1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetInstrInfo.h" 14 #include "llvm/CodeGen/MachineFrameInfo.h" 15 #include "llvm/CodeGen/MachineInstrBuilder.h" 16 #include "llvm/CodeGen/MachineMemOperand.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/PseudoSourceValue.h" 19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 20 #include "llvm/CodeGen/StackMaps.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSchedule.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCInstrItineraries.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetMachine.h" 32 #include <cctype> 33 34 using namespace llvm; 35 36 static cl::opt<bool> DisableHazardRecognizer( 37 "disable-sched-hazard", cl::Hidden, cl::init(false), 38 cl::desc("Disable hazard detection during preRA scheduling")); 39 40 TargetInstrInfo::~TargetInstrInfo() { 41 } 42 43 const TargetRegisterClass* 44 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 45 const TargetRegisterInfo *TRI, 46 const MachineFunction &MF) const { 47 if (OpNum >= MCID.getNumOperands()) 48 return nullptr; 49 50 short RegClass = MCID.OpInfo[OpNum].RegClass; 51 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 52 return TRI->getPointerRegClass(MF, RegClass); 53 54 // Instructions like INSERT_SUBREG do not have fixed register classes. 55 if (RegClass < 0) 56 return nullptr; 57 58 // Otherwise just look it up normally. 59 return TRI->getRegClass(RegClass); 60 } 61 62 /// insertNoop - Insert a noop into the instruction stream at the specified 63 /// point. 64 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 65 MachineBasicBlock::iterator MI) const { 66 llvm_unreachable("Target didn't implement insertNoop!"); 67 } 68 69 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { 70 return strncmp(Str, MAI.getCommentString().data(), 71 MAI.getCommentString().size()) == 0; 72 } 73 74 /// Measure the specified inline asm to determine an approximation of its 75 /// length. 76 /// Comments (which run till the next SeparatorString or newline) do not 77 /// count as an instruction. 78 /// Any other non-whitespace text is considered an instruction, with 79 /// multiple instructions separated by SeparatorString or newlines. 80 /// Variable-length instructions are not handled here; this function 81 /// may be overloaded in the target code to do that. 82 /// We implement a special case of the .space directive which takes only a 83 /// single integer argument in base 10 that is the size in bytes. This is a 84 /// restricted form of the GAS directive in that we only interpret 85 /// simple--i.e. not a logical or arithmetic expression--size values without 86 /// the optional fill value. This is primarily used for creating arbitrary 87 /// sized inline asm blocks for testing purposes. 88 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 89 const MCAsmInfo &MAI) const { 90 // Count the number of instructions in the asm. 91 bool AtInsnStart = true; 92 unsigned Length = 0; 93 for (; *Str; ++Str) { 94 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 95 strlen(MAI.getSeparatorString())) == 0) { 96 AtInsnStart = true; 97 } else if (isAsmComment(Str, MAI)) { 98 // Stop counting as an instruction after a comment until the next 99 // separator. 100 AtInsnStart = false; 101 } 102 103 if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 104 unsigned AddLength = MAI.getMaxInstLength(); 105 if (strncmp(Str, ".space", 6) == 0) { 106 char *EStr; 107 int SpaceSize; 108 SpaceSize = strtol(Str + 6, &EStr, 10); 109 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; 110 while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) 111 ++EStr; 112 if (*EStr == '\0' || *EStr == '\n' || 113 isAsmComment(EStr, MAI)) // Successfully parsed .space argument 114 AddLength = SpaceSize; 115 } 116 Length += AddLength; 117 AtInsnStart = false; 118 } 119 } 120 121 return Length; 122 } 123 124 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 125 /// after it, replacing it with an unconditional branch to NewDest. 126 void 127 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 128 MachineBasicBlock *NewDest) const { 129 MachineBasicBlock *MBB = Tail->getParent(); 130 131 // Remove all the old successors of MBB from the CFG. 132 while (!MBB->succ_empty()) 133 MBB->removeSuccessor(MBB->succ_begin()); 134 135 // Save off the debug loc before erasing the instruction. 136 DebugLoc DL = Tail->getDebugLoc(); 137 138 // Remove all the dead instructions from the end of MBB. 139 MBB->erase(Tail, MBB->end()); 140 141 // If MBB isn't immediately before MBB, insert a branch to it. 142 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 143 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 144 MBB->addSuccessor(NewDest); 145 } 146 147 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 148 bool NewMI, unsigned Idx1, 149 unsigned Idx2) const { 150 const MCInstrDesc &MCID = MI.getDesc(); 151 bool HasDef = MCID.getNumDefs(); 152 if (HasDef && !MI.getOperand(0).isReg()) 153 // No idea how to commute this instruction. Target should implement its own. 154 return nullptr; 155 156 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 157 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 158 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 159 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 160 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 161 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 