.
168     MachineFunction &MF = *MI->getParent()->getParent();
169     MI = MF.CloneMachineInstr(MI);
170   }
171 
172   if (HasDef) {
173     MI->getOperand(0).setReg(Reg0);
174     MI->getOperand(0).setSubReg(SubReg0);
175   }
176   MI->getOperand(Idx2).setReg(Reg1);
177   MI->getOperand(Idx1).setReg(Reg2);
178   MI->getOperand(Idx2).setSubReg(SubReg1);
179   MI->getOperand(Idx1).setSubReg(SubReg2);
180   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
181   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
182   MI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
183   MI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
184   MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
185   MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
186   return MI;
187 }
188 
189 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
190                                                   bool NewMI,
191                                                   unsigned OpIdx1,
192                                                   unsigned OpIdx2) const {
193   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
194   // any commutable operand, which is done in findCommutedOpIndices() method
195   // called below.
196   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
197       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
198     assert(MI->isCommutable() &&
199            "Precondition violation: MI must be commutable.");
200     return nullptr;
201   }
202   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
203 }
204 
205 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
206                                            unsigned &ResultIdx2,
207                                            unsigned CommutableOpIdx1,
208                                            unsigned CommutableOpIdx2) {
209   if (ResultIdx1 == CommuteAnyOperandIndex &&
210       ResultIdx2 == CommuteAnyOperandIndex) {
211     ResultIdx1 = CommutableOpIdx1;
212     ResultIdx2 = CommutableOpIdx2;
213   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
214     if (ResultIdx2 == CommutableOpIdx1)
215       ResultIdx1 = CommutableOpIdx2;
216     else if (ResultIdx2 == CommutableOpIdx2)
217       ResultIdx1 = CommutableOpIdx1;
218     else
219       return false;
220   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
221     if (ResultIdx1 == CommutableOpIdx1)
222       ResultIdx2 = CommutableOpIdx2;
223     else if (ResultIdx1 == CommutableOpIdx2)
224       ResultIdx2 = CommutableOpIdx1;
225     else
226       return false;
227   } else
228     // Check that the result operand indices match the given commutable
229     // operand indices.
230     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
231            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
232 
233   return true;
234 }
235 
236 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
237                                             unsigned &SrcOpIdx1,
238                                             unsigned &SrcOpIdx2) const {
239   assert(!MI->isBundle() &&
240          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
241 
242   const MCInstrDesc &MCID = MI->getDesc();
243   if (!MCID.isCommutable())
244     return false;
245 
246   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
247   // is not true, then the target must implement this.
248   unsigned CommutableOpIdx1 = MCID.getNumDefs();
249   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
250   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
251                             CommutableOpIdx1, CommutableOpIdx2))
252     return false;
253 
254   if (!MI->getOperand(SrcOpIdx1).isReg() ||
255       !MI->getOperand(SrcOpIdx2).isReg())
256     // No idea.
257     return false;
258   return true;
259 }
260 
261 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
262   if (!MI.isTerminator()) return false;
263 
264   // Conditional branch is a special case.
