1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCInstrItineraries.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
71   return strncmp(Str, MAI.getCommentString().data(),
72                  MAI.getCommentString().size()) == 0;
73 }
74 
75 /// Measure the specified inline asm to determine an approximation of its
76 /// length.
77 /// Comments (which run till the next SeparatorString or newline) do not
78 /// count as an instruction.
79 /// Any other non-whitespace text is considered an instruction, with
80 /// multiple instructions separated by SeparatorString or newlines.
81 /// Variable-length instructions are not handled here; this function
82 /// may be overloaded in the target code to do that.
83 /// We implement a special case of the .space directive which takes only a
84 /// single integer argument in base 10 that is the size in bytes. This is a
85 /// restricted form of the GAS directive in that we only interpret
86 /// simple--i.e. not a logical or arithmetic expression--size values without
87 /// the optional fill value. This is primarily used for creating arbitrary
88 /// sized inline asm blocks for testing purposes.
89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
90                                              const MCAsmInfo &MAI) const {
91   // Count the number of instructions in the asm.
92   bool AtInsnStart = true;
93   unsigned Length = 0;
94   for (; *Str; ++Str) {
95     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
96                                 strlen(MAI.getSeparatorString())) == 0) {
97       AtInsnStart = true;
98     } else if (isAsmComment(Str, MAI)) {
99       // Stop counting as an instruction after a comment until the next
100       // separator.
101       AtInsnStart = false;
102     }
103 
104     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
105       unsigned AddLength = MAI.getMaxInstLength();
106       if (strncmp(Str, ".space", 6) == 0) {
107         char *EStr;
108         int SpaceSize;
109         SpaceSize = strtol(Str + 6, &EStr, 10);
110         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
111         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
112           ++EStr;
113         if (*EStr == '\0' || *EStr == '\n' ||
114             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
115           AddLength = SpaceSize;
116       }
117       Length += AddLength;
118       AtInsnStart = false;
119     }
120   }
121 
122   return Length;
123 }
124 
125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
126 /// after it, replacing it with an unconditional branch to NewDest.
127 void
128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
129                                          MachineBasicBlock *NewDest) const {
130   MachineBasicBlock *MBB = Tail->getParent();
131 
132   // Remove all the old successors of MBB from the CFG.
133   while (!MBB->succ_empty())
134     MBB->removeSuccessor(MBB->succ_begin());
135 
136   // Save off the debug loc before erasing the instruction.
137   DebugLoc DL = Tail->getDebugLoc();
138 
139   // Remove all the dead instructions from the end of MBB.
140   MBB->erase(Tail, MBB->end());
141 
142   // If MBB isn't immediately before MBB, insert a branch to it.
143   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
144     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
145   MBB->addSuccessor(NewDest);
146 }
147 
148 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
149                                                       bool NewMI, unsigned Idx1,
150                                                       unsigned Idx2) const {
151   const MCInstrDesc &MCID = MI.getDesc();
152   bool HasDef = MCID.getNumDefs();
153   if (HasDef && !MI.getOperand(0).isReg())
154     // No idea how to commute this instruction. Target should implement its own.
155     return nullptr;
156 
157   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
158   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
159   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
160          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
161          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
162   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
163          "This only knows how to commute register operands so far");
164 
165   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
166   unsigned Reg1 = MI.getOperand(Idx1).getReg();
167   unsigned Reg2 = MI.getOperand(Idx2).getReg();
168   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
169   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
170   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
171   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
172   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
173   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
174   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
175   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
176   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
177   // Avoid calling isRenamable for virtual registers since we assert that
178   // renamable property is only queried/set for physical registers.
179   bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1)
180                              ? MI.getOperand(Idx1).isRenamable()
181                              : false;
182   bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2)
183                              ? MI.getOperand(Idx2).isRenamable()
184                              : false;
185   // If destination is tied to either of the commuted source register, then
186   // it must be updated.
187   if (HasDef && Reg0 == Reg1 &&
188       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
189     Reg2IsKill = false;
190     Reg0 = Reg2;
191     SubReg0 = SubReg2;
192   } else if (HasDef && Reg0 == Reg2 &&
193              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
194     Reg1IsKill = false;
195     Reg0 = Reg1;
196     SubReg0 = SubReg1;
197   }
198 
199   MachineInstr *CommutedMI = nullptr;
200   if (NewMI) {
201     // Create a new instruction.
