1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/CodeGen/StackMaps.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include <cctype>
33 
34 using namespace llvm;
35 
36 static cl::opt<bool> DisableHazardRecognizer(
37   "disable-sched-hazard", cl::Hidden, cl::init(false),
38   cl::desc("Disable hazard detection during preRA scheduling"));
39 
40 TargetInstrInfo::~TargetInstrInfo() {
41 }
42 
43 const TargetRegisterClass*
44 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
45                              const TargetRegisterInfo *TRI,
46                              const MachineFunction &MF) const {
47   if (OpNum >= MCID.getNumOperands())
48     return nullptr;
49 
50   short RegClass = MCID.OpInfo[OpNum].RegClass;
51   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
52     return TRI->getPointerRegClass(MF, RegClass);
53 
54   // Instructions like INSERT_SUBREG do not have fixed register classes.
55   if (RegClass < 0)
56     return nullptr;
57 
58   // Otherwise just look it up normally.
59   return TRI->getRegClass(RegClass);
60 }
61 
62 /// insertNoop - Insert a noop into the instruction stream at the specified
63 /// point.
64 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
65                                  MachineBasicBlock::iterator MI) const {
66   llvm_unreachable("Target didn't implement insertNoop!");
67 }
68 
69 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
70   return strncmp(Str, MAI.getCommentString().data(),
71                  MAI.getCommentString().size()) == 0;
72 }
73 
74 /// Measure the specified inline asm to determine an approximation of its
75 /// length.
76 /// Comments (which run till the next SeparatorString or newline) do not
77 /// count as an instruction.
78 /// Any other non-whitespace text is considered an instruction, with
79 /// multiple instructions separated by SeparatorString or newlines.
80 /// Variable-length instructions are not handled here; this function
81 /// may be overloaded in the target code to do that.
82 /// We implement a special case of the .space directive which takes only a
83 /// single integer argument in base 10 that is the size in bytes. This is a
84 /// restricted form of the GAS directive in that we only interpret
85 /// simple--i.e. not a logical or arithmetic expression--size values without
86 /// the optional fill value. This is primarily used for creating arbitrary
87 /// sized inline asm blocks for testing purposes.
88 unsigned TargetInstrInfo::getInlineAsmLength(
89   const char *Str,
90   const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
91   // Count the number of instructions in the asm.
92   bool AtInsnStart = true;
93   unsigned Length = 0;
94   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
95   for (; *Str; ++Str) {
96     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
97                                 strlen(MAI.getSeparatorString())) == 0) {
98       AtInsnStart = true;
99     } else if (isAsmComment(Str, MAI)) {
100       // Stop counting as an instruction after a comment until the next
101       // separator.
102       AtInsnStart = false;
103     }
104 
105     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
106       unsigned AddLength = MaxInstLength;
107       if (strncmp(Str, ".space", 6) == 0) {
108         char *EStr;
109         int SpaceSize;
110         SpaceSize = strtol(Str + 6, &EStr, 10);
111         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
112         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
113           ++EStr;
114         if (*EStr == '\0' || *EStr == '\n' ||
115             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
116           AddLength = SpaceSize;
117       }
118       Length += AddLength;
119       AtInsnStart = false;
120     }
121   }
122 
123   return Length;
124 }
125 
126 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
127 /// after it, replacing it with an unconditional branch to NewDest.
128 void
129 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
130                                          MachineBasicBlock *NewDest) const {
131   MachineBasicBlock *MBB = Tail->getParent();
132 
133   // Remove all the old successors of MBB from the CFG.
134   while (!MBB->succ_empty())
135     MBB->removeSuccessor(MBB->succ_begin());
136 
137   // Save off the debug loc before erasing the instruction.
138   DebugLoc DL = Tail->getDebugLoc();
139 
140   // Remove all the dead instructions from the end of MBB.
141   MBB->erase(Tail, MBB->end());
142 
143   // If MBB isn't immediately before MBB, insert a branch to it.
144   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
145     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
146   MBB->addSuccessor(NewDest);
147 }
148 
149 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
150                                                       bool NewMI, unsigned Idx1,
151                                                       unsigned Idx2) const {
152   const MCInstrDesc &MCID = MI.getDesc();
153   bool HasDef = MCID.getNumDefs();
154   if (HasDef && !MI.getOperand(0).isReg())
155     // No idea how to commute this instruction. Target should implement its own.
156     return nullptr;
157 
158   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
159   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
160   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
161          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
162          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
163   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
164          "This only knows how to commute register operands so far");
165 
166   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
167   unsigned Reg1 = MI.getOperand(Idx1).getReg();
168   unsigned Reg2 = MI.getOperand(Idx2).getReg();
169   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
170   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
171   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
172   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
173   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
174   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
175   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
176   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
177   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
178   // Avoid calling isRenamable for virtual registers since we assert that
179   // renamable property is only queried/set for physical registers.
