1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> DisableHazardRecognizer(
38   "disable-sched-hazard", cl::Hidden, cl::init(false),
39   cl::desc("Disable hazard detection during preRA scheduling"));
40 
41 TargetInstrInfo::~TargetInstrInfo() {
42 }
43 
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46                              const TargetRegisterInfo *TRI,
47                              const MachineFunction &MF) const {
48   if (OpNum >= MCID.getNumOperands())
49     return nullptr;
50 
51   short RegClass = MCID.OpInfo[OpNum].RegClass;
52   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53     return TRI->getPointerRegClass(MF, RegClass);
54 
55   // Instructions like INSERT_SUBREG do not have fixed register classes.
56   if (RegClass < 0)
57     return nullptr;
58 
59   // Otherwise just look it up normally.
60   return TRI->getRegClass(RegClass);
61 }
62 
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66                                  MachineBasicBlock::iterator MI) const {
67   llvm_unreachable("Target didn't implement insertNoop!");
68 }
69 
70 /// Measure the specified inline asm to determine an approximation of its
71 /// length.
72 /// Comments (which run till the next SeparatorString or newline) do not
73 /// count as an instruction.
74 /// Any other non-whitespace text is considered an instruction, with
75 /// multiple instructions separated by SeparatorString or newlines.
76 /// Variable-length instructions are not handled here; this function
77 /// may be overloaded in the target code to do that.
78 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
79                                              const MCAsmInfo &MAI) const {
80   // Count the number of instructions in the asm.
81   bool atInsnStart = true;
82   unsigned Length = 0;
83   for (; *Str; ++Str) {
84     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
85                                 strlen(MAI.getSeparatorString())) == 0)
86       atInsnStart = true;
87     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
88       Length += MAI.getMaxInstLength();
89       atInsnStart = false;
90     }
91     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
92                                strlen(MAI.getCommentString())) == 0)
93       atInsnStart = false;
94   }
95 
96   return Length;
97 }
98 
99 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
100 /// after it, replacing it with an unconditional branch to NewDest.
101 void
102 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
103                                          MachineBasicBlock *NewDest) const {
104   MachineBasicBlock *MBB = Tail->getParent();
105 
106   // Remove all the old successors of MBB from the CFG.
107   while (!MBB->succ_empty())
108     MBB->removeSuccessor(MBB->succ_begin());
109 
110   // Save off the debug loc before erasing the instruction.
111   DebugLoc DL = Tail->getDebugLoc();
112 
113   // Remove all the dead instructions from the end of MBB.
114   MBB->erase(Tail, MBB->end());
115 
116   // If MBB isn't immediately before MBB, insert a branch to it.
117   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
118     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
119   MBB->addSuccessor(NewDest);
120 }
121 
122 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI,
123                                                       bool NewMI,
124                                                       unsigned Idx1,
125                                                       unsigned Idx2) const {
126   const MCInstrDesc &MCID = MI->getDesc();
127   bool HasDef = MCID.getNumDefs();
128   if (HasDef && !MI->getOperand(0).isReg())
129     // No idea how to commute this instruction. Target should implement its own.
130     return nullptr;
131 
132   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
133   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
134   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
135          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
136          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
137   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
138          "This only knows how to commute register operands so far");
139 
140   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
141   unsigned Reg1 = MI->getOperand(Idx1).getReg();
142   unsigned Reg2 = MI->getOperand(Idx2).getReg();
143   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
144   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
145   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
146   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
147   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
148   bool Reg1IsUndef = MI->getOperand(Idx1).isUndef();
149   bool Reg2IsUndef = MI->getOperand(Idx2).isUndef();
150   bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead();
151   bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead();
152   // If destination is tied to either of the commuted source register, then
153   // it must be updated.
154   if (HasDef && Reg0 == Reg1 &&
155       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
156     Reg2IsKill = false;
157     Reg0 = Reg2;
158     SubReg0 = SubReg2;
159   } else if (HasDef && Reg0 == Reg2 &&
160              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
161     Reg1IsKill = false;
162     Reg0 = Reg1;
163     SubReg0 = SubReg1;
164   }
165 
166   if (NewMI) {
167     // Create a new instruction.
168     MachineFunction &MF = *MI->getParent()->getParent();
169     MI = MF.CloneMachineInstr(MI);
170   }
171 
172   if (HasDef) {
173     MI->getOperand(0).setReg(Reg0);
174     MI->getOperand(0).setSubReg(SubReg0);
175   }
176   MI->getOperand(Idx2).setReg(Reg1);
177   MI->getOperand(Idx1).setReg(Reg2);
178   MI->getOperand(Idx2).setSubReg(SubReg1);
179   MI->getOperand(Idx1).setSubReg(SubReg2);
180   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
181   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
182   MI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
183   MI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
184   MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
185   MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
186   return MI;
187 }
188 
189 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
190                                                   bool NewMI,
191                                                   unsigned OpIdx1,
192                                                   unsigned OpIdx2) const {
193   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
194   // any commutable operand, which is done in findCommutedOpIndices() method
195   // called below.