202     MachineFunction &MF = *MI.getMF();
203     CommutedMI = MF.CloneMachineInstr(&MI);
204   } else {
205     CommutedMI = &MI;
206   }
207 
208   if (HasDef) {
209     CommutedMI->getOperand(0).setReg(Reg0);
210     CommutedMI->getOperand(0).setSubReg(SubReg0);
211   }
212   CommutedMI->getOperand(Idx2).setReg(Reg1);
213   CommutedMI->getOperand(Idx1).setReg(Reg2);
214   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
215   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
216   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
217   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
218   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
219   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
220   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
221   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
222   // Avoid calling setIsRenamable for virtual registers since we assert that
223   // renamable property is only queried/set for physical registers.
224   if (TargetRegisterInfo::isPhysicalRegister(Reg1))
225     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
226   if (TargetRegisterInfo::isPhysicalRegister(Reg2))
227     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
228   return CommutedMI;
229 }
230 
231 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
232                                                   unsigned OpIdx1,
233                                                   unsigned OpIdx2) const {
234   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
235   // any commutable operand, which is done in findCommutedOpIndices() method
236   // called below.
237   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
238       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
239     assert(MI.isCommutable() &&
240            "Precondition violation: MI must be commutable.");
241     return nullptr;
242   }
243   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
244 }
245 
246 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
247                                            unsigned &ResultIdx2,
248                                            unsigned CommutableOpIdx1,
249                                            unsigned CommutableOpIdx2) {
250   if (ResultIdx1 == CommuteAnyOperandIndex &&
251       ResultIdx2 == CommuteAnyOperandIndex) {
252     ResultIdx1 = CommutableOpIdx1;
253     ResultIdx2 = CommutableOpIdx2;
254   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
255     if (ResultIdx2 == CommutableOpIdx1)
256       ResultIdx1 = CommutableOpIdx2;
257     else if (ResultIdx2 == CommutableOpIdx2)
258       ResultIdx1 = CommutableOpIdx1;
259     else
260       return false;
261   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
262     if (ResultIdx1 == CommutableOpIdx1)
263       ResultIdx2 = CommutableOpIdx2;
264     else if (ResultIdx1 == CommutableOpIdx2)
265       ResultIdx2 = CommutableOpIdx1;
266     else
267       return false;
268   } else
269     // Check that the result operand indices match the given commutable
270     // operand indices.
271     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
272            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
273 
274   return true;
275 }
276 
277 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
278                                             unsigned &SrcOpIdx1,
279                                             unsigned &SrcOpIdx2) const {
280   assert(!MI.isBundle() &&
281          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
282 
283   const MCInstrDesc &MCID = MI.getDesc();
284   if (!MCID.isCommutable())
285     return false;
286 
287   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
288   // is not true, then the target must implement this.
289   unsigned CommutableOpIdx1 = MCID.getNumDefs();
290   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
291   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
292                             CommutableOpIdx1, CommutableOpIdx2))
293     return false;
294 
295   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
296     // No idea.
297     return false;
298   return true;
299 }
300 
301 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
302   if (!MI.isTerminator()) return false;
303 
304   // Conditional branch is a special case.
305   if (MI.isBranch() && !MI.isBarrier())
306     return true;
307   if (!MI.isPredicable())
308     return true;
309   return !isPredicated(MI);
310 }
311 
312 bool TargetInstrInfo::PredicateInstruction(
313     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
314   bool MadeChange = false;
315 
316   assert(!MI.isBundle() &&
317          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
318 
319   const MCInstrDesc &MCID = MI.getDesc();
320   if (!MI.isPredicable())
321     return false;
322 
323   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
324     if (MCID.OpInfo[i].isPredicate()) {
325       MachineOperand &MO = MI.getOperand(i);
326       if (MO.isReg()) {
327         MO.setReg(Pred[j].getReg());
328         MadeChange = true;
329       } else if (MO.isImm()) {
330         MO.setImm(Pred[j].getImm());
331         MadeChange = true;
332       } else if (MO.isMBB()) {
333         MO.setMBB(Pred[j].getMBB());
334         MadeChange = true;
335       }
336       ++j;
337     }
338   }
339   return MadeChange;
340 }
341 
342 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
343                                            const MachineMemOperand *&MMO,
344                                            int &FrameIndex) const {
345   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
346                                   oe = MI.memoperands_end();
347        o != oe; ++o) {
348     if ((*o)->isLoad()) {
349       if (const FixedStackPseudoSourceValue *Value =
350           dyn_cast_or_null<FixedStackPseudoSourceValue>(
351               (*o)->getPseudoValue())) {
352         FrameIndex = Value->getFrameIndex();
353         MMO = *o;
354         return true;
355       }
356     }
357   }
358   return false;
359 }
360 
361 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
362                                           const MachineMemOperand *&MMO,
363                                           int &FrameIndex) const {
364   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
365                                   oe = MI.memoperands_end();
366        o != oe; ++o) {
367     if ((*o)->isStore()) {
368       if (const FixedStackPseudoSourceValue *Value =
369           dyn_cast_or_null<FixedStackPseudoSourceValue>(
370               (*o)->getPseudoValue())) {
371         FrameIndex = Value->getFrameIndex();
372         MMO = *o;
373         return true;
374       }
375     }
376   }
377   return false;
378 }
379 
380 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
381                                         unsigned SubIdx, unsigned &Size,
382                                         unsigned &Offset,
383                                         const MachineFunction &MF) const {
384   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
385   if (!SubIdx) {
386     Size = TRI->getSpillSize(*RC);
387     Offset = 0;
388     return true;
389   }
390   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
391   // Convert bit size to byte size.
