1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/CodeGen/StackMaps.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include <cctype>
33 
34 using namespace llvm;
35 
36 static cl::opt<bool> DisableHazardRecognizer(
37   "disable-sched-hazard", cl::Hidden, cl::init(false),
38   cl::desc("Disable hazard detection during preRA scheduling"));
39 
40 TargetInstrInfo::~TargetInstrInfo() {
41 }
42 
43 const TargetRegisterClass*
44 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
45                              const TargetRegisterInfo *TRI,
46                              const MachineFunction &MF) const {
47   if (OpNum >= MCID.getNumOperands())
48     return nullptr;
49 
50   short RegClass = MCID.OpInfo[OpNum].RegClass;
51   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
52     return TRI->getPointerRegClass(MF, RegClass);
53 
54   // Instructions like INSERT_SUBREG do not have fixed register classes.
55   if (RegClass < 0)
56     return nullptr;
57 
58   // Otherwise just look it up normally.
59   return TRI->getRegClass(RegClass);
60 }
61 
62 /// insertNoop - Insert a noop into the instruction stream at the specified
63 /// point.
64 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
65                                  MachineBasicBlock::iterator MI) const {
66   llvm_unreachable("Target didn't implement insertNoop!");
67 }
68 
69 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
70   return strncmp(Str, MAI.getCommentString().data(),
71                  MAI.getCommentString().size()) == 0;
72 }
73 
74 /// Measure the specified inline asm to determine an approximation of its
75 /// length.
76 /// Comments (which run till the next SeparatorString or newline) do not
77 /// count as an instruction.
78 /// Any other non-whitespace text is considered an instruction, with
79 /// multiple instructions separated by SeparatorString or newlines.
80 /// Variable-length instructions are not handled here; this function
81 /// may be overloaded in the target code to do that.
82 /// We implement a special case of the .space directive which takes only a
83 /// single integer argument in base 10 that is the size in bytes. This is a
84 /// restricted form of the GAS directive in that we only interpret
85 /// simple--i.e. not a logical or arithmetic expression--size values without
86 /// the optional fill value. This is primarily used for creating arbitrary
87 /// sized inline asm blocks for testing purposes.
88 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
89                                              const MCAsmInfo &MAI) const {
90   // Count the number of instructions in the asm.
91   bool AtInsnStart = true;
92   unsigned Length = 0;
93   for (; *Str; ++Str) {
94     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
95                                 strlen(MAI.getSeparatorString())) == 0) {
96       AtInsnStart = true;
97     } else if (isAsmComment(Str, MAI)) {
98       // Stop counting as an instruction after a comment until the next
99       // separator.
100       AtInsnStart = false;
101     }
102 
103     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
104       unsigned AddLength = MAI.getMaxInstLength();
105       if (strncmp(Str, ".space", 6) == 0) {
106         char *EStr;
107         int SpaceSize;
108         SpaceSize = strtol(Str + 6, &EStr, 10);
109         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
110         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
111           ++EStr;
112         if (*EStr == '\0' || *EStr == '\n' ||
113             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
114           AddLength = SpaceSize;
115       }
116       Length += AddLength;
117       AtInsnStart = false;
118     }
119   }
120 
121   return Length;
122 }
123 
124 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
125 /// after it, replacing it with an unconditional branch to NewDest.
126 void
127 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
128                                          MachineBasicBlock *NewDest) const {
129   MachineBasicBlock *MBB = Tail->getParent();
130 
131   // Remove all the old successors of MBB from the CFG.
132   while (!MBB->succ_empty())
133     MBB->removeSuccessor(MBB->succ_begin());
134 
135   // Save off the debug loc before erasing the instruction.
136   DebugLoc DL = Tail->getDebugLoc();
137 
138   // Remove all the dead instructions from the end of MBB.
139   MBB->erase(Tail, MBB->end());
140 
141   // If MBB isn't immediately before MBB, insert a branch to it.
142   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
143     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
144   MBB->addSuccessor(NewDest);
145 }
146 
147 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
148                                                       bool NewMI, unsigned Idx1,
149                                                       unsigned Idx2) const {
150   const MCInstrDesc &MCID = MI.getDesc();
151   bool HasDef = MCID.getNumDefs();
152   if (HasDef && !MI.getOperand(0).isReg())
153     // No idea how to commute this instruction. Target should implement its own.
154     return nullptr;
155 
156   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
157   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
158   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
159          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
160          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
161   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
162          "This only knows how to commute register operands so far");
163 
164   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
165   unsigned Reg1 = MI.getOperand(Idx1).getReg();
166   unsigned Reg2 = MI.getOperand(Idx2).getReg();
167   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
168   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
169   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
170   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
171   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
172   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
173   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
174   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
175   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
176   // Avoid calling isRenamable for virtual registers since we assert that
177   // renamable property is only queried/set for physical registers.
