1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetInstrInfo.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/PseudoSourceValue.h" 20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 21 #include "llvm/CodeGen/StackMaps.h" 22 #include "llvm/CodeGen/TargetFrameLowering.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSchedule.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCInstrItineraries.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cctype> 34 35 using namespace llvm; 36 37 static cl::opt<bool> DisableHazardRecognizer( 38 "disable-sched-hazard", cl::Hidden, cl::init(false), 39 cl::desc("Disable hazard detection during preRA scheduling")); 40 41 TargetInstrInfo::~TargetInstrInfo() { 42 } 43 44 const TargetRegisterClass* 45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 46 const TargetRegisterInfo *TRI, 47 const MachineFunction &MF) const { 48 if (OpNum >= MCID.getNumOperands()) 49 return nullptr; 50 51 short RegClass = MCID.OpInfo[OpNum].RegClass; 52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 53 return TRI->getPointerRegClass(MF, RegClass); 54 55 // Instructions like INSERT_SUBREG do not have fixed register classes. 56 if (RegClass < 0) 57 return nullptr; 58 59 // Otherwise just look it up normally. 60 return TRI->getRegClass(RegClass); 61 } 62 63 /// insertNoop - Insert a noop into the instruction stream at the specified 64 /// point. 65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 66 MachineBasicBlock::iterator MI) const { 67 llvm_unreachable("Target didn't implement insertNoop!"); 68 } 69 70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { 71 return strncmp(Str, MAI.getCommentString().data(), 72 MAI.getCommentString().size()) == 0; 73 } 74 75 /// Measure the specified inline asm to determine an approximation of its 76 /// length. 77 /// Comments (which run till the next SeparatorString or newline) do not 78 /// count as an instruction. 79 /// Any other non-whitespace text is considered an instruction, with 80 /// multiple instructions separated by SeparatorString or newlines. 81 /// Variable-length instructions are not handled here; this function 82 /// may be overloaded in the target code to do that. 83 /// We implement a special case of the .space directive which takes only a 84 /// single integer argument in base 10 that is the size in bytes. This is a 85 /// restricted form of the GAS directive in that we only interpret 86 /// simple--i.e. not a logical or arithmetic expression--size values without 87 /// the optional fill value. This is primarily used for creating arbitrary 88 /// sized inline asm blocks for testing purposes. 89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 90 const MCAsmInfo &MAI) const { 91 // Count the number of instructions in the asm. 92 bool AtInsnStart = true; 93 unsigned Length = 0; 94 for (; *Str; ++Str) { 95 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 96 strlen(MAI.getSeparatorString())) == 0) { 97 AtInsnStart = true; 98 } else if (isAsmComment(Str, MAI)) { 99 // Stop counting as an instruction after a comment until the next 100 // separator. 101 AtInsnStart = false; 102 } 103 104 if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 105 unsigned AddLength = MAI.getMaxInstLength(); 106 if (strncmp(Str, ".space", 6) == 0) { 107 char *EStr; 108 int SpaceSize; 109 SpaceSize = strtol(Str + 6, &EStr, 10); 110 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; 111 while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) 112 ++EStr; 113 if (*EStr == '\0' || *EStr == '\n' || 114 isAsmComment(EStr, MAI)) // Successfully parsed .space argument 115 AddLength = SpaceSize; 116 } 117 Length += AddLength; 118 AtInsnStart = false; 119 } 120 } 121 122 return Length; 123 } 124 125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 126 /// after it, replacing it with an unconditional branch to NewDest. 127 void 128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 129 MachineBasicBlock *NewDest) const { 130 MachineBasicBlock *MBB = Tail->getParent(); 131 132 // Remove all the old successors of MBB from the CFG. 133 while (!MBB->succ_empty()) 134 MBB->removeSuccessor(MBB->succ_begin()); 135 136 // Save off the debug loc before erasing the instruction. 137 DebugLoc DL = Tail->getDebugLoc(); 138 139 // Remove all the dead instructions from the end of MBB. 140 MBB->erase(Tail, MBB->end()); 141 142 // If MBB isn't immediately before MBB, insert a branch to it. 143 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 144 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 145 MBB->addSuccessor(NewDest); 146 } 147 148 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 149 bool NewMI, unsigned Idx1, 150 unsigned Idx2) const { 151 const MCInstrDesc &MCID = MI.getDesc(); 152 bool HasDef = MCID.getNumDefs(); 153 if (HasDef && !MI.getOperand(0).isReg()) 154 // No idea how to commute this instruction. Target should implement its own. 155 return nullptr; 156 157 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 158 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 159 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 160 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 161 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 162 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 163 "This only knows how to commute register operands so far"); 164 165 unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; 166 unsigned Reg1 = MI.getOperand(Idx1).getReg(); 167 unsigned Reg2 = MI.getOperand(Idx2).getReg(); 168 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 169 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 170 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 171 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 172 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 173 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 174 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 175 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 176 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 177 // Avoid calling isRenamable for virtual registers since we assert that 178 // renamable property is only queried/set for physical registers. 