1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned InstCount = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0) {
86       atInsnStart = true;
87     } else if (strncmp(Str, MAI.getCommentString(),
88                        strlen(MAI.getCommentString())) == 0) {
89       // Stop counting as an instruction after a comment until the next
90       // separator.
91       atInsnStart = false;
92     }
93 
94     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
95       ++InstCount;
96       atInsnStart = false;
97     }
98   }
99 
100   return InstCount * MAI.getMaxInstLength();
101 }
102 
103 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
104 /// after it, replacing it with an unconditional branch to NewDest.
105 void
106 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
107                                          MachineBasicBlock *NewDest) const {
108   MachineBasicBlock *MBB = Tail->getParent();
109 
110   // Remove all the old successors of MBB from the CFG.
111   while (!MBB->succ_empty())
112     MBB->removeSuccessor(MBB->succ_begin());
113 
114   // Save off the debug loc before erasing the instruction.
115   DebugLoc DL = Tail->getDebugLoc();
116 
117   // Remove all the dead instructions from the end of MBB.
118   MBB->erase(Tail, MBB->end());
119 
120   // If MBB isn't immediately before MBB, insert a branch to it.
121   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
122     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
123   MBB->addSuccessor(NewDest);
124 }
125 
126 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
127                                                       bool NewMI, unsigned Idx1,
128                                                       unsigned Idx2) const {
129   const MCInstrDesc &MCID = MI.getDesc();
130   bool HasDef = MCID.getNumDefs();
131   if (HasDef && !MI.getOperand(0).isReg())
132     // No idea how to commute this instruction. Target should implement its own.
133     return nullptr;
134 
135   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
136   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
137   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
138          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
139          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
140   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
141          "This only knows how to commute register operands so far");
142 
143   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
144   unsigned Reg1 = MI.getOperand(Idx1).getReg();
145   unsigned Reg2 = MI.getOperand(Idx2).getReg();
146   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
147   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
148   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
149   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
150   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
151   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
152   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
153   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
154   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
155   // If destination is tied to either of the commuted source register, then
156   // it must be updated.
157   if (HasDef && Reg0 == Reg1 &&
158       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
159     Reg2IsKill = false;
160     Reg0 = Reg2;
161     SubReg0 = SubReg2;
162   } else if (HasDef && Reg0 == Reg2 &&
163              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
164     Reg1IsKill = false;
165     Reg0 = Reg1;
166     SubReg0 = SubReg1;
167   }
168 
169   MachineInstr *CommutedMI = nullptr;
170   if (NewMI) {
171     // Create a new instruction.
172     MachineFunction &MF = *MI.getParent()->getParent();
173     CommutedMI = MF.CloneMachineInstr(&MI);
174   } else {
175     CommutedMI = &MI;
176   }
177 
178   if (HasDef) {
179     CommutedMI->getOperand(0).setReg(Reg0);
180     CommutedMI->getOperand(0).setSubReg(SubReg0);
181   }
182   CommutedMI->getOperand(Idx2).setReg(Reg1);
183   CommutedMI->getOperand(Idx1).setReg(Reg2);
184   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
185   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
186   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
187   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
188   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
189   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
190   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
191   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
192   return CommutedMI;
193 }
194 
195 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
196                                                   unsigned OpIdx1,
197                                                   unsigned OpIdx2) const {
198   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
199   // any commutable operand, which is done in findCommutedOpIndices() method
200   // called below.
201   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
202       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
203     assert(MI.isCommutable() &&
204            "Precondition violation: MI must be commutable.");
205     return nullptr;
206   }
207   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
208 }
209 
210 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
211                                            unsigned &ResultIdx2,
212                                            unsigned CommutableOpIdx1,
213                                            unsigned CommutableOpIdx2) {
214   if (ResultIdx1 == CommuteAnyOperandIndex &&
215       ResultIdx2 == CommuteAnyOperandIndex) {
216     ResultIdx1 = CommutableOpIdx1;
217     ResultIdx2 = CommutableOpIdx2;
218   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
219     if (ResultIdx2 == CommutableOpIdx1)
220       ResultIdx1 = CommutableOpIdx2;
221     else if (ResultIdx2 == CommutableOpIdx2)
222       ResultIdx1 = CommutableOpIdx1;
223     else
224       return false;
225   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
226     if (ResultIdx1 == CommutableOpIdx1)
227       ResultIdx2 = CommutableOpIdx2;
228     else if (ResultIdx1 == CommutableOpIdx2)
229       ResultIdx2 = CommutableOpIdx1;
230     else
231       return false;
232   } else
233     // Check that the result operand indices match the given commutable
234     // operand indices.