180   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
181                              ? MI.getOperand(Idx1).isRenamable()
182                              : false;
183   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
184                              ? MI.getOperand(Idx2).isRenamable()
185                              : false;
186   // If destination is tied to either of the commuted source register, then
187   // it must be updated.
188   if (HasDef && Reg0 == Reg1 &&
189       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
190     Reg2IsKill = false;
191     Reg0 = Reg2;
192     SubReg0 = SubReg2;
193   } else if (HasDef && Reg0 == Reg2 &&
194              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
195     Reg1IsKill = false;
196     Reg0 = Reg1;
197     SubReg0 = SubReg1;
198   }
199 
200   MachineInstr *CommutedMI = nullptr;
201   if (NewMI) {
202     // Create a new instruction.
203     MachineFunction &MF = *MI.getMF();
204     CommutedMI = MF.CloneMachineInstr(&MI);
205   } else {
206     CommutedMI = &MI;
207   }
208 
209   if (HasDef) {
210     CommutedMI->getOperand(0).setReg(Reg0);
211     CommutedMI->getOperand(0).setSubReg(SubReg0);
212   }
213   CommutedMI->getOperand(Idx2).setReg(Reg1);
214   CommutedMI->getOperand(Idx1).setReg(Reg2);
215   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
216   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
217   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
218   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
219   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
220   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
221   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
222   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
223   // Avoid calling setIsRenamable for virtual registers since we assert that
224   // renamable property is only queried/set for physical registers.
225   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
226     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
227   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
228     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
229   return CommutedMI;
230 }
231 
232 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
233                                                   unsigned OpIdx1,
234                                                   unsigned OpIdx2) const {
235   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
236   // any commutable operand, which is done in findCommutedOpIndices() method
237   // called below.
238   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
239       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
240     assert(MI.isCommutable() &&
241            "Precondition violation: MI must be commutable.");
242     return nullptr;
243   }
244   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
245 }
246 
247 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
248                                            unsigned &ResultIdx2,
249                                            unsigned CommutableOpIdx1,
250                                            unsigned CommutableOpIdx2) {
251   if (ResultIdx1 == CommuteAnyOperandIndex &&
252       ResultIdx2 == CommuteAnyOperandIndex) {
253     ResultIdx1 = CommutableOpIdx1;
254     ResultIdx2 = CommutableOpIdx2;
255   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
256     if (ResultIdx2 == CommutableOpIdx1)
257       ResultIdx1 = CommutableOpIdx2;
258     else if (ResultIdx2 == CommutableOpIdx2)
259       ResultIdx1 = CommutableOpIdx1;
260     else
261       return false;
262   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
263     if (ResultIdx1 == CommutableOpIdx1)
264       ResultIdx2 = CommutableOpIdx2;
265     else if (ResultIdx1 == CommutableOpIdx2)
266       ResultIdx2 = CommutableOpIdx1;
267     else
268       return false;
269   } else
270     // Check that the result operand indices match the given commutable
271     // operand indices.
272     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
273            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
274 
275   return true;
276 }
277 
278 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
279                                             unsigned &SrcOpIdx1,
280                                             unsigned &SrcOpIdx2) const {
281   assert(!MI.isBundle() &&
282          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
283 
284   const MCInstrDesc &MCID = MI.getDesc();
285   if (!MCID.isCommutable())
286     return false;
287 
288   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
289   // is not true, then the target must implement this.
290   unsigned CommutableOpIdx1 = MCID.getNumDefs();
291   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
292   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
293                             CommutableOpIdx1, CommutableOpIdx2))
294     return false;
295 
296   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
297     // No idea.
298     return false;
299   return true;
300 }
301 
302 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
303   if (!MI.isTerminator()) return false;
304 
305   // Conditional branch is a special case.