178   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
179                              ? MI.getOperand(Idx1).isRenamable()
180                              : false;
181   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
182                              ? MI.getOperand(Idx2).isRenamable()
183                              : false;
184   // If destination is tied to either of the commuted source register, then
185   // it must be updated.
186   if (HasDef && Reg0 == Reg1 &&
187       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
188     Reg2IsKill = false;
189     Reg0 = Reg2;
190     SubReg0 = SubReg2;
191   } else if (HasDef && Reg0 == Reg2 &&
192              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
193     Reg1IsKill = false;
194     Reg0 = Reg1;
195     SubReg0 = SubReg1;
196   }
197 
198   MachineInstr *CommutedMI = nullptr;
199   if (NewMI) {
200     // Create a new instruction.
201     MachineFunction &MF = *MI.getMF();
202     CommutedMI = MF.CloneMachineInstr(&MI);
203   } else {
204     CommutedMI = &MI;
205   }
206 
207   if (HasDef) {
208     CommutedMI->getOperand(0).setReg(Reg0);
209     CommutedMI->getOperand(0).setSubReg(SubReg0);
210   }
211   CommutedMI->getOperand(Idx2).setReg(Reg1);
212   CommutedMI->getOperand(Idx1).setReg(Reg2);
213   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
214   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
215   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
216   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
217   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
218   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
219   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
220   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
221   // Avoid calling setIsRenamable for virtual registers since we assert that
222   // renamable property is only queried/set for physical registers.
223   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
224     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
225   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
226     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
227   return CommutedMI;
228 }
229 
230 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
231                                                   unsigned OpIdx1,
232                                                   unsigned OpIdx2) const {
233   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
234   // any commutable operand, which is done in findCommutedOpIndices() method
235   // called below.
236   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
237       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
238     assert(MI.isCommutable() &&
239            "Precondition violation: MI must be commutable.");
240     return nullptr;
241   }
242   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
243 }
244 
245 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
246                                            unsigned &ResultIdx2,
247                                            unsigned CommutableOpIdx1,
248                                            unsigned CommutableOpIdx2) {
249   if (ResultIdx1 == CommuteAnyOperandIndex &&
250       ResultIdx2 == CommuteAnyOperandIndex) {
251     ResultIdx1 = CommutableOpIdx1;
252     ResultIdx2 = CommutableOpIdx2;
253   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
254     if (ResultIdx2 == CommutableOpIdx1)
255       ResultIdx1 = CommutableOpIdx2;
256     else if (ResultIdx2 == CommutableOpIdx2)
257       ResultIdx1 = CommutableOpIdx1;
258     else
259       return false;
260   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
261     if (ResultIdx1 == CommutableOpIdx1)
262       ResultIdx2 = CommutableOpIdx2;
263     else if (ResultIdx1 == CommutableOpIdx2)
264       ResultIdx2 = CommutableOpIdx1;
265     else
266       return false;
267   } else
268     // Check that the result operand indices match the given commutable
269     // operand indices.
270     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
271            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
272 
273   return true;
274 }
275 
276 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
277                                             unsigned &SrcOpIdx1,
278                                             unsigned &SrcOpIdx2) const {
279   assert(!MI.isBundle() &&
280          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
281 
282   const MCInstrDesc &MCID = MI.getDesc();
283   if (!MCID.isCommutable())
284     return false;
285 
286   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
287   // is not true, then the target must implement this.
288   unsigned CommutableOpIdx1 = MCID.getNumDefs();
289   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
290   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
291                             CommutableOpIdx1, CommutableOpIdx2))
292     return false;
293 
294   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
295     // No idea.
296     return false;
297   return true;
298 }
299 
300 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
301   if (!MI.isTerminator()) return false;
302 
303   // Conditional branch is a special case.