162 "This only knows how to commute register operands so far"); 163 164 unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; 165 unsigned Reg1 = MI.getOperand(Idx1).getReg(); 166 unsigned Reg2 = MI.getOperand(Idx2).getReg(); 167 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 168 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 169 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 170 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 171 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 172 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 173 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 174 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 175 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 176 // Avoid calling isRenamable for virtual registers since we assert that 177 // renamable property is only queried/set for physical registers. 178 bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1) 179 ? MI.getOperand(Idx1).isRenamable() 180 : false; 181 bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2) 182 ? MI.getOperand(Idx2).isRenamable() 183 : false; 184 // If destination is tied to either of the commuted source register, then 185 // it must be updated. 186 if (HasDef && Reg0 == Reg1 && 187 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 188 Reg2IsKill = false; 189 Reg0 = Reg2; 190 SubReg0 = SubReg2; 191 } else if (HasDef && Reg0 == Reg2 && 192 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 193 Reg1IsKill = false; 194 Reg0 = Reg1; 195 SubReg0 = SubReg1; 196 } 197 198 MachineInstr *CommutedMI = nullptr; 199 if (NewMI) { 200 // Create a new instruction. 201 MachineFunction &MF = *MI.getMF(); 202 CommutedMI = MF.CloneMachineInstr(&MI); 203 } else { 204 CommutedMI = &MI; 205 } 206 207 if (HasDef) { 208 CommutedMI->getOperand(0).setReg(Reg0); 209 CommutedMI->getOperand(0).setSubReg(SubReg0); 210 } 211 CommutedMI->getOperand(Idx2).setReg(Reg1); 212 CommutedMI->getOperand(Idx1).setReg(Reg2); 213 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 214 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 215 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 216 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 217 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 218 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 219 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 220 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 221 // Avoid calling setIsRenamable for virtual registers since we assert that 222 // renamable property is only queried/set for physical registers. 223 if (TargetRegisterInfo::isPhysicalRegister(Reg1)) 224 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); 225 if (TargetRegisterInfo::isPhysicalRegister(Reg2)) 226 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); 227 return CommutedMI; 228 } 229 230 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 231 unsigned OpIdx1, 232 unsigned OpIdx2) const { 233 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 234 // any commutable operand, which is done in findCommutedOpIndices() method 235 // called below. 236 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 237 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 238 assert(MI.isCommutable() && 239 "Precondition violation: MI must be commutable."); 240 return nullptr; 241 } 242 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 243 } 244 245 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 246 unsigned &ResultIdx2, 247 unsigned CommutableOpIdx1, 248 unsigned CommutableOpIdx2) { 249 if (ResultIdx1 == CommuteAnyOperandIndex && 250 ResultIdx2 == CommuteAnyOperandIndex) { 251 ResultIdx1 = CommutableOpIdx1; 252 ResultIdx2 = CommutableOpIdx2; 253 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 254 if (ResultIdx2 == CommutableOpIdx1) 255 ResultIdx1 = CommutableOpIdx2; 256 else if (ResultIdx2 == CommutableOpIdx2) 257 ResultIdx1 = CommutableOpIdx1; 258 else 259 return false; 260 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 261 if (ResultIdx1 == CommutableOpIdx1) 262 ResultIdx2 = CommutableOpIdx2; 263 else if (ResultIdx1 == CommutableOpIdx2) 264 ResultIdx2 = CommutableOpIdx1; 265 else 266 return false; 267 } else 268 // Check that the result operand indices match the given commutable 269 // operand indices. 270 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 271 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 272 273 return true; 274 } 275 276 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, 277 unsigned &SrcOpIdx1, 278 unsigned &SrcOpIdx2) const { 279 assert(!MI.isBundle() && 280 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 281 282 const MCInstrDesc &MCID = MI.getDesc(); 283 if (!MCID.isCommutable()) 284 return false; 285 286 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 287 // is not true, then the target must implement this. 288 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 289 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 290 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 291 CommutableOpIdx1, CommutableOpIdx2)) 292 return false; 293 294 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 295 // No idea. 296 return false; 297 return true; 298 } 299 300 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 301 if (!MI.isTerminator()) return false; 302 303 // Conditional branch is a