196   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
197       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
198     assert(MI->isCommutable() &&
199            "Precondition violation: MI must be commutable.");
200     return nullptr;
201   }
202   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
203 }
204 
205 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
206                                            unsigned &ResultIdx2,
207                                            unsigned CommutableOpIdx1,
208                                            unsigned CommutableOpIdx2) {
209   if (ResultIdx1 == CommuteAnyOperandIndex &&
210       ResultIdx2 == CommuteAnyOperandIndex) {
211     ResultIdx1 = CommutableOpIdx1;
212     ResultIdx2 = CommutableOpIdx2;
213   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
214     if (ResultIdx2 == CommutableOpIdx1)
215       ResultIdx1 = CommutableOpIdx2;
216     else if (ResultIdx2 == CommutableOpIdx2)
217       ResultIdx1 = CommutableOpIdx1;
218     else
219       return false;
220   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
221     if (ResultIdx1 == CommutableOpIdx1)
222       ResultIdx2 = CommutableOpIdx2;
223     else if (ResultIdx1 == CommutableOpIdx2)
224       ResultIdx2 = CommutableOpIdx1;
225     else
226       return false;
227   } else
228     // Check that the result operand indices match the given commutable
229     // operand indices.
230     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
231            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
232 
233   return true;
234 }
235 
236 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
237                                             unsigned &SrcOpIdx1,
238                                             unsigned &SrcOpIdx2) const {
239   assert(!MI->isBundle() &&
240          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
241 
242   const MCInstrDesc &MCID = MI->getDesc();
243   if (!MCID.isCommutable())
244     return false;
245 
246   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
247   // is not true, then the target must implement this.
248   unsigned CommutableOpIdx1 = MCID.getNumDefs();
249   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
250   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
251                             CommutableOpIdx1, CommutableOpIdx2))
252     return false;
253 
254   if (!MI->getOperand(SrcOpIdx1).isReg() ||
255       !MI->getOperand(SrcOpIdx2).isReg())
256     // No idea.
257     return false;
258   return true;
259 }
260 
261 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
262   if (!MI.isTerminator()) return false;
263 
264   // Conditional branch is a special case.
265   if (MI.isBranch() && !MI.isBarrier())
266     return true;
267   if (!MI.isPredicable())
268     return true;
269   return !isPredicated(MI);
270 }
271 
272 bool TargetInstrInfo::PredicateInstruction(
273     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
274   bool MadeChange = false;
275 
276   assert(!MI.isBundle() &&
277          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
278 
279   const MCInstrDesc &MCID = MI.getDesc();
280   if (!MI.isPredicable())
281     return false;
282 
283   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
284     if (MCID.OpInfo[i].isPredicate()) {
285       MachineOperand &MO = MI.getOperand(i);
286       if (MO.isReg()) {
287         MO.setReg(Pred[j].getReg());
288         MadeChange = true;
289       } else if (MO.isImm()) {
290         MO.setImm(Pred[j].getImm());
291         MadeChange = true;
292       } else if (MO.isMBB()) {
293         MO.setMBB(Pred[j].getMBB());
294         MadeChange = true;
295       }
296       ++j;
297     }
298   }
299   return MadeChange;
300 }
301 
302 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
303                                            const MachineMemOperand *&MMO,
304                                            int &FrameIndex) const {
305   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
306          oe = MI->memoperands_end();
307        o != oe;
308        ++o) {
309     if ((*o)->isLoad()) {
310       if (const FixedStackPseudoSourceValue *Value =
311           dyn_cast_or_null<FixedStackPseudoSourceValue>(
312               (*o)->getPseudoValue())) {
313         FrameIndex = Value->getFrameIndex();
314         MMO = *o;
315         return true;
316       }
317     }
318   }
319   return false;
320 }
321 
322 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
323                                           const MachineMemOperand *&MMO,
324                                           int &FrameIndex) const {
325   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
326          oe = MI->memoperands_end();
327        o != oe;
328        ++o) {
329     if ((*o)->isStore()) {
330       if (const FixedStackPseudoSourceValue *Value =
331           dyn_cast_or_null<FixedStackPseudoSourceValue>(
332               (*o)->getPseudoValue())) {
333         FrameIndex = Value->getFrameIndex();
334         MMO = *o;
335         return true;
336       }
337     }
338   }
339   return false;
340 }
341 
342 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
343                                         unsigned SubIdx, unsigned &Size,
344                                         unsigned &Offset,
345                                         const MachineFunction &MF) const {
346   if (!SubIdx) {
347     Size = RC->getSize();
348     Offset = 0;
349     return true;
350   }
351   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
352   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
353   // Convert bit size to byte size to be consistent with
354   // MCRegisterClass::getSize().