235     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
236            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
237 
238   return true;
239 }
240 
241 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
242                                             unsigned &SrcOpIdx1,
243                                             unsigned &SrcOpIdx2) const {
244   assert(!MI.isBundle() &&
245          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
246 
247   const MCInstrDesc &MCID = MI.getDesc();
248   if (!MCID.isCommutable())
249     return false;
250 
251   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
252   // is not true, then the target must implement this.
253   unsigned CommutableOpIdx1 = MCID.getNumDefs();
254   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
255   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
256                             CommutableOpIdx1, CommutableOpIdx2))
257     return false;
258 
259   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
260     // No idea.
261     return false;
262   return true;
263 }
264 
265 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
266   if (!MI.isTerminator()) return false;
267 
268   // Conditional branch is a special case.
269   if (MI.isBranch() && !MI.isBarrier())
270     return true;
271   if (!MI.isPredicable())
272     return true;
273   return !isPredicated(MI);
274 }
275 
276 bool TargetInstrInfo::PredicateInstruction(
277     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
278   bool MadeChange = false;
279 
280   assert(!MI.isBundle() &&
281          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
282 
283   const MCInstrDesc &MCID = MI.getDesc();
284   if (!MI.isPredicable())
285     return false;
286 
287   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
288     if (MCID.OpInfo[i].isPredicate()) {
289       MachineOperand &MO = MI.getOperand(i);
290       if (MO.isReg()) {
291         MO.setReg(Pred[j].getReg());
292         MadeChange = true;
293       } else if (MO.isImm()) {
294         MO.setImm(Pred[j].getImm());
295         MadeChange = true;
296       } else if (MO.isMBB()) {
297         MO.setMBB(Pred[j].getMBB());
298         MadeChange = true;
299       }
300       ++j;
301     }
302   }
303   return MadeChange;
304 }
305 
306 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
307                                            const MachineMemOperand *&MMO,
308                                            int &FrameIndex) const {
309   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
310                                   oe = MI.memoperands_end();
311        o != oe; ++o) {
312     if ((*o)->isLoad()) {
313       if (const FixedStackPseudoSourceValue *Value =
314           dyn_cast_or_null<FixedStackPseudoSourceValue>(
315               (*o)->getPseudoValue())) {
316         FrameIndex = Value->getFrameIndex();
317         MMO = *o;
318         return true;
319       }
320     }
321   }
322   return false;
323 }
324 
325 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
326                                           const MachineMemOperand *&MMO,
327                                           int &FrameIndex) const {
328   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
329                                   oe = MI.memoperands_end();
330        o != oe; ++o) {
331     if ((*o)->isStore()) {
332       if (const FixedStackPseudoSourceValue *Value =
333           dyn_cast_or_null<FixedStackPseudoSourceValue>(
334               (*o)->getPseudoValue())) {
335         FrameIndex = Value->getFrameIndex();
336         MMO = *o;
337         return true;
338       }
339     }
340   }
341   return false;
342 }
343 
344 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
345                                         unsigned SubIdx, unsigned &Size,
346                                         unsigned &Offset,
347                                         const MachineFunction &MF) const {
348   if (!SubIdx) {
349     Size = RC->getSize();
350     Offset = 0;
351     return true;
352   }
353   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
354   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
355   // Convert bit size to byte size to be consistent with
356   // MCRegisterClass::getSize().
357   if (BitSize % 8)
358     return false;
359 
360   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
361   if (BitOffset < 0 || BitOffset % 8)
362     return false;
363 
364   Size = BitSize /= 8;
365   Offset = (unsigned)BitOffset / 8;
366 
367   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
368 
369   if (!MF.getDataLayout().isLittleEndian()) {
370     Offset = RC->getSize() - (Offset + Size);
371   }
372   return true;
373 }
374 
375 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
376                                     MachineBasicBlock::iterator I,
377                                     unsigned DestReg, unsigned SubIdx,
378                                     const MachineInstr &Orig,
379                                     const TargetRegisterInfo &TRI) const {
380   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
381   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
382   MBB.insert(I, MI);
383 }
384 
385 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
386                                        const MachineInstr &MI1,
387                                        const MachineRegisterInfo *MRI) const {
388   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
389 }
390 
391 MachineInstr *TargetInstrInfo::duplicate(MachineInstr &Orig,
392                                          MachineFunction &MF) const {
393   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
394   return MF.CloneMachineInstr(&Orig);
395 }
396 
397 // If the COPY instruction in MI can be folded to a stack operation, return
398 // the register class to use.