306   if (MI.isBranch() && !MI.isBarrier())
307     return true;
308   if (!MI.isPredicable())
309     return true;
310   return !isPredicated(MI);
311 }
312 
313 bool TargetInstrInfo::PredicateInstruction(
314     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
315   bool MadeChange = false;
316 
317   assert(!MI.isBundle() &&
318          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
319 
320   const MCInstrDesc &MCID = MI.getDesc();
321   if (!MI.isPredicable())
322     return false;
323 
324   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
325     if (MCID.OpInfo[i].isPredicate()) {
326       MachineOperand &MO = MI.getOperand(i);
327       if (MO.isReg()) {
328         MO.setReg(Pred[j].getReg());
329         MadeChange = true;
330       } else if (MO.isImm()) {
331         MO.setImm(Pred[j].getImm());
332         MadeChange = true;
333       } else if (MO.isMBB()) {
334         MO.setMBB(Pred[j].getMBB());
335         MadeChange = true;
336       }
337       ++j;
338     }
339   }
340   return MadeChange;
341 }
342 
343 bool TargetInstrInfo::hasLoadFromStackSlot(
344     const MachineInstr &MI,
345     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
346   size_t StartSize = Accesses.size();
347   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
348                                   oe = MI.memoperands_end();
349        o != oe; ++o) {
350     if ((*o)->isLoad() &&
351         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
352       Accesses.push_back(*o);
353   }
354   return Accesses.size() != StartSize;
355 }
356 
357 bool TargetInstrInfo::hasStoreToStackSlot(
358     const MachineInstr &MI,
359     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
360   size_t StartSize = Accesses.size();
361   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
362                                   oe = MI.memoperands_end();
363        o != oe; ++o) {
364     if ((*o)->isStore() &&
365         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
366       Accesses.push_back(*o);
367   }
368   return Accesses.size() != StartSize;
369 }
370 
371 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
372                                         unsigned SubIdx, unsigned &Size,
373                                         unsigned &Offset,
374                                         const MachineFunction &MF) const {
375   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
376   if (!SubIdx) {
377     Size = TRI->getSpillSize(*RC);
378     Offset = 0;
379     return true;
380   }
381   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
382   // Convert bit size to byte size.
383   if (BitSize % 8)
384     return false;
385 
386   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
387   if (BitOffset < 0 || BitOffset % 8)
388     return false;
389 
390   Size = BitSize /= 8;
391   Offset = (unsigned)BitOffset / 8;
392 
393   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
394 
395   if (!MF.getDataLayout().isLittleEndian()) {
396     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
397   }
398   return true;
399 }
400 
401 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
402                                     MachineBasicBlock::iterator I,
403                                     unsigned DestReg, unsigned SubIdx,
404                                     const MachineInstr &Orig,
405                                     const TargetRegisterInfo &TRI) const {
406   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
407   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
408   MBB.insert(I, MI);
409 }
410 
411 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
412                                        const MachineInstr &MI1,
413                                        const MachineRegisterInfo *MRI) const {
414   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
415 }
416 
417 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
418     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
419   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
420   MachineFunction &MF = *MBB.getParent();
421   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
422 }
423 
424 // If the COPY instruction in MI can be folded to a stack operation, return
425 // the register class to use.
426 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
427                                               unsigned FoldIdx) {
428   assert(MI.isCopy() && "MI must be a COPY instruction");
429   if (MI.getNumOperands() != 2)
430     return nullptr;
431   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
432 
433   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
434   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
435 
436   if (FoldOp.getSubReg() || LiveOp.getSubReg())
437     return nullptr;
438 
439   unsigned FoldReg = FoldOp.getReg();
440   unsigned LiveReg = LiveOp.getReg();
441 
442   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
443          "Cannot fold physregs");
444 
445   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
446   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
447 
448   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
449     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
450 
451   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
452     return RC;
453 
454   // FIXME: Allow folding when register classes are memory compatible.
455   return nullptr;
456 }
457 
458 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
459   llvm_unreachable("Not implemented");
460 }
461 
462 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
463                                     ArrayRef<unsigned> Ops, int FrameIndex,
464                                     const TargetInstrInfo &TII) {
465   unsigned StartIdx = 0;
466   switch (MI.getOpcode()) {
467   case TargetOpcode::STACKMAP: {
468     // StackMapLiveValues are foldable
469     StartIdx = StackMapOpers(&MI).getVarIdx();
470     break;
471   }
472   case TargetOpcode::PATCHPOINT: {
473     // For PatchPoint, the call args are not foldable (even if reported in the
474     // stackmap e.g. via anyregcc).
475     StartIdx = PatchPointOpers(&MI).getVarIdx();
476     break;
477   }
478   case TargetOpcode::STATEPOINT: {
479     // For statepoints, fold deopt and gc arguments, but not call arguments.
480     StartIdx = StatepointOpers(&MI).getVarIdx();
481     break;
482   }
483   default:
484     llvm_unreachable("unexpected stackmap opcode");
485   }
486 
487   // Return false if any operands requested for folding are not foldable (not
488   // part of the stackmap's live values).
489   for (unsigned Op : Ops) {
490     if (Op < StartIdx)
491       return nullptr;
492   }
493 
494   MachineInstr *NewMI =
495       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
496   MachineInstrBuilder MIB(MF, NewMI);
497 
498   // No need to fold return, the meta data, and function arguments
499   for (unsigned i = 0; i < StartIdx; ++i)
500     MIB.add(MI.getOperand(i));
501 
502   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
503     MachineOperand &MO = MI.getOperand(i);
504     if (is_contained(Ops, i)) {
505       unsigned SpillSize;
506       unsigned SpillOffset;
507       // Compute the spill slot size and offset.