179 bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1) 180 ? MI.getOperand(Idx1).isRenamable() 181 : false; 182 bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2) 183 ? MI.getOperand(Idx2).isRenamable() 184 : false; 185 // If destination is tied to either of the commuted source register, then 186 // it must be updated. 187 if (HasDef && Reg0 == Reg1 && 188 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 189 Reg2IsKill = false; 190 Reg0 = Reg2; 191 SubReg0 = SubReg2; 192 } else if (HasDef && Reg0 == Reg2 && 193 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 194 Reg1IsKill = false; 195 Reg0 = Reg1; 196 SubReg0 = SubReg1; 197 } 198 199 MachineInstr *CommutedMI = nullptr; 200 if (NewMI) { 201 // Create a new instruction. 202 MachineFunction &MF = *MI.getMF(); 203 CommutedMI = MF.CloneMachineInstr(&MI); 204 } else { 205 CommutedMI = &MI; 206 } 207 208 if (HasDef) { 209 CommutedMI->getOperand(0).setReg(Reg0); 210 CommutedMI->getOperand(0).setSubReg(SubReg0); 211 } 212 CommutedMI->getOperand(Idx2).setReg(Reg1); 213 CommutedMI->getOperand(Idx1).setReg(Reg2); 214 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 215 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 216 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 217 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 218 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 219 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 220 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 221 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 222 // Avoid calling setIsRenamable for virtual registers since we assert that 223 // renamable property is only queried/set for physical registers. 224 if (TargetRegisterInfo::isPhysicalRegister(Reg1)) 225 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); 226 if (TargetRegisterInfo::isPhysicalRegister(Reg2)) 227 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); 228 return CommutedMI; 229 } 230 231 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 232 unsigned OpIdx1, 233 unsigned OpIdx2) const { 234 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 235 // any commutable operand, which is done in findCommutedOpIndices() method 236 // called below. 237 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 238 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 239 assert(MI.isCommutable() && 240 "Precondition violation: MI must be commutable."); 241 return nullptr; 242 } 243 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 244 } 245 246 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 247 unsigned &ResultIdx2, 248 unsigned CommutableOpIdx1, 249 unsigned CommutableOpIdx2) { 250 if (ResultIdx1 == CommuteAnyOperandIndex && 251 ResultIdx2 == CommuteAnyOperandIndex) { 252 ResultIdx1 = CommutableOpIdx1; 253 ResultIdx2 = CommutableOpIdx2; 254 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 255 if (ResultIdx2 == CommutableOpIdx1) 256 ResultIdx1 = CommutableOpIdx2; 257 else if (ResultIdx2 == CommutableOpIdx2) 258 ResultIdx1 = CommutableOpIdx1; 259 else 260 return false; 261 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 262 if (ResultIdx1 == CommutableOpIdx1) 263 ResultIdx2 = CommutableOpIdx2; 264 else if (ResultIdx1 == CommutableOpIdx2) 265 ResultIdx2 = CommutableOpIdx1; 266 else 267 return false; 268 } else 269 // Check that the result operand indices match the given commutable 270 // operand indices. 271 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 272 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 273 274 return true; 275 } 276 277 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, 278 unsigned &SrcOpIdx1, 279 unsigned &SrcOpIdx2) const { 280 assert(!MI.isBundle() && 281 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 282 283 const MCInstrDesc &MCID = MI.getDesc(); 284 if (!MCID.isCommutable()) 285 return false; 286 287 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 288 // is not true, then the target must implement this. 289 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 290 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 291 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 292 CommutableOpIdx1, CommutableOpIdx2)) 293 return false; 294 295 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 296 // No idea. 297 return false; 298 return true; 299 } 300 301 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 302 if (!MI.isTerminator()) return false; 303 304 // Conditional branch is a special case. 305 if (MI.isBranch() && !MI.isBarrier()) 306 return true; 307 if (!MI.isPredicable()) 308 return true; 309 return !isPredicated(MI); 310 } 311 312 bool TargetInstrInfo::PredicateInstruction( 313 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 314 bool MadeChange = false; 315 316 assert(!MI.isBundle() && 317 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 