355   if (BitSize % 8)
356     return false;
357 
358   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
359   if (BitOffset < 0 || BitOffset % 8)
360     return false;
361 
362   Size = BitSize /= 8;
363   Offset = (unsigned)BitOffset / 8;
364 
365   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
366 
367   if (!MF.getDataLayout().isLittleEndian()) {
368     Offset = RC->getSize() - (Offset + Size);
369   }
370   return true;
371 }
372 
373 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
374                                     MachineBasicBlock::iterator I,
375                                     unsigned DestReg,
376                                     unsigned SubIdx,
377                                     const MachineInstr *Orig,
378                                     const TargetRegisterInfo &TRI) const {
379   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
380   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
381   MBB.insert(I, MI);
382 }
383 
384 bool
385 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
386                                   const MachineInstr *MI1,
387                                   const MachineRegisterInfo *MRI) const {
388   return MI0->isIdenticalTo(*MI1, MachineInstr::IgnoreVRegDefs);
389 }
390 
391 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
392                                          MachineFunction &MF) const {
393   assert(!Orig->isNotDuplicable() &&
394          "Instruction cannot be duplicated");
395   return MF.CloneMachineInstr(Orig);
396 }
397 
398 // If the COPY instruction in MI can be folded to a stack operation, return
399 // the register class to use.
400 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
401                                               unsigned FoldIdx) {
402   assert(MI->isCopy() && "MI must be a COPY instruction");
403   if (MI->getNumOperands() != 2)
404     return nullptr;
405   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
406 
407   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
408   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
409 
410   if (FoldOp.getSubReg() || LiveOp.getSubReg())
411     return nullptr;
412 
413   unsigned FoldReg = FoldOp.getReg();
414   unsigned LiveReg = LiveOp.getReg();
415 
416   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
417          "Cannot fold physregs");
418 
419   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
420   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
421 
422   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
423     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
424 
425   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
426     return RC;
427 
428   // FIXME: Allow folding when register classes are memory compatible.
429   return nullptr;
430 }
431 
432 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
433   llvm_unreachable("Not a MachO target");
434 }
435 
436 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI,
437                                     ArrayRef<unsigned> Ops, int FrameIndex,
438                                     const TargetInstrInfo &TII) {
439   unsigned StartIdx = 0;
440   switch (MI->getOpcode()) {
441   case TargetOpcode::STACKMAP:
442     StartIdx = 2; // Skip ID, nShadowBytes.
443     break;
444   case TargetOpcode::PATCHPOINT: {
445     // For PatchPoint, the call args are not foldable.
446     PatchPointOpers opers(MI);
447     StartIdx = opers.getVarIdx();
448     break;
449   }
450   default:
451     llvm_unreachable("unexpected stackmap opcode");
452   }
453 
454   // Return false if any operands requested for folding are not foldable (not
455   // part of the stackmap's live values).
456   for (unsigned Op : Ops) {
457     if (Op < StartIdx)
458       return nullptr;
459   }
460 
461   MachineInstr *NewMI =
462     MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
463   MachineInstrBuilder MIB(MF, NewMI);
464 
465   // No need to fold return, the meta data, and function arguments
466   for (unsigned i = 0; i < StartIdx; ++i)
467     MIB.addOperand(MI->getOperand(i));
468 
469   for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
470     MachineOperand &MO = MI->getOperand(i);
471     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
472       unsigned SpillSize;
473       unsigned SpillOffset;
474       // Compute the spill slot size and offset.
475       const TargetRegisterClass *RC =
476         MF.getRegInfo().getRegClass(MO.getReg());
477       bool Valid =
478           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
479       if (!Valid)
480         report_fatal_error("cannot spill patchpoint subregister operand");
481       MIB.addImm(StackMaps::IndirectMemRefOp);
482       MIB.addImm(SpillSize);
483       MIB.addFrameIndex(FrameIndex);
484       MIB.addImm(SpillOffset);
485     }
486     else
487       MIB.addOperand(MO);
488   }
489   return NewMI;
490 }
491 
492 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
493 /// slot into the specified machine instruction for the specified operand(s).
494 /// If this is possible, a new instruction is returned with the specified
495 /// operand folded, otherwise NULL is returned. The client is responsible for
496 /// removing the old instruction and adding the new one in the instruction
497 /// stream.