special case. 304 if (MI.isBranch() && !MI.isBarrier()) 305 return true; 306 if (!MI.isPredicable()) 307 return true; 308 return !isPredicated(MI); 309 } 310 311 bool TargetInstrInfo::PredicateInstruction( 312 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 313 bool MadeChange = false; 314 315 assert(!MI.isBundle() && 316 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 317 318 const MCInstrDesc &MCID = MI.getDesc(); 319 if (!MI.isPredicable()) 320 return false; 321 322 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 323 if (MCID.OpInfo[i].isPredicate()) { 324 MachineOperand &MO = MI.getOperand(i); 325 if (MO.isReg()) { 326 MO.setReg(Pred[j].getReg()); 327 MadeChange = true; 328 } else if (MO.isImm()) { 329 MO.setImm(Pred[j].getImm()); 330 MadeChange = true; 331 } else if (MO.isMBB()) { 332 MO.setMBB(Pred[j].getMBB()); 333 MadeChange = true; 334 } 335 ++j; 336 } 337 } 338 return MadeChange; 339 } 340 341 bool TargetInstrInfo::hasLoadFromStackSlot( 342 const MachineInstr &MI, 343 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 344 size_t StartSize = Accesses.size(); 345 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 346 oe = MI.memoperands_end(); 347 o != oe; ++o) { 348 if ((*o)->isLoad() && 349 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 350 Accesses.push_back(*o); 351 } 352 return Accesses.size() != StartSize; 353 } 354 355 bool TargetInstrInfo::hasStoreToStackSlot( 356 const MachineInstr &MI, 357 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 358 size_t StartSize = Accesses.size(); 359 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 360 oe = MI.memoperands_end(); 361 o != oe; ++o) { 362 if ((*o)->isStore() && 363 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 364 Accesses.push_back(*o); 365 } 366 return Accesses.size() != StartSize; 367 } 368 369 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 370 unsigned SubIdx, unsigned &Size, 371 unsigned &Offset, 372 const MachineFunction &MF) const { 373 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 374 if (!SubIdx) { 375 Size = TRI->getSpillSize(*RC); 376 Offset = 0; 377 return true; 378 } 379 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 380 // Convert bit size to byte size. 381 if (BitSize % 8) 382 return false; 383 384 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 385 if (BitOffset < 0 || BitOffset % 8) 386 return false; 387 388 Size = BitSize /= 8; 389 Offset = (unsigned)BitOffset / 8; 390 391 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); 392 393 if (!MF.getDataLayout().isLittleEndian()) { 394 Offset = TRI->getSpillSize(*RC) - (Offset + Size); 395 } 396 return true; 397 } 398 399 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 400 MachineBasicBlock::iterator I, 401 unsigned DestReg, unsigned SubIdx, 402 const MachineInstr &Orig, 403 const TargetRegisterInfo &TRI) const { 404 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 405 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 406 MBB.insert(I, MI); 407 } 408 409 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 410 const MachineInstr &MI1, 411 const MachineRegisterInfo *MRI) const { 412 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 413 } 414 415 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, 416 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { 417 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 418 MachineFunction &MF = *MBB.getParent(); 419 return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); 420 } 421 422 // If the COPY instruction in MI can be folded to a stack operation, return 423 // the register class to use. 424 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 425 unsigned FoldIdx) { 426 assert(MI.isCopy() && "MI must be a COPY instruction"); 427 if (MI.getNumOperands() != 2) 428 return nullptr; 429 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 430 431 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 432 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 433 434 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 435 return nullptr; 436 437 unsigned FoldReg = FoldOp.getReg(); 438 unsigned LiveReg = LiveOp.getReg(); 439 440 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 441 "Cannot fold physregs"); 442 443 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 444 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 445 446 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 447 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 448 449 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 450 return RC; 451 452 // FIXME: Allow folding when register classes are memory compatible. 453 return nullptr; 454 } 455 456 void TargetInstrInfo::getNoop(MCInst &NopInst) const { 457 llvm_unreachable("Not implemented"); 458 } 459 460 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 461 ArrayRef<unsigned> Ops, int FrameIndex, 462 const TargetInstrInfo &TII) { 463 unsigned StartIdx = 0; 464 switch (MI.getOpcode()) { 465 case TargetOpcode::STACKMAP: { 466 // StackMapLiveValues are foldable 467 StartIdx = StackMapOpers(&MI).getVarIdx(); 468 break; 469 } 470 case TargetOpcode::PATCHPOINT: { 471 // For PatchPoint, the call args are not foldable (even if reported in the 472 // stackmap e.g. via anyregcc). 473 StartIdx = PatchPointOpers(&MI).getVarIdx(); 474 break; 475 } 476 case TargetOpcode::STATEPOINT: { 477 // For statepoints, fold deopt and gc arguments, but not call arguments. 