318 319 const MCInstrDesc &MCID = MI.getDesc(); 320 if (!MI.isPredicable()) 321 return false; 322 323 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 324 if (MCID.OpInfo[i].isPredicate()) { 325 MachineOperand &MO = MI.getOperand(i); 326 if (MO.isReg()) { 327 MO.setReg(Pred[j].getReg()); 328 MadeChange = true; 329 } else if (MO.isImm()) { 330 MO.setImm(Pred[j].getImm()); 331 MadeChange = true; 332 } else if (MO.isMBB()) { 333 MO.setMBB(Pred[j].getMBB()); 334 MadeChange = true; 335 } 336 ++j; 337 } 338 } 339 return MadeChange; 340 } 341 342 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI, 343 const MachineMemOperand *&MMO, 344 int &FrameIndex) const { 345 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 346 oe = MI.memoperands_end(); 347 o != oe; ++o) { 348 if ((*o)->isLoad()) { 349 if (const FixedStackPseudoSourceValue *Value = 350 dyn_cast_or_null<FixedStackPseudoSourceValue>( 351 (*o)->getPseudoValue())) { 352 FrameIndex = Value->getFrameIndex(); 353 MMO = *o; 354 return true; 355 } 356 } 357 } 358 return false; 359 } 360 361 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI, 362 const MachineMemOperand *&MMO, 363 int &FrameIndex) const { 364 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 365 oe = MI.memoperands_end(); 366 o != oe; ++o) { 367 if ((*o)->isStore()) { 368 if (const FixedStackPseudoSourceValue *Value = 369 dyn_cast_or_null<FixedStackPseudoSourceValue>( 370 (*o)->getPseudoValue())) { 371 FrameIndex = Value->getFrameIndex(); 372 MMO = *o; 373 return true; 374 } 375 } 376 } 377 return false; 378 } 379 380 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 381 unsigned SubIdx, unsigned &Size, 382 unsigned &Offset, 383 const MachineFunction &MF) const { 384 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 385 if (!SubIdx) { 386 Size = TRI->getSpillSize(*RC); 387 Offset = 0; 388 return true; 389 } 390 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 391 // Convert bit size to byte size to be consistent with 392 // MCRegisterClass::getSize(). 393 if (BitSize % 8) 394 return false; 395 396 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 397 if (BitOffset < 0 || BitOffset % 8) 398 return false; 399 400 Size = BitSize /= 8; 401 Offset = (unsigned)BitOffset / 8; 402 403 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); 404 405 if (!MF.getDataLayout().isLittleEndian()) { 406 Offset = TRI->getSpillSize(*RC) - (Offset + Size); 407 } 408 return true; 409 } 410 411 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 412 MachineBasicBlock::iterator I, 413 unsigned DestReg, unsigned SubIdx, 414 const MachineInstr &Orig, 415 const TargetRegisterInfo &TRI) const { 416 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 417 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 418 MBB.insert(I, MI); 419 } 420 421 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 422 const MachineInstr &MI1, 423 const MachineRegisterInfo *MRI) const { 424 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 425 } 426 427 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, 428 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { 429 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 430 MachineFunction &MF = *MBB.getParent(); 431 return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); 432 } 433 434 // If the COPY instruction in MI can be folded to a stack operation, return 435 // the register class to use. 436 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 437 unsigned FoldIdx) { 438 assert(MI.isCopy() && "MI must be a COPY instruction"); 439 if (MI.getNumOperands() != 2) 440 return nullptr; 441 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 442 443 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 444 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 445 446 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 447 return nullptr; 448 449 unsigned FoldReg = FoldOp.getReg(); 450 unsigned LiveReg = LiveOp.getReg(); 451 452 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 453 "Cannot fold physregs"); 454 455 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 456 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 457 458 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 459 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 460 461 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 462 return RC; 463 464 // FIXME: Allow folding when register classes are memory compatible. 465 return nullptr; 466 } 467 468 void TargetInstrInfo::getNoop(MCInst &NopInst) const { 469 llvm_unreachable("Not implemented"); 470 } 471 472 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 473 ArrayRef<unsigned> Ops, int FrameIndex, 474 const TargetInstrInfo &TII) { 475 unsigned StartIdx = 0; 476 switch (MI.getOpcode()) { 477 case TargetOpcode::STACKMAP: { 478 // StackMapLiveValues are foldable 479 StartIdx = StackMapOpers(&MI).getVarIdx(); 480 break; 481 } 482 case TargetOpcode::PATCHPOINT: { 483 // For PatchPoint, the call args are not foldable (even if reported in the 484 // stackmap e.g. via anyregcc). 485 StartIdx = PatchPointOpers(&MI).getVarIdx(); 486 break; 487 } 488 case TargetOpcode::STATEPOINT: { 489 // For statepoints, fold deopt and gc arguments, but not call arguments. 490 StartIdx = StatepointOpers(&MI).getVarIdx(); 491 break; 492 } 493 default: 494 llvm_unreachable("unexpected stackmap opcode"); 495 } 496 497 // Return false if any operands requested for folding are not foldable (not 498 // part of the stackmap's live values). 