265   if (MI.isBranch() && !MI.isBarrier())
266     return true;
267   if (!MI.isPredicable())
268     return true;
269   return !isPredicated(MI);
270 }
271 
272 bool TargetInstrInfo::PredicateInstruction(
273     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
274   bool MadeChange = false;
275 
276   assert(!MI.isBundle() &&
277          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
278 
279   const MCInstrDesc &MCID = MI.getDesc();
280   if (!MI.isPredicable())
281     return false;
282 
283   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
284     if (MCID.OpInfo[i].isPredicate()) {
285       MachineOperand &MO = MI.getOperand(i);
286       if (MO.isReg()) {
287         MO.setReg(Pred[j].getReg());
288         MadeChange = true;
289       } else if (MO.isImm()) {
290         MO.setImm(Pred[j].getImm());
291         MadeChange = true;
292       } else if (MO.isMBB()) {
293         MO.setMBB(Pred[j].getMBB());
294         MadeChange = true;
295       }
296       ++j;
297     }
298   }
299   return MadeChange;
300 }
301 
302 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
303                                            const MachineMemOperand *&MMO,
304                                            int &FrameIndex) const {
305   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
306          oe = MI->memoperands_end();
307        o != oe;
308        ++o) {
309     if ((*o)->isLoad()) {
310       if (const FixedStackPseudoSourceValue *Value =
311           dyn_cast_or_null<FixedStackPseudoSourceValue>(
312               (*o)->getPseudoValue())) {
313         FrameIndex = Value->getFrameIndex();
314         MMO = *o;
315         return true;
316       }
317     }
318   }
319   return false;
320 }
321 
322 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
323                                           const MachineMemOperand *&MMO,
324                                           int &FrameIndex) const {
325   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
326          oe = MI->memoperands_end();
327        o != oe;
328        ++o) {
329     if ((*o)->isStore()) {
330       if (const FixedStackPseudoSourceValue *Value =
331           dyn_cast_or_null<FixedStackPseudoSourceValue>(
332               (*o)->getPseudoValue())) {
333         FrameIndex = Value->getFrameIndex();
334         MMO = *o;
335         return true;
336       }
337     }
338   }
339   return false;
340 }
341 
342 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
343                                         unsigned SubIdx, unsigned &Size,
344                                         unsigned &Offset,
345                                         const MachineFunction &MF) const {
346   if (!SubIdx) {
347     Size = RC->getSize();
348     Offset = 0;
349     return true;
350   }
351   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
352   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
353   // Convert bit size to byte size to be consistent with
354   // MCRegisterClass::getSize().
355   if (BitSize % 8)
356     return false;
357 
358   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
359   if (BitOffset < 0 || BitOffset % 8)
360     return false;
361 
362   Size = BitSize /= 8;
363   Offset = (unsigned)BitOffset / 8;
364 
365   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
366 
367   if (!MF.getDataLayout().isLittleEndian()) {
368     Offset = RC->getSize() - (Offset + Size);
369   }
370   return true;
371 }
372 
373 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
374                                     MachineBasicBlock::iterator I,
375                                     unsigned DestReg,
376                                     unsigned SubIdx,
377                                     const MachineInstr *Orig,
378                                     const TargetRegisterInfo &TRI) const {
379   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
380   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
381   MBB.insert(I, MI);
382 }
383 
384 bool
385 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
386                                   const MachineInstr *MI1,
387                                   const MachineRegisterInfo *MRI) const {
388   return MI0->isIdenticalTo(*MI1, MachineInstr::IgnoreVRegDefs);
389 }
390 
391 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
392                                          MachineFunction &MF) const {
393   assert(!Orig->isNotDuplicable() &&
394          "Instruction cannot be duplicated");
395   return MF.CloneMachineInstr(Orig);
396 }
397 
398 // If the COPY instruction in MI can be folded to a stack operation, return
399 // the register class to use.
400 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
401                                               unsigned FoldIdx) {
402   assert(MI->isCopy() && "MI must be a COPY instruction");
403   if (MI->getNumOperands() != 2)
404     return nullptr;
405   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
406 
407   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
408   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
409 
410   if (FoldOp.getSubReg() || LiveOp.getSubReg())
411     return nullptr;
412 
413   unsigned FoldReg = FoldOp.getReg();
414   unsigned LiveReg = LiveOp.getReg();
415 
416   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
417          "Cannot fold physregs");
418 
419   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
420   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
421 
422   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
423     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
424 
425   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
426     return RC;
427 
428   // FIXME: Allow folding when register classes are memory compatible.
429   return nullptr;
430 }
431 
432 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
433   llvm_unreachable("Not a MachO target");
434 }
435 
436 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI,
437                                     ArrayRef<unsigned> Ops, int FrameIndex,
438                                     const TargetInstrInfo &TII) {
439   unsigned StartIdx = 0;
440   switch (MI->getOpcode()) {
441   case TargetOpcode::STACKMAP:
442     StartIdx = 2; // Skip ID, nShadowBytes.
443     break;
444   case TargetOpcode::PATCHPOINT: {
445     // For PatchPoint, the call args are not foldable.
446     PatchPointOpers opers(MI);
447     StartIdx = opers.getVarIdx();
448     break;
449   }
450   default:
451     llvm_unreachable("unexpected stackmap opcode");
452   }
453 
454   // Return false if any operands requested for folding are not foldable (not
455   // part of the stackmap's live values).