478 StartIdx = StatepointOpers(&MI).getVarIdx(); 479 break; 480 } 481 default: 482 llvm_unreachable("unexpected stackmap opcode"); 483 } 484 485 // Return false if any operands requested for folding are not foldable (not 486 // part of the stackmap's live values). 487 for (unsigned Op : Ops) { 488 if (Op < StartIdx) 489 return nullptr; 490 } 491 492 MachineInstr *NewMI = 493 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 494 MachineInstrBuilder MIB(MF, NewMI); 495 496 // No need to fold return, the meta data, and function arguments 497 for (unsigned i = 0; i < StartIdx; ++i) 498 MIB.add(MI.getOperand(i)); 499 500 for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { 501 MachineOperand &MO = MI.getOperand(i); 502 if (is_contained(Ops, i)) { 503 unsigned SpillSize; 504 unsigned SpillOffset; 505 // Compute the spill slot size and offset. 506 const TargetRegisterClass *RC = 507 MF.getRegInfo().getRegClass(MO.getReg()); 508 bool Valid = 509 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 510 if (!Valid) 511 report_fatal_error("cannot spill patchpoint subregister operand"); 512 MIB.addImm(StackMaps::IndirectMemRefOp); 513 MIB.addImm(SpillSize); 514 MIB.addFrameIndex(FrameIndex); 515 MIB.addImm(SpillOffset); 516 } 517 else 518 MIB.add(MO); 519 } 520 return NewMI; 521 } 522 523 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 524 ArrayRef<unsigned> Ops, int FI, 525 LiveIntervals *LIS) const { 526 auto Flags = MachineMemOperand::MONone; 527 for (unsigned OpIdx : Ops) 528 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore 529 : MachineMemOperand::MOLoad; 530 531 MachineBasicBlock *MBB = MI.getParent(); 532 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 533 MachineFunction &MF = *MBB->getParent(); 534 535 // If we're not folding a load into a subreg, the size of the load is the 536 // size of the spill slot. But if we are, we need to figure out what the 537 // actual load size is. 538 int64_t MemSize = 0; 539 const MachineFrameInfo &MFI = MF.getFrameInfo(); 540 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 541 542 if (Flags & MachineMemOperand::MOStore) { 543 MemSize = MFI.getObjectSize(FI); 544 } else { 545 for (unsigned OpIdx : Ops) { 546 int64_t OpSize = MFI.getObjectSize(FI); 547 548 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { 549 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); 550 if (SubRegSize > 0 && !(SubRegSize % 8)) 551 OpSize = SubRegSize / 8; 552 } 553 554 MemSize = std::max(MemSize, OpSize); 555 } 556 } 557 558 assert(MemSize && "Did not expect a zero-sized stack slot"); 559 560 MachineInstr *NewMI = nullptr; 561 562 if (MI.getOpcode() == TargetOpcode::STACKMAP || 563 MI.getOpcode() == TargetOpcode::PATCHPOINT || 564 MI.getOpcode() == TargetOpcode::STATEPOINT) { 565 // Fold stackmap/patchpoint. 566 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 567 if (NewMI) 568 MBB->insert(MI, NewMI); 569 } else { 570 // Ask the target to do the actual folding. 571 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); 572 } 573 574 if (NewMI) { 575 NewMI->setMemRefs(MF, MI.memoperands()); 576 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 577 assert((!(Flags & MachineMemOperand::MOStore) || 578 NewMI->mayStore()) && 579 "Folded a def to a non-store!"); 580 assert((!(Flags & MachineMemOperand::MOLoad) || 581 NewMI->mayLoad()) && 582 "Folded a use to a non-load!"); 583 assert(MFI.getObjectOffset(FI) != -1); 584 MachineMemOperand *MMO = MF.getMachineMemOperand( 585 MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, 586 MFI.getObjectAlignment(FI)); 587 NewMI->addMemOperand(MF, MMO); 588 589 return NewMI; 590 } 591 592 // Straight COPY may fold as load/store. 593 if (!MI.isCopy() || Ops.size() != 1) 594 return nullptr; 595 596 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 597 if (!RC) 598 return nullptr; 599 600 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 601 MachineBasicBlock::iterator Pos = MI; 602 603 if (Flags == MachineMemOperand::MOStore) 604 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 605 else 606 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 607 return &*--Pos; 608 } 609 610 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 611 ArrayRef<unsigned> Ops, 612 MachineInstr &LoadMI, 613 LiveIntervals *LIS) const { 614 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 615 #ifndef NDEBUG 616 for (unsigned OpIdx : Ops) 617 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); 618 #endif 619 620 MachineBasicBlock &MBB = *MI.getParent(); 621 MachineFunction &MF = *MBB.getParent(); 622 623 // Ask the target to do the actual folding. 624 MachineInstr *NewMI = nullptr; 625 int FrameIndex = 0; 626 627 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 628 MI.getOpcode() == TargetOpcode::PATCHPOINT || 629 MI.getOpcode() == TargetOpcode::STATEPOINT) && 630 isLoadFromStackSlot(LoadMI, FrameIndex)) { 631 // Fold stackmap/patchpoint. 632 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 633 if (NewMI) 634 NewMI = &*MBB.insert(MI, NewMI); 635 } else { 636 // Ask the target to do the actual folding. 637 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 638 } 639 640 if (!NewMI) 641 return nullptr; 642 643 // Copy the memoperands from the load to the folded instruction. 