499 for (unsigned Op : Ops) { 500 if (Op < StartIdx) 501 return nullptr; 502 } 503 504 MachineInstr *NewMI = 505 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 506 MachineInstrBuilder MIB(MF, NewMI); 507 508 // No need to fold return, the meta data, and function arguments 509 for (unsigned i = 0; i < StartIdx; ++i) 510 MIB.add(MI.getOperand(i)); 511 512 for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { 513 MachineOperand &MO = MI.getOperand(i); 514 if (is_contained(Ops, i)) { 515 unsigned SpillSize; 516 unsigned SpillOffset; 517 // Compute the spill slot size and offset. 518 const TargetRegisterClass *RC = 519 MF.getRegInfo().getRegClass(MO.getReg()); 520 bool Valid = 521 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 522 if (!Valid) 523 report_fatal_error("cannot spill patchpoint subregister operand"); 524 MIB.addImm(StackMaps::IndirectMemRefOp); 525 MIB.addImm(SpillSize); 526 MIB.addFrameIndex(FrameIndex); 527 MIB.addImm(SpillOffset); 528 } 529 else 530 MIB.add(MO); 531 } 532 return NewMI; 533 } 534 535 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 536 ArrayRef<unsigned> Ops, int FI, 537 LiveIntervals *LIS) const { 538 auto Flags = MachineMemOperand::MONone; 539 for (unsigned OpIdx : Ops) 540 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore 541 : MachineMemOperand::MOLoad; 542 543 MachineBasicBlock *MBB = MI.getParent(); 544 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 545 MachineFunction &MF = *MBB->getParent(); 546 547 // If we're not folding a load into a subreg, the size of the load is the 548 // size of the spill slot. But if we are, we need to figure out what the 549 // actual load size is. 550 int64_t MemSize = 0; 551 const MachineFrameInfo &MFI = MF.getFrameInfo(); 552 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 553 554 if (Flags & MachineMemOperand::MOStore) { 555 MemSize = MFI.getObjectSize(FI); 556 } else { 557 for (unsigned OpIdx : Ops) { 558 int64_t OpSize = MFI.getObjectSize(FI); 559 560 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { 561 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); 562 if (SubRegSize > 0 && !(SubRegSize % 8)) 563 OpSize = SubRegSize / 8; 564 } 565 566 MemSize = std::max(MemSize, OpSize); 567 } 568 } 569 570 assert(MemSize && "Did not expect a zero-sized stack slot"); 571 572 MachineInstr *NewMI = nullptr; 573 574 if (MI.getOpcode() == TargetOpcode::STACKMAP || 575 MI.getOpcode() == TargetOpcode::PATCHPOINT || 576 MI.getOpcode() == TargetOpcode::STATEPOINT) { 577 // Fold stackmap/patchpoint. 578 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 579 if (NewMI) 580 MBB->insert(MI, NewMI); 581 } else { 582 // Ask the target to do the actual folding. 583 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS); 584 } 585 586 if (NewMI) { 587 NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 588 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 589 assert((!(Flags & MachineMemOperand::MOStore) || 590 NewMI->mayStore()) && 591 "Folded a def to a non-store!"); 592 assert((!(Flags & MachineMemOperand::MOLoad) || 593 NewMI->mayLoad()) && 594 "Folded a use to a non-load!"); 595 assert(MFI.getObjectOffset(FI) != -1); 596 MachineMemOperand *MMO = MF.getMachineMemOperand( 597 MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, 598 MFI.getObjectAlignment(FI)); 599 NewMI->addMemOperand(MF, MMO); 600 601 return NewMI; 602 } 603 604 // Straight COPY may fold as load/store. 605 if (!MI.isCopy() || Ops.size() != 1) 606 return nullptr; 607 608 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 609 if (!RC) 610 return nullptr; 611 612 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 613 MachineBasicBlock::iterator Pos = MI; 614 615 if (Flags == MachineMemOperand::MOStore) 616 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 617 else 618 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 619 return &*--Pos; 620 } 621 622 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 623 ArrayRef<unsigned> Ops, 624 MachineInstr &LoadMI, 625 LiveIntervals *LIS) const { 626 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 627 #ifndef NDEBUG 628 for (unsigned OpIdx : Ops) 629 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); 630 #endif 631 632 MachineBasicBlock &MBB = *MI.getParent(); 633 MachineFunction &MF = *MBB.getParent(); 634 635 // Ask the target to do the actual folding. 636 MachineInstr *NewMI = nullptr; 637 int FrameIndex = 0; 638 639 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 640 MI.getOpcode() == TargetOpcode::PATCHPOINT || 641 MI.getOpcode() == TargetOpcode::STATEPOINT) && 642 isLoadFromStackSlot(LoadMI, FrameIndex)) { 643 // Fold stackmap/patchpoint. 644 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 645 if (NewMI) 646 NewMI = &*MBB.insert(MI, NewMI); 647 } else { 648 // Ask the target to do the actual folding. 649 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 650 } 651 652 if (!NewMI) 653 return nullptr; 654 655 // Copy the memoperands from the load to the folded instruction. 656 if (MI.memoperands_empty()) { 657 NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end()); 658 } else { 659 // Handle the rare case of folding multiple loads. 660 NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 661 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 662 E = LoadMI.memoperands_end(); 663 I != E; ++I) { 664 NewMI->addMemOperand(MF, *I); 665 } 666 } 667 return NewMI; 668 } 669 670 bool TargetInstrInfo::hasReassociableOperands( 671 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 672 const MachineOperand &Op1 = Inst.getOperand(1); 673 const MachineOperand &Op2 = Inst.getOperand(2); 674 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 675 676 // We need virtual register definitions for the operands that we will 677 // reassociate. 