456   for (unsigned Op : Ops) {
457     if (Op < StartIdx)
458       return nullptr;
459   }
460 
461   MachineInstr *NewMI =
462     MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
463   MachineInstrBuilder MIB(MF, NewMI);
464 
465   // No need to fold return, the meta data, and function arguments
466   for (unsigned i = 0; i < StartIdx; ++i)
467     MIB.addOperand(MI->getOperand(i));
468 
469   for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
470     MachineOperand &MO = MI->getOperand(i);
471     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
472       unsigned SpillSize;
473       unsigned SpillOffset;
474       // Compute the spill slot size and offset.
475       const TargetRegisterClass *RC =
476         MF.getRegInfo().getRegClass(MO.getReg());
477       bool Valid =
478           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
479       if (!Valid)
480         report_fatal_error("cannot spill patchpoint subregister operand");
481       MIB.addImm(StackMaps::IndirectMemRefOp);
482       MIB.addImm(SpillSize);
483       MIB.addFrameIndex(FrameIndex);
484       MIB.addImm(SpillOffset);
485     }
486     else
487       MIB.addOperand(MO);
488   }
489   return NewMI;
490 }
491 
492 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
493 /// slot into the specified machine instruction for the specified operand(s).
494 /// If this is possible, a new instruction is returned with the specified
495 /// operand folded, otherwise NULL is returned. The client is responsible for
496 /// removing the old instruction and adding the new one in the instruction
497 /// stream.
498 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
499                                                  ArrayRef<unsigned> Ops,
500                                                  int FI,
501                                                  LiveIntervals *LIS) const {
502   unsigned Flags = 0;
503   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
504     if (MI->getOperand(Ops[i]).isDef())
505       Flags |= MachineMemOperand::MOStore;
506     else
507       Flags |= MachineMemOperand::MOLoad;
508 
509   MachineBasicBlock *MBB = MI->getParent();
510   assert(MBB && "foldMemoryOperand needs an inserted instruction");
511   MachineFunction &MF = *MBB->getParent();
512 
513   MachineInstr *NewMI = nullptr;
514 
515   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
516       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
517     // Fold stackmap/patchpoint.
518     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
519     if (NewMI)
520       MBB->insert(MI, NewMI);
521   } else {
522     // Ask the target to do the actual folding.
523     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
524   }
525 
526   if (NewMI) {
527     NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
528     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
529     assert((!(Flags & MachineMemOperand::MOStore) ||
530             NewMI->mayStore()) &&
531            "Folded a def to a non-store!");
532     assert((!(Flags & MachineMemOperand::MOLoad) ||
533             NewMI->mayLoad()) &&
534            "Folded a use to a non-load!");
535     const MachineFrameInfo &MFI = *MF.getFrameInfo();
536     assert(MFI.getObjectOffset(FI) != -1);
537     MachineMemOperand *MMO = MF.getMachineMemOperand(
538         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
539         MFI.getObjectAlignment(FI));
540     NewMI->addMemOperand(MF, MMO);
541 
542     return NewMI;
543   }
544 
545   // Straight COPY may fold as load/store.
546   if (!MI->isCopy() || Ops.size() != 1)
547     return nullptr;
548 
549   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
550   if (!RC)
551     return nullptr;
552 
553   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
554   MachineBasicBlock::iterator Pos = MI;
555   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
556 
557   if (Flags == MachineMemOperand::MOStore)
558     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
559   else
560     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
561   return --Pos;
562 }
563 
564 bool TargetInstrInfo::hasReassociableOperands(
565     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
566   const MachineOperand &Op1 = Inst.getOperand(1);
567   const MachineOperand &Op2 = Inst.getOperand(2);
568   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
569 
570   // We need virtual register definitions for the operands that we will
571   // reassociate.
572   MachineInstr *MI1 = nullptr;
573   MachineInstr *MI2 = nullptr;
574   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
575     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
576   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
577     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
578 
579   // And they need to be in the trace (otherwise, they won't have a depth).
580   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
581 }
582 
583 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
584                                              bool &Commuted) const {
585   const MachineBasicBlock *MBB = Inst.getParent();
586   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
587   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
588   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
589   unsigned AssocOpcode = Inst.getOpcode();
590 
591   // If only one operand has the same opcode and it's the second source operand,
592   // the operands must be commuted.