508       const TargetRegisterClass *RC =
509         MF.getRegInfo().getRegClass(MO.getReg());
510       bool Valid =
511           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
512       if (!Valid)
513         report_fatal_error("cannot spill patchpoint subregister operand");
514       MIB.addImm(StackMaps::IndirectMemRefOp);
515       MIB.addImm(SpillSize);
516       MIB.addFrameIndex(FrameIndex);
517       MIB.addImm(SpillOffset);
518     }
519     else
520       MIB.add(MO);
521   }
522   return NewMI;
523 }
524 
525 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
526                                                  ArrayRef<unsigned> Ops, int FI,
527                                                  LiveIntervals *LIS,
528                                                  VirtRegMap *VRM) const {
529   auto Flags = MachineMemOperand::MONone;
530   for (unsigned OpIdx : Ops)
531     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
532                                           : MachineMemOperand::MOLoad;
533 
534   MachineBasicBlock *MBB = MI.getParent();
535   assert(MBB && "foldMemoryOperand needs an inserted instruction");
536   MachineFunction &MF = *MBB->getParent();
537 
538   // If we're not folding a load into a subreg, the size of the load is the
539   // size of the spill slot. But if we are, we need to figure out what the
540   // actual load size is.
541   int64_t MemSize = 0;
542   const MachineFrameInfo &MFI = MF.getFrameInfo();
543   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
544 
545   if (Flags & MachineMemOperand::MOStore) {
546     MemSize = MFI.getObjectSize(FI);
547   } else {
548     for (unsigned OpIdx : Ops) {
549       int64_t OpSize = MFI.getObjectSize(FI);
550 
551       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
552         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
553         if (SubRegSize > 0 && !(SubRegSize % 8))
554           OpSize = SubRegSize / 8;
555       }
556 
557       MemSize = std::max(MemSize, OpSize);
558     }
559   }
560 
561   assert(MemSize && "Did not expect a zero-sized stack slot");
562 
563   MachineInstr *NewMI = nullptr;
564 
565   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
566       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
567       MI.getOpcode() == TargetOpcode::STATEPOINT) {
568     // Fold stackmap/patchpoint.
569     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
570     if (NewMI)
571       MBB->insert(MI, NewMI);
572   } else {
573     // Ask the target to do the actual folding.
574     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
575   }
576 
577   if (NewMI) {
578     NewMI->setMemRefs(MF, MI.memoperands());
579     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
580     assert((!(Flags & MachineMemOperand::MOStore) ||
581             NewMI->mayStore()) &&
582            "Folded a def to a non-store!");
583     assert((!(Flags & MachineMemOperand::MOLoad) ||
584             NewMI->mayLoad()) &&
585            "Folded a use to a non-load!");
586     assert(MFI.getObjectOffset(FI) != -1);
587     MachineMemOperand *MMO = MF.getMachineMemOperand(
588         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
589         MFI.getObjectAlignment(FI));
590     NewMI->addMemOperand(MF, MMO);
591 
592     return NewMI;
593   }
594 
595   // Straight COPY may fold as load/store.
596   if (!MI.isCopy() || Ops.size() != 1)
597     return nullptr;
598 
599   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
600   if (!RC)
601     return nullptr;
602 
603   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
604   MachineBasicBlock::iterator Pos = MI;
605 
606   if (Flags == MachineMemOperand::MOStore)
607     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
608   else
609     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
610   return &*--Pos;
611 }
612 
613 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
614                                                  ArrayRef<unsigned> Ops,
615                                                  MachineInstr &LoadMI,
616                                                  LiveIntervals *LIS) const {
617   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
618 #ifndef NDEBUG
619   for (unsigned OpIdx : Ops)
620     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
621 #endif
622 
623   MachineBasicBlock &MBB = *MI.getParent();
624   MachineFunction &MF = *MBB.getParent();
625 
626   // Ask the target to do the actual folding.
627   MachineInstr *NewMI = nullptr;
628   int FrameIndex = 0;
629 
630   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
631        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
632        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
633       isLoadFromStackSlot(LoadMI, FrameIndex)) {
634     // Fold stackmap/patchpoint.
635     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
636     if (NewMI)
637       NewMI = &*MBB.insert(MI, NewMI);
638   } else {
639     // Ask the target to do the actual folding.
640     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
641   }
642 
643   if (!NewMI)
644     return nullptr;
645 
646   // Copy the memoperands from the load to the folded instruction.
647   if (MI.memoperands_empty()) {
648     NewMI->setMemRefs(MF, LoadMI.memoperands());
649   } else {
650     // Handle the rare case of folding multiple loads.