392   if (BitSize % 8)
393     return false;
394 
395   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
396   if (BitOffset < 0 || BitOffset % 8)
397     return false;
398 
399   Size = BitSize /= 8;
400   Offset = (unsigned)BitOffset / 8;
401 
402   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
403 
404   if (!MF.getDataLayout().isLittleEndian()) {
405     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
406   }
407   return true;
408 }
409 
410 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
411                                     MachineBasicBlock::iterator I,
412                                     unsigned DestReg, unsigned SubIdx,
413                                     const MachineInstr &Orig,
414                                     const TargetRegisterInfo &TRI) const {
415   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
416   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
417   MBB.insert(I, MI);
418 }
419 
420 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
421                                        const MachineInstr &MI1,
422                                        const MachineRegisterInfo *MRI) const {
423   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
424 }
425 
426 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
427     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
428   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
429   MachineFunction &MF = *MBB.getParent();
430   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
431 }
432 
433 // If the COPY instruction in MI can be folded to a stack operation, return
434 // the register class to use.
435 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
436                                               unsigned FoldIdx) {
437   assert(MI.isCopy() && "MI must be a COPY instruction");
438   if (MI.getNumOperands() != 2)
439     return nullptr;
440   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
441 
442   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
443   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
444 
445   if (FoldOp.getSubReg() || LiveOp.getSubReg())
446     return nullptr;
447 
448   unsigned FoldReg = FoldOp.getReg();
449   unsigned LiveReg = LiveOp.getReg();
450 
451   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
452          "Cannot fold physregs");
453 
454   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
455   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
456 
457   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
458     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
459 
460   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
461     return RC;
462 
463   // FIXME: Allow folding when register classes are memory compatible.
464   return nullptr;
465 }
466 
467 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
468   llvm_unreachable("Not implemented");
469 }
470 
471 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
472                                     ArrayRef<unsigned> Ops, int FrameIndex,
473                                     const TargetInstrInfo &TII) {
474   unsigned StartIdx = 0;
475   switch (MI.getOpcode()) {
476   case TargetOpcode::STACKMAP: {
477     // StackMapLiveValues are foldable
478     StartIdx = StackMapOpers(&MI).getVarIdx();
479     break;
480   }
481   case TargetOpcode::PATCHPOINT: {
482     // For PatchPoint, the call args are not foldable (even if reported in the
483     // stackmap e.g. via anyregcc).
484     StartIdx = PatchPointOpers(&MI).getVarIdx();
485     break;
486   }
487   case TargetOpcode::STATEPOINT: {
488     // For statepoints, fold deopt and gc arguments, but not call arguments.
489     StartIdx = StatepointOpers(&MI).getVarIdx();
490     break;
491   }
492   default:
493     llvm_unreachable("unexpected stackmap opcode");
494   }
495 
496   // Return false if any operands requested for folding are not foldable (not
497   // part of the stackmap's live values).
498   for (unsigned Op : Ops) {
499     if (Op < StartIdx)
500       return nullptr;
501   }
502 
503   MachineInstr *NewMI =
504       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
505   MachineInstrBuilder MIB(MF, NewMI);
506 
507   // No need to fold return, the meta data, and function arguments
508   for (unsigned i = 0; i < StartIdx; ++i)
509     MIB.add(MI.getOperand(i));
510 
511   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
512     MachineOperand &MO = MI.getOperand(i);
513     if (is_contained(Ops, i)) {
514       unsigned SpillSize;
515       unsigned SpillOffset;
516       // Compute the spill slot size and offset.