593   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
594   if (Commuted)
595     std::swap(MI1, MI2);
596 
597   // 1. The previous instruction must be the same type as Inst.
598   // 2. The previous instruction must have virtual register definitions for its
599   //    operands in the same basic block as Inst.
600   // 3. The previous instruction's result must only be used by Inst.
601   return MI1->getOpcode() == AssocOpcode &&
602          hasReassociableOperands(*MI1, MBB) &&
603          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
604 }
605 
606 // 1. The operation must be associative and commutative.
607 // 2. The instruction must have virtual register definitions for its
608 //    operands in the same basic block.
609 // 3. The instruction must have a reassociable sibling.
610 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
611                                                bool &Commuted) const {
612   return isAssociativeAndCommutative(Inst) &&
613          hasReassociableOperands(Inst, Inst.getParent()) &&
614          hasReassociableSibling(Inst, Commuted);
615 }
616 
617 // The concept of the reassociation pass is that these operations can benefit
618 // from this kind of transformation:
619 //
620 // A = ? op ?
621 // B = A op X (Prev)
622 // C = B op Y (Root)
623 // -->
624 // A = ? op ?
625 // B = X op Y
626 // C = A op B
627 //
628 // breaking the dependency between A and B, allowing them to be executed in
629 // parallel (or back-to-back in a pipeline) instead of depending on each other.
630 
631 // FIXME: This has the potential to be expensive (compile time) while not
632 // improving the code at all. Some ways to limit the overhead:
633 // 1. Track successful transforms; bail out if hit rate gets too low.
634 // 2. Only enable at -O3 or some other non-default optimization level.
635 // 3. Pre-screen pattern candidates here: if an operand of the previous
636 //    instruction is known to not increase the critical path, then don't match
637 //    that pattern.
638 bool TargetInstrInfo::getMachineCombinerPatterns(
639     MachineInstr &Root,
640     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
641   bool Commute;
642   if (isReassociationCandidate(Root, Commute)) {
643     // We found a sequence of instructions that may be suitable for a
644     // reassociation of operands to increase ILP. Specify each commutation
645     // possibility for the Prev instruction in the sequence and let the
646     // machine combiner decide if changing the operands is worthwhile.
647     if (Commute) {
648       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
649       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
650     } else {
651       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
652       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
653     }
654     return true;
655   }
656 
657   return false;
658 }
659 /// Return true when a code sequence can improve loop throughput.
660 bool
661 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
662   return false;
663 }
664 /// Attempt the reassociation transformation to reduce critical path length.
665 /// See the above comments before getMachineCombinerPatterns().
666 void TargetInstrInfo::reassociateOps(
667     MachineInstr &Root, MachineInstr &Prev,
668     MachineCombinerPattern Pattern,
669     SmallVectorImpl<MachineInstr *> &InsInstrs,
670     SmallVectorImpl<MachineInstr *> &DelInstrs,
671     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
672   MachineFunction *MF = Root.getParent()->getParent();
673   MachineRegisterInfo &MRI = MF->getRegInfo();
674   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
675   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
676   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
677 
678   // This array encodes the operand index for each parameter because the
679   // operands may be commuted. Each row corresponds to a pattern value,
680   // and each column specifies the index of A, B, X, Y.
681   unsigned OpIdx[4][4] = {
682     { 1, 1, 2, 2 },
683     { 1, 2, 2, 1 },
684     { 2, 1, 1, 2 },
685     { 2, 2, 1, 1 }
686   };
687 
688   int Row;
689   switch (Pattern) {
690   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
691   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
692   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
693   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
694   default: llvm_unreachable("unexpected MachineCombinerPattern");
695   }
696 
697   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
698   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
699   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
700   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
701   MachineOperand &OpC = Root.getOperand(0);
702 
703   unsigned RegA = OpA.getReg();
704   unsigned RegB = OpB.getReg();
705   unsigned RegX = OpX.getReg();
706   unsigned RegY = OpY.getReg();
707   unsigned RegC = OpC.getReg();
708 
709   if (TargetRegisterInfo::isVirtualRegister(RegA))
710     MRI.constrainRegClass(RegA, RC);
711   if (TargetRegisterInfo::isVirtualRegister(RegB))
712     MRI.constrainRegClass(RegB, RC);
713   if (TargetRegisterInfo::isVirtualRegister(RegX))
714     MRI.constrainRegClass(RegX, RC);
715   if (TargetRegisterInfo::isVirtualRegister(RegY))
716     MRI.constrainRegClass(RegY, RC);
717   if (TargetRegisterInfo::isVirtualRegister(RegC))
718     MRI.constrainRegClass(RegC, RC);
719 
720   // Create a new virtual register for the result of (X op Y) instead of
721   // recycling RegB because the MachineCombiner's computation of the critical
722   // path requires a new register definition rather than an existing one.