644 if (MI.memoperands_empty()) { 645 NewMI->setMemRefs(MF, LoadMI.memoperands()); 646 } else { 647 // Handle the rare case of folding multiple loads. 648 NewMI->setMemRefs(MF, MI.memoperands()); 649 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 650 E = LoadMI.memoperands_end(); 651 I != E; ++I) { 652 NewMI->addMemOperand(MF, *I); 653 } 654 } 655 return NewMI; 656 } 657 658 bool TargetInstrInfo::hasReassociableOperands( 659 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 660 const MachineOperand &Op1 = Inst.getOperand(1); 661 const MachineOperand &Op2 = Inst.getOperand(2); 662 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 663 664 // We need virtual register definitions for the operands that we will 665 // reassociate. 666 MachineInstr *MI1 = nullptr; 667 MachineInstr *MI2 = nullptr; 668 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 669 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 670 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 671 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 672 673 // And they need to be in the trace (otherwise, they won't have a depth). 674 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 675 } 676 677 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 678 bool &Commuted) const { 679 const MachineBasicBlock *MBB = Inst.getParent(); 680 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 681 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 682 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 683 unsigned AssocOpcode = Inst.getOpcode(); 684 685 // If only one operand has the same opcode and it's the second source operand, 686 // the operands must be commuted. 687 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 688 if (Commuted) 689 std::swap(MI1, MI2); 690 691 // 1. The previous instruction must be the same type as Inst. 692 // 2. The previous instruction must have virtual register definitions for its 693 // operands in the same basic block as Inst. 694 // 3. The previous instruction's result must only be used by Inst. 695 return MI1->getOpcode() == AssocOpcode && 696 hasReassociableOperands(*MI1, MBB) && 697 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 698 } 699 700 // 1. The operation must be associative and commutative. 701 // 2. The instruction must have virtual register definitions for its 702 // operands in the same basic block. 703 // 3. The instruction must have a reassociable sibling. 704 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 705 bool &Commuted) const { 706 return isAssociativeAndCommutative(Inst) && 707 hasReassociableOperands(Inst, Inst.getParent()) && 708 hasReassociableSibling(Inst, Commuted); 709 } 710 711 // The concept of the reassociation pass is that these operations can benefit 712 // from this kind of transformation: 713 // 714 // A = ? op ? 715 // B = A op X (Prev) 716 // C = B op Y (Root) 717 // --> 718 // A = ? op ? 719 // B = X op Y 720 // C = A op B 721 // 722 // breaking the dependency between A and B, allowing them to be executed in 723 // parallel (or back-to-back in a pipeline) instead of depending on each other. 724 725 // FIXME: This has the potential to be expensive (compile time) while not 726 // improving the code at all. Some ways to limit the overhead: 727 // 1. Track successful transforms; bail out if hit rate gets too low. 728 // 2. Only enable at -O3 or some other non-default optimization level. 729 // 3. Pre-screen pattern candidates here: if an operand of the previous 730 // instruction is known to not increase the critical path, then don't match 731 // that pattern. 732 bool TargetInstrInfo::getMachineCombinerPatterns( 733 MachineInstr &Root, 734 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 735 bool Commute; 736 if (isReassociationCandidate(Root, Commute)) { 737 // We found a sequence of instructions that may be suitable for a 738 // reassociation of operands to increase ILP. Specify each commutation 739 // possibility for the Prev instruction in the sequence and let the 740 // machine combiner decide if changing the operands is worthwhile. 741 if (Commute) { 742 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 743 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 744 } else { 745 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 746 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 747 } 748 return true; 749 } 750 751 return false; 752 } 753 754 /// Return true when a code sequence can improve loop throughput. 755 bool 756 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 757 return false; 758 } 759 760 /// Attempt the reassociation transformation to reduce critical path length. 761 /// See the above comments before getMachineCombinerPatterns(). 