304   if (MI.isBranch() && !MI.isBarrier())
305     return true;
306   if (!MI.isPredicable())
307     return true;
308   return !isPredicated(MI);
309 }
310 
311 bool TargetInstrInfo::PredicateInstruction(
312     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
313   bool MadeChange = false;
314 
315   assert(!MI.isBundle() &&
316          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
317 
318   const MCInstrDesc &MCID = MI.getDesc();
319   if (!MI.isPredicable())
320     return false;
321 
322   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
323     if (MCID.OpInfo[i].isPredicate()) {
324       MachineOperand &MO = MI.getOperand(i);
325       if (MO.isReg()) {
326         MO.setReg(Pred[j].getReg());
327         MadeChange = true;
328       } else if (MO.isImm()) {
329         MO.setImm(Pred[j].getImm());
330         MadeChange = true;
331       } else if (MO.isMBB()) {
332         MO.setMBB(Pred[j].getMBB());
333         MadeChange = true;
334       }
335       ++j;
336     }
337   }
338   return MadeChange;
339 }
340 
341 bool TargetInstrInfo::hasLoadFromStackSlot(
342     const MachineInstr &MI,
343     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
344   size_t StartSize = Accesses.size();
345   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
346                                   oe = MI.memoperands_end();
347        o != oe; ++o) {
348     if ((*o)->isLoad() &&
349         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
350       Accesses.push_back(*o);
351   }
352   return Accesses.size() != StartSize;
353 }
354 
355 bool TargetInstrInfo::hasStoreToStackSlot(
356     const MachineInstr &MI,
357     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
358   size_t StartSize = Accesses.size();
359   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
360                                   oe = MI.memoperands_end();
361        o != oe; ++o) {
362     if ((*o)->isStore() &&
363         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
364       Accesses.push_back(*o);
365   }
366   return Accesses.size() != StartSize;
367 }
368 
369 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
370                                         unsigned SubIdx, unsigned &Size,
371                                         unsigned &Offset,
372                                         const MachineFunction &MF) const {
373   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
374   if (!SubIdx) {
375     Size = TRI->getSpillSize(*RC);
376     Offset = 0;
377     return true;
378   }
379   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
380   // Convert bit size to byte size.
381   if (BitSize % 8)
382     return false;
383 
384   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
385   if (BitOffset < 0 || BitOffset % 8)
386     return false;
387 
388   Size = BitSize /= 8;
389   Offset = (unsigned)BitOffset / 8;
390 
391   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
392 
393   if (!MF.getDataLayout().isLittleEndian()) {
394     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
395   }
396   return true;
397 }
398 
399 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
400                                     MachineBasicBlock::iterator I,
401                                     unsigned DestReg, unsigned SubIdx,
402                                     const MachineInstr &Orig,
403                                     const TargetRegisterInfo &TRI) const {
404   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
405   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
406   MBB.insert(I, MI);
407 }
408 
409 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
410                                        const MachineInstr &MI1,
411                                        const MachineRegisterInfo *MRI) const {
412   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
413 }
414 
415 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
416     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
417   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
418   MachineFunction &MF = *MBB.getParent();
419   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
420 }
421 
422 // If the COPY instruction in MI can be folded to a stack operation, return
423 // the register class to use.
424 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
425                                               unsigned FoldIdx) {
426   assert(MI.isCopy() && "MI must be a COPY instruction");
427   if (MI.getNumOperands() != 2)
428     return nullptr;
429   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
430 
431   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
432   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
433 
434   if (FoldOp.getSubReg() || LiveOp.getSubReg())
435     return nullptr;
436 
437   unsigned FoldReg = FoldOp.getReg();
438   unsigned LiveReg = LiveOp.getReg();
439 
440   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
441          "Cannot fold physregs");
442 
443   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
444   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
445 
446   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
447     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
448 
449   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
450     return RC;
451 
452   // FIXME: Allow folding when register classes are memory compatible.
453   return nullptr;
454 }
455 
456 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
457   llvm_unreachable("Not implemented");
458 }
459 
460 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
461                                     ArrayRef<unsigned> Ops, int FrameIndex,
462                                     const TargetInstrInfo &TII) {
463   unsigned StartIdx = 0;
464   switch (MI.getOpcode()) {
465   case TargetOpcode::STACKMAP: {
466     // StackMapLiveValues are foldable
467     StartIdx = StackMapOpers(&MI).getVarIdx();
468     break;
469   }
470   case TargetOpcode::PATCHPOINT: {
471     // For PatchPoint, the call args are not foldable (even if reported in the
472     // stackmap e.g. via anyregcc).
473     StartIdx = PatchPointOpers(&MI).getVarIdx();
474     break;
475   }
476   case TargetOpcode::STATEPOINT: {
477     // For statepoints, fold deopt and gc arguments, but not call arguments.
478     StartIdx = StatepointOpers(&MI).getVarIdx();
479     break;
480   }
481   default:
482     llvm_unreachable("unexpected stackmap opcode");
483   }
484 
485   // Return false if any operands requested for folding are not foldable (not
486   // part of the stackmap's live values).
487   for (unsigned Op : Ops) {
488     if (Op < StartIdx)
489       return nullptr;
490   }
491 
492   MachineInstr *NewMI =
493       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
494   MachineInstrBuilder MIB(MF, NewMI);
495 
496   // No need to fold return, the meta data, and function arguments
497   for (unsigned i = 0; i < StartIdx; ++i)
498     MIB.add(MI.getOperand(i));
499 
500   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
501     MachineOperand &MO = MI.getOperand(i);
502     if (is_contained(Ops, i)) {
503       unsigned SpillSize;
504       unsigned SpillOffset;
505       // Compute the spill slot size and offset.