651     NewMI->setMemRefs(MF, MI.memoperands());
652     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
653                                     E = LoadMI.memoperands_end();
654          I != E; ++I) {
655       NewMI->addMemOperand(MF, *I);
656     }
657   }
658   return NewMI;
659 }
660 
661 bool TargetInstrInfo::hasReassociableOperands(
662     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
663   const MachineOperand &Op1 = Inst.getOperand(1);
664   const MachineOperand &Op2 = Inst.getOperand(2);
665   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
666 
667   // We need virtual register definitions for the operands that we will
668   // reassociate.
669   MachineInstr *MI1 = nullptr;
670   MachineInstr *MI2 = nullptr;
671   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
672     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
673   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
674     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
675 
676   // And they need to be in the trace (otherwise, they won't have a depth).
677   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
678 }
679 
680 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
681                                              bool &Commuted) const {
682   const MachineBasicBlock *MBB = Inst.getParent();
683   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
684   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
685   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
686   unsigned AssocOpcode = Inst.getOpcode();
687 
688   // If only one operand has the same opcode and it's the second source operand,
689   // the operands must be commuted.
690   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
691   if (Commuted)
692     std::swap(MI1, MI2);
693 
694   // 1. The previous instruction must be the same type as Inst.
695   // 2. The previous instruction must have virtual register definitions for its
696   //    operands in the same basic block as Inst.
697   // 3. The previous instruction's result must only be used by Inst.
698   return MI1->getOpcode() == AssocOpcode &&
699          hasReassociableOperands(*MI1, MBB) &&
700          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
701 }
702 
703 // 1. The operation must be associative and commutative.
704 // 2. The instruction must have virtual register definitions for its
705 //    operands in the same basic block.
706 // 3. The instruction must have a reassociable sibling.
707 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
708                                                bool &Commuted) const {
709   return isAssociativeAndCommutative(Inst) &&
710          hasReassociableOperands(Inst, Inst.getParent()) &&
711          hasReassociableSibling(Inst, Commuted);
712 }
713 
714 // The concept of the reassociation pass is that these operations can benefit
715 // from this kind of transformation:
716 //
717 // A = ? op ?
718 // B = A op X (Prev)
719 // C = B op Y (Root)
720 // -->
721 // A = ? op ?
722 // B = X op Y
723 // C = A op B
724 //
725 // breaking the dependency between A and B, allowing them to be executed in
726 // parallel (or back-to-back in a pipeline) instead of depending on each other.
727 
728 // FIXME: This has the potential to be expensive (compile time) while not
729 // improving the code at all. Some ways to limit the overhead:
730 // 1. Track successful transforms; bail out if hit rate gets too low.
731 // 2. Only enable at -O3 or some other non-default optimization level.
732 // 3. Pre-screen pattern candidates here: if an operand of the previous
733 //    instruction is known to not increase the critical path, then don't match
734 //    that pattern.
735 bool TargetInstrInfo::getMachineCombinerPatterns(
736     MachineInstr &Root,
737     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
738   bool Commute;
739   if (isReassociationCandidate(Root, Commute)) {
740     // We found a sequence of instructions that may be suitable for a
741     // reassociation of operands to increase ILP. Specify each commutation
742     // possibility for the Prev instruction in the sequence and let the
743     // machine combiner decide if changing the operands is worthwhile.
744     if (Commute) {
745       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
746       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
747     } else {
748       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
749       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
750     }
751     return true;
752   }
753 
754   return false;
755 }
756 
757 /// Return true when a code sequence can improve loop throughput.
758 bool
759 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
760   return false;
761 }
762 
763 /// Attempt the reassociation transformation to reduce critical path length.
764 /// See the above comments before getMachineCombinerPatterns().
765 void TargetInstrInfo::reassociateOps(
766     MachineInstr &Root, MachineInstr &Prev,
767     MachineCombinerPattern Pattern,
768     SmallVectorImpl<MachineInstr *> &InsInstrs,
769     SmallVectorImpl<MachineInstr *> &DelInstrs,
770     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
771   MachineFunction *MF = Root.getMF();
772   MachineRegisterInfo &MRI = MF->getRegInfo();
773   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
774   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
775   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
776 
777   // This array encodes the operand index for each parameter because the
778   // operands may be commuted. Each row corresponds to a pattern value,
779   // and each column specifies the index of A, B, X, Y.