498 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
499                                                  ArrayRef<unsigned> Ops,
500                                                  int FI) const {
501   unsigned Flags = 0;
502   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
503     if (MI->getOperand(Ops[i]).isDef())
504       Flags |= MachineMemOperand::MOStore;
505     else
506       Flags |= MachineMemOperand::MOLoad;
507 
508   MachineBasicBlock *MBB = MI->getParent();
509   assert(MBB && "foldMemoryOperand needs an inserted instruction");
510   MachineFunction &MF = *MBB->getParent();
511 
512   MachineInstr *NewMI = nullptr;
513 
514   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
515       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
516     // Fold stackmap/patchpoint.
517     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
518     if (NewMI)
519       MBB->insert(MI, NewMI);
520   } else {
521     // Ask the target to do the actual folding.
522     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI);
523   }
524 
525   if (NewMI) {
526     NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
527     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
528     assert((!(Flags & MachineMemOperand::MOStore) ||
529             NewMI->mayStore()) &&
530            "Folded a def to a non-store!");
531     assert((!(Flags & MachineMemOperand::MOLoad) ||
532             NewMI->mayLoad()) &&
533            "Folded a use to a non-load!");
534     const MachineFrameInfo &MFI = *MF.getFrameInfo();
535     assert(MFI.getObjectOffset(FI) != -1);
536     MachineMemOperand *MMO = MF.getMachineMemOperand(
537         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
538         MFI.getObjectAlignment(FI));
539     NewMI->addMemOperand(MF, MMO);
540 
541     return NewMI;
542   }
543 
544   // Straight COPY may fold as load/store.
545   if (!MI->isCopy() || Ops.size() != 1)
546     return nullptr;
547 
548   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
549   if (!RC)
550     return nullptr;
551 
552   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
553   MachineBasicBlock::iterator Pos = MI;
554   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
555 
556   if (Flags == MachineMemOperand::MOStore)
557     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
558   else
559     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
560   return --Pos;
561 }
562 
563 bool TargetInstrInfo::hasReassociableOperands(
564     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
565   const MachineOperand &Op1 = Inst.getOperand(1);
566   const MachineOperand &Op2 = Inst.getOperand(2);
567   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
568 
569   // We need virtual register definitions for the operands that we will
570   // reassociate.
571   MachineInstr *MI1 = nullptr;
572   MachineInstr *MI2 = nullptr;
573   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
574     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
575   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
576     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
577 
578   // And they need to be in the trace (otherwise, they won't have a depth).
579   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
580 }
581 
582 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
583                                              bool &Commuted) const {
584   const MachineBasicBlock *MBB = Inst.getParent();
585   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
586   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
587   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
588   unsigned AssocOpcode = Inst.getOpcode();
589 
590   // If only one operand has the same opcode and it's the second source operand,
591   // the operands must be commuted.
592   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
593   if (Commuted)
594     std::swap(MI1, MI2);
595 
596   // 1. The previous instruction must be the same type as Inst.
597   // 2. The previous instruction must have virtual register definitions for its
598   //    operands in the same basic block as Inst.
599   // 3. The previous instruction's result must only be used by Inst.
600   return MI1->getOpcode() == AssocOpcode &&
601          hasReassociableOperands(*MI1, MBB) &&
602          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
603 }
604 
605 // 1. The operation must be associative and commutative.
606 // 2. The instruction must have virtual register definitions for its
607 //    operands in the same basic block.
608 // 3. The instruction must have a reassociable sibling.
609 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
610                                                bool &Commuted) const {
611   return isAssociativeAndCommutative(Inst) &&
612          hasReassociableOperands(Inst, Inst.getParent()) &&
613          hasReassociableSibling(Inst, Commuted);
614 }
615 
616 // The concept of the reassociation pass is that these operations can benefit
617 // from this kind of transformation:
618 //
619 // A = ? op ?
620 // B = A op X (Prev)
621 // C = B op Y (Root)
622 // -->
623 // A = ? op ?
624 // B = X op Y
625 // C = A op B
626 //
627 // breaking the dependency between A and B, allowing them to be executed in
628 // parallel (or back-to-back in a pipeline) instead of depending on each other.
629 
630 // FIXME: This has the potential to be expensive (compile time) while not
631 // improving the code at all. Some ways to limit the overhead:
632 // 1. Track successful transforms; bail out if hit rate gets too low.
633 // 2. Only enable at -O3 or some other non-default optimization level.
634 // 3. Pre-screen pattern candidates here: if an operand of the previous
635 //    instruction is known to not increase the critical path, then don't match
636 //    that pattern.
637 bool TargetInstrInfo::getMachineCombinerPatterns(
638     MachineInstr &Root,
639     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
640   bool Commute;
641   if (isReassociationCandidate(Root, Commute)) {
642     // We found a sequence of instructions that may be suitable for a
643     // reassociation of operands to increase ILP. Specify each commutation
644     // possibility for the Prev instruction in the sequence and let the
645     // machine combiner decide if changing the operands is worthwhile.