678 MachineInstr *MI1 = nullptr; 679 MachineInstr *MI2 = nullptr; 680 if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) 681 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 682 if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) 683 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 684 685 // And they need to be in the trace (otherwise, they won't have a depth). 686 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 687 } 688 689 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 690 bool &Commuted) const { 691 const MachineBasicBlock *MBB = Inst.getParent(); 692 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 693 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 694 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 695 unsigned AssocOpcode = Inst.getOpcode(); 696 697 // If only one operand has the same opcode and it's the second source operand, 698 // the operands must be commuted. 699 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 700 if (Commuted) 701 std::swap(MI1, MI2); 702 703 // 1. The previous instruction must be the same type as Inst. 704 // 2. The previous instruction must have virtual register definitions for its 705 // operands in the same basic block as Inst. 706 // 3. The previous instruction's result must only be used by Inst. 707 return MI1->getOpcode() == AssocOpcode && 708 hasReassociableOperands(*MI1, MBB) && 709 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 710 } 711 712 // 1. The operation must be associative and commutative. 713 // 2. The instruction must have virtual register definitions for its 714 // operands in the same basic block. 715 // 3. The instruction must have a reassociable sibling. 716 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 717 bool &Commuted) const { 718 return isAssociativeAndCommutative(Inst) && 719 hasReassociableOperands(Inst, Inst.getParent()) && 720 hasReassociableSibling(Inst, Commuted); 721 } 722 723 // The concept of the reassociation pass is that these operations can benefit 724 // from this kind of transformation: 725 // 726 // A = ? op ? 727 // B = A op X (Prev) 728 // C = B op Y (Root) 729 // --> 730 // A = ? op ? 731 // B = X op Y 732 // C = A op B 733 // 734 // breaking the dependency between A and B, allowing them to be executed in 735 // parallel (or back-to-back in a pipeline) instead of depending on each other. 736 737 // FIXME: This has the potential to be expensive (compile time) while not 738 // improving the code at all. Some ways to limit the overhead: 739 // 1. Track successful transforms; bail out if hit rate gets too low. 740 // 2. Only enable at -O3 or some other non-default optimization level. 741 // 3. Pre-screen pattern candidates here: if an operand of the previous 742 // instruction is known to not increase the critical path, then don't match 743 // that pattern. 744 bool TargetInstrInfo::getMachineCombinerPatterns( 745 MachineInstr &Root, 746 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 747 bool Commute; 748 if (isReassociationCandidate(Root, Commute)) { 749 // We found a sequence of instructions that may be suitable for a 750 // reassociation of operands to increase ILP. Specify each commutation 751 // possibility for the Prev instruction in the sequence and let the 752 // machine combiner decide if changing the operands is worthwhile. 753 if (Commute) { 754 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 755 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 756 } else { 757 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 758 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 759 } 760 return true; 761 } 762 763 return false; 764 } 765 766 /// Return true when a code sequence can improve loop throughput. 767 bool 768 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 769 return false; 770 } 771 772 /// Attempt the reassociation transformation to reduce critical path length. 773 /// See the above comments before getMachineCombinerPatterns(). 774 void TargetInstrInfo::reassociateOps( 775 MachineInstr &Root, MachineInstr &Prev, 776 MachineCombinerPattern Pattern, 777 SmallVectorImpl<MachineInstr *> &InsInstrs, 778 SmallVectorImpl<MachineInstr *> &DelInstrs, 779 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 780 MachineFunction *MF = Root.getMF(); 781 MachineRegisterInfo &MRI = MF->getRegInfo(); 782 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 783 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 784 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 785 786 // This array encodes the operand index for each parameter because the 787 // operands may be commuted. Each row corresponds to a pattern value, 788 // and each column specifies the index of A, B, X, Y. 789 unsigned OpIdx[4][4] = { 790 { 1, 1, 2, 2 }, 791 { 1, 2, 2, 1 }, 792 { 2, 1, 1, 2 }, 793 { 2, 2, 1, 1 } 794 }; 795 796 int Row; 797 switch (Pattern) { 798 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 799 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 800 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 801 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 802 default: llvm_unreachable("unexpected MachineCombinerPattern"); 803 } 804 805 