506       const TargetRegisterClass *RC =
507         MF.getRegInfo().getRegClass(MO.getReg());
508       bool Valid =
509           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
510       if (!Valid)
511         report_fatal_error("cannot spill patchpoint subregister operand");
512       MIB.addImm(StackMaps::IndirectMemRefOp);
513       MIB.addImm(SpillSize);
514       MIB.addFrameIndex(FrameIndex);
515       MIB.addImm(SpillOffset);
516     }
517     else
518       MIB.add(MO);
519   }
520   return NewMI;
521 }
522 
523 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
524                                                  ArrayRef<unsigned> Ops, int FI,
525                                                  LiveIntervals *LIS) const {
526   auto Flags = MachineMemOperand::MONone;
527   for (unsigned OpIdx : Ops)
528     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
529                                           : MachineMemOperand::MOLoad;
530 
531   MachineBasicBlock *MBB = MI.getParent();
532   assert(MBB && "foldMemoryOperand needs an inserted instruction");
533   MachineFunction &MF = *MBB->getParent();
534 
535   // If we're not folding a load into a subreg, the size of the load is the
536   // size of the spill slot. But if we are, we need to figure out what the
537   // actual load size is.
538   int64_t MemSize = 0;
539   const MachineFrameInfo &MFI = MF.getFrameInfo();
540   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
541 
542   if (Flags & MachineMemOperand::MOStore) {
543     MemSize = MFI.getObjectSize(FI);
544   } else {
545     for (unsigned OpIdx : Ops) {
546       int64_t OpSize = MFI.getObjectSize(FI);
547 
548       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
549         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
550         if (SubRegSize > 0 && !(SubRegSize % 8))
551           OpSize = SubRegSize / 8;
552       }
553 
554       MemSize = std::max(MemSize, OpSize);
555     }
556   }
557 
558   assert(MemSize && "Did not expect a zero-sized stack slot");
559 
560   MachineInstr *NewMI = nullptr;
561 
562   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
563       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
564       MI.getOpcode() == TargetOpcode::STATEPOINT) {
565     // Fold stackmap/patchpoint.
566     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
567     if (NewMI)
568       MBB->insert(MI, NewMI);
569   } else {
570     // Ask the target to do the actual folding.
571     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
572   }
573 
574   if (NewMI) {
575     NewMI->setMemRefs(MF, MI.memoperands());
576     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
577     assert((!(Flags & MachineMemOperand::MOStore) ||
578             NewMI->mayStore()) &&
579            "Folded a def to a non-store!");
580     assert((!(Flags & MachineMemOperand::MOLoad) ||
581             NewMI->mayLoad()) &&
582            "Folded a use to a non-load!");
583     assert(MFI.getObjectOffset(FI) != -1);
584     MachineMemOperand *MMO = MF.getMachineMemOperand(
585         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
586         MFI.getObjectAlignment(FI));
587     NewMI->addMemOperand(MF, MMO);
588 
589     return NewMI;
590   }
591 
592   // Straight COPY may fold as load/store.
593   if (!MI.isCopy() || Ops.size() != 1)
594     return nullptr;
595 
596   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
597   if (!RC)
598     return nullptr;
599 
600   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
601   MachineBasicBlock::iterator Pos = MI;
602 
603   if (Flags == MachineMemOperand::MOStore)
604     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
605   else
606     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
607   return &*--Pos;
608 }
609 
610 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
611                                                  ArrayRef<unsigned> Ops,
612                                                  MachineInstr &LoadMI,
613                                                  LiveIntervals *LIS) const {
614   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
615 #ifndef NDEBUG
616   for (unsigned OpIdx : Ops)
617     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
618 #endif
619 
620   MachineBasicBlock &MBB = *MI.getParent();
621   MachineFunction &MF = *MBB.getParent();
622 
623   // Ask the target to do the actual folding.
624   MachineInstr *NewMI = nullptr;
625   int FrameIndex = 0;
626 
627   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
628        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
629        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
630       isLoadFromStackSlot(LoadMI, FrameIndex)) {
631     // Fold stackmap/patchpoint.
632     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
633     if (NewMI)
634       NewMI = &*MBB.insert(MI, NewMI);
635   } else {
636     // Ask the target to do the actual folding.
637     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
638   }
639 
640   if (!NewMI)
641     return nullptr;
642 
643   // Copy the memoperands from the load to the folded instruction.
644   if (MI.memoperands_empty()) {
645     NewMI->setMemRefs(MF, LoadMI.memoperands());
646   } else {
647     // Handle the rare case of folding multiple loads.