517       const TargetRegisterClass *RC =
518         MF.getRegInfo().getRegClass(MO.getReg());
519       bool Valid =
520           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
521       if (!Valid)
522         report_fatal_error("cannot spill patchpoint subregister operand");
523       MIB.addImm(StackMaps::IndirectMemRefOp);
524       MIB.addImm(SpillSize);
525       MIB.addFrameIndex(FrameIndex);
526       MIB.addImm(SpillOffset);
527     }
528     else
529       MIB.add(MO);
530   }
531   return NewMI;
532 }
533 
534 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
535                                                  ArrayRef<unsigned> Ops, int FI,
536                                                  LiveIntervals *LIS) const {
537   auto Flags = MachineMemOperand::MONone;
538   for (unsigned OpIdx : Ops)
539     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
540                                           : MachineMemOperand::MOLoad;
541 
542   MachineBasicBlock *MBB = MI.getParent();
543   assert(MBB && "foldMemoryOperand needs an inserted instruction");
544   MachineFunction &MF = *MBB->getParent();
545 
546   // If we're not folding a load into a subreg, the size of the load is the
547   // size of the spill slot. But if we are, we need to figure out what the
548   // actual load size is.
549   int64_t MemSize = 0;
550   const MachineFrameInfo &MFI = MF.getFrameInfo();
551   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
552 
553   if (Flags & MachineMemOperand::MOStore) {
554     MemSize = MFI.getObjectSize(FI);
555   } else {
556     for (unsigned OpIdx : Ops) {
557       int64_t OpSize = MFI.getObjectSize(FI);
558 
559       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
560         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
561         if (SubRegSize > 0 && !(SubRegSize % 8))
562           OpSize = SubRegSize / 8;
563       }
564 
565       MemSize = std::max(MemSize, OpSize);
566     }
567   }
568 
569   assert(MemSize && "Did not expect a zero-sized stack slot");
570 
571   MachineInstr *NewMI = nullptr;
572 
573   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
574       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
575       MI.getOpcode() == TargetOpcode::STATEPOINT) {
576     // Fold stackmap/patchpoint.
577     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
578     if (NewMI)
579       MBB->insert(MI, NewMI);
580   } else {
581     // Ask the target to do the actual folding.
582     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
583   }
584 
585   if (NewMI) {
586     NewMI->setMemRefs(MF, MI.memoperands());
587     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
588     assert((!(Flags & MachineMemOperand::MOStore) ||
589             NewMI->mayStore()) &&
590            "Folded a def to a non-store!");
591     assert((!(Flags & MachineMemOperand::MOLoad) ||
592             NewMI->mayLoad()) &&
593            "Folded a use to a non-load!");
594     assert(MFI.getObjectOffset(FI) != -1);
595     MachineMemOperand *MMO = MF.getMachineMemOperand(
596         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
597         MFI.getObjectAlignment(FI));
598     NewMI->addMemOperand(MF, MMO);
599 
600     return NewMI;
601   }
602 
603   // Straight COPY may fold as load/store.
604   if (!MI.isCopy() || Ops.size() != 1)
605     return nullptr;
606 
607   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
608   if (!RC)
609     return nullptr;
610 
611   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
612   MachineBasicBlock::iterator Pos = MI;
613 
614   if (Flags == MachineMemOperand::MOStore)
615     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
616   else
617     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
618   return &*--Pos;
619 }
620 
621 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
622                                                  ArrayRef<unsigned> Ops,
623                                                  MachineInstr &LoadMI,
624                                                  LiveIntervals *LIS) const {
625   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
626 #ifndef NDEBUG
627   for (unsigned OpIdx : Ops)
628     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
629 #endif
630 
631   MachineBasicBlock &MBB = *MI.getParent();
632   MachineFunction &MF = *MBB.getParent();
633 
634   // Ask the target to do the actual folding.
635   MachineInstr *NewMI = nullptr;
636   int FrameIndex = 0;
637 
638   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
639        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
640        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
641       isLoadFromStackSlot(LoadMI, FrameIndex)) {
642     // Fold stackmap/patchpoint.
643     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
644     if (NewMI)
645       NewMI = &*MBB.insert(MI, NewMI);
646   } else {
647     // Ask the target to do the actual folding.
648     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
649   }
650 
651   if (!NewMI)
652     return nullptr;
653 
654   // Copy the memoperands from the load to the folded instruction.
655   if (MI.memoperands_empty()) {
656     NewMI->setMemRefs(MF, LoadMI.memoperands());
657   } else {
658     // Handle the rare case of folding multiple loads.