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 806 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 807 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 808 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 809 MachineOperand &OpC = Root.getOperand(0); 810 811 unsigned RegA = OpA.getReg(); 812 unsigned RegB = OpB.getReg(); 813 unsigned RegX = OpX.getReg(); 814 unsigned RegY = OpY.getReg(); 815 unsigned RegC = OpC.getReg(); 816 817 if (TargetRegisterInfo::isVirtualRegister(RegA)) 818 MRI.constrainRegClass(RegA, RC); 819 if (TargetRegisterInfo::isVirtualRegister(RegB)) 820 MRI.constrainRegClass(RegB, RC); 821 if (TargetRegisterInfo::isVirtualRegister(RegX)) 822 MRI.constrainRegClass(RegX, RC); 823 if (TargetRegisterInfo::isVirtualRegister(RegY)) 824 MRI.constrainRegClass(RegY, RC); 825 if (TargetRegisterInfo::isVirtualRegister(RegC)) 826 MRI.constrainRegClass(RegC, RC); 827 828 // Create a new virtual register for the result of (X op Y) instead of 829 // recycling RegB because the MachineCombiner's computation of the critical 830 // path requires a new register definition rather than an existing one. 831 unsigned NewVR = MRI.createVirtualRegister(RC); 832 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 833 834 unsigned Opcode = Root.getOpcode(); 835 bool KillA = OpA.isKill(); 836 bool KillX = OpX.isKill(); 837 bool KillY = OpY.isKill(); 838 839 // Create new instructions for insertion. 840 MachineInstrBuilder MIB1 = 841 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 842 .addReg(RegX, getKillRegState(KillX)) 843 .addReg(RegY, getKillRegState(KillY)); 844 MachineInstrBuilder MIB2 = 845 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 846 .addReg(RegA, getKillRegState(KillA)) 847 .addReg(NewVR, getKillRegState(true)); 848 849 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 850 851 // Record new instructions for insertion and old instructions for deletion. 852 InsInstrs.push_back(MIB1); 853 InsInstrs.push_back(MIB2); 854 DelInstrs.push_back(&Prev); 855 DelInstrs.push_back(&Root); 856 } 857 858 void TargetInstrInfo::genAlternativeCodeSequence( 859 MachineInstr &Root, MachineCombinerPattern Pattern, 860 SmallVectorImpl<MachineInstr *> &InsInstrs, 861 SmallVectorImpl<MachineInstr *> &DelInstrs, 862 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 863 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); 864 865 // Select the previous instruction in the sequence based on the input pattern. 866 MachineInstr *Prev = nullptr; 867 switch (Pattern) { 868 case MachineCombinerPattern::REASSOC_AX_BY: 869 case MachineCombinerPattern::REASSOC_XA_BY: 870 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 871 break; 872 case MachineCombinerPattern::REASSOC_AX_YB: 873 case MachineCombinerPattern::REASSOC_XA_YB: 874 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 875 break; 876 default: 877 break; 878 } 879 880 assert(Prev && "Unknown pattern for machine combiner"); 881 882 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 883 } 884 885 void TargetInstrInfo::trackRegDefsUses(const MachineInstr &MI, 886 BitVector &ModifiedRegs, 887 BitVector &UsedRegs, 888 const TargetRegisterInfo *TRI) const { 889 for (const MachineOperand &MO : MI.operands()) { 890 if (MO.isRegMask()) 891 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 892 if (!MO.isReg()) 893 continue; 894 unsigned Reg = MO.getReg(); 895 if (!Reg) 896 continue; 897 if (MO.isDef()) { 898 // Some architectures (e.g. AArch64 XZR/WZR) have registers that are 899 // constant and may be used as destinations to indicate the generated 900 // value is discarded. No need to track such case as a def. 901 if (!TRI->isConstantPhysReg(Reg)) 902 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 903 ModifiedRegs.set(*AI); 904 } else { 905 assert(MO.isUse() && "Reg operand not a def and not a use"); 906 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 907 UsedRegs.set(*AI); 908 } 909 } 910 } 911 912 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 913 const MachineInstr &MI, AliasAnalysis *AA) const { 914 const MachineFunction &MF = *MI.getMF(); 915 const MachineRegisterInfo &MRI = MF.getRegInfo(); 916 917 // Remat clients assume operand 0 is the defined register. 918 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 919 return false; 920 unsigned DefReg = MI.getOperand(0).getReg(); 921 922 // A sub-register definition can only be rematerialized if the instruction 923 // doesn't read the other parts of the register. Otherwise it is really a 924 // read-modify-write operation on the full virtual register which cannot be 925 // moved safely. 926 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 927 MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) 928 return false; 929 930 // A load from a fixed stack slot can be rematerialized. This may be 931 // redundant with subsequent checks, but it's target-independent, 932 // simple, and a common case. 933 int FrameIdx = 0; 934 if (isLoadFromStackSlot(MI, FrameIdx) && 935 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) 936 return true; 937 938 // Avoid instructions obviously unsafe for remat. 939 if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects()) 940 return false; 941 942 // Don't remat inline asm. We have no idea how expensive it is 943 // even if it's side effect free. 944 if (MI.isInlineAsm()) 945 return false; 946 947 // Avoid instructions which load from potentially varying memory. 