762 void TargetInstrInfo::reassociateOps( 763 MachineInstr &Root, MachineInstr &Prev, 764 MachineCombinerPattern Pattern, 765 SmallVectorImpl<MachineInstr *> &InsInstrs, 766 SmallVectorImpl<MachineInstr *> &DelInstrs, 767 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 768 MachineFunction *MF = Root.getMF(); 769 MachineRegisterInfo &MRI = MF->getRegInfo(); 770 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 771 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 772 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 773 774 // This array encodes the operand index for each parameter because the 775 // operands may be commuted. Each row corresponds to a pattern value, 776 // and each column specifies the index of A, B, X, Y. 777 unsigned OpIdx[4][4] = { 778 { 1, 1, 2, 2 }, 779 { 1, 2, 2, 1 }, 780 { 2, 1, 1, 2 }, 781 { 2, 2, 1, 1 } 782 }; 783 784 int Row; 785 switch (Pattern) { 786 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 787 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 788 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 789 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 790 default: llvm_unreachable("unexpected MachineCombinerPattern"); 791 } 792 793 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 794 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 795 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 796 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 797 MachineOperand &OpC = Root.getOperand(0); 798 799 unsigned RegA = OpA.getReg(); 800 unsigned RegB = OpB.getReg(); 801 unsigned RegX = OpX.getReg(); 802 unsigned RegY = OpY.getReg(); 803 unsigned RegC = OpC.getReg(); 804 805 if (TargetRegisterInfo::isVirtualRegister(RegA)) 806 MRI.constrainRegClass(RegA, RC); 807 if (TargetRegisterInfo::isVirtualRegister(RegB)) 808 MRI.constrainRegClass(RegB, RC); 809 if (TargetRegisterInfo::isVirtualRegister(RegX)) 810 MRI.constrainRegClass(RegX, RC); 811 if (TargetRegisterInfo::isVirtualRegister(RegY)) 812 MRI.constrainRegClass(RegY, RC); 813 if (TargetRegisterInfo::isVirtualRegister(RegC)) 814 MRI.constrainRegClass(RegC, RC); 815 816 // Create a new virtual register for the result of (X op Y) instead of 817 // recycling RegB because the MachineCombiner's computation of the critical 818 // path requires a new register definition rather than an existing one. 819 unsigned NewVR = MRI.createVirtualRegister(RC); 820 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 821 822 unsigned Opcode = Root.getOpcode(); 823 bool KillA = OpA.isKill(); 824 bool KillX = OpX.isKill(); 825 bool KillY = OpY.isKill(); 826 827 // Create new instructions for insertion. 828 MachineInstrBuilder MIB1 = 829 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 830 .addReg(RegX, getKillRegState(KillX)) 831 .addReg(RegY, getKillRegState(KillY)); 832 MachineInstrBuilder MIB2 = 833 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 834 .addReg(RegA, getKillRegState(KillA)) 835 .addReg(NewVR, getKillRegState(true)); 836 837 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 838 839 // Record new instructions for insertion and old instructions for deletion. 840 InsInstrs.push_back(MIB1); 841 InsInstrs.push_back(MIB2); 842 DelInstrs.push_back(&Prev); 843 DelInstrs.push_back(&Root); 844 } 845 846 void TargetInstrInfo::genAlternativeCodeSequence( 847 MachineInstr &Root, MachineCombinerPattern Pattern, 848 SmallVectorImpl<MachineInstr *> &InsInstrs, 849 SmallVectorImpl<MachineInstr *> &DelInstrs, 850 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 851 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); 852 853 // Select the previous instruction in the sequence based on the input pattern. 854 MachineInstr *Prev = nullptr; 855 switch (Pattern) { 856 case MachineCombinerPattern::REASSOC_AX_BY: 857 case MachineCombinerPattern::REASSOC_XA_BY: 858 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 859 break; 860 case MachineCombinerPattern::REASSOC_AX_YB: 861 case MachineCombinerPattern::REASSOC_XA_YB: 862 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 863 break; 864 default: 865 break; 866 } 867 868 assert(Prev && "Unknown pattern for machine combiner"); 869 870 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 871 } 872 873 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 874 const MachineInstr &MI, AliasAnalysis *AA) const { 875 const MachineFunction &MF = *MI.getMF(); 876 const MachineRegisterInfo &MRI = MF.getRegInfo(); 877 878 // Remat clients assume operand 0 is the defined register. 879 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 880 return false; 881 unsigned DefReg = MI.getOperand(0).getReg(); 882 883 // A sub-register definition can only be rematerialized if the instruction 884 // doesn't read the other parts of the register. Otherwise it is really a 885 // read-modify-write operation on the full virtual register which cannot be 886 // moved safely. 887 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 888 MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) 889 return false; 890 891 // A load from a fixed stack slot can be rematerialized. This may be 892 // redundant with subsequent checks, but it's target-independent, 893 // simple, and a common case. 894 int FrameIdx = 0; 895 if (isLoadFromStackSlot(MI, FrameIdx) && 896 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) 897 return true; 898 899 // Avoid instructions obviously unsafe for remat. 900 if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects()) 901 return false; 902 903 // Don't remat inline asm. We have no idea how expensive it is 904 // even if it's side effect free. 905 if (MI.isInlineAsm()) 906 return false; 907 908 // Avoid instructions which load from potentially varying memory. 909 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) 910 return false; 911 912 // If any of the registers accessed are non-constant, conservatively assume 913 // the instruction is not rematerializable. 914 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 915 const MachineOperand &MO = MI.getOperand(i); 916 if (!MO.isReg()) continue; 917 unsigned Reg = MO.getReg(); 918 if (Reg == 0) 919 continue; 920 921 // Check for a well-behaved physical register. 