659     NewMI->setMemRefs(MF, MI.memoperands());
660     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
661                                     E = LoadMI.memoperands_end();
662          I != E; ++I) {
663       NewMI->addMemOperand(MF, *I);
664     }
665   }
666   return NewMI;
667 }
668 
669 bool TargetInstrInfo::hasReassociableOperands(
670     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
671   const MachineOperand &Op1 = Inst.getOperand(1);
672   const MachineOperand &Op2 = Inst.getOperand(2);
673   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
674 
675   // We need virtual register definitions for the operands that we will
676   // reassociate.
677   MachineInstr *MI1 = nullptr;
678   MachineInstr *MI2 = nullptr;
679   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
680     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
681   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
682     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
683 
684   // And they need to be in the trace (otherwise, they won't have a depth).
685   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
686 }
687 
688 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
689                                              bool &Commuted) const {
690   const MachineBasicBlock *MBB = Inst.getParent();
691   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
692   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
693   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
694   unsigned AssocOpcode = Inst.getOpcode();
695 
696   // If only one operand has the same opcode and it's the second source operand,
697   // the operands must be commuted.
698   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
699   if (Commuted)
700     std::swap(MI1, MI2);
701 
702   // 1. The previous instruction must be the same type as Inst.
703   // 2. The previous instruction must have virtual register definitions for its
704   //    operands in the same basic block as Inst.
705   // 3. The previous instruction's result must only be used by Inst.
706   return MI1->getOpcode() == AssocOpcode &&
707          hasReassociableOperands(*MI1, MBB) &&
708          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
709 }
710 
711 // 1. The operation must be associative and commutative.
712 // 2. The instruction must have virtual register definitions for its
713 //    operands in the same basic block.
714 // 3. The instruction must have a reassociable sibling.
715 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
716                                                bool &Commuted) const {
717   return isAssociativeAndCommutative(Inst) &&
718          hasReassociableOperands(Inst, Inst.getParent()) &&
719          hasReassociableSibling(Inst, Commuted);
720 }
721 
722 // The concept of the reassociation pass is that these operations can benefit
723 // from this kind of transformation:
724 //
725 // A = ? op ?
726 // B = A op X (Prev)
727 // C = B op Y (Root)
728 // -->
729 // A = ? op ?
730 // B = X op Y
731 // C = A op B
732 //
733 // breaking the dependency between A and B, allowing them to be executed in
734 // parallel (or back-to-back in a pipeline) instead of depending on each other.
735 
736 // FIXME: This has the potential to be expensive (compile time) while not
737 // improving the code at all. Some ways to limit the overhead:
738 // 1. Track successful transforms; bail out if hit rate gets too low.
739 // 2. Only enable at -O3 or some other non-default optimization level.
740 // 3. Pre-screen pattern candidates here: if an operand of the previous
741 //    instruction is known to not increase the critical path, then don't match
742 //    that pattern.
743 bool TargetInstrInfo::getMachineCombinerPatterns(
744     MachineInstr &Root,
745     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
746   bool Commute;
747   if (isReassociationCandidate(Root, Commute)) {
748     // We found a sequence of instructions that may be suitable for a
749     // reassociation of operands to increase ILP. Specify each commutation
750     // possibility for the Prev instruction in the sequence and let the
751     // machine combiner decide if changing the operands is worthwhile.
752     if (Commute) {
753       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
754       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
755     } else {
756       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
757       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
758     }
759     return true;
760   }
761 
762   return false;
763 }
764 
765 /// Return true when a code sequence can improve loop throughput.
766 bool
767 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
768   return false;
769 }
770 
771 /// Attempt the reassociation transformation to reduce critical path length.
772 /// See the above comments before getMachineCombinerPatterns().
773 void TargetInstrInfo::reassociateOps(
774     MachineInstr &Root, MachineInstr &Prev,
775     MachineCombinerPattern Pattern,
776     SmallVectorImpl<MachineInstr *> &InsInstrs,
777     SmallVectorImpl<MachineInstr *> &DelInstrs,
778     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
779   MachineFunction *MF = Root.getMF();
780   MachineRegisterInfo &MRI = MF->getRegInfo();
781   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
782   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
783   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
784 
785   // This array encodes the operand index for each parameter because the
786   // operands may be commuted. Each row corresponds to a pattern value,
787   // and each column specifies the index of A, B, X, Y.