723   unsigned NewVR = MRI.createVirtualRegister(RC);
724   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
725 
726   unsigned Opcode = Root.getOpcode();
727   bool KillA = OpA.isKill();
728   bool KillX = OpX.isKill();
729   bool KillY = OpY.isKill();
730 
731   // Create new instructions for insertion.
732   MachineInstrBuilder MIB1 =
733       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
734           .addReg(RegX, getKillRegState(KillX))
735           .addReg(RegY, getKillRegState(KillY));
736   MachineInstrBuilder MIB2 =
737       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
738           .addReg(RegA, getKillRegState(KillA))
739           .addReg(NewVR, getKillRegState(true));
740 
741   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
742 
743   // Record new instructions for insertion and old instructions for deletion.
744   InsInstrs.push_back(MIB1);
745   InsInstrs.push_back(MIB2);
746   DelInstrs.push_back(&Prev);
747   DelInstrs.push_back(&Root);
748 }
749 
750 void TargetInstrInfo::genAlternativeCodeSequence(
751     MachineInstr &Root, MachineCombinerPattern Pattern,
752     SmallVectorImpl<MachineInstr *> &InsInstrs,
753     SmallVectorImpl<MachineInstr *> &DelInstrs,
754     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
755   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
756 
757   // Select the previous instruction in the sequence based on the input pattern.
758   MachineInstr *Prev = nullptr;
759   switch (Pattern) {
760   case MachineCombinerPattern::REASSOC_AX_BY:
761   case MachineCombinerPattern::REASSOC_XA_BY:
762     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
763     break;
764   case MachineCombinerPattern::REASSOC_AX_YB:
765   case MachineCombinerPattern::REASSOC_XA_YB:
766     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
767     break;
768   default:
769     break;
770   }
771 
772   assert(Prev && "Unknown pattern for machine combiner");
773 
774   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
775 }
776 
777 /// foldMemoryOperand - Same as the previous version except it allows folding
778 /// of any load and store from / to any address, not just from a specific
779 /// stack slot.
780 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
781                                                  ArrayRef<unsigned> Ops,
782                                                  MachineInstr *LoadMI,
783                                                  LiveIntervals *LIS) const {
784   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
785 #ifndef NDEBUG
786   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
787     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
788 #endif
789   MachineBasicBlock &MBB = *MI->getParent();
790   MachineFunction &MF = *MBB.getParent();
791 
792   // Ask the target to do the actual folding.
793   MachineInstr *NewMI = nullptr;
794   int FrameIndex = 0;
795 
796   if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
797        MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
798       isLoadFromStackSlot(LoadMI, FrameIndex)) {
799     // Fold stackmap/patchpoint.
800     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
801     if (NewMI)
802       NewMI = MBB.insert(MI, NewMI);
803   } else {
804     // Ask the target to do the actual folding.
805     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
806   }
807 
808   if (!NewMI) return nullptr;
809 
810   // Copy the memoperands from the load to the folded instruction.
811   if (MI->memoperands_empty()) {
812     NewMI->setMemRefs(LoadMI->memoperands_begin(),
813                       LoadMI->memoperands_end());
814   }
815   else {
816     // Handle the rare case of folding multiple loads.
817     NewMI->setMemRefs(MI->memoperands_begin(),
818                       MI->memoperands_end());
819     for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
820            E = LoadMI->memoperands_end(); I != E; ++I) {
821       NewMI->addMemOperand(MF, *I);
822     }
823   }
824   return NewMI;
825 }
826 
827 bool TargetInstrInfo::
828 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
829                                          AliasAnalysis *AA) const {
830   const MachineFunction &MF = *MI->getParent()->getParent();
831   const MachineRegisterInfo &MRI = MF.getRegInfo();
832 
833   // Remat clients assume operand 0 is the defined register.