646     if (Commute) {
647       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
648       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
649     } else {
650       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
651       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
652     }
653     return true;
654   }
655 
656   return false;
657 }
658 
659 /// Attempt the reassociation transformation to reduce critical path length.
660 /// See the above comments before getMachineCombinerPatterns().
661 void TargetInstrInfo::reassociateOps(
662     MachineInstr &Root, MachineInstr &Prev,
663     MachineCombinerPattern Pattern,
664     SmallVectorImpl<MachineInstr *> &InsInstrs,
665     SmallVectorImpl<MachineInstr *> &DelInstrs,
666     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
667   MachineFunction *MF = Root.getParent()->getParent();
668   MachineRegisterInfo &MRI = MF->getRegInfo();
669   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
670   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
671   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
672 
673   // This array encodes the operand index for each parameter because the
674   // operands may be commuted. Each row corresponds to a pattern value,
675   // and each column specifies the index of A, B, X, Y.
676   unsigned OpIdx[4][4] = {
677     { 1, 1, 2, 2 },
678     { 1, 2, 2, 1 },
679     { 2, 1, 1, 2 },
680     { 2, 2, 1, 1 }
681   };
682 
683   int Row;
684   switch (Pattern) {
685   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
686   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
687   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
688   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
689   default: llvm_unreachable("unexpected MachineCombinerPattern");
690   }
691 
692   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
693   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
694   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
695   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
696   MachineOperand &OpC = Root.getOperand(0);
697 
698   unsigned RegA = OpA.getReg();
699   unsigned RegB = OpB.getReg();
700   unsigned RegX = OpX.getReg();
701   unsigned RegY = OpY.getReg();
702   unsigned RegC = OpC.getReg();
703 
704   if (TargetRegisterInfo::isVirtualRegister(RegA))
705     MRI.constrainRegClass(RegA, RC);
706   if (TargetRegisterInfo::isVirtualRegister(RegB))
707     MRI.constrainRegClass(RegB, RC);
708   if (TargetRegisterInfo::isVirtualRegister(RegX))
709     MRI.constrainRegClass(RegX, RC);
710   if (TargetRegisterInfo::isVirtualRegister(RegY))
711     MRI.constrainRegClass(RegY, RC);
712   if (TargetRegisterInfo::isVirtualRegister(RegC))
713     MRI.constrainRegClass(RegC, RC);
714 
715   // Create a new virtual register for the result of (X op Y) instead of
716   // recycling RegB because the MachineCombiner's computation of the critical
717   // path requires a new register definition rather than an existing one.
718   unsigned NewVR = MRI.createVirtualRegister(RC);
719   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
720 
721   unsigned Opcode = Root.getOpcode();
722   bool KillA = OpA.isKill();
723   bool KillX = OpX.isKill();
724   bool KillY = OpY.isKill();
725 
726   // Create new instructions for insertion.
727   MachineInstrBuilder MIB1 =
728       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
729           .addReg(RegX, getKillRegState(KillX))
730           .addReg(RegY, getKillRegState(KillY));
731   MachineInstrBuilder MIB2 =
732       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
733           .addReg(RegA, getKillRegState(KillA))
734           .addReg(NewVR, getKillRegState(true));
735 
736   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
737 
738   // Record new instructions for insertion and old instructions for deletion.
739   InsInstrs.push_back(MIB1);
740   InsInstrs.push_back(MIB2);
741   DelInstrs.push_back(&Prev);
742   DelInstrs.push_back(&Root);
743 }
744 
745 void TargetInstrInfo::genAlternativeCodeSequence(
746     MachineInstr &Root, MachineCombinerPattern Pattern,
747     SmallVectorImpl<MachineInstr *> &InsInstrs,
748     SmallVectorImpl<MachineInstr *> &DelInstrs,
749     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
750   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
751 
752   // Select the previous instruction in the sequence based on the input pattern.
753   MachineInstr *Prev = nullptr;
754   switch (Pattern) {
755   case MachineCombinerPattern::REASSOC_AX_BY:
756   case MachineCombinerPattern::REASSOC_XA_BY:
757     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
758     break;
759   case MachineCombinerPattern::REASSOC_AX_YB:
760   case MachineCombinerPattern::REASSOC_XA_YB:
761     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
762     break;
763   default:
764     break;
765   }
766 
767   assert(Prev && "Unknown pattern for machine combiner");
768 
769   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
770 }
771 
772 /// foldMemoryOperand - Same as the previous version except it allows folding
773 /// of any load and store from / to any address, not just from a specific
774 /// stack slot.