399 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
400                                               unsigned FoldIdx) {
401   assert(MI.isCopy() && "MI must be a COPY instruction");
402   if (MI.getNumOperands() != 2)
403     return nullptr;
404   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
405 
406   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
407   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
408 
409   if (FoldOp.getSubReg() || LiveOp.getSubReg())
410     return nullptr;
411 
412   unsigned FoldReg = FoldOp.getReg();
413   unsigned LiveReg = LiveOp.getReg();
414 
415   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
416          "Cannot fold physregs");
417 
418   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
419   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
420 
421   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
422     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
423 
424   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
425     return RC;
426 
427   // FIXME: Allow folding when register classes are memory compatible.
428   return nullptr;
429 }
430 
431 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
432   llvm_unreachable("Not a MachO target");
433 }
434 
435 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
436                                     ArrayRef<unsigned> Ops, int FrameIndex,
437                                     const TargetInstrInfo &TII) {
438   unsigned StartIdx = 0;
439   switch (MI.getOpcode()) {
440   case TargetOpcode::STACKMAP: {
441     // StackMapLiveValues are foldable
442     StackMapOpers opers(&MI);
443     StartIdx = opers.getVarIdx();
444     break;
445   }
446   case TargetOpcode::PATCHPOINT: {
447     // For PatchPoint, the call args are not foldable (even if reported in the
448     // stackmap e.g. via anyregcc).
449     PatchPointOpers opers(&MI);
450     StartIdx = opers.getVarIdx();
451     break;
452   }
453   default:
454     llvm_unreachable("unexpected stackmap opcode");
455   }
456 
457   // Return false if any operands requested for folding are not foldable (not
458   // part of the stackmap's live values).
459   for (unsigned Op : Ops) {
460     if (Op < StartIdx)
461       return nullptr;
462   }
463 
464   MachineInstr *NewMI =
465       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
466   MachineInstrBuilder MIB(MF, NewMI);
467 
468   // No need to fold return, the meta data, and function arguments
469   for (unsigned i = 0; i < StartIdx; ++i)
470     MIB.addOperand(MI.getOperand(i));
471 
472   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
473     MachineOperand &MO = MI.getOperand(i);
474     if (is_contained(Ops, i)) {
475       unsigned SpillSize;
476       unsigned SpillOffset;
477       // Compute the spill slot size and offset.
478       const TargetRegisterClass *RC =
479         MF.getRegInfo().getRegClass(MO.getReg());
480       bool Valid =
481           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
482       if (!Valid)
483         report_fatal_error("cannot spill patchpoint subregister operand");
484       MIB.addImm(StackMaps::IndirectMemRefOp);
485       MIB.addImm(SpillSize);
486       MIB.addFrameIndex(FrameIndex);
487       MIB.addImm(SpillOffset);
488     }
489     else
490       MIB.addOperand(MO);
491   }
492   return NewMI;
493 }
494 
495 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
496 /// slot into the specified machine instruction for the specified operand(s).
497 /// If this is possible, a new instruction is returned with the specified
498 /// operand folded, otherwise NULL is returned. The client is responsible for
499 /// removing the old instruction and adding the new one in the instruction
500 /// stream.
501 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
502                                                  ArrayRef<unsigned> Ops, int FI,
503                                                  LiveIntervals *LIS) const {
504   auto Flags = MachineMemOperand::MONone;
505   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
506     if (MI.getOperand(Ops[i]).isDef())
507       Flags |= MachineMemOperand::MOStore;
508     else
509       Flags |= MachineMemOperand::MOLoad;
510 
511   MachineBasicBlock *MBB = MI.getParent();
512   assert(MBB && "foldMemoryOperand needs an inserted instruction");
513   MachineFunction &MF = *MBB->getParent();
514 
515   MachineInstr *NewMI = nullptr;
516 
517   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
518       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
519     // Fold stackmap/patchpoint.
520     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
521     if (NewMI)
522       MBB->insert(MI, NewMI);
523   } else {
524     // Ask the target to do the actual folding.