780   unsigned OpIdx[4][4] = {
781     { 1, 1, 2, 2 },
782     { 1, 2, 2, 1 },
783     { 2, 1, 1, 2 },
784     { 2, 2, 1, 1 }
785   };
786 
787   int Row;
788   switch (Pattern) {
789   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
790   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
791   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
792   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
793   default: llvm_unreachable("unexpected MachineCombinerPattern");
794   }
795 
796   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
797   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
798   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
799   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
800   MachineOperand &OpC = Root.getOperand(0);
801 
802   unsigned RegA = OpA.getReg();
803   unsigned RegB = OpB.getReg();
804   unsigned RegX = OpX.getReg();
805   unsigned RegY = OpY.getReg();
806   unsigned RegC = OpC.getReg();
807 
808   if (TargetRegisterInfo::isVirtualRegister(RegA))
809     MRI.constrainRegClass(RegA, RC);
810   if (TargetRegisterInfo::isVirtualRegister(RegB))
811     MRI.constrainRegClass(RegB, RC);
812   if (TargetRegisterInfo::isVirtualRegister(RegX))
813     MRI.constrainRegClass(RegX, RC);
814   if (TargetRegisterInfo::isVirtualRegister(RegY))
815     MRI.constrainRegClass(RegY, RC);
816   if (TargetRegisterInfo::isVirtualRegister(RegC))
817     MRI.constrainRegClass(RegC, RC);
818 
819   // Create a new virtual register for the result of (X op Y) instead of
820   // recycling RegB because the MachineCombiner's computation of the critical
821   // path requires a new register definition rather than an existing one.
822   unsigned NewVR = MRI.createVirtualRegister(RC);
823   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
824 
825   unsigned Opcode = Root.getOpcode();
826   bool KillA = OpA.isKill();
827   bool KillX = OpX.isKill();
828   bool KillY = OpY.isKill();
829 
830   // Create new instructions for insertion.
831   MachineInstrBuilder MIB1 =
832       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
833           .addReg(RegX, getKillRegState(KillX))
834           .addReg(RegY, getKillRegState(KillY));
835   MachineInstrBuilder MIB2 =
836       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
837           .addReg(RegA, getKillRegState(KillA))
838           .addReg(NewVR, getKillRegState(true));
839 
840   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
841 
842   // Record new instructions for insertion and old instructions for deletion.
843   InsInstrs.push_back(MIB1);
844   InsInstrs.push_back(MIB2);
845   DelInstrs.push_back(&Prev);
846   DelInstrs.push_back(&Root);
847 }
848 
849 void TargetInstrInfo::genAlternativeCodeSequence(
850     MachineInstr &Root, MachineCombinerPattern Pattern,
851     SmallVectorImpl<MachineInstr *> &InsInstrs,
852     SmallVectorImpl<MachineInstr *> &DelInstrs,
853     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
854   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
855 
856   // Select the previous instruction in the sequence based on the input pattern.
857   MachineInstr *Prev = nullptr;
858   switch (Pattern) {
859   case MachineCombinerPattern::REASSOC_AX_BY:
860   case MachineCombinerPattern::REASSOC_XA_BY:
861     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
862     break;
863   case MachineCombinerPattern::REASSOC_AX_YB:
864   case MachineCombinerPattern::REASSOC_XA_YB:
865     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
866     break;
867   default:
868     break;
869   }
870 
871   assert(Prev && "Unknown pattern for machine combiner");
872 
873   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
874 }
875 
876 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
877     const MachineInstr &MI, AliasAnalysis *AA) const {
878   const MachineFunction &MF = *MI.getMF();
879   const MachineRegisterInfo &MRI = MF.getRegInfo();
880 
881   // Remat clients assume operand 0 is the defined register.
882   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
883     return false;
884   unsigned DefReg = MI.getOperand(0).getReg();
885 
886   // A sub-register definition can only be rematerialized if the instruction
887   // doesn't read the other parts of the register.  Otherwise it is really a
888   // read-modify-write operation on the full virtual register which cannot be
889   // moved safely.
890   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
891       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
892     return false;
893 
894   // A load from a fixed stack slot can be rematerialized. This may be
895   // redundant with subsequent checks, but it's target-independent,
896   // simple, and a common case.
897   int FrameIdx = 0;
898   if (isLoadFromStackSlot(MI, FrameIdx) &&
899       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
900     return true;
901 
902   // Avoid instructions obviously unsafe for remat.
903   if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
904       MI.hasUnmodeledSideEffects())
905     return false;
906 
907   // Don't remat inline asm. We have no idea how expensive it is
908   // even if it's side effect free.
909   if (MI.isInlineAsm())
910     return false;
911 
912   // Avoid instructions which load from potentially varying memory.
913   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
914     return false;
915 
916   // If any of the registers accessed are non-constant, conservatively assume
917   // the instruction is not rematerializable.
918   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
919     const MachineOperand &MO = MI.getOperand(i);
920     if (!MO.isReg()) continue;
921     unsigned Reg = MO.getReg();
922     if (Reg == 0)
923       continue;
924 
925     // Check for a well-behaved physical register.