948 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) 949 return false; 950 951 // If any of the registers accessed are non-constant, conservatively assume 952 // the instruction is not rematerializable. 953 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 954 const MachineOperand &MO = MI.getOperand(i); 955 if (!MO.isReg()) continue; 956 unsigned Reg = MO.getReg(); 957 if (Reg == 0) 958 continue; 959 960 // Check for a well-behaved physical register. 961 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 962 if (MO.isUse()) { 963 // If the physreg has no defs anywhere, it's just an ambient register 964 // and we can freely move its uses. Alternatively, if it's allocatable, 965 // it could get allocated to something with a def during allocation. 966 if (!MRI.isConstantPhysReg(Reg)) 967 return false; 968 } else { 969 // A physreg def. We can't remat it. 970 return false; 971 } 972 continue; 973 } 974 975 // Only allow one virtual-register def. There may be multiple defs of the 976 // same virtual register, though. 977 if (MO.isDef() && Reg != DefReg) 978 return false; 979 980 // Don't allow any virtual-register uses. Rematting an instruction with 981 // virtual register uses would length the live ranges of the uses, which 982 // is not necessarily a good idea, certainly not "trivial". 983 if (MO.isUse()) 984 return false; 985 } 986 987 // Everything checked out. 988 return true; 989 } 990 991 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 992 const MachineFunction *MF = MI.getMF(); 993 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 994 bool StackGrowsDown = 995 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 996 997 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 998 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 999 1000 if (!isFrameInstr(MI)) 1001 return 0; 1002 1003 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); 1004 1005 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 1006 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 1007 SPAdj = -SPAdj; 1008 1009 return SPAdj; 1010 } 1011 1012 /// isSchedulingBoundary - Test if the given instruction should be 1013 /// considered a scheduling boundary. This primarily includes labels 1014 /// and terminators. 1015 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1016 const MachineBasicBlock *MBB, 1017 const MachineFunction &MF) const { 1018 // Terminators and labels can't be scheduled around. 1019 if (MI.isTerminator() || MI.isPosition()) 1020 return true; 1021 1022 // Don't attempt to schedule around any instruction that defines 1023 // a stack-oriented pointer, as it's unlikely to be profitable. This 1024 // saves compile time, because it doesn't require every single 1025 // stack slot reference to depend on the instruction that does the 1026 // modification. 1027 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1028 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1029 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 1030 } 1031 1032 // Provide a global flag for disabling the PreRA hazard recognizer that targets 1033 // may choose to honor. 1034 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 1035 return !DisableHazardRecognizer; 1036 } 1037 1038 // Default implementation of CreateTargetRAHazardRecognizer. 1039 ScheduleHazardRecognizer *TargetInstrInfo:: 1040 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1041 const ScheduleDAG *DAG) const { 1042 // Dummy hazard recognizer allows all instructions to issue. 1043 return new ScheduleHazardRecognizer(); 1044 } 1045 1046 // Default implementation of CreateTargetMIHazardRecognizer. 1047 ScheduleHazardRecognizer *TargetInstrInfo:: 1048 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 1049 const ScheduleDAG *DAG) const { 1050 return (ScheduleHazardRecognizer *) 1051 new ScoreboardHazardRecognizer(II, DAG, "misched"); 1052 } 1053 1054 // Default implementation of CreateTargetPostRAHazardRecognizer. 1055 ScheduleHazardRecognizer *TargetInstrInfo:: 1056 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 1057 const ScheduleDAG *DAG) const { 1058 return (ScheduleHazardRecognizer *) 1059 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // SelectionDAG latency interface. 1064 //===----------------------------------------------------------------------===// 1065 1066 int 1067 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1068 SDNode *DefNode, unsigned DefIdx, 1069 SDNode *UseNode, unsigned UseIdx) const { 1070 if (!ItinData || ItinData->isEmpty()) 1071 return -1; 1072 1073 if (!DefNode->isMachineOpcode()) 1074 return -1; 1075 1076 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 1077 if (!UseNode->isMachineOpcode()) 1078 return ItinData->getOperandCycle(DefClass, DefIdx); 1079 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 1080 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1081 } 1082 1083 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1084 SDNode *N) const { 1085 if (!ItinData || ItinData->isEmpty()) 1086 return 1; 1087 1088 if (!N->isMachineOpcode()) 1089 return 1; 1090 1091 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1092 } 1093 1094 //===----------------------------------------------------------------------===// 1095 // MachineInstr latency interface. 1096 //===----------------------------------------------------------------------===// 1097 1098 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1099 const MachineInstr &MI) const { 1100 if (!ItinData || ItinData->isEmpty()) 1101 return 1; 1102 1103 unsigned Class = MI.getDesc().getSchedClass(); 1104 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1105 if (UOps >= 0) 1106 return UOps; 1107 1108 // The # of u-ops is dynamically determined. The specific target should 1109 // override this function to return the right number. 