525     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
526   }
527 
528   if (NewMI) {
529     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
530     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
531     assert((!(Flags & MachineMemOperand::MOStore) ||
532             NewMI->mayStore()) &&
533            "Folded a def to a non-store!");
534     assert((!(Flags & MachineMemOperand::MOLoad) ||
535             NewMI->mayLoad()) &&
536            "Folded a use to a non-load!");
537     const MachineFrameInfo &MFI = MF.getFrameInfo();
538     assert(MFI.getObjectOffset(FI) != -1);
539     MachineMemOperand *MMO = MF.getMachineMemOperand(
540         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
541         MFI.getObjectAlignment(FI));
542     NewMI->addMemOperand(MF, MMO);
543 
544     return NewMI;
545   }
546 
547   // Straight COPY may fold as load/store.
548   if (!MI.isCopy() || Ops.size() != 1)
549     return nullptr;
550 
551   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
552   if (!RC)
553     return nullptr;
554 
555   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
556   MachineBasicBlock::iterator Pos = MI;
557   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
558 
559   if (Flags == MachineMemOperand::MOStore)
560     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
561   else
562     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
563   return &*--Pos;
564 }
565 
566 bool TargetInstrInfo::hasReassociableOperands(
567     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
568   const MachineOperand &Op1 = Inst.getOperand(1);
569   const MachineOperand &Op2 = Inst.getOperand(2);
570   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
571 
572   // We need virtual register definitions for the operands that we will
573   // reassociate.
574   MachineInstr *MI1 = nullptr;
575   MachineInstr *MI2 = nullptr;
576   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
577     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
578   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
579     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
580 
581   // And they need to be in the trace (otherwise, they won't have a depth).
582   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
583 }
584 
585 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
586                                              bool &Commuted) const {
587   const MachineBasicBlock *MBB = Inst.getParent();
588   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
589   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
590   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
591   unsigned AssocOpcode = Inst.getOpcode();
592 
593   // If only one operand has the same opcode and it's the second source operand,
594   // the operands must be commuted.
595   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
596   if (Commuted)
597     std::swap(MI1, MI2);
598 
599   // 1. The previous instruction must be the same type as Inst.
600   // 2. The previous instruction must have virtual register definitions for its
601   //    operands in the same basic block as Inst.
602   // 3. The previous instruction's result must only be used by Inst.
603   return MI1->getOpcode() == AssocOpcode &&
604          hasReassociableOperands(*MI1, MBB) &&
605          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
606 }
607 
608 // 1. The operation must be associative and commutative.
609 // 2. The instruction must have virtual register definitions for its
610 //    operands in the same basic block.
611 // 3. The instruction must have a reassociable sibling.
612 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
613                                                bool &Commuted) const {
614   return isAssociativeAndCommutative(Inst) &&
615          hasReassociableOperands(Inst, Inst.getParent()) &&
616          hasReassociableSibling(Inst, Commuted);
617 }
618 
619 // The concept of the reassociation pass is that these operations can benefit
620 // from this kind of transformation:
621 //
622 // A = ? op ?
623 // B = A op X (Prev)
624 // C = B op Y (Root)
625 // -->
626 // A = ? op ?
627 // B = X op Y
628 // C = A op B
629 //
630 // breaking the dependency between A and B, allowing them to be executed in
631 // parallel (or back-to-back in a pipeline) instead of depending on each other.
632 
633 // FIXME: This has the potential to be expensive (compile time) while not
634 // improving the code at all. Some ways to limit the overhead:
635 // 1. Track successful transforms; bail out if hit rate gets too low.
636 // 2. Only enable at -O3 or some other non-default optimization level.
637 // 3. Pre-screen pattern candidates here: if an operand of the previous
638 //    instruction is known to not increase the critical path, then don't match
639 //    that pattern.
640 bool TargetInstrInfo::getMachineCombinerPatterns(
641     MachineInstr &Root,
642     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
643   bool Commute;
644   if (isReassociationCandidate(Root, Commute)) {
645     // We found a sequence of instructions that may be suitable for a
646     // reassociation of operands to increase ILP. Specify each commutation
647     // possibility for the Prev instruction in the sequence and let the
648     // machine combiner decide if changing the operands is worthwhile.
649     if (Commute) {
650       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
651       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
652     } else {
653       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
654       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
655     }
656     return true;
657   }
658 
659   return false;
660 }
661 /// Return true when a code sequence can improve loop throughput.