834   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
835     return false;
836   unsigned DefReg = MI->getOperand(0).getReg();
837 
838   // A sub-register definition can only be rematerialized if the instruction
839   // doesn't read the other parts of the register.  Otherwise it is really a
840   // read-modify-write operation on the full virtual register which cannot be
841   // moved safely.
842   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
843       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
844     return false;
845 
846   // A load from a fixed stack slot can be rematerialized. This may be
847   // redundant with subsequent checks, but it's target-independent,
848   // simple, and a common case.
849   int FrameIdx = 0;
850   if (isLoadFromStackSlot(MI, FrameIdx) &&
851       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
852     return true;
853 
854   // Avoid instructions obviously unsafe for remat.
855   if (MI->isNotDuplicable() || MI->mayStore() ||
856       MI->hasUnmodeledSideEffects())
857     return false;
858 
859   // Don't remat inline asm. We have no idea how expensive it is
860   // even if it's side effect free.
861   if (MI->isInlineAsm())
862     return false;
863 
864   // Avoid instructions which load from potentially varying memory.
865   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
866     return false;
867 
868   // If any of the registers accessed are non-constant, conservatively assume
869   // the instruction is not rematerializable.
870   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
871     const MachineOperand &MO = MI->getOperand(i);
872     if (!MO.isReg()) continue;
873     unsigned Reg = MO.getReg();
874     if (Reg == 0)
875       continue;
876 
877     // Check for a well-behaved physical register.
878     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
879       if (MO.isUse()) {
880         // If the physreg has no defs anywhere, it's just an ambient register
881         // and we can freely move its uses. Alternatively, if it's allocatable,
882         // it could get allocated to something with a def during allocation.
883         if (!MRI.isConstantPhysReg(Reg, MF))
884           return false;
885       } else {
886         // A physreg def. We can't remat it.
887         return false;
888       }
889       continue;
890     }
891 
892     // Only allow one virtual-register def.  There may be multiple defs of the
893     // same virtual register, though.
894     if (MO.isDef() && Reg != DefReg)
895       return false;
896 
897     // Don't allow any virtual-register uses. Rematting an instruction with
898     // virtual register uses would length the live ranges of the uses, which
899     // is not necessarily a good idea, certainly not "trivial".
900     if (MO.isUse())
901       return false;
902   }
903 
904   // Everything checked out.
905   return true;
906 }
907 
908 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
909   const MachineFunction *MF = MI->getParent()->getParent();
910   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
911   bool StackGrowsDown =
912     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
913 
914   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
915   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
916 
917   if (MI->getOpcode() != FrameSetupOpcode &&
918       MI->getOpcode() != FrameDestroyOpcode)
919     return 0;
920 
921   int SPAdj = MI->getOperand(0).getImm();
922   SPAdj = TFI->alignSPAdjust(SPAdj);
923 
924   if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
925        (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
926     SPAdj = -SPAdj;
927 
928   return SPAdj;
929 }
930 
931 /// isSchedulingBoundary - Test if the given instruction should be
932 /// considered a scheduling boundary. This primarily includes labels
933 /// and terminators.
934 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
935                                            const MachineBasicBlock *MBB,
936                                            const MachineFunction &MF) const {
937   // Terminators and labels can't be scheduled around.
938   if (MI->isTerminator() || MI->isPosition())
939     return true;
940 
941   // Don't attempt to schedule around any instruction that defines
942   // a stack-oriented pointer, as it's unlikely to be profitable. This
943   // saves compile time, because it doesn't require every single
944   // stack slot reference to depend on the instruction that does the
945   // modification.
946   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
947   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
948   return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
949 }
950 
951 // Provide a global flag for disabling the PreRA hazard recognizer that targets
952 // may choose to honor.
953 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
954   return !DisableHazardRecognizer;
955 }
956 
957 // Default implementation of CreateTargetRAHazardRecognizer.
958 ScheduleHazardRecognizer *TargetInstrInfo::
959 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
960                              const ScheduleDAG *DAG) const {
961   // Dummy hazard recognizer allows all instructions to issue.