922 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 923 if (MO.isUse()) { 924 // If the physreg has no defs anywhere, it's just an ambient register 925 // and we can freely move its uses. Alternatively, if it's allocatable, 926 // it could get allocated to something with a def during allocation. 927 if (!MRI.isConstantPhysReg(Reg)) 928 return false; 929 } else { 930 // A physreg def. We can't remat it. 931 return false; 932 } 933 continue; 934 } 935 936 // Only allow one virtual-register def. There may be multiple defs of the 937 // same virtual register, though. 938 if (MO.isDef() && Reg != DefReg) 939 return false; 940 941 // Don't allow any virtual-register uses. Rematting an instruction with 942 // virtual register uses would length the live ranges of the uses, which 943 // is not necessarily a good idea, certainly not "trivial". 944 if (MO.isUse()) 945 return false; 946 } 947 948 // Everything checked out. 949 return true; 950 } 951 952 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 953 const MachineFunction *MF = MI.getMF(); 954 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 955 bool StackGrowsDown = 956 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 957 958 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 959 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 960 961 if (!isFrameInstr(MI)) 962 return 0; 963 964 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); 965 966 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 967 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 968 SPAdj = -SPAdj; 969 970 return SPAdj; 971 } 972 973 /// isSchedulingBoundary - Test if the given instruction should be 974 /// considered a scheduling boundary. This primarily includes labels 975 /// and terminators. 976 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 977 const MachineBasicBlock *MBB, 978 const MachineFunction &MF) const { 979 // Terminators and labels can't be scheduled around. 980 if (MI.isTerminator() || MI.isPosition()) 981 return true; 982 983 // Don't attempt to schedule around any instruction that defines 984 // a stack-oriented pointer, as it's unlikely to be profitable. This 985 // saves compile time, because it doesn't require every single 986 // stack slot reference to depend on the instruction that does the 987 // modification. 988 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 989 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 990 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 991 } 992 993 // Provide a global flag for disabling the PreRA hazard recognizer that targets 994 // may choose to honor. 995 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 996 return !DisableHazardRecognizer; 997 } 998 999 // Default implementation of CreateTargetRAHazardRecognizer. 1000 ScheduleHazardRecognizer *TargetInstrInfo:: 1001 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1002 const ScheduleDAG *DAG) const { 1003 // Dummy hazard recognizer allows all instructions to issue. 1004 return new ScheduleHazardRecognizer(); 1005 } 1006 1007 // Default implementation of CreateTargetMIHazardRecognizer. 1008 ScheduleHazardRecognizer *TargetInstrInfo:: 1009 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 1010 const ScheduleDAG *DAG) const { 1011 return (ScheduleHazardRecognizer *) 1012 new ScoreboardHazardRecognizer(II, DAG, "misched"); 1013 } 1014 1015 // Default implementation of CreateTargetPostRAHazardRecognizer. 1016 ScheduleHazardRecognizer *TargetInstrInfo:: 1017 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 1018 const ScheduleDAG *DAG) const { 1019 return (ScheduleHazardRecognizer *) 1020 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 1021 } 1022 1023 //===----------------------------------------------------------------------===// 1024 // SelectionDAG latency interface. 1025 //===----------------------------------------------------------------------===// 1026 1027 int 1028 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1029 SDNode *DefNode, unsigned DefIdx, 1030 SDNode *UseNode, unsigned UseIdx) const { 1031 if (!ItinData || ItinData->isEmpty()) 1032 return -1; 1033 1034 if (!DefNode->isMachineOpcode()) 1035 return -1; 1036 1037 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 1038 if (!UseNode->isMachineOpcode()) 1039 return ItinData->getOperandCycle(DefClass, DefIdx); 1040 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 1041 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1042 } 1043 1044 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1045 SDNode *N) const { 1046 if (!ItinData || ItinData->isEmpty()) 1047 return 1; 1048 1049 if (!N->isMachineOpcode()) 1050 return 1; 1051 1052 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1053 } 1054 1055 //===----------------------------------------------------------------------===// 1056 // MachineInstr latency interface. 1057 //===----------------------------------------------------------------------===// 1058 1059 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1060 const MachineInstr &MI) const { 1061 if (!ItinData || ItinData->isEmpty()) 1062 return 1; 1063 1064 unsigned Class = MI.getDesc().getSchedClass(); 1065 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1066 if (UOps >= 0) 1067 return UOps; 1068 1069 // The # of u-ops is dynamically determined. The specific target should 1070 // override this function to return the right number. 