662 bool
663 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
664   return false;
665 }
666 /// Attempt the reassociation transformation to reduce critical path length.
667 /// See the above comments before getMachineCombinerPatterns().
668 void TargetInstrInfo::reassociateOps(
669     MachineInstr &Root, MachineInstr &Prev,
670     MachineCombinerPattern Pattern,
671     SmallVectorImpl<MachineInstr *> &InsInstrs,
672     SmallVectorImpl<MachineInstr *> &DelInstrs,
673     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
674   MachineFunction *MF = Root.getParent()->getParent();
675   MachineRegisterInfo &MRI = MF->getRegInfo();
676   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
677   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
678   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
679 
680   // This array encodes the operand index for each parameter because the
681   // operands may be commuted. Each row corresponds to a pattern value,
682   // and each column specifies the index of A, B, X, Y.
683   unsigned OpIdx[4][4] = {
684     { 1, 1, 2, 2 },
685     { 1, 2, 2, 1 },
686     { 2, 1, 1, 2 },
687     { 2, 2, 1, 1 }
688   };
689 
690   int Row;
691   switch (Pattern) {
692   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
693   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
694   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
695   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
696   default: llvm_unreachable("unexpected MachineCombinerPattern");
697   }
698 
699   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
700   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
701   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
702   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
703   MachineOperand &OpC = Root.getOperand(0);
704 
705   unsigned RegA = OpA.getReg();
706   unsigned RegB = OpB.getReg();
707   unsigned RegX = OpX.getReg();
708   unsigned RegY = OpY.getReg();
709   unsigned RegC = OpC.getReg();
710 
711   if (TargetRegisterInfo::isVirtualRegister(RegA))
712     MRI.constrainRegClass(RegA, RC);
713   if (TargetRegisterInfo::isVirtualRegister(RegB))
714     MRI.constrainRegClass(RegB, RC);
715   if (TargetRegisterInfo::isVirtualRegister(RegX))
716     MRI.constrainRegClass(RegX, RC);
717   if (TargetRegisterInfo::isVirtualRegister(RegY))
718     MRI.constrainRegClass(RegY, RC);
719   if (TargetRegisterInfo::isVirtualRegister(RegC))
720     MRI.constrainRegClass(RegC, RC);
721 
722   // Create a new virtual register for the result of (X op Y) instead of
723   // recycling RegB because the MachineCombiner's computation of the critical
724   // path requires a new register definition rather than an existing one.
725   unsigned NewVR = MRI.createVirtualRegister(RC);
726   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
727 
728   unsigned Opcode = Root.getOpcode();
729   bool KillA = OpA.isKill();
730   bool KillX = OpX.isKill();
731   bool KillY = OpY.isKill();
732 
733   // Create new instructions for insertion.
734   MachineInstrBuilder MIB1 =
735       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
736           .addReg(RegX, getKillRegState(KillX))
737           .addReg(RegY, getKillRegState(KillY));
738   MachineInstrBuilder MIB2 =
739       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
740           .addReg(RegA, getKillRegState(KillA))
741           .addReg(NewVR, getKillRegState(true));
742 
743   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
744 
745   // Record new instructions for insertion and old instructions for deletion.
746   InsInstrs.push_back(MIB1);
747   InsInstrs.push_back(MIB2);
748   DelInstrs.push_back(&Prev);
749   DelInstrs.push_back(&Root);
750 }
751 
752 void TargetInstrInfo::genAlternativeCodeSequence(
753     MachineInstr &Root, MachineCombinerPattern Pattern,
754     SmallVectorImpl<MachineInstr *> &InsInstrs,
755     SmallVectorImpl<MachineInstr *> &DelInstrs,
756     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
757   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
758 
759   // Select the previous instruction in the sequence based on the input pattern.
760   MachineInstr *Prev = nullptr;
761   switch (Pattern) {
762   case MachineCombinerPattern::REASSOC_AX_BY:
763   case MachineCombinerPattern::REASSOC_XA_BY:
764     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
765     break;
766   case MachineCombinerPattern::REASSOC_AX_YB:
767   case MachineCombinerPattern::REASSOC_XA_YB:
768     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
769     break;
770   default:
771     break;
772   }
773 
774   assert(Prev && "Unknown pattern for machine combiner");
775 
776   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
777 }
778 
779 /// foldMemoryOperand - Same as the previous version except it allows folding
780 /// of any load and store from / to any address, not just from a specific
781 /// stack slot.