926     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
927       if (MO.isUse()) {
928         // If the physreg has no defs anywhere, it's just an ambient register
929         // and we can freely move its uses. Alternatively, if it's allocatable,
930         // it could get allocated to something with a def during allocation.
931         if (!MRI.isConstantPhysReg(Reg))
932           return false;
933       } else {
934         // A physreg def. We can't remat it.
935         return false;
936       }
937       continue;
938     }
939 
940     // Only allow one virtual-register def.  There may be multiple defs of the
941     // same virtual register, though.
942     if (MO.isDef() && Reg != DefReg)
943       return false;
944 
945     // Don't allow any virtual-register uses. Rematting an instruction with
946     // virtual register uses would length the live ranges of the uses, which
947     // is not necessarily a good idea, certainly not "trivial".
948     if (MO.isUse())
949       return false;
950   }
951 
952   // Everything checked out.
953   return true;
954 }
955 
956 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
957   const MachineFunction *MF = MI.getMF();
958   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
959   bool StackGrowsDown =
960     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
961 
962   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
963   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
964 
965   if (!isFrameInstr(MI))
966     return 0;
967 
968   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
969 
970   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
971       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
972     SPAdj = -SPAdj;
973 
974   return SPAdj;
975 }
976 
977 /// isSchedulingBoundary - Test if the given instruction should be
978 /// considered a scheduling boundary. This primarily includes labels
979 /// and terminators.
980 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
981                                            const MachineBasicBlock *MBB,
982                                            const MachineFunction &MF) const {
983   // Terminators and labels can't be scheduled around.
984   if (MI.isTerminator() || MI.isPosition())
985     return true;
986 
987   // Don't attempt to schedule around any instruction that defines
988   // a stack-oriented pointer, as it's unlikely to be profitable. This
989   // saves compile time, because it doesn't require every single
990   // stack slot reference to depend on the instruction that does the
991   // modification.
992   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
993   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
994   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
995 }
996 
997 // Provide a global flag for disabling the PreRA hazard recognizer that targets
998 // may choose to honor.
999 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1000   return !DisableHazardRecognizer;
1001 }
1002 
1003 // Default implementation of CreateTargetRAHazardRecognizer.
1004 ScheduleHazardRecognizer *TargetInstrInfo::
1005 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1006                              const ScheduleDAG *DAG) const {
1007   // Dummy hazard recognizer allows all instructions to issue.
1008   return new ScheduleHazardRecognizer();
1009 }
1010 
1011 // Default implementation of CreateTargetMIHazardRecognizer.
1012 ScheduleHazardRecognizer *TargetInstrInfo::
1013 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1014                                const ScheduleDAG *DAG) const {
1015   return (ScheduleHazardRecognizer *)
1016     new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1017 }
1018 
1019 // Default implementation of CreateTargetPostRAHazardRecognizer.
1020 ScheduleHazardRecognizer *TargetInstrInfo::
1021 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1022                                    const ScheduleDAG *DAG) const {
1023   return (ScheduleHazardRecognizer *)
1024     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1025 }
1026 
1027 //===----------------------------------------------------------------------===//
1028 //  SelectionDAG latency interface.
1029 //===----------------------------------------------------------------------===//
1030 
1031 int
1032 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1033                                    SDNode *DefNode, unsigned DefIdx,
1034                                    SDNode *UseNode, unsigned UseIdx) const {
1035   if (!ItinData || ItinData->isEmpty())
1036     return -1;
1037 
1038   if (!DefNode->isMachineOpcode())
1039     return -1;
1040 
1041   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1042   if (!UseNode->isMachineOpcode())
1043     return ItinData->getOperandCycle(DefClass, DefIdx);
1044   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1045   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1046 }
1047 
1048 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1049                                      SDNode *N) const {
1050   if (!ItinData || ItinData->isEmpty())
1051     return 1;
1052 
1053   if (!N->isMachineOpcode())
1054     return 1;
1055 
1056   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1057 }
1058 
1059 //===----------------------------------------------------------------------===//
1060 //  MachineInstr latency interface.
1061 //===----------------------------------------------------------------------===//
1062 
1063 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1064                                          const MachineInstr &MI) const {
1065   if (!ItinData || ItinData->isEmpty())
1066     return 1;
1067 
1068   unsigned Class = MI.getDesc().getSchedClass();
1069   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1070   if (UOps >= 0)
1071     return UOps;
1072 
1073   // The # of u-ops is dynamically determined. The specific target should
1074   // override this function to return the right number.
1075   return 1;
1076 }
1077 
1078 /// Return the default expected latency for a def based on it's opcode.