648     NewMI->setMemRefs(MF, MI.memoperands());
649     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
650                                     E = LoadMI.memoperands_end();
651          I != E; ++I) {
652       NewMI->addMemOperand(MF, *I);
653     }
654   }
655   return NewMI;
656 }
657 
658 bool TargetInstrInfo::hasReassociableOperands(
659     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
660   const MachineOperand &Op1 = Inst.getOperand(1);
661   const MachineOperand &Op2 = Inst.getOperand(2);
662   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
663 
664   // We need virtual register definitions for the operands that we will
665   // reassociate.
666   MachineInstr *MI1 = nullptr;
667   MachineInstr *MI2 = nullptr;
668   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
669     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
670   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
671     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
672 
673   // And they need to be in the trace (otherwise, they won't have a depth).
674   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
675 }
676 
677 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
678                                              bool &Commuted) const {
679   const MachineBasicBlock *MBB = Inst.getParent();
680   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
681   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
682   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
683   unsigned AssocOpcode = Inst.getOpcode();
684 
685   // If only one operand has the same opcode and it's the second source operand,
686   // the operands must be commuted.
687   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
688   if (Commuted)
689     std::swap(MI1, MI2);
690 
691   // 1. The previous instruction must be the same type as Inst.
692   // 2. The previous instruction must have virtual register definitions for its
693   //    operands in the same basic block as Inst.
694   // 3. The previous instruction's result must only be used by Inst.
695   return MI1->getOpcode() == AssocOpcode &&
696          hasReassociableOperands(*MI1, MBB) &&
697          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
698 }
699 
700 // 1. The operation must be associative and commutative.
701 // 2. The instruction must have virtual register definitions for its
702 //    operands in the same basic block.
703 // 3. The instruction must have a reassociable sibling.
704 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
705                                                bool &Commuted) const {
706   return isAssociativeAndCommutative(Inst) &&
707          hasReassociableOperands(Inst, Inst.getParent()) &&
708          hasReassociableSibling(Inst, Commuted);
709 }
710 
711 // The concept of the reassociation pass is that these operations can benefit
712 // from this kind of transformation:
713 //
714 // A = ? op ?
715 // B = A op X (Prev)
716 // C = B op Y (Root)
717 // -->
718 // A = ? op ?
719 // B = X op Y
720 // C = A op B
721 //
722 // breaking the dependency between A and B, allowing them to be executed in
723 // parallel (or back-to-back in a pipeline) instead of depending on each other.
724 
725 // FIXME: This has the potential to be expensive (compile time) while not
726 // improving the code at all. Some ways to limit the overhead:
727 // 1. Track successful transforms; bail out if hit rate gets too low.
728 // 2. Only enable at -O3 or some other non-default optimization level.
729 // 3. Pre-screen pattern candidates here: if an operand of the previous
730 //    instruction is known to not increase the critical path, then don't match
731 //    that pattern.
732 bool TargetInstrInfo::getMachineCombinerPatterns(
733     MachineInstr &Root,
734     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
735   bool Commute;
736   if (isReassociationCandidate(Root, Commute)) {
737     // We found a sequence of instructions that may be suitable for a
738     // reassociation of operands to increase ILP. Specify each commutation
739     // possibility for the Prev instruction in the sequence and let the
740     // machine combiner decide if changing the operands is worthwhile.
741     if (Commute) {
742       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
743       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
744     } else {
745       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
746       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
747     }
748     return true;
749   }
750 
751   return false;
752 }
753 
754 /// Return true when a code sequence can improve loop throughput.
755 bool
756 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
757   return false;
758 }
759 
760 /// Attempt the reassociation transformation to reduce critical path length.
761 /// See the above comments before getMachineCombinerPatterns().
762 void TargetInstrInfo::reassociateOps(
763     MachineInstr &Root, MachineInstr &Prev,
764     MachineCombinerPattern Pattern,
765     SmallVectorImpl<MachineInstr *> &InsInstrs,
766     SmallVectorImpl<MachineInstr *> &DelInstrs,
767     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
768   MachineFunction *MF = Root.getMF();
769   MachineRegisterInfo &MRI = MF->getRegInfo();
770   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
771   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
772   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
773 
774   // This array encodes the operand index for each parameter because the
775   // operands may be commuted. Each row corresponds to a pattern value,
776   // and each column specifies the index of A, B, X, Y.