788   unsigned OpIdx[4][4] = {
789     { 1, 1, 2, 2 },
790     { 1, 2, 2, 1 },
791     { 2, 1, 1, 2 },
792     { 2, 2, 1, 1 }
793   };
794 
795   int Row;
796   switch (Pattern) {
797   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
798   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
799   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
800   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
801   default: llvm_unreachable("unexpected MachineCombinerPattern");
802   }
803 
804   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
805   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
806   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
807   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
808   MachineOperand &OpC = Root.getOperand(0);
809 
810   unsigned RegA = OpA.getReg();
811   unsigned RegB = OpB.getReg();
812   unsigned RegX = OpX.getReg();
813   unsigned RegY = OpY.getReg();
814   unsigned RegC = OpC.getReg();
815 
816   if (TargetRegisterInfo::isVirtualRegister(RegA))
817     MRI.constrainRegClass(RegA, RC);
818   if (TargetRegisterInfo::isVirtualRegister(RegB))
819     MRI.constrainRegClass(RegB, RC);
820   if (TargetRegisterInfo::isVirtualRegister(RegX))
821     MRI.constrainRegClass(RegX, RC);
822   if (TargetRegisterInfo::isVirtualRegister(RegY))
823     MRI.constrainRegClass(RegY, RC);
824   if (TargetRegisterInfo::isVirtualRegister(RegC))
825     MRI.constrainRegClass(RegC, RC);
826 
827   // Create a new virtual register for the result of (X op Y) instead of
828   // recycling RegB because the MachineCombiner's computation of the critical
829   // path requires a new register definition rather than an existing one.
830   unsigned NewVR = MRI.createVirtualRegister(RC);
831   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
832 
833   unsigned Opcode = Root.getOpcode();
834   bool KillA = OpA.isKill();
835   bool KillX = OpX.isKill();
836   bool KillY = OpY.isKill();
837 
838   // Create new instructions for insertion.
839   MachineInstrBuilder MIB1 =
840       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
841           .addReg(RegX, getKillRegState(KillX))
842           .addReg(RegY, getKillRegState(KillY));
843   MachineInstrBuilder MIB2 =
844       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
845           .addReg(RegA, getKillRegState(KillA))
846           .addReg(NewVR, getKillRegState(true));
847 
848   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
849 
850   // Record new instructions for insertion and old instructions for deletion.
851   InsInstrs.push_back(MIB1);
852   InsInstrs.push_back(MIB2);
853   DelInstrs.push_back(&Prev);
854   DelInstrs.push_back(&Root);
855 }
856 
857 void TargetInstrInfo::genAlternativeCodeSequence(
858     MachineInstr &Root, MachineCombinerPattern Pattern,
859     SmallVectorImpl<MachineInstr *> &InsInstrs,
860     SmallVectorImpl<MachineInstr *> &DelInstrs,
861     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
862   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
863 
864   // Select the previous instruction in the sequence based on the input pattern.
865   MachineInstr *Prev = nullptr;
866   switch (Pattern) {
867   case MachineCombinerPattern::REASSOC_AX_BY:
868   case MachineCombinerPattern::REASSOC_XA_BY:
869     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
870     break;
871   case MachineCombinerPattern::REASSOC_AX_YB:
872   case MachineCombinerPattern::REASSOC_XA_YB:
873     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
874     break;
875   default:
876     break;
877   }
878 
879   assert(Prev && "Unknown pattern for machine combiner");
880 
881   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
882 }
883 
884 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
885     const MachineInstr &MI, AliasAnalysis *AA) const {
886   const MachineFunction &MF = *MI.getMF();
887   const MachineRegisterInfo &MRI = MF.getRegInfo();
888 
889   // Remat clients assume operand 0 is the defined register.
890   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
891     return false;
892   unsigned DefReg = MI.getOperand(0).getReg();
893 
894   // A sub-register definition can only be rematerialized if the instruction
895   // doesn't read the other parts of the register.  Otherwise it is really a
896   // read-modify-write operation on the full virtual register which cannot be
897   // moved safely.
898   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
899       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
900     return false;
901 
902   // A load from a fixed stack slot can be rematerialized. This may be
903   // redundant with subsequent checks, but it's target-independent,
904   // simple, and a common case.
905   int FrameIdx = 0;
906   if (isLoadFromStackSlot(MI, FrameIdx) &&
907       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
908     return true;
909 
910   // Avoid instructions obviously unsafe for remat.
911   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
912     return false;
913 
914   // Don't remat inline asm. We have no idea how expensive it is
915   // even if it's side effect free.
916   if (MI.isInlineAsm())
917     return false;
918 
919   // Avoid instructions which load from potentially varying memory.
920   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
921     return false;
922 
923   // If any of the registers accessed are non-constant, conservatively assume
924   // the instruction is not rematerializable.
925   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
926     const MachineOperand &MO = MI.getOperand(i);
927     if (!MO.isReg()) continue;
928     unsigned Reg = MO.getReg();
929     if (Reg == 0)
930       continue;
931 
932     // Check for a well-behaved physical register.