782 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
783                                                  ArrayRef<unsigned> Ops,
784                                                  MachineInstr &LoadMI,
785                                                  LiveIntervals *LIS) const {
786   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
787 #ifndef NDEBUG
788   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
789     assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!");
790 #endif
791   MachineBasicBlock &MBB = *MI.getParent();
792   MachineFunction &MF = *MBB.getParent();
793 
794   // Ask the target to do the actual folding.
795   MachineInstr *NewMI = nullptr;
796   int FrameIndex = 0;
797 
798   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
799        MI.getOpcode() == TargetOpcode::PATCHPOINT) &&
800       isLoadFromStackSlot(LoadMI, FrameIndex)) {
801     // Fold stackmap/patchpoint.
802     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
803     if (NewMI)
804       NewMI = &*MBB.insert(MI, NewMI);
805   } else {
806     // Ask the target to do the actual folding.
807     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
808   }
809 
810   if (!NewMI) return nullptr;
811 
812   // Copy the memoperands from the load to the folded instruction.
813   if (MI.memoperands_empty()) {
814     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
815   }
816   else {
817     // Handle the rare case of folding multiple loads.
818     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
819     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
820                                     E = LoadMI.memoperands_end();
821          I != E; ++I) {
822       NewMI->addMemOperand(MF, *I);
823     }
824   }
825   return NewMI;
826 }
827 
828 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
829     const MachineInstr &MI, AliasAnalysis *AA) const {
830   const MachineFunction &MF = *MI.getParent()->getParent();
831   const MachineRegisterInfo &MRI = MF.getRegInfo();
832 
833   // Remat clients assume operand 0 is the defined register.
834   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
835     return false;
836   unsigned DefReg = MI.getOperand(0).getReg();
837 
838   // A sub-register definition can only be rematerialized if the instruction
839   // doesn't read the other parts of the register.  Otherwise it is really a
840   // read-modify-write operation on the full virtual register which cannot be
841   // moved safely.
842   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
843       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
844     return false;
845 
846   // A load from a fixed stack slot can be rematerialized. This may be
847   // redundant with subsequent checks, but it's target-independent,
848   // simple, and a common case.
849   int FrameIdx = 0;
850   if (isLoadFromStackSlot(MI, FrameIdx) &&
851       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
852     return true;
853 
854   // Avoid instructions obviously unsafe for remat.
855   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
856     return false;
857 
858   // Don't remat inline asm. We have no idea how expensive it is
859   // even if it's side effect free.
860   if (MI.isInlineAsm())
861     return false;
862 
863   // Avoid instructions which load from potentially varying memory.
864   if (MI.mayLoad() && !MI.isInvariantLoad(AA))
865     return false;
866 
867   // If any of the registers accessed are non-constant, conservatively assume
868   // the instruction is not rematerializable.
869   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
870     const MachineOperand &MO = MI.getOperand(i);
871     if (!MO.isReg()) continue;
872     unsigned Reg = MO.getReg();
873     if (Reg == 0)
874       continue;
875 
876     // Check for a well-behaved physical register.
877     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
878       if (MO.isUse()) {
879         // If the physreg has no defs anywhere, it's just an ambient register
880         // and we can freely move its uses. Alternatively, if it's allocatable,
881         // it could get allocated to something with a def during allocation.
882         if (!MRI.isConstantPhysReg(Reg, MF))
883           return false;
884       } else {
885         // A physreg def. We can't remat it.
886         return false;
887       }
888       continue;
889     }
890 
891     // Only allow one virtual-register def.  There may be multiple defs of the
892     // same virtual register, though.
893     if (MO.isDef() && Reg != DefReg)
894       return false;
895 
896     // Don't allow any virtual-register uses. Rematting an instruction with
897     // virtual register uses would length the live ranges of the uses, which
898     // is not necessarily a good idea, certainly not "trivial".
899     if (MO.isUse())
900       return false;
901   }
902 
903   // Everything checked out.
904   return true;
905 }
906 
907 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
908   const MachineFunction *MF = MI.getParent()->getParent();
909   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
910   bool StackGrowsDown =
911     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
912 
913   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
914   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
915 
916   if (MI.getOpcode() != FrameSetupOpcode &&
917       MI.getOpcode() != FrameDestroyOpcode)
918     return 0;
919 
920   int SPAdj = MI.getOperand(0).getImm();
921   SPAdj = TFI->alignSPAdjust(SPAdj);
922 
923   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
924       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
925     SPAdj = -SPAdj;
926 
927   return SPAdj;
928 }
929 
930 /// isSchedulingBoundary - Test if the given instruction should be
931 /// considered a scheduling boundary. This primarily includes labels
932 /// and terminators.