777   unsigned OpIdx[4][4] = {
778     { 1, 1, 2, 2 },
779     { 1, 2, 2, 1 },
780     { 2, 1, 1, 2 },
781     { 2, 2, 1, 1 }
782   };
783 
784   int Row;
785   switch (Pattern) {
786   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
787   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
788   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
789   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
790   default: llvm_unreachable("unexpected MachineCombinerPattern");
791   }
792 
793   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
794   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
795   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
796   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
797   MachineOperand &OpC = Root.getOperand(0);
798 
799   unsigned RegA = OpA.getReg();
800   unsigned RegB = OpB.getReg();
801   unsigned RegX = OpX.getReg();
802   unsigned RegY = OpY.getReg();
803   unsigned RegC = OpC.getReg();
804 
805   if (TargetRegisterInfo::isVirtualRegister(RegA))
806     MRI.constrainRegClass(RegA, RC);
807   if (TargetRegisterInfo::isVirtualRegister(RegB))
808     MRI.constrainRegClass(RegB, RC);
809   if (TargetRegisterInfo::isVirtualRegister(RegX))
810     MRI.constrainRegClass(RegX, RC);
811   if (TargetRegisterInfo::isVirtualRegister(RegY))
812     MRI.constrainRegClass(RegY, RC);
813   if (TargetRegisterInfo::isVirtualRegister(RegC))
814     MRI.constrainRegClass(RegC, RC);
815 
816   // Create a new virtual register for the result of (X op Y) instead of
817   // recycling RegB because the MachineCombiner's computation of the critical
818   // path requires a new register definition rather than an existing one.
819   unsigned NewVR = MRI.createVirtualRegister(RC);
820   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
821 
822   unsigned Opcode = Root.getOpcode();
823   bool KillA = OpA.isKill();
824   bool KillX = OpX.isKill();
825   bool KillY = OpY.isKill();
826 
827   // Create new instructions for insertion.
828   MachineInstrBuilder MIB1 =
829       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
830           .addReg(RegX, getKillRegState(KillX))
831           .addReg(RegY, getKillRegState(KillY));
832   MachineInstrBuilder MIB2 =
833       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
834           .addReg(RegA, getKillRegState(KillA))
835           .addReg(NewVR, getKillRegState(true));
836 
837   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
838 
839   // Record new instructions for insertion and old instructions for deletion.
840   InsInstrs.push_back(MIB1);
841   InsInstrs.push_back(MIB2);
842   DelInstrs.push_back(&Prev);
843   DelInstrs.push_back(&Root);
844 }
845 
846 void TargetInstrInfo::genAlternativeCodeSequence(
847     MachineInstr &Root, MachineCombinerPattern Pattern,
848     SmallVectorImpl<MachineInstr *> &InsInstrs,
849     SmallVectorImpl<MachineInstr *> &DelInstrs,
850     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
851   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
852 
853   // Select the previous instruction in the sequence based on the input pattern.
854   MachineInstr *Prev = nullptr;
855   switch (Pattern) {
856   case MachineCombinerPattern::REASSOC_AX_BY:
857   case MachineCombinerPattern::REASSOC_XA_BY:
858     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
859     break;
860   case MachineCombinerPattern::REASSOC_AX_YB:
861   case MachineCombinerPattern::REASSOC_XA_YB:
862     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
863     break;
864   default:
865     break;
866   }
867 
868   assert(Prev && "Unknown pattern for machine combiner");
869 
870   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
871 }
872 
873 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
874     const MachineInstr &MI, AliasAnalysis *AA) const {
875   const MachineFunction &MF = *MI.getMF();
876   const MachineRegisterInfo &MRI = MF.getRegInfo();
877 
878   // Remat clients assume operand 0 is the defined register.
879   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
880     return false;
881   unsigned DefReg = MI.getOperand(0).getReg();
882 
883   // A sub-register definition can only be rematerialized if the instruction
884   // doesn't read the other parts of the register.  Otherwise it is really a
885   // read-modify-write operation on the full virtual register which cannot be
886   // moved safely.
887   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
888       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
889     return false;
890 
891   // A load from a fixed stack slot can be rematerialized. This may be
892   // redundant with subsequent checks, but it's target-independent,
893   // simple, and a common case.
894   int FrameIdx = 0;
895   if (isLoadFromStackSlot(MI, FrameIdx) &&
896       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
897     return true;
898 
899   // Avoid instructions obviously unsafe for remat.
900   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
901     return false;
902 
903   // Don't remat inline asm. We have no idea how expensive it is
904   // even if it's side effect free.
905   if (MI.isInlineAsm())
906     return false;
907 
908   // Avoid instructions which load from potentially varying memory.
909   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
910     return false;
911 
912   // If any of the registers accessed are non-constant, conservatively assume
913   // the instruction is not rematerializable.
914   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
915     const MachineOperand &MO = MI.getOperand(i);
916     if (!MO.isReg()) continue;
917     unsigned Reg = MO.getReg();
918     if (Reg == 0)
919       continue;
920 
921     // Check for a well-behaved physical register.