933     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
934       if (MO.isUse()) {
935         // If the physreg has no defs anywhere, it's just an ambient register
936         // and we can freely move its uses. Alternatively, if it's allocatable,
937         // it could get allocated to something with a def during allocation.
938         if (!MRI.isConstantPhysReg(Reg))
939           return false;
940       } else {
941         // A physreg def. We can't remat it.
942         return false;
943       }
944       continue;
945     }
946 
947     // Only allow one virtual-register def.  There may be multiple defs of the
948     // same virtual register, though.
949     if (MO.isDef() && Reg != DefReg)
950       return false;
951 
952     // Don't allow any virtual-register uses. Rematting an instruction with
953     // virtual register uses would length the live ranges of the uses, which
954     // is not necessarily a good idea, certainly not "trivial".
955     if (MO.isUse())
956       return false;
957   }
958 
959   // Everything checked out.
960   return true;
961 }
962 
963 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
964   const MachineFunction *MF = MI.getMF();
965   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
966   bool StackGrowsDown =
967     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
968 
969   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
970   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
971 
972   if (!isFrameInstr(MI))
973     return 0;
974 
975   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
976 
977   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
978       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
979     SPAdj = -SPAdj;
980 
981   return SPAdj;
982 }
983 
984 /// isSchedulingBoundary - Test if the given instruction should be
985 /// considered a scheduling boundary. This primarily includes labels
986 /// and terminators.
987 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
988                                            const MachineBasicBlock *MBB,
989                                            const MachineFunction &MF) const {
990   // Terminators and labels can't be scheduled around.
991   if (MI.isTerminator() || MI.isPosition())
992     return true;
993 
994   // Don't attempt to schedule around any instruction that defines
995   // a stack-oriented pointer, as it's unlikely to be profitable. This
996   // saves compile time, because it doesn't require every single
997   // stack slot reference to depend on the instruction that does the
998   // modification.
999   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1000   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1001   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1002 }
1003 
1004 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1005 // may choose to honor.
1006 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1007   return !DisableHazardRecognizer;
1008 }
1009 
1010 // Default implementation of CreateTargetRAHazardRecognizer.
1011 ScheduleHazardRecognizer *TargetInstrInfo::
1012 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1013                              const ScheduleDAG *DAG) const {
1014   // Dummy hazard recognizer allows all instructions to issue.
1015   return new ScheduleHazardRecognizer();
1016 }
1017 
1018 // Default implementation of CreateTargetMIHazardRecognizer.
1019 ScheduleHazardRecognizer *TargetInstrInfo::
1020 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1021                                const ScheduleDAG *DAG) const {
1022   return (ScheduleHazardRecognizer *)
1023     new ScoreboardHazardRecognizer(II, DAG, "misched");
1024 }
1025 
1026 // Default implementation of CreateTargetPostRAHazardRecognizer.
1027 ScheduleHazardRecognizer *TargetInstrInfo::
1028 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1029                                    const ScheduleDAG *DAG) const {
1030   return (ScheduleHazardRecognizer *)
1031     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1032 }
1033 
1034 //===----------------------------------------------------------------------===//
1035 //  SelectionDAG latency interface.
1036 //===----------------------------------------------------------------------===//
1037 
1038 int
1039 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1040                                    SDNode *DefNode, unsigned DefIdx,
1041                                    SDNode *UseNode, unsigned UseIdx) const {
1042   if (!ItinData || ItinData->isEmpty())
1043     return -1;
1044 
1045   if (!DefNode->isMachineOpcode())
1046     return -1;
1047 
1048   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1049   if (!UseNode->isMachineOpcode())
1050     return ItinData->getOperandCycle(DefClass, DefIdx);
1051   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1052   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1053 }
1054 
1055 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1056                                      SDNode *N) const {
1057   if (!ItinData || ItinData->isEmpty())
1058     return 1;
1059 
1060   if (!N->isMachineOpcode())
1061     return 1;
1062 
1063   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //  MachineInstr latency interface.
1068 //===----------------------------------------------------------------------===//
1069 
1070 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1071                                          const MachineInstr &MI) const {
1072   if (!ItinData || ItinData->isEmpty())
1073     return 1;
1074 
1075   unsigned Class = MI.getDesc().getSchedClass();
1076   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1077   if (UOps >= 0)
1078     return UOps;
1079 
1080   // The # of u-ops is dynamically determined. The specific target should
1081   // override this function to return the right number.
1082   return 1;
1083 }
1084 
1085 /// Return the default expected latency for a def based on it's opcode.