775 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
776                                                  ArrayRef<unsigned> Ops,
777                                                  MachineInstr *LoadMI) const {
778   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
779 #ifndef NDEBUG
780   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
781     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
782 #endif
783   MachineBasicBlock &MBB = *MI->getParent();
784   MachineFunction &MF = *MBB.getParent();
785 
786   // Ask the target to do the actual folding.
787   MachineInstr *NewMI = nullptr;
788   int FrameIndex = 0;
789 
790   if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
791        MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
792       isLoadFromStackSlot(LoadMI, FrameIndex)) {
793     // Fold stackmap/patchpoint.
794     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
795     if (NewMI)
796       NewMI = MBB.insert(MI, NewMI);
797   } else {
798     // Ask the target to do the actual folding.
799     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI);
800   }
801 
802   if (!NewMI) return nullptr;
803 
804   // Copy the memoperands from the load to the folded instruction.
805   if (MI->memoperands_empty()) {
806     NewMI->setMemRefs(LoadMI->memoperands_begin(),
807                       LoadMI->memoperands_end());
808   }
809   else {
810     // Handle the rare case of folding multiple loads.
811     NewMI->setMemRefs(MI->memoperands_begin(),
812                       MI->memoperands_end());
813     for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
814            E = LoadMI->memoperands_end(); I != E; ++I) {
815       NewMI->addMemOperand(MF, *I);
816     }
817   }
818   return NewMI;
819 }
820 
821 bool TargetInstrInfo::
822 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
823                                          AliasAnalysis *AA) const {
824   const MachineFunction &MF = *MI->getParent()->getParent();
825   const MachineRegisterInfo &MRI = MF.getRegInfo();
826 
827   // Remat clients assume operand 0 is the defined register.
828   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
829     return false;
830   unsigned DefReg = MI->getOperand(0).getReg();
831 
832   // A sub-register definition can only be rematerialized if the instruction
833   // doesn't read the other parts of the register.  Otherwise it is really a
834   // read-modify-write operation on the full virtual register which cannot be
835   // moved safely.
836   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
837       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
838     return false;
839 
840   // A load from a fixed stack slot can be rematerialized. This may be
841   // redundant with subsequent checks, but it's target-independent,
842   // simple, and a common case.
843   int FrameIdx = 0;
844   if (isLoadFromStackSlot(MI, FrameIdx) &&
845       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
846     return true;
847 
848   // Avoid instructions obviously unsafe for remat.
849   if (MI->isNotDuplicable() || MI->mayStore() ||
850       MI->hasUnmodeledSideEffects())
851     return false;
852 
853   // Don't remat inline asm. We have no idea how expensive it is
854   // even if it's side effect free.
855   if (MI->isInlineAsm())
856     return false;
857 
858   // Avoid instructions which load from potentially varying memory.
859   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
860     return false;
861 
862   // If any of the registers accessed are non-constant, conservatively assume
863   // the instruction is not rematerializable.
864   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
865     const MachineOperand &MO = MI->getOperand(i);
866     if (!MO.isReg()) continue;
867     unsigned Reg = MO.getReg();
868     if (Reg == 0)
869       continue;
870 
871     // Check for a well-behaved physical register.
872     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
873       if (MO.isUse()) {
874         // If the physreg has no defs anywhere, it's just an ambient register
875         // and we can freely move its uses. Alternatively, if it's allocatable,
876         // it could get allocated to something with a def during allocation.
877         if (!MRI.isConstantPhysReg(Reg, MF))
878           return false;
879       } else {
880         // A physreg def. We can't remat it.
881         return false;
882       }
883       continue;
884     }
885 
886     // Only allow one virtual-register def.  There may be multiple defs of the
887     // same virtual register, though.
888     if (MO.isDef() && Reg != DefReg)
889       return false;
890 
891     // Don't allow any virtual-register uses. Rematting an instruction with
892     // virtual register uses would length the live ranges of the uses, which
893     // is not necessarily a good idea, certainly not "trivial".
894     if (MO.isUse())
895       return false;
896   }
897 
898   // Everything checked out.
899   return true;
900 }
901 
902 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
903   const MachineFunction *MF = MI->getParent()->getParent();
904   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
905   bool StackGrowsDown =
906     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
907 
908   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
909   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
910 
911   if (MI->getOpcode() != FrameSetupOpcode &&
912       MI->getOpcode() != FrameDestroyOpcode)
913     return 0;
914 
915   int SPAdj = MI->getOperand(0).getImm();
916   SPAdj = TFI->alignSPAdjust(SPAdj);
917 
918   if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
919        (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
920     SPAdj = -SPAdj;
921 
922   return SPAdj;
923 }
924 
925 /// isSchedulingBoundary - Test if the given instruction should be
926 /// considered a scheduling boundary. This primarily includes labels
927 /// and terminators.