922     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
923       if (MO.isUse()) {
924         // If the physreg has no defs anywhere, it's just an ambient register
925         // and we can freely move its uses. Alternatively, if it's allocatable,
926         // it could get allocated to something with a def during allocation.
927         if (!MRI.isConstantPhysReg(Reg))
928           return false;
929       } else {
930         // A physreg def. We can't remat it.
931         return false;
932       }
933       continue;
934     }
935 
936     // Only allow one virtual-register def.  There may be multiple defs of the
937     // same virtual register, though.
938     if (MO.isDef() && Reg != DefReg)
939       return false;
940 
941     // Don't allow any virtual-register uses. Rematting an instruction with
942     // virtual register uses would length the live ranges of the uses, which
943     // is not necessarily a good idea, certainly not "trivial".
944     if (MO.isUse())
945       return false;
946   }
947 
948   // Everything checked out.
949   return true;
950 }
951 
952 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
953   const MachineFunction *MF = MI.getMF();
954   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
955   bool StackGrowsDown =
956     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
957 
958   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
959   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
960 
961   if (!isFrameInstr(MI))
962     return 0;
963 
964   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
965 
966   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
967       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
968     SPAdj = -SPAdj;
969 
970   return SPAdj;
971 }
972 
973 /// isSchedulingBoundary - Test if the given instruction should be
974 /// considered a scheduling boundary. This primarily includes labels
975 /// and terminators.
976 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
977                                            const MachineBasicBlock *MBB,
978                                            const MachineFunction &MF) const {
979   // Terminators and labels can't be scheduled around.
980   if (MI.isTerminator() || MI.isPosition())
981     return true;
982 
983   // Don't attempt to schedule around any instruction that defines
984   // a stack-oriented pointer, as it's unlikely to be profitable. This
985   // saves compile time, because it doesn't require every single
986   // stack slot reference to depend on the instruction that does the
987   // modification.
988   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
989   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
990   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
991 }
992 
993 // Provide a global flag for disabling the PreRA hazard recognizer that targets
994 // may choose to honor.
995 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
996   return !DisableHazardRecognizer;
997 }
998 
999 // Default implementation of CreateTargetRAHazardRecognizer.
1000 ScheduleHazardRecognizer *TargetInstrInfo::
1001 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1002                              const ScheduleDAG *DAG) const {
1003   // Dummy hazard recognizer allows all instructions to issue.
1004   return new ScheduleHazardRecognizer();
1005 }
1006 
1007 // Default implementation of CreateTargetMIHazardRecognizer.
1008 ScheduleHazardRecognizer *TargetInstrInfo::
1009 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1010                                const ScheduleDAG *DAG) const {
1011   return (ScheduleHazardRecognizer *)
1012     new ScoreboardHazardRecognizer(II, DAG, "misched");
1013 }
1014 
1015 // Default implementation of CreateTargetPostRAHazardRecognizer.
1016 ScheduleHazardRecognizer *TargetInstrInfo::
1017 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1018                                    const ScheduleDAG *DAG) const {
1019   return (ScheduleHazardRecognizer *)
1020     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1021 }
1022 
1023 //===----------------------------------------------------------------------===//
1024 //  SelectionDAG latency interface.
1025 //===----------------------------------------------------------------------===//
1026 
1027 int
1028 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1029                                    SDNode *DefNode, unsigned DefIdx,
1030                                    SDNode *UseNode, unsigned UseIdx) const {
1031   if (!ItinData || ItinData->isEmpty())
1032     return -1;
1033 
1034   if (!DefNode->isMachineOpcode())
1035     return -1;
1036 
1037   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1038   if (!UseNode->isMachineOpcode())
1039     return ItinData->getOperandCycle(DefClass, DefIdx);
1040   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1041   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1042 }
1043 
1044 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1045                                      SDNode *N) const {
1046   if (!ItinData || ItinData->isEmpty())
1047     return 1;
1048 
1049   if (!N->isMachineOpcode())
1050     return 1;
1051 
1052   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1053 }
1054 
1055 //===----------------------------------------------------------------------===//
1056 //  MachineInstr latency interface.
1057 //===----------------------------------------------------------------------===//
1058 
1059 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1060                                          const MachineInstr &MI) const {
1061   if (!ItinData || ItinData->isEmpty())
1062     return 1;
1063 
1064   unsigned Class = MI.getDesc().getSchedClass();
1065   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1066   if (UOps >= 0)
1067     return UOps;
1068 
1069   // The # of u-ops is dynamically determined. The specific target should
1070   // override this function to return the right number.
1071   return 1;
1072 }
1073 
1074 /// Return the default expected latency for a def based on it's opcode.