1086 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1087                                             const MachineInstr &DefMI) const {
1088   if (DefMI.isTransient())
1089     return 0;
1090   if (DefMI.mayLoad())
1091     return SchedModel.LoadLatency;
1092   if (isHighLatencyDef(DefMI.getOpcode()))
1093     return SchedModel.HighLatency;
1094   return 1;
1095 }
1096 
1097 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1098   return 0;
1099 }
1100 
1101 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1102                                           const MachineInstr &MI,
1103                                           unsigned *PredCost) const {
1104   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1105   // still have a MinLatency property, which getStageLatency checks.
1106   if (!ItinData)
1107     return MI.mayLoad() ? 2 : 1;
1108 
1109   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1110 }
1111 
1112 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1113                                        const MachineInstr &DefMI,
1114                                        unsigned DefIdx) const {
1115   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1116   if (!ItinData || ItinData->isEmpty())
1117     return false;
1118 
1119   unsigned DefClass = DefMI.getDesc().getSchedClass();
1120   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1121   return (DefCycle != -1 && DefCycle <= 1);
1122 }
1123 
1124 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1125 /// itinerary. This may be overriden by the target.
1126 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1127                                        const MachineInstr &DefMI,
1128                                        unsigned DefIdx,
1129                                        const MachineInstr &UseMI,
1130                                        unsigned UseIdx) const {
1131   unsigned DefClass = DefMI.getDesc().getSchedClass();
1132   unsigned UseClass = UseMI.getDesc().getSchedClass();
1133   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1134 }
1135 
1136 /// If we can determine the operand latency from the def only, without itinerary
1137 /// lookup, do so. Otherwise return -1.
1138 int TargetInstrInfo::computeDefOperandLatency(
1139     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1140 
1141   // Let the target hook getInstrLatency handle missing itineraries.
1142   if (!ItinData)
1143     return getInstrLatency(ItinData, DefMI);
1144 
1145   if(ItinData->isEmpty())
1146     return defaultDefLatency(ItinData->SchedModel, DefMI);
1147 
1148   // ...operand lookup required
1149   return -1;
1150 }
1151 
1152 bool TargetInstrInfo::getRegSequenceInputs(
1153     const MachineInstr &MI, unsigned DefIdx,
1154     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1155   assert((MI.isRegSequence() ||
1156           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1157 
1158   if (!MI.isRegSequence())
1159     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1160 
1161   // We are looking at:
1162   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1163   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1164   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1165        OpIdx += 2) {
1166     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1167     if (MOReg.isUndef())
1168       continue;
1169     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1170     assert(MOSubIdx.isImm() &&
1171            "One of the subindex of the reg_sequence is not an immediate");
1172     // Record Reg:SubReg, SubIdx.
1173     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1174                                             (unsigned)MOSubIdx.getImm()));
1175   }
1176   return true;
1177 }
1178 
1179 bool TargetInstrInfo::getExtractSubregInputs(
1180     const MachineInstr &MI, unsigned DefIdx,
1181     RegSubRegPairAndIdx &InputReg) const {
1182   assert((MI.isExtractSubreg() ||
1183       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1184 
1185   if (!MI.isExtractSubreg())
1186     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1187 
1188   // We are looking at:
1189   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1190   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1191   const MachineOperand &MOReg = MI.getOperand(1);
1192   if (MOReg.isUndef())
1193     return false;
1194   const MachineOperand &MOSubIdx = MI.getOperand(2);
1195   assert(MOSubIdx.isImm() &&
1196          "The subindex of the extract_subreg is not an immediate");
1197 
1198   InputReg.Reg = MOReg.getReg();
1199   InputReg.SubReg = MOReg.getSubReg();
1200   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1201   return true;
1202 }
1203 
1204 bool TargetInstrInfo::getInsertSubregInputs(
1205     const MachineInstr &MI, unsigned DefIdx,
1206     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1207   assert((MI.isInsertSubreg() ||
1208       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1209 
1210   if (!MI.isInsertSubreg())
1211     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1212 
1213   // We are looking at:
1214   // Def = INSERT_SEQUENCE v0, v1, sub0.
1215   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1216   const MachineOperand &MOBaseReg = MI.getOperand(1);
1217   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1218   if (MOInsertedReg.isUndef())
1219     return false;
1220   const MachineOperand &MOSubIdx = MI.getOperand(3);
1221   assert(MOSubIdx.isImm() &&
1222          "One of the subindex of the reg_sequence is not an immediate");
1223   BaseReg.Reg = MOBaseReg.getReg();
1224   BaseReg.SubReg = MOBaseReg.getSubReg();
1225 
1226   InsertedReg.Reg = MOInsertedReg.getReg();
1227   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1228   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1229   return true;
1230 }
1231