928 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
929                                            const MachineBasicBlock *MBB,
930                                            const MachineFunction &MF) const {
931   // Terminators and labels can't be scheduled around.
932   if (MI->isTerminator() || MI->isPosition())
933     return true;
934 
935   // Don't attempt to schedule around any instruction that defines
936   // a stack-oriented pointer, as it's unlikely to be profitable. This
937   // saves compile time, because it doesn't require every single
938   // stack slot reference to depend on the instruction that does the
939   // modification.
940   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
941   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
942   return MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
943 }
944 
945 // Provide a global flag for disabling the PreRA hazard recognizer that targets
946 // may choose to honor.
947 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
948   return !DisableHazardRecognizer;
949 }
950 
951 // Default implementation of CreateTargetRAHazardRecognizer.
952 ScheduleHazardRecognizer *TargetInstrInfo::
953 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
954                              const ScheduleDAG *DAG) const {
955   // Dummy hazard recognizer allows all instructions to issue.
956   return new ScheduleHazardRecognizer();
957 }
958 
959 // Default implementation of CreateTargetMIHazardRecognizer.
960 ScheduleHazardRecognizer *TargetInstrInfo::
961 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
962                                const ScheduleDAG *DAG) const {
963   return (ScheduleHazardRecognizer *)
964     new ScoreboardHazardRecognizer(II, DAG, "misched");
965 }
966 
967 // Default implementation of CreateTargetPostRAHazardRecognizer.
968 ScheduleHazardRecognizer *TargetInstrInfo::
969 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
970                                    const ScheduleDAG *DAG) const {
971   return (ScheduleHazardRecognizer *)
972     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
973 }
974 
975 //===----------------------------------------------------------------------===//
976 //  SelectionDAG latency interface.
977 //===----------------------------------------------------------------------===//
978 
979 int
980 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
981                                    SDNode *DefNode, unsigned DefIdx,
982                                    SDNode *UseNode, unsigned UseIdx) const {
983   if (!ItinData || ItinData->isEmpty())
984     return -1;
985 
986   if (!DefNode->isMachineOpcode())
987     return -1;
988 
989   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
990   if (!UseNode->isMachineOpcode())
991     return ItinData->getOperandCycle(DefClass, DefIdx);
992   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
993   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
994 }
995 
996 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
997                                      SDNode *N) const {
998   if (!ItinData || ItinData->isEmpty())
999     return 1;
1000 
1001   if (!N->isMachineOpcode())
1002     return 1;
1003 
1004   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 //  MachineInstr latency interface.
1009 //===----------------------------------------------------------------------===//
1010 
1011 unsigned
1012 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1013                                 const MachineInstr *MI) const {
1014   if (!ItinData || ItinData->isEmpty())
1015     return 1;
1016 
1017   unsigned Class = MI->getDesc().getSchedClass();
1018   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1019   if (UOps >= 0)
1020     return UOps;
1021 
1022   // The # of u-ops is dynamically determined. The specific target should
1023   // override this function to return the right number.
1024   return 1;
1025 }
1026 
1027 /// Return the default expected latency for a def based on it's opcode.
1028 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1029                                             const MachineInstr *DefMI) const {
1030   if (DefMI->isTransient())
1031     return 0;
1032   if (DefMI->mayLoad())
1033     return SchedModel.LoadLatency;
1034   if (isHighLatencyDef(DefMI->getOpcode()))
1035     return SchedModel.HighLatency;
1036   return 1;
1037 }
1038 
1039 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1040   return 0;
1041 }
1042 
1043 unsigned TargetInstrInfo::
1044 getInstrLatency(const InstrItineraryData *ItinData,
1045                 const MachineInstr *MI,
1046                 unsigned *PredCost) const {
1047   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1048   // still have a MinLatency property, which getStageLatency checks.
1049   if (!ItinData)
1050     return MI->mayLoad() ? 2 : 1;
1051 
1052   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
1053 }
1054 
1055 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1056                                        const MachineInstr *DefMI,
1057                                        unsigned DefIdx) const {
1058   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1059   if (!ItinData || ItinData->isEmpty())
1060     return false;
1061 
1062   unsigned DefClass = DefMI->getDesc().getSchedClass();
1063   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1064   return (DefCycle != -1 && DefCycle <= 1);
1065 }
1066 
1067 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1068 /// itinerary. This may be overriden by the target.
1069 int TargetInstrInfo::
1070 getOperandLatency(const InstrItineraryData *ItinData,
1071                   const MachineInstr *DefMI, unsigned DefIdx,
1072                   const MachineInstr *UseMI, unsigned UseIdx) const {
1073   unsigned DefClass = DefMI->getDesc().getSchedClass();
1074   unsigned UseClass = UseMI->getDesc().getSchedClass();
1075   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1076 }
1077 
1078 /// If we can determine the operand latency from the def only, without itinerary
1079 /// lookup, do so. Otherwise return -1.