933 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
934                                            const MachineBasicBlock *MBB,
935                                            const MachineFunction &MF) const {
936   // Terminators and labels can't be scheduled around.
937   if (MI.isTerminator() || MI.isPosition())
938     return true;
939 
940   // Don't attempt to schedule around any instruction that defines
941   // a stack-oriented pointer, as it's unlikely to be profitable. This
942   // saves compile time, because it doesn't require every single
943   // stack slot reference to depend on the instruction that does the
944   // modification.
945   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
946   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
947   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
948 }
949 
950 // Provide a global flag for disabling the PreRA hazard recognizer that targets
951 // may choose to honor.
952 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
953   return !DisableHazardRecognizer;
954 }
955 
956 // Default implementation of CreateTargetRAHazardRecognizer.
957 ScheduleHazardRecognizer *TargetInstrInfo::
958 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
959                              const ScheduleDAG *DAG) const {
960   // Dummy hazard recognizer allows all instructions to issue.
961   return new ScheduleHazardRecognizer();
962 }
963 
964 // Default implementation of CreateTargetMIHazardRecognizer.
965 ScheduleHazardRecognizer *TargetInstrInfo::
966 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
967                                const ScheduleDAG *DAG) const {
968   return (ScheduleHazardRecognizer *)
969     new ScoreboardHazardRecognizer(II, DAG, "misched");
970 }
971 
972 // Default implementation of CreateTargetPostRAHazardRecognizer.
973 ScheduleHazardRecognizer *TargetInstrInfo::
974 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
975                                    const ScheduleDAG *DAG) const {
976   return (ScheduleHazardRecognizer *)
977     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
978 }
979 
980 //===----------------------------------------------------------------------===//
981 //  SelectionDAG latency interface.
982 //===----------------------------------------------------------------------===//
983 
984 int
985 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
986                                    SDNode *DefNode, unsigned DefIdx,
987                                    SDNode *UseNode, unsigned UseIdx) const {
988   if (!ItinData || ItinData->isEmpty())
989     return -1;
990 
991   if (!DefNode->isMachineOpcode())
992     return -1;
993 
994   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
995   if (!UseNode->isMachineOpcode())
996     return ItinData->getOperandCycle(DefClass, DefIdx);
997   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
998   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
999 }
1000 
1001 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1002                                      SDNode *N) const {
1003   if (!ItinData || ItinData->isEmpty())
1004     return 1;
1005 
1006   if (!N->isMachineOpcode())
1007     return 1;
1008 
1009   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1010 }
1011 
1012 //===----------------------------------------------------------------------===//
1013 //  MachineInstr latency interface.
1014 //===----------------------------------------------------------------------===//
1015 
1016 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1017                                          const MachineInstr &MI) const {
1018   if (!ItinData || ItinData->isEmpty())
1019     return 1;
1020 
1021   unsigned Class = MI.getDesc().getSchedClass();
1022   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1023   if (UOps >= 0)
1024     return UOps;
1025 
1026   // The # of u-ops is dynamically determined. The specific target should
1027   // override this function to return the right number.
1028   return 1;
1029 }
1030 
1031 /// Return the default expected latency for a def based on it's opcode.
1032 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1033                                             const MachineInstr &DefMI) const {
1034   if (DefMI.isTransient())
1035     return 0;
1036   if (DefMI.mayLoad())
1037     return SchedModel.LoadLatency;
1038   if (isHighLatencyDef(DefMI.getOpcode()))
1039     return SchedModel.HighLatency;
1040   return 1;
1041 }
1042 
1043 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1044   return 0;
1045 }
1046 
1047 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1048                                           const MachineInstr &MI,
1049                                           unsigned *PredCost) const {
1050   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1051   // still have a MinLatency property, which getStageLatency checks.
1052   if (!ItinData)
1053     return MI.mayLoad() ? 2 : 1;
1054 
1055   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1056 }
1057 
1058 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1059                                        const MachineInstr &DefMI,
1060                                        unsigned DefIdx) const {
1061   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1062   if (!ItinData || ItinData->isEmpty())
1063     return false;
1064 
1065   unsigned DefClass = DefMI.getDesc().getSchedClass();
1066   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1067   return (DefCycle != -1 && DefCycle <= 1);
1068 }
1069 
1070 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1071 /// itinerary. This may be overriden by the target.