962   return new ScheduleHazardRecognizer();
963 }
964 
965 // Default implementation of CreateTargetMIHazardRecognizer.
966 ScheduleHazardRecognizer *TargetInstrInfo::
967 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
968                                const ScheduleDAG *DAG) const {
969   return (ScheduleHazardRecognizer *)
970     new ScoreboardHazardRecognizer(II, DAG, "misched");
971 }
972 
973 // Default implementation of CreateTargetPostRAHazardRecognizer.
974 ScheduleHazardRecognizer *TargetInstrInfo::
975 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
976                                    const ScheduleDAG *DAG) const {
977   return (ScheduleHazardRecognizer *)
978     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
979 }
980 
981 //===----------------------------------------------------------------------===//
982 //  SelectionDAG latency interface.
983 //===----------------------------------------------------------------------===//
984 
985 int
986 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
987                                    SDNode *DefNode, unsigned DefIdx,
988                                    SDNode *UseNode, unsigned UseIdx) const {
989   if (!ItinData || ItinData->isEmpty())
990     return -1;
991 
992   if (!DefNode->isMachineOpcode())
993     return -1;
994 
995   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
996   if (!UseNode->isMachineOpcode())
997     return ItinData->getOperandCycle(DefClass, DefIdx);
998   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
999   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1000 }
1001 
1002 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1003                                      SDNode *N) const {
1004   if (!ItinData || ItinData->isEmpty())
1005     return 1;
1006 
1007   if (!N->isMachineOpcode())
1008     return 1;
1009 
1010   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1011 }
1012 
1013 //===----------------------------------------------------------------------===//
1014 //  MachineInstr latency interface.
1015 //===----------------------------------------------------------------------===//
1016 
1017 unsigned
1018 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1019                                 const MachineInstr *MI) const {
1020   if (!ItinData || ItinData->isEmpty())
1021     return 1;
1022 
1023   unsigned Class = MI->getDesc().getSchedClass();
1024   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1025   if (UOps >= 0)
1026     return UOps;
1027 
1028   // The # of u-ops is dynamically determined. The specific target should
1029   // override this function to return the right number.
1030   return 1;
1031 }
1032 
1033 /// Return the default expected latency for a def based on it's opcode.
1034 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1035                                             const MachineInstr *DefMI) const {
1036   if (DefMI->isTransient())
1037     return 0;
1038   if (DefMI->mayLoad())
1039     return SchedModel.LoadLatency;
1040   if (isHighLatencyDef(DefMI->getOpcode()))
1041     return SchedModel.HighLatency;
1042   return 1;
1043 }
1044 
1045 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1046   return 0;
1047 }
1048 
1049 unsigned TargetInstrInfo::
1050 getInstrLatency(const InstrItineraryData *ItinData,
1051                 const MachineInstr *MI,
1052                 unsigned *PredCost) const {
1053   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1054   // still have a MinLatency property, which getStageLatency checks.
1055   if (!ItinData)
1056     return MI->mayLoad() ? 2 : 1;
1057 
1058   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
1059 }
1060 
1061 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1062                                        const MachineInstr *DefMI,
1063                                        unsigned DefIdx) const {
1064   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1065   if (!ItinData || ItinData->isEmpty())
1066     return false;
1067 
1068   unsigned DefClass = DefMI->getDesc().getSchedClass();
1069   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1070   return (DefCycle != -1 && DefCycle <= 1);
1071 }
1072 
1073 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1074 /// itinerary. This may be overriden by the target.
1075 int TargetInstrInfo::
1076 getOperandLatency(const InstrItineraryData *ItinData,
1077                   const MachineInstr *DefMI, unsigned DefIdx,
1078                   const MachineInstr *UseMI, unsigned UseIdx) const {
1079   unsigned DefClass = DefMI->getDesc().getSchedClass();
1080   unsigned UseClass = UseMI->getDesc().getSchedClass();
1081   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1082 }
1083 
1084 /// If we can determine the operand latency from the def only, without itinerary
1085 /// lookup, do so. Otherwise return -1.
1086 int TargetInstrInfo::computeDefOperandLatency(
1087   const InstrItineraryData *ItinData,
1088   const MachineInstr *DefMI) const {
1089 
1090   // Let the target hook getInstrLatency handle missing itineraries.