1075 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1076                                             const MachineInstr &DefMI) const {
1077   if (DefMI.isTransient())
1078     return 0;
1079   if (DefMI.mayLoad())
1080     return SchedModel.LoadLatency;
1081   if (isHighLatencyDef(DefMI.getOpcode()))
1082     return SchedModel.HighLatency;
1083   return 1;
1084 }
1085 
1086 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1087   return 0;
1088 }
1089 
1090 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1091                                           const MachineInstr &MI,
1092                                           unsigned *PredCost) const {
1093   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1094   // still have a MinLatency property, which getStageLatency checks.
1095   if (!ItinData)
1096     return MI.mayLoad() ? 2 : 1;
1097 
1098   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1099 }
1100 
1101 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1102                                        const MachineInstr &DefMI,
1103                                        unsigned DefIdx) const {
1104   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1105   if (!ItinData || ItinData->isEmpty())
1106     return false;
1107 
1108   unsigned DefClass = DefMI.getDesc().getSchedClass();
1109   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1110   return (DefCycle != -1 && DefCycle <= 1);
1111 }
1112 
1113 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1114 /// itinerary. This may be overriden by the target.
1115 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1116                                        const MachineInstr &DefMI,
1117                                        unsigned DefIdx,
1118                                        const MachineInstr &UseMI,
1119                                        unsigned UseIdx) const {
1120   unsigned DefClass = DefMI.getDesc().getSchedClass();
1121   unsigned UseClass = UseMI.getDesc().getSchedClass();
1122   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1123 }
1124 
1125 /// If we can determine the operand latency from the def only, without itinerary
1126 /// lookup, do so. Otherwise return -1.
1127 int TargetInstrInfo::computeDefOperandLatency(
1128     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1129 
1130   // Let the target hook getInstrLatency handle missing itineraries.
1131   if (!ItinData)
1132     return getInstrLatency(ItinData, DefMI);
1133 
1134   if(ItinData->isEmpty())
1135     return defaultDefLatency(ItinData->SchedModel, DefMI);
1136 
1137   // ...operand lookup required
1138   return -1;
1139 }
1140 
1141 bool TargetInstrInfo::getRegSequenceInputs(
1142     const MachineInstr &MI, unsigned DefIdx,
1143     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1144   assert((MI.isRegSequence() ||
1145           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1146 
1147   if (!MI.isRegSequence())
1148     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1149 
1150   // We are looking at:
1151   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1152   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1153   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1154        OpIdx += 2) {
1155     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1156     if (MOReg.isUndef())
1157       continue;
1158     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1159     assert(MOSubIdx.isImm() &&
1160            "One of the subindex of the reg_sequence is not an immediate");
1161     // Record Reg:SubReg, SubIdx.
1162     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1163                                             (unsigned)MOSubIdx.getImm()));
1164   }
1165   return true;
1166 }
1167 
1168 bool TargetInstrInfo::getExtractSubregInputs(
1169     const MachineInstr &MI, unsigned DefIdx,
1170     RegSubRegPairAndIdx &InputReg) const {
1171   assert((MI.isExtractSubreg() ||
1172       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1173 
1174   if (!MI.isExtractSubreg())
1175     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1176 
1177   // We are looking at:
1178   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1179   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1180   const MachineOperand &MOReg = MI.getOperand(1);
1181   if (MOReg.isUndef())
1182     return false;
1183   const MachineOperand &MOSubIdx = MI.getOperand(2);
1184   assert(MOSubIdx.isImm() &&
1185          "The subindex of the extract_subreg is not an immediate");
1186 
1187   InputReg.Reg = MOReg.getReg();
1188   InputReg.SubReg = MOReg.getSubReg();
1189   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1190   return true;
1191 }
1192 
1193 bool TargetInstrInfo::getInsertSubregInputs(
1194     const MachineInstr &MI, unsigned DefIdx,
1195     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1196   assert((MI.isInsertSubreg() ||
1197       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1198 
1199   if (!MI.isInsertSubreg())
1200     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1201 
1202   // We are looking at:
1203   // Def = INSERT_SEQUENCE v0, v1, sub0.
1204   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1205   const MachineOperand &MOBaseReg = MI.getOperand(1);
1206   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1207   if (MOInsertedReg.isUndef())
1208     return false;
1209   const MachineOperand &MOSubIdx = MI.getOperand(3);
1210   assert(MOSubIdx.isImm() &&
1211          "One of the subindex of the reg_sequence is not an immediate");
1212   BaseReg.Reg = MOBaseReg.getReg();
1213   BaseReg.SubReg = MOBaseReg.getSubReg();
1214 
1215   InsertedReg.Reg = MOInsertedReg.getReg();
1216   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1217   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1218   return true;
1219 }
1220