1110 return 1; 1111 } 1112 1113 /// Return the default expected latency for a def based on it's opcode. 1114 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1115 const MachineInstr &DefMI) const { 1116 if (DefMI.isTransient()) 1117 return 0; 1118 if (DefMI.mayLoad()) 1119 return SchedModel.LoadLatency; 1120 if (isHighLatencyDef(DefMI.getOpcode())) 1121 return SchedModel.HighLatency; 1122 return 1; 1123 } 1124 1125 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1126 return 0; 1127 } 1128 1129 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1130 const MachineInstr &MI, 1131 unsigned *PredCost) const { 1132 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1133 // still have a MinLatency property, which getStageLatency checks. 1134 if (!ItinData) 1135 return MI.mayLoad() ? 2 : 1; 1136 1137 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1138 } 1139 1140 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1141 const MachineInstr &DefMI, 1142 unsigned DefIdx) const { 1143 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1144 if (!ItinData || ItinData->isEmpty()) 1145 return false; 1146 1147 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1148 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1149 return (DefCycle != -1 && DefCycle <= 1); 1150 } 1151 1152 /// Both DefMI and UseMI must be valid. By default, call directly to the 1153 /// itinerary. This may be overriden by the target. 1154 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1155 const MachineInstr &DefMI, 1156 unsigned DefIdx, 1157 const MachineInstr &UseMI, 1158 unsigned UseIdx) const { 1159 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1160 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1161 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1162 } 1163 1164 /// If we can determine the operand latency from the def only, without itinerary 1165 /// lookup, do so. Otherwise return -1. 1166 int TargetInstrInfo::computeDefOperandLatency( 1167 const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { 1168 1169 // Let the target hook getInstrLatency handle missing itineraries. 1170 if (!ItinData) 1171 return getInstrLatency(ItinData, DefMI); 1172 1173 if(ItinData->isEmpty()) 1174 return defaultDefLatency(ItinData->SchedModel, DefMI); 1175 1176 // ...operand lookup required 1177 return -1; 1178 } 1179 1180 bool TargetInstrInfo::getRegSequenceInputs( 1181 const MachineInstr &MI, unsigned DefIdx, 1182 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1183 assert((MI.isRegSequence() || 1184 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1185 1186 if (!MI.isRegSequence()) 1187 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1188 1189 // We are looking at: 1190 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1191 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1192 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1193 OpIdx += 2) { 1194 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1195 if (MOReg.isUndef()) 1196 continue; 1197 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1198 assert(MOSubIdx.isImm() && 1199 "One of the subindex of the reg_sequence is not an immediate"); 1200 // Record Reg:SubReg, SubIdx. 1201 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1202 (unsigned)MOSubIdx.getImm())); 1203 } 1204 return true; 1205 } 1206 1207 bool TargetInstrInfo::getExtractSubregInputs( 1208 const MachineInstr &MI, unsigned DefIdx, 1209 RegSubRegPairAndIdx &InputReg) const { 1210 assert((MI.isExtractSubreg() || 1211 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1212 1213 if (!MI.isExtractSubreg()) 1214 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1215 1216 // We are looking at: 1217 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1218 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1219 const MachineOperand &MOReg = MI.getOperand(1); 1220 if (MOReg.isUndef()) 1221 return false; 1222 const MachineOperand &MOSubIdx = MI.getOperand(2); 1223 assert(MOSubIdx.isImm() && 1224 "The subindex of the extract_subreg is not an immediate"); 1225 1226 InputReg.Reg = MOReg.getReg(); 1227 InputReg.SubReg = MOReg.getSubReg(); 1228 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1229 return true; 1230 } 1231 1232 bool TargetInstrInfo::getInsertSubregInputs( 1233 const MachineInstr &MI, unsigned DefIdx, 1234 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1235 assert((MI.isInsertSubreg() || 1236 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1237 1238 if (!MI.isInsertSubreg()) 1239 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1240 1241 // We are looking at: 1242 // Def = INSERT_SEQUENCE v0, v1, sub0. 1243 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1244 const MachineOperand &MOBaseReg = MI.getOperand(1); 1245 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1246 if (MOInsertedReg.isUndef()) 1247 return false; 1248 const MachineOperand &MOSubIdx = MI.getOperand(3); 1249 assert(MOSubIdx.isImm() && 1250 "One of the subindex of the reg_sequence is not an immediate"); 1251 BaseReg.Reg = MOBaseReg.getReg(); 1252 BaseReg.SubReg = MOBaseReg.getSubReg(); 1253 1254 InsertedReg.Reg = MOInsertedReg.getReg(); 1255 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1256 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1257 return true; 1258 } 1259