1072 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1073                                        const MachineInstr &DefMI,
1074                                        unsigned DefIdx,
1075                                        const MachineInstr &UseMI,
1076                                        unsigned UseIdx) const {
1077   unsigned DefClass = DefMI.getDesc().getSchedClass();
1078   unsigned UseClass = UseMI.getDesc().getSchedClass();
1079   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1080 }
1081 
1082 /// If we can determine the operand latency from the def only, without itinerary
1083 /// lookup, do so. Otherwise return -1.
1084 int TargetInstrInfo::computeDefOperandLatency(
1085     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1086 
1087   // Let the target hook getInstrLatency handle missing itineraries.
1088   if (!ItinData)
1089     return getInstrLatency(ItinData, DefMI);
1090 
1091   if(ItinData->isEmpty())
1092     return defaultDefLatency(ItinData->SchedModel, DefMI);
1093 
1094   // ...operand lookup required
1095   return -1;
1096 }
1097 
1098 unsigned TargetInstrInfo::computeOperandLatency(
1099     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
1100     unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const {
1101 
1102   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1103   if (DefLatency >= 0)
1104     return DefLatency;
1105 
1106   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1107 
1108   int OperLatency = 0;
1109   if (UseMI)
1110     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, *UseMI, UseIdx);
1111   else {
1112     unsigned DefClass = DefMI.getDesc().getSchedClass();
1113     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1114   }
1115   if (OperLatency >= 0)
1116     return OperLatency;
1117 
1118   // No operand latency was found.
1119   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1120 
1121   // Expected latency is the max of the stage latency and itinerary props.
1122   InstrLatency = std::max(InstrLatency,
1123                           defaultDefLatency(ItinData->SchedModel, DefMI));
1124   return InstrLatency;
1125 }
1126 
1127 bool TargetInstrInfo::getRegSequenceInputs(
1128     const MachineInstr &MI, unsigned DefIdx,
1129     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1130   assert((MI.isRegSequence() ||
1131           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1132 
1133   if (!MI.isRegSequence())
1134     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1135 
1136   // We are looking at:
1137   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1138   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1139   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1140        OpIdx += 2) {
1141     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1142     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1143     assert(MOSubIdx.isImm() &&
1144            "One of the subindex of the reg_sequence is not an immediate");
1145     // Record Reg:SubReg, SubIdx.
1146     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1147                                             (unsigned)MOSubIdx.getImm()));
1148   }
1149   return true;
1150 }
1151 
1152 bool TargetInstrInfo::getExtractSubregInputs(
1153     const MachineInstr &MI, unsigned DefIdx,
1154     RegSubRegPairAndIdx &InputReg) const {
1155   assert((MI.isExtractSubreg() ||
1156       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1157 
1158   if (!MI.isExtractSubreg())
1159     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1160 
1161   // We are looking at:
1162   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1163   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1164   const MachineOperand &MOReg = MI.getOperand(1);
1165   const MachineOperand &MOSubIdx = MI.getOperand(2);
1166   assert(MOSubIdx.isImm() &&
1167          "The subindex of the extract_subreg is not an immediate");
1168 
1169   InputReg.Reg = MOReg.getReg();
1170   InputReg.SubReg = MOReg.getSubReg();
1171   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1172   return true;
1173 }
1174 
1175 bool TargetInstrInfo::getInsertSubregInputs(
1176     const MachineInstr &MI, unsigned DefIdx,
1177     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1178   assert((MI.isInsertSubreg() ||
1179       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1180 
1181   if (!MI.isInsertSubreg())
1182     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1183 
1184   // We are looking at:
1185   // Def = INSERT_SEQUENCE v0, v1, sub0.
1186   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1187   const MachineOperand &MOBaseReg = MI.getOperand(1);
1188   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1189   const MachineOperand &MOSubIdx = MI.getOperand(3);
1190   assert(MOSubIdx.isImm() &&
1191          "One of the subindex of the reg_sequence is not an immediate");
1192   BaseReg.Reg = MOBaseReg.getReg();
1193   BaseReg.SubReg = MOBaseReg.getSubReg();
1194 
1195   InsertedReg.Reg = MOInsertedReg.getReg();
1196   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1197   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1198   return true;
1199 }
1200