1079 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1080                                             const MachineInstr &DefMI) const {
1081   if (DefMI.isTransient())
1082     return 0;
1083   if (DefMI.mayLoad())
1084     return SchedModel.LoadLatency;
1085   if (isHighLatencyDef(DefMI.getOpcode()))
1086     return SchedModel.HighLatency;
1087   return 1;
1088 }
1089 
1090 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1091   return 0;
1092 }
1093 
1094 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1095                                           const MachineInstr &MI,
1096                                           unsigned *PredCost) const {
1097   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1098   // still have a MinLatency property, which getStageLatency checks.
1099   if (!ItinData)
1100     return MI.mayLoad() ? 2 : 1;
1101 
1102   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1103 }
1104 
1105 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1106                                        const MachineInstr &DefMI,
1107                                        unsigned DefIdx) const {
1108   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1109   if (!ItinData || ItinData->isEmpty())
1110     return false;
1111 
1112   unsigned DefClass = DefMI.getDesc().getSchedClass();
1113   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1114   return (DefCycle != -1 && DefCycle <= 1);
1115 }
1116 
1117 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1118 /// itinerary. This may be overriden by the target.
1119 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1120                                        const MachineInstr &DefMI,
1121                                        unsigned DefIdx,
1122                                        const MachineInstr &UseMI,
1123                                        unsigned UseIdx) const {
1124   unsigned DefClass = DefMI.getDesc().getSchedClass();
1125   unsigned UseClass = UseMI.getDesc().getSchedClass();
1126   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1127 }
1128 
1129 /// If we can determine the operand latency from the def only, without itinerary
1130 /// lookup, do so. Otherwise return -1.
1131 int TargetInstrInfo::computeDefOperandLatency(
1132     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1133 
1134   // Let the target hook getInstrLatency handle missing itineraries.
1135   if (!ItinData)
1136     return getInstrLatency(ItinData, DefMI);
1137 
1138   if(ItinData->isEmpty())
1139     return defaultDefLatency(ItinData->SchedModel, DefMI);
1140 
1141   // ...operand lookup required
1142   return -1;
1143 }
1144 
1145 bool TargetInstrInfo::getRegSequenceInputs(
1146     const MachineInstr &MI, unsigned DefIdx,
1147     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1148   assert((MI.isRegSequence() ||
1149           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1150 
1151   if (!MI.isRegSequence())
1152     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1153 
1154   // We are looking at:
1155   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1156   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1157   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1158        OpIdx += 2) {
1159     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1160     if (MOReg.isUndef())
1161       continue;
1162     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1163     assert(MOSubIdx.isImm() &&
1164            "One of the subindex of the reg_sequence is not an immediate");
1165     // Record Reg:SubReg, SubIdx.
1166     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1167                                             (unsigned)MOSubIdx.getImm()));
1168   }
1169   return true;
1170 }
1171 
1172 bool TargetInstrInfo::getExtractSubregInputs(
1173     const MachineInstr &MI, unsigned DefIdx,
1174     RegSubRegPairAndIdx &InputReg) const {
1175   assert((MI.isExtractSubreg() ||
1176       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1177 
1178   if (!MI.isExtractSubreg())
1179     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1180 
1181   // We are looking at:
1182   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1183   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1184   const MachineOperand &MOReg = MI.getOperand(1);
1185   if (MOReg.isUndef())
1186     return false;
1187   const MachineOperand &MOSubIdx = MI.getOperand(2);
1188   assert(MOSubIdx.isImm() &&
1189          "The subindex of the extract_subreg is not an immediate");
1190 
1191   InputReg.Reg = MOReg.getReg();
1192   InputReg.SubReg = MOReg.getSubReg();
1193   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1194   return true;
1195 }
1196 
1197 bool TargetInstrInfo::getInsertSubregInputs(
1198     const MachineInstr &MI, unsigned DefIdx,
1199     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1200   assert((MI.isInsertSubreg() ||
1201       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1202 
1203   if (!MI.isInsertSubreg())
1204     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1205 
1206   // We are looking at:
1207   // Def = INSERT_SEQUENCE v0, v1, sub0.
1208   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1209   const MachineOperand &MOBaseReg = MI.getOperand(1);
1210   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1211   if (MOInsertedReg.isUndef())
1212     return false;
1213   const MachineOperand &MOSubIdx = MI.getOperand(3);
1214   assert(MOSubIdx.isImm() &&
1215          "One of the subindex of the reg_sequence is not an immediate");
1216   BaseReg.Reg = MOBaseReg.getReg();
1217   BaseReg.SubReg = MOBaseReg.getSubReg();
1218 
1219   InsertedReg.Reg = MOInsertedReg.getReg();
1220   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1221   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1222   return true;
1223 }
1224