1080 int TargetInstrInfo::computeDefOperandLatency(
1081   const InstrItineraryData *ItinData,
1082   const MachineInstr *DefMI) const {
1083 
1084   // Let the target hook getInstrLatency handle missing itineraries.
1085   if (!ItinData)
1086     return getInstrLatency(ItinData, DefMI);
1087 
1088   if(ItinData->isEmpty())
1089     return defaultDefLatency(ItinData->SchedModel, DefMI);
1090 
1091   // ...operand lookup required
1092   return -1;
1093 }
1094 
1095 /// computeOperandLatency - Compute and return the latency of the given data
1096 /// dependent def and use when the operand indices are already known. UseMI may
1097 /// be NULL for an unknown use.
1098 ///
1099 /// FindMin may be set to get the minimum vs. expected latency. Minimum
1100 /// latency is used for scheduling groups, while expected latency is for
1101 /// instruction cost and critical path.
1102 ///
1103 /// Depending on the subtarget's itinerary properties, this may or may not need
1104 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
1105 /// UseIdx to compute min latency.
1106 unsigned TargetInstrInfo::
1107 computeOperandLatency(const InstrItineraryData *ItinData,
1108                       const MachineInstr *DefMI, unsigned DefIdx,
1109                       const MachineInstr *UseMI, unsigned UseIdx) const {
1110 
1111   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1112   if (DefLatency >= 0)
1113     return DefLatency;
1114 
1115   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1116 
1117   int OperLatency = 0;
1118   if (UseMI)
1119     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
1120   else {
1121     unsigned DefClass = DefMI->getDesc().getSchedClass();
1122     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1123   }
1124   if (OperLatency >= 0)
1125     return OperLatency;
1126 
1127   // No operand latency was found.
1128   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1129 
1130   // Expected latency is the max of the stage latency and itinerary props.
1131   InstrLatency = std::max(InstrLatency,
1132                           defaultDefLatency(ItinData->SchedModel, DefMI));
1133   return InstrLatency;
1134 }
1135 
1136 bool TargetInstrInfo::getRegSequenceInputs(
1137     const MachineInstr &MI, unsigned DefIdx,
1138     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1139   assert((MI.isRegSequence() ||
1140           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1141 
1142   if (!MI.isRegSequence())
1143     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1144 
1145   // We are looking at:
1146   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1147   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1148   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1149        OpIdx += 2) {
1150     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1151     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1152     assert(MOSubIdx.isImm() &&
1153            "One of the subindex of the reg_sequence is not an immediate");
1154     // Record Reg:SubReg, SubIdx.
1155     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1156                                             (unsigned)MOSubIdx.getImm()));
1157   }
1158   return true;
1159 }
1160 
1161 bool TargetInstrInfo::getExtractSubregInputs(
1162     const MachineInstr &MI, unsigned DefIdx,
1163     RegSubRegPairAndIdx &InputReg) const {
1164   assert((MI.isExtractSubreg() ||
1165       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1166 
1167   if (!MI.isExtractSubreg())
1168     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1169 
1170   // We are looking at:
1171   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1172   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1173   const MachineOperand &MOReg = MI.getOperand(1);
1174   const MachineOperand &MOSubIdx = MI.getOperand(2);
1175   assert(MOSubIdx.isImm() &&
1176          "The subindex of the extract_subreg is not an immediate");
1177 
1178   InputReg.Reg = MOReg.getReg();
1179   InputReg.SubReg = MOReg.getSubReg();
1180   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1181   return true;
1182 }
1183 
1184 bool TargetInstrInfo::getInsertSubregInputs(
1185     const MachineInstr &MI, unsigned DefIdx,
1186     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1187   assert((MI.isInsertSubreg() ||
1188       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1189 
1190   if (!MI.isInsertSubreg())
1191     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1192 
1193   // We are looking at:
1194   // Def = INSERT_SEQUENCE v0, v1, sub0.
1195   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1196   const MachineOperand &MOBaseReg = MI.getOperand(1);
1197   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1198   const MachineOperand &MOSubIdx = MI.getOperand(3);
1199   assert(MOSubIdx.isImm() &&
1200          "One of the subindex of the reg_sequence is not an immediate");
1201   BaseReg.Reg = MOBaseReg.getReg();
1202   BaseReg.SubReg = MOBaseReg.getSubReg();
1203 
1204   InsertedReg.Reg = MOInsertedReg.getReg();
1205   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1206   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1207   return true;
1208 }
1209