1091   if (!ItinData)
1092     return getInstrLatency(ItinData, DefMI);
1093 
1094   if(ItinData->isEmpty())
1095     return defaultDefLatency(ItinData->SchedModel, DefMI);
1096 
1097   // ...operand lookup required
1098   return -1;
1099 }
1100 
1101 /// computeOperandLatency - Compute and return the latency of the given data
1102 /// dependent def and use when the operand indices are already known. UseMI may
1103 /// be NULL for an unknown use.
1104 ///
1105 /// FindMin may be set to get the minimum vs. expected latency. Minimum
1106 /// latency is used for scheduling groups, while expected latency is for
1107 /// instruction cost and critical path.
1108 ///
1109 /// Depending on the subtarget's itinerary properties, this may or may not need
1110 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
1111 /// UseIdx to compute min latency.
1112 unsigned TargetInstrInfo::
1113 computeOperandLatency(const InstrItineraryData *ItinData,
1114                       const MachineInstr *DefMI, unsigned DefIdx,
1115                       const MachineInstr *UseMI, unsigned UseIdx) const {
1116 
1117   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1118   if (DefLatency >= 0)
1119     return DefLatency;
1120 
1121   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1122 
1123   int OperLatency = 0;
1124   if (UseMI)
1125     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
1126   else {
1127     unsigned DefClass = DefMI->getDesc().getSchedClass();
1128     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1129   }
1130   if (OperLatency >= 0)
1131     return OperLatency;
1132 
1133   // No operand latency was found.
1134   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1135 
1136   // Expected latency is the max of the stage latency and itinerary props.
1137   InstrLatency = std::max(InstrLatency,
1138                           defaultDefLatency(ItinData->SchedModel, DefMI));
1139   return InstrLatency;
1140 }
1141 
1142 bool TargetInstrInfo::getRegSequenceInputs(
1143     const MachineInstr &MI, unsigned DefIdx,
1144     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1145   assert((MI.isRegSequence() ||
1146           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1147 
1148   if (!MI.isRegSequence())
1149     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1150 
1151   // We are looking at:
1152   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1153   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1154   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1155        OpIdx += 2) {
1156     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1157     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1158     assert(MOSubIdx.isImm() &&
1159            "One of the subindex of the reg_sequence is not an immediate");
1160     // Record Reg:SubReg, SubIdx.
1161     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1162                                             (unsigned)MOSubIdx.getImm()));
1163   }
1164   return true;
1165 }
1166 
1167 bool TargetInstrInfo::getExtractSubregInputs(
1168     const MachineInstr &MI, unsigned DefIdx,
1169     RegSubRegPairAndIdx &InputReg) const {
1170   assert((MI.isExtractSubreg() ||
1171       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1172 
1173   if (!MI.isExtractSubreg())
1174     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1175 
1176   // We are looking at:
1177   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1178   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1179   const MachineOperand &MOReg = MI.getOperand(1);
1180   const MachineOperand &MOSubIdx = MI.getOperand(2);
1181   assert(MOSubIdx.isImm() &&
1182          "The subindex of the extract_subreg is not an immediate");
1183 
1184   InputReg.Reg = MOReg.getReg();
1185   InputReg.SubReg = MOReg.getSubReg();
1186   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1187   return true;
1188 }
1189 
1190 bool TargetInstrInfo::getInsertSubregInputs(
1191     const MachineInstr &MI, unsigned DefIdx,
1192     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1193   assert((MI.isInsertSubreg() ||
1194       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1195 
1196   if (!MI.isInsertSubreg())
1197     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1198 
1199   // We are looking at:
1200   // Def = INSERT_SEQUENCE v0, v1, sub0.
1201   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1202   const MachineOperand &MOBaseReg = MI.getOperand(1);
1203   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1204   const MachineOperand &MOSubIdx = MI.getOperand(3);
1205   assert(MOSubIdx.isImm() &&
1206          "One of the subindex of the reg_sequence is not an immediate");
1207   BaseReg.Reg = MOBaseReg.getReg();
1208   BaseReg.SubReg = MOBaseReg.getSubReg();
1209 
1210   InsertedReg.Reg = MOInsertedReg.getReg();
1211   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1212   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1213   return true;
1214 }
1215