1071 return 1; 1072 } 1073 1074 /// Return the default expected latency for a def based on it's opcode. 1075 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1076 const MachineInstr &DefMI) const { 1077 if (DefMI.isTransient()) 1078 return 0; 1079 if (DefMI.mayLoad()) 1080 return SchedModel.LoadLatency; 1081 if (isHighLatencyDef(DefMI.getOpcode())) 1082 return SchedModel.HighLatency; 1083 return 1; 1084 } 1085 1086 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1087 return 0; 1088 } 1089 1090 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1091 const MachineInstr &MI, 1092 unsigned *PredCost) const { 1093 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1094 // still have a MinLatency property, which getStageLatency checks. 1095 if (!ItinData) 1096 return MI.mayLoad() ? 2 : 1; 1097 1098 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1099 } 1100 1101 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1102 const MachineInstr &DefMI, 1103 unsigned DefIdx) const { 1104 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1105 if (!ItinData || ItinData->isEmpty()) 1106 return false; 1107 1108 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1109 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1110 return (DefCycle != -1 && DefCycle <= 1); 1111 } 1112 1113 /// Both DefMI and UseMI must be valid. By default, call directly to the 1114 /// itinerary. This may be overriden by the target. 1115 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1116 const MachineInstr &DefMI, 1117 unsigned DefIdx, 1118 const MachineInstr &UseMI, 1119 unsigned UseIdx) const { 1120 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1121 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1122 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1123 } 1124 1125 /// If we can determine the operand latency from the def only, without itinerary 1126 /// lookup, do so. Otherwise return -1. 1127 int TargetInstrInfo::computeDefOperandLatency( 1128 const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { 1129 1130 // Let the target hook getInstrLatency handle missing itineraries. 1131 if (!ItinData) 1132 return getInstrLatency(ItinData, DefMI); 1133 1134 if(ItinData->isEmpty()) 1135 return defaultDefLatency(ItinData->SchedModel, DefMI); 1136 1137 // ...operand lookup required 1138 return -1; 1139 } 1140 1141 bool TargetInstrInfo::getRegSequenceInputs( 1142 const MachineInstr &MI, unsigned DefIdx, 1143 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1144 assert((MI.isRegSequence() || 1145 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1146 1147 if (!MI.isRegSequence()) 1148 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1149 1150 // We are looking at: 1151 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1152 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1153 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1154 OpIdx += 2) { 1155 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1156 if (MOReg.isUndef()) 1157 continue; 1158 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1159 assert(MOSubIdx.isImm() && 1160 "One of the subindex of the reg_sequence is not an immediate"); 1161 // Record Reg:SubReg, SubIdx. 1162 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1163 (unsigned)MOSubIdx.getImm())); 1164 } 1165 return true; 1166 } 1167 1168 bool TargetInstrInfo::getExtractSubregInputs( 1169 const MachineInstr &MI, unsigned DefIdx, 1170 RegSubRegPairAndIdx &InputReg) const { 1171 assert((MI.isExtractSubreg() || 1172 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1173 1174 if (!MI.isExtractSubreg()) 1175 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1176 1177 // We are looking at: 1178 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1179 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1180 const MachineOperand &MOReg = MI.getOperand(1); 1181 if (MOReg.isUndef()) 1182 return false; 1183 const MachineOperand &MOSubIdx = MI.getOperand(2); 1184 assert(MOSubIdx.isImm() && 1185 "The subindex of the extract_subreg is not an immediate"); 1186 1187 InputReg.Reg = MOReg.getReg(); 1188 InputReg.SubReg = MOReg.getSubReg(); 1189 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1190 return true; 1191 } 1192 1193 bool TargetInstrInfo::getInsertSubregInputs( 1194 const MachineInstr &MI, unsigned DefIdx, 1195 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1196 assert((MI.isInsertSubreg() || 1197 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1198 1199 if (!MI.isInsertSubreg()) 1200 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1201 1202 // We are looking at: 1203 // Def = INSERT_SEQUENCE v0, v1, sub0. 1204 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1205 const MachineOperand &MOBaseReg = MI.getOperand(1); 1206 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1207 if (MOInsertedReg.isUndef()) 1208 return false; 1209 const MachineOperand &MOSubIdx = MI.getOperand(3); 1210 assert(MOSubIdx.isImm() && 1211 "One of the subindex of the reg_sequence is not an immediate"); 1212 BaseReg.Reg = MOBaseReg.getReg(); 1213 BaseReg.SubReg = MOBaseReg.getSubReg(); 1214 1215 InsertedReg.Reg = MOInsertedReg.getReg(); 1216 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1217 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1218 return true; 1219 } 1220